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Abstract 
 

 
Additional to the interannual variability, the Pacific region experiences climate 

fluctuations on decadal and longer time scales. It is not clear whether Tropical Pacific decadal 

variability is internal to Tropical Pacific, or whether the midlatitudes exhibit independent 

decadal variability that affects the tropics or ENSO variability. Available observational data 

are insufficient to determine the true causes of Tropical Pacific decadal variability. Internal 

and remote forcing from subtropics are investigated in this study. This is done with state of 

the art global circulation models (coupled and uncoupled). 

The leading mode of Tropical Pacific decadal variability in the ECHAM5-MPIOM 

model, isolated in the tropical cells (TC) index by means of SSA, has a period of about 17 

years. The associated SST spatial structure is characterized by a horseshoe-like pattern with 

maximum explained variance in the central-western equatorial Pacific and off the equator, 

therefore resembling the signature of the observed decadal climate variability in the tropical 

Pacific. The mechanism for decadal variability in the model involves coupled ocean-

atmosphere processes over the western tropical South Pacific, in the region of the SPCZ. 

Strong positive TCs are associated with periods of increased ENSO variability and vice versa, 

contributing to the decadal modulation of ENSO activity. 

The influence of the remote subtropical forcing was studied in more detail with 

tailored experiments performed with the ocean-atmosphere-sea ice coupled model 

ECHAM5/MPI-OM. In these sensitivity experiments, the coupled model is forced with 

idealized sea surface temperature anomalies (SSTA) and sea surface salinity anomalies 

(SSSA) in the subtropics of both hemispheres. Thus, the relative impact of the subtropical 

North and South Pacific Oceans on the tropical climate mean state and variability can be 

estimated. 

The largest impact on tropical mean climate and variability was simulated in the SSTA 

experiments. Subtropical South Pacific thermal forcing had more impact on equatorial ocean 

sea surface temperature than the subtropical North Pacific. In response to a 2°C warming in 

the subtropical South Pacific, the equatorial Pacific SST increases by +0.58°C, being about 

65% larger than the change in the North Pacific experiment. The results show that the 

subtropics affect equatorial SST mainly through the „atmospheric bridge“ for the South 

Pacific experiments and through the„oceanic bridge“ for the North Pacific experiments. This 

explains the different timescale of the response in the two experiments. Although the tropical 
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Pacific surface response to an enhanced warming/cooling in the subtropics is to first order 

linear, we found that the negative thermal forcing has a stronger impact on the equatorial 

thermocline. 

Similar sensitivity experiments conducted with the AGCM ECHAM5 showed that 

both air-sea interactions and ocean dynamics are crucial for the generation of simulated 

tropical climate response to the subtropical surface warming/cooling. 

We found that the statistics of ENSO exhibit significant changes in amplitude and 

frequency in response to a warming/cooling in the subtropical South Pacific: a 2°C 

subtropical South Pacific SST warming can reduce the mean ENSO standard deviation by 

28%, while a 2°C subtropical South Pacific SST cooling can increase the mean ENSO 

standard deviation by 21%. The simulated changes in the equatorial zonal SST contrast 

between the eastern equatorial Pacific and the warm pool region are the main contributor to 

the modulation of ENSO variability in our South Pacific sensitivity experiments. The 

simulated intensification/weakening of the annual cycle in response to an enhanced 

warming/cooling in subtropical South Pacific may also lead to a weaker/stronger ENSO. The 

subtropical North Pacific thermal forcing did not change the statistical properties of ENSO. 

The main results of this study suggest that subtropical South Pacific climate variations 

play a dominant role in tropical Pacific decadal variability and in the decadal modulation of 

ENSO activity. 
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1. Introduction 

 
 
 

1.1 Motivation 

 

Additional to the interannual changes, the Pacific region experiences climate 

fluctuations on decadal or longer time scales. After 1976 the tropical Pacific Ocean has been 

warmer than in preceding decades while the central and western North Pacific Ocean have 

been colder and atmospheric pressure has been lower over the midlatitude North and South 

Pacific Oceans. In the early 1940s the climate of the Pacific went through a shift in the 

opposite direction. These characteristics of Pacific Decadal Variability were described in 

several papers (Graham, 1994; Trenberth and Hurrel, 1994; Zhang et al., 1997; Mantua et al., 

1997; Garreaud and Battisti, 1999).  

Pacific decadal climate fluctuations have important consequences for the climate over 

the nearby continental regions. Mantua et al. (1997) have shown that when the tropical Pacific 

is warm (e.g. after 1976), winters are warm across most of North America, but cold in the 

southeastern United States. The winters are also drier than average over midlatitude North 

America, but wetter in the southwestern United States and Mexico. In the midlatitudes of the 

North Pacific, the changes are apparent not only in the sea surface temperature over virtually 

the entire North Pacific, but also in low frequency modulation of phytoplankton and fish 

population (Venrick et al., 1987; Mantua et al., 1997; Miller et al., 2003) as well as period of 

extended above normal/below normal rainfall over United States (Latif and Barnett, 1994, 

1996).  Interdecadal northeastern Australian rainfall anomalies were shown to be highly 

correlated to interdecadal fluctuations in the tropical Pacific (Latif et al., 1997b). In a recent 

study, Meehl et al. (2006) connected the megadroughts in the Indian Monsoon Region and 

Southwest North America to the decadal Pacific SST anomalies 

Tropical Pacific variability associated with ENSO undergoes changes on decadal 

timescales as well. Using the entire instrumental record, many studies have pointed out a 

change in ENSO statistics over the past 100 years, including a decadal scale modulation in 

ENSO amplitude (Gu and Philander, 1997). As there were notable changes in ENSO statistics 

before and after 1976 climate transition (Fedorov and Philander, 2000), some studies suggest 

that the low-frequency modulation of ENSO and the interdecadal fluctuation may be linked. 
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Decadal variations of ENSO have also been associated with decadal variations in Australian 

climate (Power et al., 1999; Power et al., 2006) and the strength of the Indian monsoon 

(Kumar et al., 1999; Krishnamurthy and Goswani, 2000). However, more recent studies cast 

some doubts on the linkage (Deser et al., 2004; Yeh and Kirtman, 2004).  

 

1.2 Mechanisms for Pacific decadal variability 

 

Although the decadal ENSO-like pattern in the Tropical Pacific and its relation to the 

North Pacific decadal variability has been extensively studied using both observational and 

modeling data (Nitta and Yamada, 1989; Trenberth and Hurrel, 1994; Zhang et al., 1997; 

Barnett et al., 1999; Pierce et al., 2000; Deser et al., 2004; D’Arrigo et al., 2005), the physical 

mechanisms responsible for the decadal Pacific climate variability are still controversial. It is 

not clear whether the decadal variability is internal to Tropical Pacific, or whether the 

midlatitudes independently undergo decadal variability or affect ENSO variability.  

One of the leading theories is represented by the connection between the 

subtropics/extratropics and tropics at decadal timescales. Various distinct hypotheses based on 

a hierarchy of models have been proposed to explain the subtropical-tropical connections, 

often with contradicting results. 

On the one hand, the mean advection mechanism (Gu and Philander, 1997) assumes 

that the subtropical sea surface (SST) anomalies are first subducted into the thermocline. 

These are then advected to the equator within the subsurface branch of the subtropical cell 

(STC, McCreary and Lu, 1994), and finally upwelled to the surface in the eastern equatorial 

Pacific, where they affect the cold tongue. Recent studies, however, indicate that the 

temperature anomalies subducted into the pycnocline in the subtropical North Pacific may not 

reach the equator with any appreciable amplitude (Schneider et al., 1999; Nonaka and Xie, 

2000). These anomalies, although important for generating subsurface variability in the 

subtropical gyre (Deser et al, 1996; Zhang et al., 2001), can either be strongly dissipated, 

dispersed in the form of planetary-scale oceanic waves, or become obscured by the wind-

forced variations at low latitudes (Schneider et al., 1999a, 1999b; Nonaka and Xie, 2000). 

On the other hand, the subtropical anomalies can induce changes in the overlying 

atmospheric circulations that could result in changes of the subtropical cells (STC) strength. 

The tropical climate can thus be changed due to the varying amount of the equatorward cold 

water transport. Using an intermediate coupled model, consisting of a 3-1/2 layer shallow 

water model coupled with a statistical atmospheric model, Kleeman et al. (1999) have shown 



 7 

that decadal variations of tropical SSTs are primarily related to changes in wind stress and 

subduction rates in the subtropics (poleward of ~23°). Employing an OGCM forced by 

observed winds, Nonaka et al. (2002) found that equatorial winds (5°S-5°N) are as important 

as extraequatorial winds (poleward of 5°) for the decadal modulation of equatorial SSTs. The 

mechanism of tropical decadal variability proposed by Kleeman et al. (1999) was supported 

by the observational studies of McPhaden and Zhang (2002, 2004). They presented evidence 

that the warming and cooling events and mass transport anomalies seem to be related over the 

last 40-50yr.  

In addition, Lysne et al. (1997) suggests a wave mechanism, in which the thermal 

anomalies propagate from the central North Pacific to the western boundary as long Rossby 

waves, southward along the coast as coastal Kelvin waves and westward along the equator as 

equatorial Kelvin waves. However, this wave mechanism does not exclude the ventilated 

thermocline dynamics as an important link between subtropics and tropics at decadal 

timescale. 

The subtropical/midlatitude climate can also affect the tropics through the atmospheric 

teleconnections. Barnett et al. (1999), argued that anomalous winds related to a midlatitude 

decadal mode in the North Pacific may extend to the equatorial region and thus bring about 

low-frequency wind variations there that affect the equatorial thermocline and modulate 

ENSO. Pierce et al. 2000 also found that the strongest link between Tropics and midlatitudes 

on decadal timescales is communicated near-simultaneously via changes in surface wind 

stress. 

In the last decade, the potential influence of North Pacific ocean-atmosphere processes 

on tropical Pacific decadal variability has dominated the literature, probably also due to the 

sparse observational data in South Pacific south of 30°S. More recently, a number of 

observational (Luo and Yamagata 2001, Giese et al. 2002, Bratcher and Giese 2002, Holland 

et al. 2006) and numerical modeling studies (Luo et al. 2003, Luo et al. 2005) have shown 

pronounced subsurface signals moving from South Pacific to the equatorial region. This is not 

surprising, since the South Pacific Ocean contributes about 70% to the water mass in the 

Equatorial Undercurrent (Lindstrom et al. 1987, McCreary and Lu 1994), and much of the 

water from the South Pacific can reach the equator through the interior pathways of the STC 

due to the absence of a potential vorticity barrier in the South Pacific. A potential vorticity 

barrier exists in the North Pacific being related to the Intertropical Convergence Zone (ITCZ).  

Despite this rich variety of potential mechanisms the causes of tropical Pacific decadal 

variability are still unclear. Regardless of the quality of observational record, the data record 
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is too short to unambiguously determine the mechanisms responsible for Pacific decadal 

variability. Additionally, the increase in greenhouse gasses is making more difficult to 

distinguish between the natural climate variability from externally forced climate variability. 

Thus, long-term simulations performed with state-of-art fully coupled atmosphere-ocean 

models are essential tools for identifying the physics responsible for decadal variability in the 

climate system.  

As described above, the research emphasis for decadal timescales has been on 

investigating the connections between the Tropical and North Pacific Ocean, with very few 

recent studies dealing with the interactions between South and Tropical Pacific. Hence, an 

important question to be address: What are the relative roles of North and South subtropical 

Pacific in the decadal modulation of tropical SSTs? Another important question emerges from 

literature and international research programs (e.g., CLIVAR): Does/Will anthropogenic 

climate change influence the characteristics of decadal Pacific climate variability? 

 

1.3 Scientific objectives 

 

In this study, we employ a state-of-art ocean-atmosphere coupled model to investigate 

how the projected changes in the subtropical Pacific climate mean state under global warming 

scenarios will affect the mechanisms responsible for decadal subtropical-tropical interactions 

in the Pacific Ocean. Furthermore, the relative contributions of North and South subtropical 

Pacific Ocean variations to the tropical Pacific climate and interannual variability will be 

estimated as well as the linearity of the response to the strength and sign of the forcing. 

 

Therefore, several research questions will be addressed in the present study:  

 

• What are the mechanisms governing the interaction between subtropical and 

tropical Pacific at decadal timescales?  

• What is the climate response of the equatorial Pacific system to the variations 

in the subtropical surface climate?  

• Are the subtropical-tropical interactions via the “atmospheric bridge” or via the 

“oceanic bridge”? What is the role of air-sea coupling and ocean dynamics in 

these interactions? 

• Have the North and South subtropical Pacific climate variations a similar 

impact on the tropical Pacific mean state and interannual variability? 
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• Is the impact of subtropical climate variations linear in strength and sign? 

• How do ENSO characteristics respond to enhanced Pacific subtropical 

warming/cooling? 

 

1.4 Outline of the thesis 

 

In this thesis, we will first investigate the mechanism responsible for the tropical 

Pacific decadal variability in an unforced integration of the new coupled ECHAM5/MPI-OM 

ocean-atmosphere-sea ice model. We then go to examine the connections between the 

subtropical and tropical Pacific on decadal timescales using specifically designed 

experiments. In these sensitivity experiments, the coupled model is forced with idealized sea 

surface temperature anomalies (SSTA) and sea surface salinity anomalies (SSSA) in the 

subtropics of both hemispheres. Thus, the relative impact of the subtropical North and South 

Pacific Oceans to the tropical climate mean state and variability can be estimated. 

Additionally, SSTA integrations with the stand-alone atmospheric model are performed with 

the purpose to separate between the role of ocean dynamics and ocean-atmospheric coupling 

in subtropical-tropical interactions. The experimental setup of the sensitivity experiments 

performed with the coupled ECHAM5/MPI-OM model and stand-alone ECHAM5 model are 

described at the beginning of Chapter 4. 

The thesis is organized as follows: Chapter 2 gives a description of the coupled model 

ECHAM5/MPI-OM, together with a short presentation of tropical Pacific interannual 

variability in the model and of the SSA statistical method. Chapter 3 is focused on identifying 

the mechanism that causes internal tropical Pacific variability at decadal timescales in the 

model and its affect on ENSO activity. Chapter 4 is concentrated on the impact of subtropical 

thermal and salinity variations onto the mean state of tropical Pacific Ocean, while the 

modulation of ENSO variability by the subtropical Pacific thermal forcing is explored in 

Chapter 5. Conclusions and an outlook of future work are given in Chapter 6 and Chapter 7. 

Please note that the references of all chapters will be gather together in a references list at the 

end of the thesis.  
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2. Model description and statistical methods 

 

 

 

 

2.1 ECHAM5/MPI-OM model description 

 

The coupled atmosphere-ocean-sea ice model used in this study is the state-of-the-art 

ECHAM5/MPI-OM model developed at the Max Planck Institute for Meteorology (MPI). It 

consists of the atmosphere GCM model ECHAM5 (ECmwf HAMburg) and the ocean model 

MPI-OM (Max Planck Institute Ocean Model). A 1000-year control integration of the 

ECHAM5/MPI-OM model is used for the study of Pacific decadal variability in this thesis. 

The same model is also used to perform the sensitivity experiments described in chapter 4. 

This version of the ECHAM5/MPI-OM model was used to study the impact of the tropical 

Indian and Atlantic Oceans on ENSO (Dommenget et al., 2006) and of the tropical Pacific 

variability on the mean North Atlantic Thermohaline circulation (Semenov and Latif, 2006), 

while Bader and Latif (2005) analyzed the North Atlantic Oscillation response to anomalous 

Indian Ocean SST. 

 

2.1.1 Atmosphere model - ECHAM5 

 

The ECHAM model was adapted for climate application from the spectral weather 

prediction model of the European Center for Medium Range Weather Forecast (ECMWF). 

ECHAM5 is the latest version of the model. The main features of the model will be only 

briefly described, further details can be found in Roeckner et al. (2003) and in the special 

issue of Journal of Climate dedicated to the new ECHAM5/MPI-OM model (Roeckner et al., 

2006; Wild and Roeckner, 2006).  

The ECHAM5 model employs a spectral dynamical core, with vorticity, divergence, 

temperature and the logarithm of surface air pressure being represented in the horizontal by a 

truncated series of spherical harmonics. The model utilizes a semi-implicit leapfrog time-
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differencing scheme. A hybrid sigma-pressure coordinate is used in the vertical direction. A 

flux-form semi-Lagrangian scheme (Lin and Rood, 1996) is used for passive tracer transport 

of water components (vapor, liquid, solid) and chemical substances. The cloud scheme 

consists of prognostics equations for the water phases, bulk cloud microphysics (Lohmann 

and Roeckner, 1996), and a statistical cloud cover scheme with prognostics equations for the 

distribution moments (Tompkins, 2002). 

The ECHAM5 version we employ here is the tropospheric model resolving the 

atmosphere up to middle stratosphere (10 hPa). It has 19 irregularly distributed vertical levels, 

with the highest vertical resolution in the atmospheric boundary level. The horizontal spectral 

resolution is T31 (a triangular truncation at wave number 31), corresponding to approximately 

3.75 degrees. 

 

2.1.2 Ocean model – MPI-OM 

 

The ocean model MPI-OM (Marsland et al., 2003) is a global version of the Hamburg 

Ocean Primitive Equations (HOPE) model (Wolf et al., 1997). The model is a z-coordinate 

global general circulation model with 40 unevenly spaced vertical levels (20 levels located in 

the upper 600m) and is based on the primitive equations for a hydrostatic Boussinesq fluid on 

a rotating sphere. It includes parameterizations of sub-grid scale mixing processes like 

isopycnal diffusion of the thermohaline fields, a Gent and McWillimas style eddy-induced 

tracer transport and a bottom boundary layer slope convection scheme. The model employs a 

free surface and the grid is based on an Arakawa C-grid (Arakawa and Lamb, 1977).  

A dynamic, thermodynamic sea ice model is embedded in the ocean model (Legutke et 

al., 1997). The dynamics of sea ice are formulated using a viscous-plastic rheology (Hibler, 

1979). The thermodynamics relate sea ice thickness changes to a balance of radiant, turbulent 

and oceanic heat fluxes. 

An orthogonal curvilinear grid allows for an arbitrary placement of the model’s poles. 

The configuration used in this study places the North Pole over Greenland (80°N, 30°W), 

while the South Pole is shifted to the center of Antarctic continent (80°S, 30°W) (Figure 2.1). 

This approach not only removes the numerical singularities associated with the convergence 

of the meridians at the geographical North Pole, but also results in higher resolution in the 

deep-water formation regions near Greenland and in the Weddell Sea. The horizontal 

resolution of this model version is about 3° on average and varies between a minimum of 20 

km in the Arctic to a maximum of about 350 km in the Tropics. 
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Figure 2.1 Grid of the ocean model MPI-OM. 
 

2.1.3 OASIS – coupler 

 

The atmosphere and ocean model are coupled by means of Ocean-Atmosphere-Sea 

Ice-Soil (OASIS) coupler (Valcke et al., 2003). The coupler exchanges the momentum, heat 

and freshwater fluxes from the atmosphere to the ocean and performs the interpolation onto 

the ocean model’s grid. The ocean model passes the sea surface temperature, sea ice 

concentration, sea ice thickness, snow depth, and the ocean surface velocities to the 

atmospheric model. River runoff and glacier calving are treated interactively in the 

atmospheric model and the respective freshwater fluxes transferred to the ocean as part of the 

atmospheric freshwater flux field. The land hydrology model includes a river runoff scheme 

(Hagemann and Dümenil, 1998; Hagemann and Dümenil-Gates, 2003), but the mass balance 

of glacier ice sheets is not accounted for in the model. This climate model does not employ 

any flux adjustment. 

 

2.2 Tropical Pacific interanual variability in ECHA M5/MPI-OM 

 

The El Niño-Southern Oscillation (ENSO) phenomenon is the dominant mode of 

interannual climate variability in the tropical Pacific. ENSO is a coupled ocean-atmosphere 
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mode that influences almost all regions of the globe. In the following, we will give a brief 

description of the ENSO characteristics in our coupled model and compare them with the 

observed ENSO characteristics. The observational data used in this study are from Kaplan et 

al. (1998), and are a reconstruction of historical SST anomalies on a 5 ° X 5° grid for the 

period 1856-2003. Monthly mean sea surface temperature anomalies (SSTA) were computed 

with respect to the period 1950-1980.  

The leading EOF (Empirical Orthogonal Function) of the monthly mean SSTA over 

the tropical Pacific for both the model and observations are shown in Figure 2.2a and b. 

Please note that the EOF spatial patterns are displayed in the standardized form: the units are 

degrees Kelvin per one standard deviation of the principal component (PC). The dominant 

simulated interannual signal has a spatial pattern that is broadly similar to the observed one. 

Nevertheless, there are several differences between the modeled and the observed ENSO. 

First, the simulated ENSO variability is larger than the observed one. For example, the 

monthly Niño3-SSTA index standard deviation is 1.6 °C compared to only 0.8°C for the 

observations. Niño3-SSTA index - a common measure of ENSO variability – is computed as 

an area averaged SSTA over the Niño-3 region (150°W-90°W, 5°N-5°S). Second, the 

modeled ENSO pattern is more equatorially confined and extends too far westward compared 

to the observations. The coupled model has a realistic ENSO period with maximum variance 

at a period of about 3 years (Figure 2.2c). However, in contrast to the observed broad spectral 

peak between 2-7 years, the model spectral peak is too sharp, indicating far too regular 

variability. The ENSO dynamics seem to be similar to the observed one, with a slow eastward 

propagation of heat content anomalies in the subsurface and a standing SST pattern (not 

shown).  

The above-mentioned differences between the model and observed tropical Pacific 

interannual variability represent typical systematic errors of coupled models (Latif et al., 

2001) also unflux corrected. Like many other coupled models, ECHAM5/MPI-OM suffers 

from a cold bias in the Tropics and a too westward extension of the equatorial cold tongue. 

Meehl et al. (2001) related the high ENSO amplitude simulated in the quasi-biennial band to 

the mean state of the model, with a shallow mean thermocline favoring large ENSO 

amplitude. Since the zonal mean of the equatorial thermocline depth is relatively shallow in 

the model (103m), this may be one explanation for the high ENSO variability in 

ECHAM5/MPI-OM.  
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Figure 2.2 Spatial pattern of the dominant EOF mode of sea surface temperature anomalies in the 

tropical Pacific basin for the observations (a) and for the ECHAM5/MPI-OM model (b).  Contour 

interval is 0.1 °C in (a) and 0.3 °C in (b). (c) Power spectra of Niño3-SSTA for the observations 

(black line with diamonds), and ECHAM5/MPI-OM model (blue line with diamonds). The 95% 

confidence level (dotted line) is calculated based on the theoretical spectrum of an AR1 (red noise) 

process fitted to the data (thin solid line). The power spectrum is estimated using a Bartlett window. 

 

a) 

b) 
 

c) 

Frequency [cpm] 
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2.3 Tropical Cells/Subtropical Cells in the model 

 

The mainly wind-driven subtropical cells (STCs) are shallow meridional circulation 

cells in which water flows out of the tropics within the surface layer, subducts in the 

subtropics, flows equatorward within the thermocline, and upwells in the eastern equatorial 

ocean (McCreary and Lu, 1994; Liu et al., 1994). The equatorial upwelling is partly balanced 

by downwelling within the tropics forming the relatively narrow recirculation cells known as 

tropical cells (TC) (Lu et al., 1998).  

 

 

 

Figure 2.3 Mean Pacific meridional overturning streamfunction in the ECHAM5/MPI-OM model. 

Red (blue) lines represent clockwise (anticlockwise) flow. The contour interval is 5 Sv (1 Sv = 106 

m3/s).  

 

Figure 2.3 shows the mean meridional overturning streamfunction for the upper 

subtropical-tropical Pacific in the ECHAM5/MPI-OM model. The strength of the cells in our 

model is 45 Sv (1Sv = 106 m3) for the southern cell, respectively 35Sv for the northern cell. 

These values are comparable with those suggested from observations and other model 

integrations (Nonaka et al., 2002; McPhaden and Zhang, 2002; Capotondi et al., 2005). 

However, the meridional extension of the tropical cells is slightly greater than the observed 

D
ep

th
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one, probably due to the coarser resolution of the ocean model. The tropical cells index is 

defined as psimax (7.5°S-7.5°N, upper 250m) - psimin (7.5°S-7.5°N, upper 250m), where psi is 

the Pacific meridional overturning streamfunction. Please note that the overturning is negative 

for the southern cell. The subtropical cells index is defined in a similar way by psimax (10°N-

30°N, upper 250m) - psimin (10°S-30°S, upper 250m).  

 

2.4 Statistical method: Singular-Spectrum Analysis (SSA) 

 

Singular-Spectrum Analysis (SSA) is designed to extract information from short and 

noisy time series and thus provide insight into the unknown or partially known dynamics of 

the underlying system that generated the series (Ghil et al., 2000). 

Colebrook (1978) applied a form of SSA to biological oceanography and noted the 

duality between the principal component analysis (PCA) in the space and time domain. 

Broomhead and King (1986) applied the “method of delays” of dynamical system theory to 

estimate the dimension of and reconstruct the Lorenz attractor using singular-value 

decomposition on the trajectory method formed by lagged copies of a single time series 

obtained from the system. Vautard and Ghil (1989) realized the formal similarity between 

classical lagged-covariance analysis and the method of delays. They exploited the similarity 

further by pointing out that pairs of SSA eigenmodes corresponding to nearly equal 

eigenvalues and associated temporal principal components that are nearly in phase quadrature 

can represent efficiently a nonlinear, anharmonic oscillation.  

The SSA expansion is an EOF expansion in which the field contains values at the 

same location but at different time lags. The leading eigenvectors (known as Time-EOFs or  

T-EOFs) of the corresponding covariance matrix represent thus the leading time patterns of 

field. The principal components associated with these T-EOFs are called Time-PCs or T-PCs 

and can be interpreted as moving averages of the original time series, the averages being 

weighted by the coordinates of the T-EOFs. 

In SSA analysis, any oscillatory behavior present in the original time series stands out 

as a pair of nearly equal eigenvalues. Their associated T-EOFs and T-PCs have a similar time 

scale of oscillation, but are out of phase by approximately π/2. Several objective criteria have 

been developed by Vautard et al. (1992) to extract these oscillatory pairs. The portion of 

variability in the original time series that is associated to a given oscillation captured by a pair 

of modes can thus be isolated by restricting the SSA expansion to the T-EOFs and T-PCs 
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corresponding to that pair of modes. In this way we can reconstruct the original time series 

using only the two SSA components of interest. 

SSA has been applied extensively to the study of climate variability and to other areas 

in the physical and life sciences. For example, the climate applications include the analysis of 

paleoclimatic time series (Vautard and Ghil, 1989), decadal-interdecadal climate variability 

(Ghil and Vautard, 1991; Lohmann and Latif, 2005) as well as interannual oscillations 

(Rasmusson et al., 1990; Ghil et al., 2000). A more detailed description of the statistical 

method is given by Ghil et al. (2000). 
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3. Unforced tropical Pacific decadal climate variability 

 

 

 

3.1 Introduction 

 

Decadal climate variability can be caused by external and internal forcing 

mechanisms. Among the natural external forcing mechanisms, variations in the incoming 

solar radiaton and the volcanic activity have been proposed as major sources of decadal-

interdecadal varibility (Labitzke, 1987; Lean et al. 1995; Cubash et al., 1997; Robock and 

Mao, 1995). Decadal-interdecadal variability can also arise from the interactions between and 

within different sub-components of the climate system, the most important being the 

atmosphere and ocean. 

In this chapter we will investigate the mechanism driving internally generated tropical 

Pacific decadal climate variability in the ECHAM5/MPI-OM model. The proposed 

mechanisms for explaining tropical Pacific decadal variability fall into three main categories:   

(1) tropical-extratropical interactions (Gu and Philander, 1997; Kleeman et al., 1999), (2) 

purely tropical processes (Knutson and Manabe, 1998; Jin, 2001) and (3) purely extratropical 

processes teleconnected to the tropical Pacific (Barnet et al., 1999; Pierce et al., 2000). 

Despite this wealth of suggested mechanisms, there is no consensus on the causes and origins 

of tropical Pacific decadal variability. In this chapter, we will first briefly describe the 

observed Pacific decadal variability. We then go on to analyze the mechanisms of decadal 

variability in the coupled model. Due to insufficient observational data for these timescales 

coupled models are essential tools. 

 

3.2 Pacific decadal variability in observations 

 

The first EOF of low-pass-filtered SSTAs (Figure 3.1a) shows the pattern of observed 

decadal climate variability in the Pacific region (25°S-60°N, 120°E-80°W). The observed sea 

surface temperatures are from Kaplan et al. 1998 dataset that is described in chapter 2.2. Prior 
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Figure 3.1 (a) Spatial pattern, and (b) the normalized time coefficient of the dominant EOF mode of 

observed sea surface temperature anomalies in the Pacific basin. The SSTAs are low-pass filtered to 

retain the variability longer than 7 years. Contour interval is 0.05 °C/ 1σ of the principal component. 

 

b) 

a) 
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to EOF analysis, the monthly SSTAs were low-pass-filtered using a Fast Fourier Transform 

(FFT) to retain the variability longer than 7 yr. The first EOF explains about 41% of the total 

decadal variance. The spatial pattern has a broad triangular shape in the tropical Pacific basin 

(Figure 3.1a), which is similar to the “ENSO-like decadal” mode of Zhang et al. (1997). It 

resembles the interannual ENSO pattern, but has a broader meridional extension and with the 

maximum loading (0.4 °C per standard deviation of the principal component) off the equator 

in the tropical eastern Pacific, instead of equatorial Pacific.  The temporal evolution of this 

mode is characterized by decadal-bidecadal fluctuations and a clear warming SST trend 

starting in mid 1970s (Figure 3.1b). 

 

 

3.3 Tropical decadal variability in ECHAM5-MPIOM mo del 

 

The decadal scale climate variability in the tropical Pacific has been analyzed using a 

1000yr long control integration of the coupled ocean-atmosphere-sea ice general circulation 

model ECHAM5-MPIOM forced with constant greenhouse gas concentration at pre-industrial 

levels. In the following, we limit our analysis to the last 500yr of the coupled experiment to 

avoid the influence of any possible model drift. In order to focus our analysis on decadal 

variability, a 5-yr running mean is applied to the monthly model data. 

As discussed in the previous section, one mechanism for tropical Pacific decadal 

variability is tropical-extratropical interactions. Several recent observational (McPhaden and 

Zhang, 2002) and modeling studies using ocean models (Klinger et al., 2002; Nonaka et al., 

2002; Solomon et al., 2003) or coupled general circulation models (Kleeman et al., 1999; 

Merryfield and Boer, 2005; Lohmann and Latif, 2005) suggest the influence of STCs/TCs 

(subtropical/tropical cells) on decadal climate variability in the tropical Pacific. Figure 3.2 

shows the time evolution and the power spectrum of the anomalous 5-yr running mean TC 

(tropical cell) index for our model simulation. As shown in Figure 3.2a and b, the decadal 

activity of the TC index varies from decade to decade with a typical period of about 17yr. The 

17yr spectral peak is statistically significant at 95% confidence level and suggests the 

existence of a coupled ocean-atmosphere mechanism that acts at decadal timescales. 

Next, the relationships between variations in tropical cell strength and the sea surface 

temperature over the tropical Pacific Ocean is investigated by means of linear regression. 

Figure 3.3 displays the simultaneous linear regression coefficient between TC index and  
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Figure 3.2 (a) Time evolution, and (b) the power spectrum (thick solid line) of the anomalous strength 

of the Tropical Cells (TC) from the control integration. For the definition of the cell strength please 

see the text. The plotted values in (a) have a 5-year running mean applied. The 95% confidence level 

is plotted as the dotted black line, and the AR1 process fitted to the data as solid green line. 

17yr 

a) 

b) 
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Figure 3.3 Linear regression of the sea surface temperature anomalies (shaded, in °C) over the tropical 

Pacific regressed on the anomalous strength of the TCs from the control integration. A 5-year running 

mean low-pass filter was applied to the monthly anomalies before the regression analysis. The 

explained variance of the regression is plotted with contour lines. The contour interval is 5 %. 

 

Figure 3.4 The lead-lag correlation function between the Niño-4 SSTA and the anomalous strength of 

the TCs from the control integration. The 95% significance level according to a t-test is –0.195. A 

positive (negative) lag indicates that Niño-4 SSTA is leading (lagging). 
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tropical Pacific SST and the associated explained variance. The regression coefficient reaches 

a maximum of -0.35 °C per standard deviation of TC index in the central-western equatorial 

Pacific. The associated explained variance is characterized by a horseshoe-like pattern, with 

maximum values in the central-western equatorial Pacific, extending to the northeast and 

southeast into the subtropics. This horseshoe-like structure resembles the signature of the 

observed decadal climate variability in the tropical Pacific (Latif et al.,1997; Lohmann and 

Latif, 2005; see also Figure 3.1a). The cross-correlation between the TC index and Niño-4 

SSTA (sea surface temperature anomalies) amounts to –0.7, with the meridional overturning 

leading by 3-4 months (Figure 3.4). The correlation coefficient is statistically significant at the 

95% level according to a t-test (the threshold value is –0.195). Therefore, an anomalous warm 

Niño-4 SST goes along with an anomalous weakening of the tropical cells, while the time lag 

suggests that the variability of the tropical cells is driving the low-pass-filtered SST 

fluctuations in the Niño-4 region. 

We decomposed the monthly TC index time series by means of singular spectrum 

analysis (SSA). The reconstructed TC index time series using the first two SSA modes is 

plotted as a red line in Figure 3.5a, while with black color is represented the original TCA 

time series. The leading temporal modes that accounts for 22% of the TC index variance, has 

a quasi-decadal timescale. The first two T-EOFs exhibit a pronounced decadal variability with 

a period of about 17yr (Figure 3.5b). It is worth mentioning that this pair of SSA modes 

represents the only oscillatory pair isolated in the data by means of SSA. In the following, we 

will use the reconstructed TC index (hereafter TCdec) to investigate by means of linear 

regression the spatial structures of decadal climate variability in tropical Pacific. Please note 

that all the regression coefficients hereafter will describe changes in the atmospheric and 

oceanic variables per one standard deviation of the TCdec index (1.44 Sv). Furthermore, only 

the strengthening TC case will be described. 

Figure 3.6 shows the pattern for the regression of TCdec index onto the tropical 

Pacific SST. An increase by one standard deviation in TCdec index is accompanied by a 0.2-

0.25°C decrease in tropical Pacific SST, with maximum values in central-western equatorial 

Pacific and off-equatorial South Pacific. The pattern of associated explained variance is 

similar to the horseshoe-like structure seen in Figure 3.3, but with smaller values in both 

equatorial and off-equatorial Pacific. The anticorrelation between the TC strength and Niño-4 

SSTA is also maintained at the decadal timescale (not shown). The largest correlation 

coefficient amounts to –0.4, which is weaker than in Figure 3.4, but still statistically 

significant at the 95% level. 
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Figure 3.5 (a) Reconstruction (red solid line) of the anomalous strength of the TCs (in Sv) from the 

Singular Spectrum Analysis using mode 1 and 2.  The original anomalous strength of the TCs is 

represented by the black solid line. (b) T-EOFs of the SSA mode 1 (black) and 2 (red).  

 

a) 

b) 

Lags 



 26 

 

Figure 3.6 Linear regression of the sea surface temperature anomalies (shaded, in °C) over the tropical 

Pacific on the anomalous strength of the TCdec. A 5-year running mean low-pass filter was applied to 

the monthly anomalies before the regression analysis. The explained variance of the regression is 

plotted with contour lines. The contour interval is 5 %. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7 (a) Linear regression of the anomalous upper Pacific meridional overturning 

streamfunction (in Sv) on the anomalous strength of the TCdec. (b) The explained variance of the 

regression pattern. Contour levels in (a) are +0.1, +0.3, +0.5,  +0.7, +1, +1.2, and +1.5 Sv. Contour 

interval in (b) is 5 %. 

a) b) 
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The regression pattern of the Pacific meridional overturning streamfunction upon the 

TCdec index suggests a stronger influence of the southern tropical cell on the decadal mode 

and a very weak contribution of the off-equatorial regions (Figure 3.7). The maximum 

regression coefficient amounts to 1.5Sv for the southern tropical cell and explains 30% of its 

variance, compared to 0.7Sv and 15% explained variance for the northern tropical cell.  

 

 

 

 

Figure 3.8 (a) Linear regression of the anomalous wind stress (vectors, in N/m2) on the anomalous 

strength of the TCdec. The reference vector is 0.005 N/m2. (b) Linear regression of the anomalous 

ocean vertical velocity (shaded, in cm/day) on the anomalous strength of the TCdec. The explained 

variance of the regression pattern is plotted with black contour lines. Contour interval is 5 %. 

 

In our model, a spinning up of the tropical cell is accompanied by a strengthening of 

the trade winds over the central-western equatorial Pacific and tropical South Pacific, with 

maximum changes of about 0.005 N/m2 that accounts for 22% of the low-pass-filtered wind 

stress variability (Figure 3.8a). In response to stronger trade winds, the Ekman transport 

divergence in the ocean is intensified and this will lead to an increase in the equatorial 

a) 

b) 
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upwelling. In this study, we are using the vertical ocean velocity at 52m depth as a measure of 

the equatorial upwelling. Figure 3.8b shows that the biggest vertical velocity changes 

(5cm/day) occur in the central-western Pacific, overlapping the area where the wind stress 

changes are the largest. Consistent with the spinning up of the tropical cells, the vertical 

velocity regression pattern displays an intensified downwelling between 5° and 10° latitude in 

both hemispheres. As it can be seen in Figure 3.9a, the regression pattern for the total 

precipitation amount exhibits a North-South dipole-like structure over South Pacific, 

indicating a southward shift in the South Pacific Convergence Zone (SPCZ). This 

displacement of the SPCZ appears to be the cause of a wind stress curl anomaly which drives 

the Ekman downwelling, that is simulated between 5°S-10°S in western tropical Pacific 

(Figure 3.9b). A similar, although weaker, precipitation pattern is found over tropical North 

Pacific, and it resembles a northward shift in the ITCZ. The effect of off-equatorial 

anomalous wind stress curl favoring Ekman downwelling can be easily identified in Figure 

3.10, which displays the regression pattern for the thermocline depth (represented here by the 

depth of the 20°C isotherm-Z20). A deepening of the thermocline is found between 5°-10° 

latitude in both hemispheres of the western tropical Pacific west of 150°W during phases of 

anomalous strong TCdec. There is also a thermocline depth change in the subtropical North 

Pacific, but we found it not related to the tropical Pacific and therefore, it will not be 

discussed. 

The above-mentioned changes in trade winds will also have an effect on the wind-

driven horizontal circulation. A strengthening of the South Equatorial Current (SEC) of the 

order of 2 cm/s is simulated in the western equatorial Pacific and tropical South Pacific, 

accompanied by a weaker reduction of the North Equatorial Current (NEC) (Figure 3.11). 

Due to a strengthened SEC, the horizontal temperature advection will bring cold water from 

the cold tongue region into the warm pool area and southern tropical Pacific, contributing to 

the decrease in SST of the decadal mode. A similar circulation pattern is evident from the 

regression of subsurface currents (horizontal velocity at 100m depth), but with only half the 

amplitude (not shown). 

The net surface heat flux changes associated with strong TC are in opposite sign to 

SST anomalies over the western equatorial Pacific and tropical South Pacific, and hence damp 

them in these regions. However, the surface heat flux contributes to cool SST in the eastern 

equatorial Pacific. The cold SSTA in the tropics associated with the decadal mode induce an 

anomalous anticyclonic circulation in the South Pacific tilted in the southeast-northwest 

direction (Figure 3.12b). A weaker Aleutian low is simulated in the North Pacific due to the  
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Figure 3.9 (a) Linear regression of the anomalous total precipitation amount (shaded, in mm/month) on the 

anomalous strength of the TCdec. The explained variance of the regression pattern is plotted with black contour 

lines. (b) Linear regression of the anomalous wind stress curl (shaded, in N/m3) on the anomalous strength of the 

TCdec. The explained variance of the regression pattern is plotted with black contour lines. The contour interval 

of the explained variance is 2 % in both figures. 

 

 

 

 

 

 

 

 
 
 
Figure 3.10 Linear regression of the anomalous thermocline depth (shaded, in m) on the anomalous strength of 

the TCdec. The explained variance of the regression pattern is plotted with black contour lines. The contour 

interval of the explained variance is 3 %. 

 

a) 

b) 
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Figure 3.11 Linear regression of the anomalous ocean surface velocity (vectors, in cm/s) on the anomalous 

strength of the TCdec. The reference vector is 2 cm/s. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 3.12 (a) Linear regression of the anomalous net surface heat flux (shaded, in N/m2) on the anomalous 

strength of the TCdec. The explained variance of the regression pattern is plotted with black contour lines.       

(b) Linear regression of the anomalous sea level pressure (shaded, in Pa) on the anomalous strength of the 

TCdec. The explained variance of the regression pattern is plotted with black contour lines. The contour interval 

of the explained variance is 2 % in both figures. 

a) 

b) 

Ocean surface velocity regressed on TCdec 
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teleconnection from the cold tropical Pacific SSTA, also with much less explained variance 

compared with observations (Alexander et al., 2002). 

Since the thermocline processes are likely to play an important role in the tropical 

variability at decadal timescales, we further examined the behavior of the tropical thermocline 

depth associated with the decadal mode. The lead-lag regression maps between the depth of 

the thermocline and the TCdec index are plotted in Figure 3.13 at various time lags, 

representing one life cycle of the decadal mode. Please note that a positive (negative) lag 

indicates that the thermocline depth is lagging (leading).  At zero-lag (Figure 3.13e), besides 

the deepening of the thermocline over the western tropical Pacific, a deeper thermocline is 

simulated in the central South Pacific between 15°S-30°S, accompanied by an elevated 

thermocline at the same latitudes in the eastern South Pacific. As the time progresses (Figure 

3.13 f-i), a clockwise propagation pattern of the thermocline depth anomalies in the tropical 

South Pacific is emerging. The eastward movement of the Z20 anomalies along the equator is 

followed by the development of thermocline depth anomalies of the same sign in the eastern 

tropical Pacific near the South American coast, which will propagate westward along the 

20°S-30°S till about 160°W and then farther, northwestward, towards the warm pool area. 

From the lead-lag regression pattern we can also infer a 16-17yr period of the decadal 

thermocline variability that is consistent with the period of our decadal mode. 

This mode’s evolution is such that when the tropical cells are spinning up and lead to a 

negative sea surface temperature anomaly in the central equatorial Pacific, a positive sea level 

pressure anomaly is developed over the southern tropical Pacific via the atmospheric 

teleconnection. Associated with the anomalous anticyclonic circulation, a positive wind stress 

curl anomaly is induced with a SE-NW orientation from about 20°S-120°W to 5°S-150°E. 

The corresponding downward Ekman pumping anomaly will cause the local oceanic 

thermocline to deepen and thus generate warm subsurface temperature anomalies. The 

anomalous warm subsurface signal will further extend westward and northward towards the 

equatorial western Pacific. After reaching the western equatorial Pacific, the positive 

temperature signal will move eastward along the equator, where it will replace the original 

negative temperature anomaly and weaken the tropical cells owing to a reduced equatorial 

upwelling. A similar evolution, but with an opposite sign, will subsequently follow for the 

second half of the decadal mode’s cycle. 

Now we will try to find out the cause for the propagation of the subsurface 

temperature signal in tropical South Pacific and along equatorial Pacific. In an observational 

study, Luo and Yamagata (2001) speculated that in the western Pacific, the northwestward  
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Figure 3.13 Lead-lag regression of the anomalous thermocline depth (shaded, in m) and wind stress curl (black contours, in N/m3) on the anomalous strength of the TCdec. Lags are –8yr (a),            

-6yr (b), -4yr (c), -2yr (d), 0yr (e), +2yr (f), +4yr (g), +6yr (h), and +8yr (i). A positive (negative) lag indicates that TCdec is leading (lagging). The contour interval is 0.5 N/m3. 

a)   -8yr b)   -6yr c)   -4yr 

d)   -2yr e)   0yr f)   +2yr 

g)   +4yr h)   +6yr 
 

i)   +8yr 
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and northward propagation of subsurface temperature anomalies could be a result of Rossby 

wave propagation and/or of the mean flow advection (Gu and Philander, 1997). Based on the 

analysis of OGCM data, Capotondi and Alexander (2001, 2003) have shown that the tropical 

centers of thermocline variability at 10°S and 13°N are associated with first-mode baroclinic 

Rossby waves forced by anomalous Ekman pumping, with the most important forcing factor  

- the zonal coherence of the Ekman pumping - becoming more pronounced at decadal 

timescales. A recent study by White et al. (2003) proposes a tropical decadal mode involving 

a westward propagation of Rossby waves along 15°S from Tahiti to western boundary near 

Australia in about 5 years. To test whether the coupled Rossby wave propagation is active in 

our model at decadal timescales, we plotted in Figure 3.14 the low-pass filtered anomalies 

(5yr running mean applied) of the thermocline depth along the 20°S for 50 years of our 

simulation. The propagation is quite fast; taking about 2-3 years for the thermocline depth 

anomalies to propagate from 120°W to 150°E. Therefore, the propagation of subsurface signal 

is not due to the propagation of coupled Rossby waves generated in the eastern subtropical 

South Pacific. 

 
Figure 3.14 Hovmoller diagram of the anomalous thermocline depth (in m) in the Pacific Ocean along 

20°S for a period of 50 years of the simulation.  
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Next, we investigate the behavior of the equatorial ocean heat content (OHC) 

associated with this decadal mode by means of lead-lag linear regressions. The ocean heat 

content used in our study is defined as the vertically averaged temperature over the upper 

500m of the water column. Figure 3.15a shows the lead-lag regression between the low-pass 

filtered OHC averaged between 1.5°S-1.5°N along the equatorial Pacific and the TCdec 

index, while Figure 3.15b displays the lead-lag regression of 150°E-140°W zonally averaged 

OHC and the TCdec index. Please note that a positive lag indicates that the OHC is lagging.  

The regression pattern in Figure 3.15a indicates that the decadal mode is associated 

with an east-west seesaw and a slow eastward propagation of the equatorial heat content 

anomalies. At lag zero, a positive OHC anomaly pattern develops in the central-western 

Pacific, while east of 150°W, a weaker negative OHC anomaly leads the positive western 

anomalies by 1 year. After about 5 years, the positive western anomalies are connected with 

eastern OHC anomalies of the same sign, suggesting an eastward propagation that leads to the 

opposite phase. The pattern and the time evolution of the oceanic heat content associated with 

the decadal mode suggest that the ENSO recharge/discharge mechanism proposed by Jin 

(1997) for the tropical Pacific interannual variability might operate at the decadal timescales 

in the model. 

The propagation of the subsurface signal in the South Pacific is too fast to be 

explained solely by the mean advection or the Rossby wave propagation. Instead, the local 

ocean-atmosphere interactions in the western Tropical Pacific seem to play an important role 

in the fast westward and equatorward movement of the subsurface temperature anomalies. 

The maximum variability of the OHC at the decadal timescales is located around 10°S and 

7°N in western-central tropical Pacific (Figure 3.15b). The local OHC fluctuations center in 

the tropical South Pacific is stronger than the one in the tropical North Pacific, and both lead 

the equatorial OHC by 1-2 years. The OHC fluctuations in the tropical western Pacific require 

a local atmospheric forcing: the variations in Ekman pumping velocity generated by the 

atmospheric teleconnections from the central equatorial Pacific lead the heat content 

variations by about 1-2 years (not shown). 

Our results are in accordance with recent observational and modeling studies. 

Analyzing the mechanisms responsible for ENSO-like decadal (7-35 years) variability in 

observations, Luo and Yamagata (2001) argued that the South Pacific acts as an external 

thermal source to discharge/recharge the tropical ocean and therefore, inducing the decadal 

fluctuations of the ENSO-like phenomenon. They propose a 14 years period for the decadal 

phenomenon and underline the role of western tropical South Pacific, where the SPCZ is 
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located, as a key region for ENSO-like decadal variability. Investigating a coupled ocean-

atmosphere model, Luo et al. (2003) found that a similar mechanism can explain ENSO-like 

decadal variations in their model.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.15 Lag-regression of anomalous Pacific Ocean heat content (OHC, in °C) on the anomalous 

strength of the TCdec from –10yr to 10yr. A positive (negative) lag indicates that TCdec is leading 

(lagging). In (a) the OHC is averaged between 1.5°S-1.5°N. In (b) the OHC is zonally averaged 

between 150°E-140°W. Contour interval is 0.01 °C in (a) and 0.02 °C in (b).  
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3.4 ENSO decadal modulation 

 

We will now investigate whether the decadal mode of the model is associated with 

changes in ENSO characteristics. To test this hypothesis, we computed composite maps of 

SST standard deviation for periods of strong positive (TCdec > 1 std) and strong negative 

(TCdec < -1std) values of the decadal mode index. The composites for strong positive events 

and the composites for strong negative events are computed separately, and then subtracted. 

Figure 3.16 shows that periods of strong positive TCdec are associated with periods of 

increased ENSO variability and vice versa, and therefore contribute to the decadal modulation 

of ENSO activity. A positive TCdec period is associated with an intensified zonal SST 

contrast and a deepening of the thermocline in the western tropical Pacific. According to 

Zebiak and Cane (1987) and Meehl et al. (2001), these changes in the mean background state 

are expected to accompany an enhanced ENSO activity. A more detailed discussion about the 

affect of decadal changes in the mean background state of the equatorial Pacific Ocean on 

ENSO variability will be given in the Chapter 4 of the thesis. 

 

 

 

 

 

Figure 3.16 Composite difference map for strong positive minus strong negative TCdec of the SST 

standard deviation (in °C). The threshold value for the composite is one standard deviation of the 

TCdec index. Contour interval is 0.05 °C. 

 

SST composites for TCdec (°C/ 1 stddev TCdec) 
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4. Sensitivity to density perturbations in the subtropics –

impact on the mean state 

 

 

4.1 Introduction 
 

In this chapter we use ECHAM5-MPIOM coupled ocean-atmosphere-sea ice model to 

study the mechanisms responsible for subtropical-tropical interactions in the Pacific region at 

decadal timescale. To investigate the climate response of the equatorial Pacific system to 

density variations in the subtropical surface climate, and to estimate the relative contributions 

of North and South Pacific to the subtropical-tropical connections, we carried out a number of 

sensitivity experiments. In these experiments idealized sea surface temperature anomalies and 

sea surface salinity anomalies were added over certain domains in the North and South 

Pacific. Additionally, similar uncoupled integrations with the AGCM ECHAM5 model were 

performed.  

In the following we will mainly focus on the impact of the Pacific subtropical sea 

surface temperature anomalies on the mean state of the ocean and atmosphere. The mean 

climate adjustment to the sea surface salinity will be only briefly discussed. The impact of 

subtropical Pacific on tropical climate variability, with an emphasis on ENSO modulation, 

will be analyzed in the next chapter of the thesis.  

 

 

4.2 Experimental setup of the coupled experiments 

 

The Pacific equatorial climate response to sea surface temperature and sea surface 

salinity variability in the subtropical Pacific is examined by prescribing idealized SST/SSS 

anomalies over North Pacific, respectively South Pacific subtropics. Two domains were 

selected, one in the subtropical North Pacific (hereinafter NPac) between 170°W-125°W, 

23°N-31°N and the second one in the subtropical South Pacific (hereinafter SPac) between 

135°W-75°W, 23°S-31°S. The two selected domains (Figure 4.1) correspond to the 

subduction areas proposed by Gu and Philander (1997). In selecting the size of the forcing 
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domains, the relative coarse horizontal resolution of the coupled model was also taken into 

consideration.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1 Selected domains of the individual sensitivity experiments: (a) North Pacific experiment 

(NPac), (b) South Pacific experiment (SPac). 

 

We have imposed a homogenous two degree warming/cooling on the top of the mean 

seasonal cycle of the control run over the NPac and SPac domains. The SST anomalies were 

kept constant for 200 years. Figure 4.2a shows the SST response in both NPac and SPac 

domains, for a global warming experiment performed with the same coupled climate model. 

This integration represents a CO2 sensitivity experiment in which a “1% CO2 concentration 

increase per year to quadrupling” is imposed for the first 140 years, and then, the CO2 forcing 

is kept constant at 4xCO2 level for about 750 years. Therefore, the prescribed 2°C anomaly is 

beyond the range of intrinsic coupled variability, but is within the range of the expected global 

warming change in the subtropical Pacific in the model (Figure 4.2a) and in literature (Kerr, 

2004; Lea, 2004). The negative (-2°C) SST sensitivity experiments were performed in order 

to study the equatorial response to an idealized cooling in the subtropical Pacific. To assess 

the linearity of the equatorial response to the anomaly strength, we have also conducted 

experiments with half of the forcing: +1°C /-1°C.  

Similar sensitivity simulations were performed imposing a +0.5 psu and +0.25 psu sea 

surface salinity anomaly forcing. The imposed salinity forcing is also within the range of sea 

surface salinity change in the above-mentioned global warming experiment for both NPac and  

Control run  
climatological SST + 2°C 

climatological SSS + 0.5psu 

Control run   
climatological SST + 2°C 

climatological SSS + 0.5psu 

SST= sea surface 
temperature 

SSS= sea surface 
salinity 

a) b) 
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Figure 4.2 Evolution of the anomalous annual (a) SST and (b) SSS response averaged over the NPac 

(blue line) and SPac (red line) domains during a global warming experiment. The anomalies are 

computed relative to the mean of the control integration. 

 

SPac domains (Figure 4.2b). The full forcing (0.5psu) sea surface salinity experiments were 

conducted for 70 years and the half-forcing experiments for only 30 years. A longer 

integration for the sea surface temperature experiments compared to sea surface salinity 

experiments was required in order to assess the statistically significant changes in tropical 

Pacific interannual variability. Such changes in tropical Pacific interannual variability were 

not simulated in the sea surface salinity experiments. 

a) 

b) 
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4.3 South Pacific sensitivity experiment (SPac+2°°°°C) 

 

In the following part we will discuss the +2°C experiment in the South Pacific (SPac+2°C). 

The response of the coupled experiment is computed as a difference between the mean of a 

variable over the whole 200 years of the experiment and the mean of the control run for the 

same period. Only the response that exceeds the 95% significance level according to a two-

sided Student’s t-test is plotted.  

Figure 4.3 displays the simulated response of sea surface temperature in the SPac+2°C 

experiment. The mean SST response exhibits an equatorial warming, which reaches a 

maximum of 0.9°C in the central-eastern equatorial Pacific. The warming represents 45% of 

the SST forcing. This SST pattern will lead to a reduced zonal SST gradient between West 

and Central-East Pacific, which in turn will influence ENSO variability. This aspect will be 

discussed in the next chapter. 

Tropical Indian and Atlantic oceans also experience an SST warming of about 0.2°C -

0.3°C (not shown). A dipole-like pattern can be noticed south of Australian continent with a 

0.8°C SST cooling in the southwest and a 1°C SST warming in the southeast. In the North 

Pacific, a warming of 0.7°C along the western coast of Canada and Gulf of Alaska and an 

even higher 0.9°C warming near Kamchatka are simulated (Figure 4.3). 

 

Figure 4.3 Anomalous Pacific Ocean SST (in °C) response in the SPac+2°C experiment. Contour 

interval is 0.1°C. Please note that values in the range (-0.2°C, +0.2°C) are not plotted. 
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Figure 4.4 Mean climate changes in (a) SST (in °C) and (b) the thermocline temperature in SPac+2°C 

experiment, averaged in a 5°N - 5°S equatorial strip of Pacific Ocean. In (b), the dashed gray line 

represents the mean depth of the 20°C isotherm in the control integration. The contour levels in (b) are 

–1.5°C, -1.2°C, -1.0°C, -0.8°C, and -0.6°C, followed by a 0.1°C contour interval. 

 

 

a) 

b) 
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Figure 4.5 Anomalous Pacific Ocean (a) surface winds (in m/s) and (b) zonal wind stress (in N/m2) in 

the SPac+2°C experiment. The reference vector of surface wind is 2 m/s. The contour interval in (b) is 

0.003 N/m2. Anomalous atmospheric meridional mass streamfunction in the SPac+2°C experiment 

(black contours) and the mean atmospheric meridional mass streamfunction of the control integration 

(shaded, in 1010Kg/s) are plotted in (c). Contour interval in (c) is 0.1x 1010Kg/s. 

a) 

b) 

c) 
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These changes in the surface climate can be obtained through both the “atmospheric 

bridge” (AB) and “oceanic tunnel” (OT). As it can be seen from Figure 4.4a, the mean SST 

change averaged in a 5°N-5°S equatorial strip of Pacific reaches a maximum between 150°W 

and 130°W, where it exceeds 0.9°C. In figure 4.4b, the mean change of the Pacific 5°N-5°S 

averaged equatorial thermocline temperature is plotted. The thick black dashed line represents 

the position of the depth of the 20°C isotherm in the control integration. The fast “atmospheric 

bridge” is not very effective in changing the equatorial subsurface temperature, due to the 

strong equatorial upwelling that inhibits the downward penetration of the surface atmospheric 

heat flux forcing. In the equatorial ocean, the temperature anomaly decreases downward 

towards the subsurface till about 75m in western Pacific and till about 50m in central and 

eastern Pacific. A negative subsurface temperature anomaly that reaches –1.5°C at 180°E and 

150 m depth is simulated along the mean upper thermocline (Figure 4.4b), leading to an 

enhanced overall vertical temperature gradient. This dynamic response of the ocean will be 

discussed latter in the chapter. The negative subsurface temperature anomaly weakens slightly 

over the period of the simulation. This maybe the result of the equatorward oceanic 

subduction process in OT.  

The mean state changes in the tropics resulting from the subtropical warming are 

consistent with the changes in the atmospheric Hadley cells and oceanic meridional 

overturning circulation. We have plotted the anomalous Pacific Ocean surface winds and 

zonal wind stress in Figure 4.5a and b. The southeasterly trades over the South Pacific Ocean 

are significantly weakened and the northeasterly trades strengthened. This is due to a 

decreased South Pacific and an increased North Pacific meridional sea surface temperature 

contrast. As a result of above-mentioned changes in trade winds, the atmospheric Hadley 

circulation is southward displaced (Figure 4.5c). 

The local atmospheric response (Figure 4.6a) to the SSTA in the subtropical South 

Pacific displays a linear baroclinic response with a surface low (2hPa at the sea level) and an 

upper level high (40m in the geopotential height response at 250hPa). In addition to the local 

changes, the sea level pressure response exhibits an anomalous high associated with 

anticyclonic circulation over the western North and South tropical Pacific. It reaches 1.6 hPa 

near the southeastern coast of Australia. A remarkable remote feature is the deepening of the 

Aleutian Low in the North Pacific. This appears to be a result of the atmospheric 

teleconnection from the tropics (Figure 4.6b). The local vertical air temperature response 
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shows a strong warming of up to 1.5°C at 250hPa (Figure 4.6a). All three tropical oceans 

present an anomalous increase in the vertical air temperature that extends southward up to 

60S° (not shown). This vertical warming response over the tropical oceans is intensified with 

the altitude and reaches 0.8°C at 250 hPa.  

 

 

Figure 4.6 (a) Anomalous Pacific Ocean vertical air temperature (shaded, in °C) and geopotential 

height (black contours, in m) at 27°S latitude in the SPac+2°C experiment. The contour interval is 2m 

for values less than 10m, and then, the contour levels are 15m, 20m, 30m, 40m and 50m. (b) 

Anomalous sea level pressure (in Pa) response in the SPac+2°C experiment. 

a) 

b) 
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Figure 4.7 Anomalous Pacific Ocean (a) vertical velocity at model level 50m (contours, in cm/day) and (b) wind 

stress curl (in 10-9 N/m3) in the SPac+2°C experiment. The contour interval for positive values is 1 cm/day, while 

the contour levels for negative values are –3, -5, -7, -10, -15, -20 cm/day. 

 

Figure 4.8 Anomalous Pacific Ocean depth of thermocline (in m) in the SPac+2°C experiment. The 

contour levels are –25, -20, -15, -12, -10,  -7, -5, -3, -1, 1, 3, 5, 7, 9, 10, 12, 15, 20, 30, 40 and 50 m. 

a) 

b) 
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Weaker equatorial trade winds will lead to a reduced equatorial Ekman divergence in 

the ocean, which in turn will decrease the equatorial upwelling of the colder subsurface 

waters. This is clearly seen in the anomalous vertical velocity at 52 m depth (Figure 4.7a). The 

strongest vertical velocity changes appear in the central equatorial Pacific, between 160° W 

and 120° W, where the wind stress changes are the largest (Figure 4.5b). In this area of the 

equatorial Pacific, a reduction of 20 cm/day or about 25% of the mean upwelling is obtained. 

An upwelling favorable wind stress curl is simulated between 5° and 10° latitude in the 

central-western tropical Pacific of the both hemispheres (Figure 4.7b). In the south this shifted 

eastward and southward (10°S-30°S) towards the forcing area. The off equatorial changes in 

the wind stress curl are visible not only in the vertical velocity response, but also in the depth 

of the thermocline changes. A shoaling of the thermocline can be found between 10°N and 

20°S in the western tropical Pacific with a maximum anomaly of 25m between 5°S-15°S 

(Figure 4.8). Furthermore, a deepening of the thermocline appears between about 10°N to 

25°N in the tropical North Pacific (Figure 4.8).  

 

 

 

Figure 4.9 Anomalous Pacific Ocean meridional overturning streamfunction (in Sv) in the SPac+2°C 

experiment. Contour levels are -1, -0.5, -0.3, 0.5, 1, 2, 3, 4, 5, 6, 7 and 8 Sv. 
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The above-mentioned changes in equatorial upwelling and tropical downwelling are 

associated with a weakening of the Pacific tropical cells (Figure 4.9). The tropical cell index 

(see Chapter 2.3 for a definition of TC and STC indices) shows a decrease of about 8 Sv (1Sv 

= 106 m3/s), which is equivalent to a 10% reduction in TC strength relative to the control 

integration (the red curve in Figure 4.27a). The weakening of the TC comes primarily from a 

slowing of the southern cell (Figure 4.9), which exhibits a 17% reduction in strength 

compared to only 2% for the northern cell.  The strength of southern Pacific subtropical cell is 

decreasing, while the strength of the northern Pacific subtropical cell is increasing. The 

simulated changes in the depth of the thermocline might also lead to changes in the slope of 

the thermocline, and thus contribute to the changes in the strength of tropical/subtropical cells. 

The shoaling of the thermocline in the west will decrease the zonal slope of the thermocline 

that itself will reduce the equatorward flow within the thermocline and slow down the tropical 

cells and the southern subtropical cell. On the contrary, the deepening of the thermocline 

between 10°N-25°N will increase the zonal slope, leading to an increased equatorward flow 

within the thermocline and to a speed up of the northern subtropical cell.  

The changes of equatorial trade winds will also influence the wind-driven horizontal 

circulation. Figure 4.10a shows a weakening of the South Equatorial Current of the order of 8 

cm/s as a result of weakened southeasterly trade winds. On contrary, the North Equatorial 

Current has strengthened by up to 6 cm/s due to the intensification of the northeasterly trades. 

Relative strong meridional velocity anomalies are simulated close to the equator and in 

western tropical South Pacific, which reflect the weaker Ekman divergence. Considering the 

mean zonal temperature gradient in the tropical Pacific, the horizontal current anomalies will 

advect warmer water from the warm pool area zonally toward the east and also meridionally 

into the cold tongue area. In the tropical North Pacific, the westward horizontal currents 

anomalies will bring colder water from the eastern tropics into the warm pool. This will lead 

to a much reduced warming between 5°N-20°N. The anomalous mean barotropic 

streamfunction suggests a strengthening and southward displacement of the subtropical gyre 

in the North Pacific (Figure 4.10b). 

In addition to ocean dynamics, changes in net surface heat flux will also affect sea 

surface temperature. The response in the net surface heat flux displays a local damping effect 

on the sea surface temperature of up to 60 W/m2 (Figure 4.11a). This anomalous surface heat 

flux is mainly due to an intensified evaporation over the forcing area (not shown). This is not 

surprisingly, since the latent heat flux is the dominant term in the air-sea heat exchange. The 

fresh water flux (P-E) changes (Figure 4.11b) reflect mostly the changes in precipitation. An  
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Figure 4.10 (a) Anomalous Pacific Ocean surface current velocity (in cm/s) in the SPac+2°C 

experiment. The reference vector of surface velocity is 5 cm/s. (b) Anomalous horizontal barotrophic 

streamfunction (black contours, in Sv) in the SPac+2°C experiment and the mean horizontal 

barotrophic streamfunction in the control integration (shaded, in Sv). The contour interval is 1 Sv. 

Horizontal barotrophic streamfunction response for SPac+2C (in Sv) 

a) 

b) 
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Figure 4.11 Anomalous Pacific (a) net surface heat flux (in N/m2) and (b) fresh water flux 

(precipitation-evaporation, in mm/month) in the SPac+2°C experiment. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.12 Anomalous Pacific (a) surface salinity (in psu) and (b) upper level density (in Kg/m3) in 

the SPac+2°C experiment. The anomalous upper level density was computed as the anomalous ocean 

density averaged over the upper 50 m. 

 

 

 

a) b) 

a) b) 
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increase in the total precipitation of about 50 mm/month has been simulated over the area with 

a positive sea surface temperature anomaly in the equatorial Pacific and tropical eastern South 

Pacific. In the tropical North Pacific, between 10°N and 20°N, a reduction in the total 

precipitation of about 35 mm/month is simulated. A decrease in precipitation, but of a smaller 

scale, appears in the western subtropical South Pacific. In the tropics increases in latent 

heating are typically associated with local decreases in sea level pressure. This is consistent 

with the sea level pressure changes in our experiment. The area of increased precipitation 

exhibits a reduction in the sea level pressure, while the decreased precipitation areas overlap 

regions with anticyclonic circulation (i.e. high sea level pressure).  

In Figure 4.12a we plotted the surface salinity response. An increase of 0.2 psu in the 

surface salinity is simulated between 10°N-30°N over the North tropical Pacific, as a result of 

reduced precipitation and horizontal advection of more saline water from the eastern 

subtropical North Pacific. The South Pacific salinity response shows a 0.6 psu increase in 

salinity over the forcing domain, and a 0.2 psu freshening of the surface waters in the warm 

pool area. As a result of the described changes in sea surface salinity and temperature, we 

found a significant response in the density of upper North and South Pacific Ocean. Figure 

4.12b shows a change in the ocean density averaged over the upper 50m: a decrease in density 

in the tropical South Pacific due to a combined effect of warmer temperatures and lower 

salinity; this is accompanied by a reduction in the North Pacific ocean mainly due to changes 

in salinity. 

 

4.4 North Pacific sensitivity experiment (NPac+2°°°°C) 

 

We turn now to the description of the sensitivity experiment in which a two degree sea 

surface temperature anomaly was imposed over the domain in subtropical North Pacific 

(NPac+2°C). Figure 4.13 shows the mean response in sea surface temperature over the whole 

length of the simulation relative to the control integration. The spatial structure of the sea 

surface temperatures response displays a warming in the tropical Pacific between 10°S-30°N. 

Relative to the forcing domain, the SST warming decreases westward and southwestward 

toward the warm pool region. The equatorial SST warming reaches 0.5°C in the western 

Pacific and 0.3°C in the cold tongue area leading to a slightly increase in the zonal 

temperature contrast (Figure 4.14a). As a consequence of the warming in the tropical Pacific, 

a 0.2°C-0.3°C SST warming is simulated in the tropics of Indian and North Atlantic Ocean.  
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Figure 4.13 Anomalous Pacific Ocean SST (in °C) response in the NPac+2°C experiment. Contour 
interval is -0.1°C. Please note that values in the range (-0.2°C, +0.2°C) are not plotted. 

 

The North Pacific subtropical warming has also affected the equatorial Pacific 

thermocline temperature (Figure 4.14b). In the equatorial upper ocean, a positive subsurface 

temperature anomaly is found till about 200m depth where it reaches 0.3°C. In the far western 

equatorial Pacific, a negative temperature anomaly up to –0.4°C is simulated between 50m 

and 450m depth. 

As shown in Figure 4.15a, the local response to the subtropical North Pacific warming 

exhibits a linear baroclinic pattern: an anomalous warm-low response downstream of the 

forcing area at the surface (1.2 hPa in the sea level pressure) and a warm-ridge response in the 

upper levels (a 30m geopotential height change at 250 hPa). An anomalous anticyclonic 

circulation of about 1.2 hPa in sea level pressure is simulated in the South Pacific, close to the 

Antarctic continent (Figure 4.15b). This anomalous anticyclonic circulation overlaps an area 

with increased sea ice cover. A negative surface air temperature anomaly of about –0.6°C 

accompanies the change in sea ice, suggesting that the anticyclonic response is a result of the 

positive sea ice-albedo feedback.  

The above-mentioned changes in the sea level pressure can also be seen in the surface 

wind and zonal wind stress changes, and are a result of modified meridional temperature  
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Figure 4.14 Mean climate changes in (a) SST (in °C) and (b) the thermocline temperature in 

NPac+2°C experiment, averaged in a 5°N - 5°S equatorial strip of Pacific Ocean. In (b), the dashed 

gray line represents the mean depth of the 20°C isotherm in the control integration. The contour 

interval is 0.05 °C. 

a) 

b) 
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Figure 4.15 (a) Anomalous Pacific Ocean vertical air temperature (shaded, in °C) and geopotential 

height (black contours, in m) at 27°N latitude in the NPac+2°C experiment. The contour interval is 2m 

for values less than 10m, and then, the contour levels are 15m, 20m, 30m and 40m. (b) Anomalous sea 

level pressure (in Pa) response in the SPac+2°C experiment. 

a) 

b) 

Air temp(C)/ geopot height (m) response at 27N for NPac+2C 
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Figure 4.16 Anomalous Pacific Ocean (a) surface winds (in m/s) and (b) zonal wind stress (in N/m2) 

in the NPac+2°C experiment. The reference vector of surface wind is 0.9 m/s. The contour interval in 

(b) is 0.003 N/m2. Anomalous atmospheric meridional mass streamfunction in the NPac+2°C 

experiment (black contours) and the mean atmospheric meridional mass streamfunction of the control 

integration (shaded, in 1010Kg/s) are plotted in (c). Contour interval in (c) is 0.1x 1010Kg/s. 

b) 

c) 

a) 
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gradient (Figure 4.16a and b). The southeasterly trades strengthen in the tropical South Pacific 

oceans due to an intensified meridional thermal contrast, while the northeasterly trades 

weaken as a consequence of a decreased meridional thermal contrast in the tropical North 

Pacific.  The anomalous low, which spans almost the whole North Pacific Ocean, is 

responsible for the warming found along the west coast of North America. The anomalous 

southerly warm air advection has raised the air surface temperature in the northeastern North 

Pacific by about 0.4°C -0.6°C. On the contrary, the anomalous northerly cold air advection 

prevents the surface warming in the northwestern North Pacific and leads to a slight cooling 

near Kamtchatka (Figure 4.13). 

As a consequence of the changes in trade winds, the Hadley circulation is shifted 

northward (Figure 4.16c). The resulting anomalous descending motion between 10°S-20°S 

leads to a decrease in precipitation of about 15-20 mm/month in all three tropical oceans. The 

anomalous ascending motion, which enhances the convective activity, leads to an increase in 

precipitation between 5°N-5°S. The biggest precipitation changes are simulated in the South 

Pacific Convergence Zone (SPCZ) and the warm pool region of West Pacific (Figure 4.17b). 

Another area that exhibits an increase in the precipitation amount up to 25 mm/month is 

located in the central tropical North Pacific between 10°N-30°N. Changes in the net surface 

heat flux can also influence sea surface temperature. The net surface heat flux response 

exhibits a damping effect onto the sea surface temperature over the forcing area. In the central 

tropical Pacific between 10°N-20°N, however, the net surface heat flux contributes to the SST 

warming (Figure 4.17a).  

 

 

 

 

Figure 4.17 Anomalous Pacific (a) net surface heat flux (in N/m2) and (b) fresh water flux 

(precipitation-evaporation, in mm/month) in the NPac+2°C experiment. 

a) b) 
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Figure 4.18 Anomalous Pacific Ocean (a) depth of thermocline (in m), (b) vertical velocity at model 

level 50m (contours, in cm/day) and (c) wind stress curl (in 10-9 N/m3) in the NPac+2°C experiment. 

In (a) the contour levels are -3, -1, 1, 3, 5, 7, 9, 10, 12, 15, 20, 30, 40 and 50 m. The contour interval in 

(b) is 1 cm/day. 

a) 

b) 

c) 
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The simulated weakening of the trade winds affects the equatorial upwelling and the 

thermocline depth in both the North and South tropical Pacific (Figure 4.18a,b). Relative to 

the control run, the upwelling in NPac+2°C experiment exhibits a reduction of 9 cm/day in the 

western equatorial Pacific accompanied by an anomalous upwelling between 5°S-10°S in the 

western South Pacific (Figure 4.18b). In the central tropical North Pacific, an anomalous 

upwelling is simulated between 20°N-30°N. The warming in the subtropical North Pacific 

induces a deepening of the thermocline of up to 50 m over the central-eastern tropical North 

Pacific, accompanied by a 8m deepening of the thermocline in the central equatorial Pacific 

and around 20°S in the western tropical South Pacific (Figure 4.18a). The simulated changes 

in the depth of the thermocline and in the upwelling are accompanying changes in the strength 

of subtropical/tropical cells in both North and South Pacific (Figure 4.19). Apart from the 

weakening of the off-equatorial downwelling, the deepening of the thermocline in the central-

eastern tropical North Pacific will decrease the zonal slope of the thermocline, reducing the 

equatorward flow within thermocline and therefore, spinning-down the northern branch of the 

subtropical and tropical cell in the Pacific Ocean by about 3 Sv. On the contrary, the 

deepening of the thermocline in the western tropical South Pacific increases the zonal slope of 

the thermocline, which itself might increase the equatorward flow within the thermocline and 

spin-up the southern STC. 

 

Figure 4.19 Anomalous Pacific Ocean meridional overturning streamfunction (in Sv) in the 

NPac+2°C experiment. Contour levels are –3.5, -3, -2.5, -2, -1.5, -1, -0.5, -0.3, -0.1, 0.1, 0.3 and 0.5 

Sv. 
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Figure 4.20 (a) Anomalous Pacific Ocean surface current velocity (in cm/s) in the NPac+2°C experiment. The 

reference vector of surface velocity is 4 cm/s. (b) Anomalous horizontal barotrophic streamfunction (black 

contours, in Sv) in the NPac+2°C experiment and the mean horizontal barotrophic streamfunction in the control 

integration (shaded, in Sv). The contour interval is 1 Sv. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.21 Anomalous Pacific (a) surface salinity (in psu) and (b) upper level density (in Kg/m3) in the 

NPac+2°C experiment. The anomalous upper level density was computed as the anomalous ocean density 

averaged over the upper 50 m. 

a) 

b) 

b) a) 
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The horizontal oceanic circulation is also affected by the change in the trade winds 

(Figure 4.20a). The biggest changes in horizontal currents are found in the tropical Pacific 

Ocean, where the South and North Equatorial Currents weaken by about 4 cm/s. The 

meridional velocity anomalies simulated close to the equator, especially in the North Pacific, 

reflect a weaker Ekman divergence. The anomalous mean barotropic streamfunction changes 

(Figure 4.20b) show a weakening of about 5 Sv and a slightly southward shift of the North 

Pacific subtropical gyre circulation.  

There is a sea surface salinity response to the simulated changes in freshwater flux 

(Figure 4.21a). The intensified precipitation over most of the tropical and western North 

Pacific causes a reduction in sea surface salinity of about 0.1-0.2 psu, with the maximum SSS 

reduction in the warm pool area of western Pacific. In contrast, over the forcing area, the 

surface salinity is increased by 0.2 psu due to intensified evaporation. The increase in 

precipitation over central-western tropical North Pacific, combined with a warming of the 

upper ocean leads to a decrease in the upper layer density over the whole tropical North 

Pacific (Figure 4.21b). 

 

4.5 Comparison of the impact of South and North subtropical 

warming/cooling on the tropics 

 

After describing the affect of subtropical positive SST perturbation on the mean 

climate state, we will now try to quantify the relative contribution of North and South 

subtropical Pacific to the tropical climate. We will also discuss the impact of subtropical 

warming versus subtropical cooling. Figure 4.22 displays the tropical Pacific response in sea 

surface temperature in the following experiments: NPac+2°C, NPac-2°C, SPac+2°C and 

SPac-2°C. The simulated changes in the Pacific equatorial thermocline for the same 

experiments are shown in Figure 4.23. The equatorial Pacific SST change, computed as the 

sea surface temperature response averaged between 5°S-5°N and 120°E-80°W, is +0.58°C in 

the SPac+2°C experiment comparing to +0.35°C in the NPac+2°C or about 65% larger for the 

South Pacific experiment. A similar difference is simulated for the cooling experiments: a 2°C 

cooling in the subtropical South Pacific causes a 0.62°C cooling of the equatorial Pacific SST 

compared to only 0.35°C in the subtropical North Pacific experiment. Furthermore, the 

thermal forcing of subtropical South Pacific has a maximum impact on eastern tropical Pacific 

climate, while the impact of subtropical North Pacific is mostly confined to the western 
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tropical Pacific (Figure 4.23a compared to Figure 4.23c). The subtropical North and South 

Pacific oceans also have a different impact on the equatorial thermocline structure (Figure 

4.23). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.22 Anomalous Pacific Ocean SST (in °C) response in the (a) NPac+2°C, (b) NPac-

2°C, (c) SPac+2°C and (d) SPac-2°C experiments. In (a) and (c), the contour interval is 

0.1°C. In (b) and (d), the contour interval is -0.1°C. Please note that values in the range         

(-0.2°C, +0.2°C) are not plotted. 

 

a) b) 

c) d) 
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Figure 4.23 Mean climate changes in the thermocline temperature in (a) NPac+2°C, (b) NPac-2°C, (c) 

SPac+2°C and (d) SPac-2°C experiments, averaged in a 5°N - 5°S equatorial strip of Pacific Ocean. 

The contour interval in (a) and (b) is 0.05°C, while the contour interval in (d) is 0.1°C. The contour 

levels in (c) are –1.5°C, -1.2°C, -1.0°C, -0.8°C, and -0.6°C, followed by a 0.1°C contour interval. The 

dashed gray line represents the mean depth of the 20°C isotherm in the control integration. 

 

We will now focus on explaining the different impact of North and South Pacific, 

limiting the discussion to the warming experiments (NPac+2°C and SPac+2°C). Figure 4.24 

displays the mean sea surface temperature response computed for the first 10yr, 30yr and for 

the whole 200yr of the experiment, while Figure 4.25 shows the simulated mean response in 

equatorial subsurface temperature. 

a) b) 

c) d) 
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Figure 4.24 Anomalous Pacific Ocean SST (in °C) after the first 10 years (a), 30 years (b) and after 200 years (c) in the NPac+2°C experiment. Anomalous 

Pacific Ocean SST (in °C) after the first 10 years (d), 30 years (e) and after 200 years (f) in the SPac+2°C experiment. The contour interval is 0.1°C. Please note 

that values in the range (-0.2°C, +0.2°C) are not plotted. 

 

a) b) c) 

d) e) f) 
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Figure 4.25 Mean climate changes in the thermocline temperature after the first 10 years (a), 30 years (b) and after 200 years (c) in the NPac+2°C experiment. 

Mean climate changes in the thermocline temperature after the first 10 years (d), 30 years (e) and after 200 years (f) in the SPac+2°C experiment. The contour 

interval in (a), (b) and (c) is 0.05°C. The contour levels in (d), (e), (f) are -2°C, -2.2°C, –1.8°C, –1.5°C, -1.2°C, -1.0°C, -0.8°C, and -0.6°C, followed by a 0.1°C 

contour interval. The dashed gray line represents the mean depth of the 20°C isotherm in the control integration. 

a) b) c) 

d) e) f) 
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After only 10 years of simulation, the equatorial response in the SPac+2°C experiment 

is almost fully developed (see Figure 4.24d in comparison to Figure 4.24e,f). This rapid 

increase in the equatorial SST suggests a dominant role of the “atmospheric bridge” in the 

remote impact of subtropical South Pacific. Anomalous northwesterly trades that reduce the 

evaporative heat loss in the eastern tropical South Pacific, accompany the enhanced warming 

in the subtropical South Pacific. In this way the subtropical South Pacific warming extends 

farther into the eastern tropics. The pattern is indicative of the coupled wind-evaporative-SST 

(WES) feedback between the atmosphere boundary layer and ocean (Xie and Philander, 

1994). After reaching the equator, the SST anomalies are further intensified by the local 

coupled ocean-atmosphere feedback. The WES feedback not only leads to a very fast change 

of equatorial SST, but also forces a delayed adjustment of the meridional overturning 

circulation in the upper Pacific (Figure 4.27a). Therefore, the tropical SST change will be 

further amplified due to a reduced equatorward cold water transport and equatorial upwelling 

(Figure 4.7a). The slow ocean connection between subtropical South Pacific and tropics can 

also be accomplished by the equatorward subduction of anomalous warm water by the mean 

circulation (Gu and Philander, 1997) through the interior oceanic pathways that are opened 

due to the absence of a potential vorcity barrier in the South Pacific. In Figure 4.26 we plotted 

the time evolution of equatorial Pacific heat content anomaly in the SPac+2°C experiment, 

taken here as an index of the vertically averaged ocean temperature over the upper 450m. The 

positive trend (0.35°C/200yr) of equatorial Pacific heat content suggests that ocean tunnel 

plays also a role in the South Pacific subtropical-tropical connections at multi-decadal 

timescale. In the first years of the simulation, the dynamical adjustment of the equatorial 

thermocline to the zonal wind stress changes associated with the fast “atmospheric bridge” 

leads to a warming in the surface accompanied by a cooling at depth (Figure 4.25d), followed 

by a slow warming from below by the “ocean tunnel” as the experiment continues. 

The equatorial climate change in response to a warming in subtropical North Pacific is 

confined to the westernmost part of the warm pool region during the first 10yr of the 

experiment (Figure 4.24a), accompanied by no significant mean changes in the subsurface 

temperature (Figure 4.25a). The very fast increase in SST over the west Tropical Pacific can 

also be attributed to the WES coupled feedback. The cyclonic response in sea level pressure in 

the North Tropical Pacific is associated with anomalous southwestern trades that will warm 

the SST through a reduction in evaporation. The propagation of warmed SST towards the 

warm pool region is accompanied by westerly wind anomalies that will further reduce the 

evaporative heat loss and warm the sea surface (Figure 4.16b). Our results are in accordance 
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with a recent study done by Wu et al. (2006).  Using both observations and a coupled ocean-

atmosphere model, they have proposed the WES feedback as a possible mechanism for the 

extratropical-tropical connections in the North Pacific and suggested that the recent tropical 

Pacific decadal climate variability originates from the extratropical North Pacific. 

 
Figure 4.26 Time evolution of the equatorial Pacific annual heat content anomaly (in °C) averaged over 5°N-

5°S, 140°E-80°W in the SPac+2°C experiment. The vertically averaged ocean temperature over the upper 450 m 

is used as a proxy of the ocean heat content. To highlight the low frequency variability, a 5-yr running mean is 

applied to the index. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.27 Time evolution of the anomalous Tropical Cell (TC) strength (in Sv) in the (a) South Pacific and (b) 

North Pacific experiment. For the definition of the cell strength see Chapter 2.3. The TC strength of the control 

integration is represented by the black curve in both panels. Red color is used for the warming experiments and 

blue color for the cooling experiments. To highlight the multi-decadal variability, a 5-yr running mean is applied 

to each index. 

SPac NPac 

a) b) 
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While the same fast “atmospheric bridge” seems to act in both North and South Pacific 

experiments, the amplitude and the spatial extension of the response is very different. Even 

after 30yr of simulation, the SST warming in the NPac+2°C experiment is limited to the 

western Tropical Pacific between 120°E-180°E, reaching a maximum of only 0.5°C (Figure 

4.24b,c). At the same time, a 0.8°C warming appears in the upper equatorial ocean between 

50m-150m and tends to propagate eastward along the thermocline (Figure 4.25b,c). This SST 

warming from below suggests a more important role for the “ocean tunnel” compared to the 

“atmospheric bridge” in the NPac+2°C experiment. Since changes in shallow meridional 

overturning circulation are not large in the NPac+2°C experiment (Figure 4.27b compared to 

Figure 4.27a), due to the quite small changes in the equatorial zonal wind stress (Figure 

4.16b), the dominant mechanism in OT remains the isopycnal transport of anomalous 

temperature signal from the North Pacific through the western boundary pathway. A possible 

explanation for the weak impact of the subtropical North Pacific warming is the so-called 

“thermodynamic thermostat” that might control the warm pool region. Due to this 

thermodynamical feedback, the SST will warm for as much as necessary for the upward 

surface heat flux to balance the imposed downward flux (Seager and Murtugudde, 1997). 

Since there is no significant atmospheric response (not shown) to the salinity 

perturbations in the subtropical Pacific Ocean, we can see the SSSA experiments as a study of 

the “oceanic tunnel”. In both North and South Pacific SSSA experiments, the slow oceanic 

connection between subtropical and tropical Pacific is accomplished only through the 

equatorward subduction of anomalous saline water by the mean circulation. In the South 

Pacific experiment, the subducted salinity anomalies can reach equatorial Pacific via the 

interior pathway, while in the North Pacific experiment; the water carrying the salinity signals 

has to travel first all the way to the western boundary and then, equatorward.  

A first order linear response is simulated for full (+2K) and half-forcing (+1K) sea 

surface temperature sensitivity experiments in both North and South Pacific. Although the 

Tropical Pacific climate response to an enhanced surface warming/cooling in the subtropics is 

to first order linear, the negative thermal forcing appears to have a stronger impact on 

equatorial Pacific thermocline. A 2°C cooling in subtropical South Pacific results in a 

decrease in equatorial ocean temperature that penetrates till about 100m depth (Figure 4.23d), 

in comparison with only 50m depth for the warming experiment (Figure 4.23c). Besides the 

vertical displacement of the thermocline, a bigger change in the vertical mixing (not shown) 

may explain the larger subsurface temperature anomaly in the SPac-2°C experiment 
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Figure 4.28 Dependence between the anomalous TC strength (a) /STC strength (d) and the anomalous ocean vertical velocity in the Niño3 region of the eastern 

equatorial Pacific in the South Pacific SSTA and SSSA experiments. Dependence between the anomalous TC strength (b) /STC strength (e) and the anomalous 

sea surface temperature in the Niño3 region of the eastern equatorial Pacific in the South Pacific SSTA and SSSA experiments. Dependence between the 

anomalous TC strength (c) /STC strength (f) and the anomalous upper ocean density change over the forcing area in the South Pacific SSTA experiments. All the 

anomalous changes are expressed in percentage of the mean values in the control integration.

South Pacific 

 +1K +2K 

 -1K -2K 
 +0.25psu +0.5psu 
 -0.25psu -0.5psu 

a) b) c) 

d) e) f) 
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compared to the SPac+2°C experiment. Similarly, a greater impact of the subtropical cooling 

on equatorial thermocline is found in the North Pacific experiments (not shown).  

The South Pacific contribution to the modulation of tropical climate is also revealed in 

Figure 4.28, which presents the relationship between the simulated changes in TC/STC index 

and changes in sea surface temperature and equatorial upwelling in eastern Pacific for all 

South Pacific experiments (SSTA and SSSA forcing). For the scatter plots in Figure 4.28, we 

used the simulated relative changes defined as the variable change divided by the mean of the 

control run for the respective variable. A strong linear dependence is found between the TC 

index and the strength of eastern equatorial upwelling (Figure 4.28a), while an inverse linear  

dependence is obtained between the TC index and eastern equatorial SST (Figure 4.28b) in 

our South Pacific simulations. A similar dependence, although not as strong as for the tropical 

cells, is suggested by the Figure 4.28d,e for the subtropical cells. As Figure 4.28c,f shows a 

linear dependence exists between TC/STC index and upper ocean density change over the 

forcing area for the South Pacific SST experiments. We could not see a relationship between 

the strength of TC/STC and eastern equatorial Pacific SST/upwelling in our North Pacific 

simulation. This behavior might be also due to much smaller changes in the shallow 

meridional overturning circulation in our North Pacific simulations (Figure 4.27a comparing 

to Figure 4.27b).  

Comparing the warming and the cooling experiments in both North and South Pacific, 

we can conclude that the subtropical South Pacific appears to “affect” more to the equatorial 

ocean temperature change than the subtropical North Pacific. The larger contribution of the 

South Pacific is consistent with observational (Johnson and McPhaden, 1999) and modeling 

studies using an OGCM (Yang et al, 2004) or fully coupled GCM (Yang et al, 2005;Yang and 

Liu, 2005). The partial coupling idealized experiments employed by Yang et al. 2005 show 

that the impact of South Pacific extratropical thermal forcing (poleward of 30°S) on the 

tropical climate is 30%-50% larger than the impact of North Pacific extratropics. It is worth 

mentioning that Yang et al. 2005 investigated only the affect of extratropical Northern and 

Southern Hemisphere warming on tropical Pacific climate. In our sensitivity experiments, we 

found an asymmetric impact of the North and South Pacific Ocean on the tropical climate not 

only in the case of enhanced subtropical warming, but also for an enhanced subtropical 

cooling. 
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4.6 Relative role of the atmosphere and ocean in tropical-subtropical 

interactions 

 

To further quantify the role of air-sea interactions and ocean dynamics in the simulated 

tropical climate response to the subtropical surface warming/cooling, we performed sensitivity 

experiments, similar to the coupled ones, with the AGCM ECHAM5. The sea surface 

temperature and sea ice monthly climatology of the coupled control run were used to force the 

AGCM. The AGCM was run under these conditions for 36 years and the last 30 years of the 

integration will constitute our AGCM control run (ACTR). After allowing a 6 years spin up 

period, we have imposed a +2°C degree sea surface temperature anomaly over the North 

Pacific (refer to as ANPac+2°C), respectively South Pacific domain (refer to as ASPac+2°C), 

and run the model for 30 years. All the mean climate changes are derived as the difference 

between the mean of each AGCM experiment and the mean of control run ACTR over the 

whole period of the sensitivity run. Only the statistically significant changes at 95% level 

according to a two-sided Student’s t-test are discussed here. 

Figure 4.29a displays the annual mean geopotential height change at 1000 hPa for the 

ASPac+2°C experiment. In contrast to the coupled experiment, the atmospheric response of 

the AGCM experiment to the warming in the subtropical South Pacific is mostly confined to 

the Southern Hemisphere and has no response in the equatorial Pacific. Correspondingly, the 

change in the surface wind displays a cyclonic anomalous circulation that is limited to the 

eastern subtropical South Pacific (Figure 4.30). The local geopotential height response (Figure 

4.29b) to the imposed boundary forcing features a surface low (15m at 1000hPa or 2hPa in 

sea level pressure) beneath the upper level high (a 15m geopotential height change at 250hPa). 

Although the local geopotential height response is linear baroclinic in both the coupled and 

uncoupled experiments, the changes are bigger in the former. Besides a large local increase in 

evaporation rate (30mm/month) over the forcing area, accompanied by a similar magnitude 

reduction in evaporation to the north of it, the subtropical heating also produces changes in 

precipitation. An increase in precipitation of up to 70 mm/month is found on the western 

margins of the heating zone, while a decrease in precipitation of up to 40 mm/month is 

simulated to the north and west of the forcing area as a result of reduced evaporation rate due 

to anomalous westerlies winds. The SST anomalies in the subtropical South Pacific produce 

changes that reach the middle and upper troposphere (not shown). 



 70 

 

 

 

 

Figure 4.29 (a) Anomalous sea level pressure (in Pa) response in the ASPac+2°C experiment.          

(b) Anomalous Pacific Ocean vertical air temperature (shaded, in °C) and geopotential height (black 

contours, in m) at 27°S latitude in the ASPac+2°C experiment. The contour interval is 2m. 

 

 

 

a) 

b) 

Air temp(C)/ geopot height (m) response at 27S for ASPac+2C 
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Figure 4.30 Anomalous Pacific Ocean surface winds (in m/s) in the ASPac+2°C experiment. The 

reference vector of surface wind is 2 m/s. 

 
 

Comparing with the South Pacific experiment, the atmospheric response to the 

subtropical warming in the North Pacific is much weaker. The geopotential height changes 

(Figure 4.31a) are confined to the Northern Hemisphere, where they exhibit a local surface 

anomalous low (7m at 1000hPa or 1hPa in sea level pressure) without any signal in the upper 

troposphere (Figure 4.31b). Similar to ASPac+2°C experiment, significant changes in the 

surface wind are restricted to the forcing region, but are about half magnitude (Figure 4.32). 

As a result of the SST damping, the evaporation rate has increased over the forcing area by 40 

mm/month. Additional features of the local response include a reduction in evaporation of up 

to 25 mm/month to the south and west of the heating zone and a modest increase in 

precipitation in the western margins. The difference in the atmospheric response to the North 

Pacific subtropical warming can be also seen in the vertical response, with air temperature 

changes limited to the lower troposphere (not shown).  
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Figure 4.31 (a) Anomalous sea level pressure (in Pa) response in the ANPac+2°C experiment.         

(b) Anomalous Pacific Ocean vertical air temperature (shaded, in °C) and geopotential height (black 

contours, in m) at 27°N latitude in the ANPac+2°C experiment. The contour interval is 2m. 

 

 

a) 

b) 
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Figure 4.32 Anomalous Pacific Ocean surface winds (in m/s) in the ANPac+2°C experiment. The 

reference vector of surface wind is 1 m/s. 

 

As it was described in the above paragraphs, the atmospheric response to the warming 

in the subtropical North and South Pacific for the AGCM experiments is mostly confined to 

the forcing’s hemisphere contrary to the global response of the coupled experiments. The 

local atmospheric response is similar for the AGCM and the fully coupled experiments, 

although weaker and with no significant vertical response in the case of North Pacific AGCM 

run. The weaker atmospheric response to the thermal forcing in subtropical North Pacific 

might also contribute to the smaller impact of the North Pacific Ocean to the tropical climate. 

The reason for this weaker atmospheric response to the subtropical North Pacific SST forcing 

is not yet clear. 

  We can conclude that air-sea interactions and ocean dynamics are very important for 

the equatorial Pacific response to the sea surface anomalies in the subtropical Pacific. 
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5. Sensitivity to density perturbations in the subtropics 

-Impact on the tropical Pacific climate variability 

 

 

 

5.1 Introduction 

 

While air-sea interactions responsible for El Niño-Southern Oscillation (ENSO) are 

centered in the equatorial Pacific Ocean, changes in the tropical convections associated with 

ENSO influence the global atmospheric circulation. The effect of El Niño-Southern 

Oscillation (ENSO) on the subtropical/extratropical climate has been extensively studied over 

the past decades (Trenberth et al., 1998; Alexander et al., 2002), with a focus on the tropical-

extratropical connection in the North Pacific (Alexander et al., 2002; Deser et al., 2004). In 

contrast, our understanding of the influence of subtropical/extratropical climate on ENSO is 

very limited. In this chapter, we will use the idealized experiments described in Chapter 4 to 

investigate the impact of subtropical density perturbations on the tropical Pacific climate 

variability. 

 

5.2 Subtropical density perturbations impact on ENSO 

 

Several paleoclimatic studies show that ENSO has undergone significant climate shifts 

in the history in response to a background climate change (Liu et al., 2000; Cole, 2001; 

Tudhope et al., 2001; Rosenthal and Brocolli, 2004). ENSO has also changed during the past 

decades (Fedorov and Philander, 2000, 2001). How ENSO phenomenon is responding to a 

background state change is a very actual issue (Van Oldenborgh et al., 2005; Zelle et al., 

2005; Merryfield, 2006; Guilyardi, 2006; Meehl et. al, 2006b), with major implications on 

global warming impact studies. However, the GCMs projections of the ENSO properties in a 

future, warmer climate, reveal different responses: from increased amplitude due to a stronger 

thermocline (Timmermann et al., 1999; Collins, 2000) to a decreased amplitude due to a 

reduced zonal SST gradient (Knutson et al., 1997), or even no change in amplitude (Meehl et  
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Figure 5.1 Time evolution of annual Niño3-SSTA (in °C) in (a) SPac+2°C (shaded red curve), and (b) 

SPac-2°C experiments (shaded blue curve). The shaded black curve represents the time evolution of 

Niño3-SSTA in the control integration. All plots are obtained applying a 5-yr running mean. 
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Figure 5.2 Standard deviation of Niño3-SSTA (in °C) as a function of time in (a) SPac+2°C, and (b) 

NPac+2°C experiments. A low-pass filter in the form of a sliding window 10 years wide was used to 

compute the standard deviations. Also shown here is the Niño3-SSTA standard deviation in the control 

integration (black curve). In both panels, the red curve (blue curve) represents the warming (cooling) 

experiment in the respective hemisphere. 

a) 

b) 



 78 

al., 1993; Tett, 1995). ENSO period can also be changed: a broader meridional pattern of the 

anomalous zonal wind stress is associated with longer ENSO periods (Kirtmann, 1997; 

Capotondi et al., 2006). Merryfield (2006) linked changes in the sea surface temperature with 

changes in SST variability: higher mean SST or stronger SST difference between east and 

west equatorial Pacific intensify tropical SST variability.  

For the beginning, we will check whether the changes in the background tropical 

climate in our sensitivity simulations have an effect on ENSO variability. We have found that 

the statistics of the ENSO present extensive changes in amplitude and frequency in response 

to the warming/cooling in the subtropical South Pacific. Relative to the control simulation, the 

time evolution of the annual SST anomaly in the Niño-3 region (150°W-90°W, 5°N-5°S) in 

the SPac+2°C shows a reduction in amplitude (see Figure 5.1a). On the contrary, the Niño-3 

SST anomalies display an increase in amplitude as a response to the cooling in the subtropical 

South Pacific (see Figure 5.1b). The subtropical North Pacific has an opposite effect on ENSO 

comparing to the subtropical South Pacific: the subtropical North Pacific warming leads to 

increased ENSO amplitude, while the subtropical cooling leads to slightly decreased ENSO 

amplitude (not shown).  

Figure 5.2 shows the standard deviation of the Niño-3 SST anomaly, computed using a 

10-year sliding window, for the SPac+2°C and the NPac+2°C experiments. Looking at it we 

can now see even more clearly the stronger impact of the subtropical South Pacific on ENSO 

variability. A 2°C subtropical South Pacific SST warming can reduce the mean ENSO 

standard deviation by 28%, while a 2°C subtropical South Pacific SST cooling can increase 

the mean ENSO standard deviation by 21%. The impact of the subtropical North Pacific on 

ENSO interannual variability is opposite: a 14% increase in ENSO variability for the 

NPac+2°C experiment and a 6% decrease for the NPac-2°C experiment. In the following, we 

will focus on the ENSO variability changes in the South Pacific sensitivity experiments, since 

the impact of subtropical North Pacific on ENSO variability is much smaller in our model. 

To investigate further the changes in ENSO statistics, we calculated the frequency 

distribution of annual Niño-3 SST anomalies. The frequency distribution for the SPac+2°C 

(red color) and the SPac-2°C (blue color) experiments are shown in Figure 5.3a, and Figure 

5.3b, respectively. The control run frequency distribution is plotted with the black color in 

both histograms. The distribution obtained from the warming experiment in the South Pacific 

is narrower than the one obtained from the control run, in accordance with the decrease in 

interannual variability. For the SPac+2°C experiment the occurrence of weaker ENSO events                                                    
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Figure 5.3 Frequency distribution of annual Niño3-SSTA during the (a) SPac+2°C (red), and (b) 

SPac-2°C experiments (blue). For comparison, we also show the frequency distribution of annual 

Niño3-SSTA during the control integration (black color). 

a) 

b) 

Histogram of Niño3-SSTA 
annual values 

Histogram of Niño3-SSTA 
annual values 
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Figure 5.4 Power spectra of the simulated Niño3-SSTA in the (a) SPac+2°C (red line with diamonds), 

and (b) SPac-2°C experiments (blue line with diamonds). For comparison, the power spectra of Niño3-

SSTA in the control integration is shown in black. The 95% confidence level is plotted as the dotted 

line, and the AR1 process fitted to the data as thin solid line. 

a) 

b) 
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increases and the occurrence of stronger ENSO events decreases. The opposite behavior is 

simulated for the cooling experiment in the South Pacific as a confirmation of the increased 

interannual variability, with less frequent weaker ENSO events and more frequent stronger 

ENSO events. In both South Pacific sensitivity experiments and in the control simulation, the 

distribution of Niño-3 SST anomalies is almost symmetrical. Therefore, there is no change in 

the skewness of ENSO in response to the subtropical South Pacific perturbations. 

The remote modulation of the subtropical perturbations can also change the ENSO 

period. Figure 5.4 shows the power spectra of Niño-3 monthly SST anomaly associated with 

the subtropical South Pacific warming (red spectra in Figure 5.4a) and cooling (blue spectra in 

Figure 5.4b) experiments. For comparison, we have plotted with black color the power 

spectrum of Niño-3 SST anomaly in the control simulation. To compute the power spectra we 

have used the whole 200yr length of the sensitivity integrations. The monthly SST anomalies 

have the mean seasonal cycle removed. The 95% confidence level is plotted with a dotted line 

for each experiment, all the main peaks being located well above the confidence level. The 

above-mentioned significantly decreased/increased variability of ENSO in response to the 

subtropical warming/cooling is evident in the power spectrum plot. Figure 5.4b also suggests 

a shift to a longer period of the ENSO in the cooler climate of SPac-2°C experiment. The 

main peak in the ENSO spectrum is located at 42 months period for the SPac-2°C experiment 

and at 37 months period for the control simulation. In the warm climate of the SPac+2°C 

experiment, the power spectrum of Niño-3 SST anomaly exhibits a broadening with increased 

energy in the high frequency range (Figure 5.4a). 

 

5.3 Background state changes associated with changes in ENSO 

 

We will try now to identify the changes in the mean state that might lead to changes in 

the statistics of interannual variability for the South Pacific sensitivity experiments. The 

tropical Pacific interannual variability can be affected by changes in several factors: the mean 

state near the surface, the strength of the air-sea coupling, and the structure of the thermocline. 

Liu et al. (2002) proposed the annual cycle’s interaction with ENSO through the nonlinear 

frequency entrainment process as another mechanism controlling the amplitude of ENSO.  
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Figure 5.5 Anomalous sea surface temperature (in °C) in (a) the SPac+2°C (red curve), and (b) the 

SPac-2°C experiments (blue curve). The anomalies are computed as the spatial average between 5°S 

and 5°N. 

a) 

b) 
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Figure 5.5 shows the changes in the equatorial zonal SST contrast between the western 

and eastern Pacific for the South Pacific experiments. In response to an enhanced warming 

(cooling) in the subtropics of South Pacific, the zonal SST contrast has decreased (increased) 

by 0.55°C (0.4°C). A decrease in the zonal SST contrast between the warm pool and cold 

tongue area could favor a reduction in the variability of ENSO. Our findings are in accordance 

with Merryfield (2006) and Knutson et al (1997) that found a decrease in ENSO variability 

under the global warming conditions due to a reduced time-mean zonal SST gradient.  A 

recent study by Sun et al. (2004) used a simplified ocean-atmosphere coupled model to study 

the effect of an enhanced subtropical surface cooling on ENSO. Their results suggest that an 

enhanced cooling in the subtropics results in a regime with stronger ENSO. Through the 

“ocean tunnel” (Gu and Philander, 1997), the stronger subtropical cooling decreases the 

temperature of the water feeding the equatorial undercurrent and therefore, results in a colder 

upwelling water in the eastern equatorial Pacific. The subsequent SST cooling in the eastern 

equatorial Pacific strengthens the equatorial zonal SST contrast, triggering a regime with 

stronger ENSO. In our SPac-2°C experiment, the change in the Hadley circulation determines 

the tropical wind change, which in turn changes the meridional overturning circulation in the 

upper Pacific. The spinning up of the STC in the South Pacific and the TC cells in both 

hemispheres will reduce the temperature of the upwelling water in the eastern equatorial 

Pacific (Kleeman et al., 1999), resulting in an increased zonal SST contrast and therefore, a 

stronger ENSO variability. 

Changes in the mean equatorial trade winds can also produce changes in the equatorial 

thermocline structure that may alter the interannual variability. Figure 5.6 displays the 

thermocline depth and zonal wind stress anomalies associated with the SPac+2°C 

experiments, spatially averaged between 5°S and 5°N. The slackening/intensification of the 

equatorial trade winds in response to the warming/cooling in subtropical Pacific goes along 

with a shoaling/deepening of the thermocline in our experiments. The thermocline changes are 

mostly confined to western and central equatorial Pacific. According to the idealized 

modelling study of Fedorov and Philander (2001), an increase in the depth of the equatorial 

thermocline is stabilizing the tropical interannual variability. This is in contrast to our 

findings: the deepening of thermocline in SPac-2°C experiment is accompanied by an 

increased ENSO variability, while in the SPac+2°C experiment a shoaling of the thermocline 

goes along with a weakening of ENSO.  
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Figure 5.6 (a) Anomalous zonal wind stress (in N/m2) in the SPac+2°C (red curve), and the SPac-2°C 

experiments (blue curve). (b) Anomalous depth of the thermocline (in m) in the SPac+2°C (red curve), 

and the SPac-2°C experiments (blue curve). The anomalies are computed as the spatial average 

between 5°S and 5°N. 

 

a) 

b) 
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The situation is further complicated by the fact that the depth and the sharpness of 

thermocline can change simultaneously with either reinforcing or counterbalancing effects on 

ENSO variability. A sharper thermocline with a weaker slope is stabilizing because it inhibits 

entrainment across the thermocline, and also because the vertical movements of thermocline 

are less effective (Fedorov and Philander, 2001). A sharper/less sharp and less steep/steeper 

equatorial thermocline in response to the subtropical South Pacific warming/cooling could 

lead to the reduced/enhance ENSO variability observed in our experiments (Figure 5.7). An 

explanation of simulated changes in ENSO period may be also obtained in the above-

mentioned linear framework: a deepening of the thermocline, as observed in our SPac-2°C 

experiment, can suppress the high-frequency SST-mode in favor of a delayed oscillator mode, 

causing the period of ENSO to increase (Fedorov and Philander, 2001). 

 

 

 

 

Figure 5.7 Anomalous sharpness of the thermocline (in m) in (a) the SPac+2°C, and (b) the SPac-2°C 

experiments. The sharpness of the thermocline is defined as the difference between the depth of the 

16°C isotherm and the depth of the 22°C isotherm. The contour levels in (a) are +1, +2, +3, +4, +5, 

+6, +8, and +10 m. The contour levels in (b) are +1, +2, +3, +4, +5, +6, +8, +10, +12 and +15 m. 

 

a) 

b) 
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5.4 Explanation in terms of feedback changes 

 

Changes in relevant positive/negative feedbacks generated by the change in the mean 

state will impact ENSO amplitude. We have estimated the strength of the atmosphere-ocean 

coupling using scatter plots and regression analysis of SST Niño-3 anomalies against zonal 

wind stress, thermocline depth, and net surface heat flux anomalies. One cause for the 

decrease in ENSO variability in response to an enhanced warming in subtropical South 

Pacific might be the reduction in central Pacific zonal wind stress sensitivity to eastern Pacific 

SST. As shown in Figure 5.8, the atmospheric sensitivity is reduced by about 10% in the 

SPac+2°C experiment. The atmospheric sensitivity has slightly increased in the case of SPac-

2°C experiment (not shown). The SST-thermocline feedback is increased (decreased) by 

about 1-2 m/°C in the central-eastern Pacific for the SPac+2°C (SPac-2°C) experiment 

relative to the control integration (Figure 5.9) and thus, consistent with changes in the 

thermocline depth. For example, in the SPac+2°C experiment, the shallower equatorial 

thermocline will lead to an enhancement of the thermocline feedback, which in turn will 

increase ENSO variability – in contrast to our findings (Figure 5.2a). We have found no 

significant changes in the eastern SST-net surface heat flux feedback in both sensitivity 

experiments (not shown).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.8 Scatter plot of Niño3-SSTA versus the wind stress anomalies over the central equatorial 

Pacific (120°E-150°W, 2°S-2°N) for (a) the control integration (black), and (b) the SPac+2°C 

experiment (red).  

a) b) 

Slope=0.0066 

Correlation=0.69 

Slope=0.0059 

Correlation=0.59 
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Figure 5.9 Linear regression of thermocline depth and sea surface temperature in (a) the SPac+2°C, 

and (b) the SPac-2°C experiments relative to the control integration. All values are in m/°C and 

represent the difference between the regression coefficient of the respective sensitivity experiment and 

the one in the control integration. The contour interval is 1 m/°C. 

 

Although the changes in the atmospheric sensitivity contribute to the changes in ENSO 

variability, they cannot explain the magnitude of the variability changes observed in our 

sensitivity experiments. According to the linear theory framework (Fedorov and Philander, 

2001), a relative shallow thermocline favors the high-frequency local modes (SST-mode) in 

which SST changes depend on wind-induced upwelling and advection. Since our model has a 

rather shallow zonal mean thermocline (103m), we suggest that the zonal temperature gradient 

changes are the main contributor to the modulation of ENSO variability in our South Pacific 

sensitivity experiments.  

Our study shows that the SST perturbations in the subtropical South Pacific can 

modulate ENSO variability, the remote influence from the subtropical North Pacific being 

much weaker. The change in the background state of our model in response to an enhanced 

warming/cooling of subtropical South Pacific is El Niño/La Niña-like, and therefore, we can 

see this work also as a contribution to the study of changes in ENSO variability under the 

global warming scenario. Hence, we analyze the global warming experiment described in the 

subchapter 4.2 to see whether ENSO variability will change due to the greenhouse warming in 

a) 

b) 

SPac+2°°°°C 

SPac-2°°°°C 
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our model. Indeed, the trend in the Pacific sea surface temperature (Figure 5.10a) that 

decreases the zonal temperature contrast between the warm pool and the cold tongue areas is 

accompanied by a substantial reduction in ENSO variability (Figure 5.10b).  

 

   

Figure 5.10 (a) The linear trend of anomalous sea surface anomalies (in °C) in the global warming 

experiment. (b) Standard deviation of Niño3-SSTA (in °C) as a function of time in the global warming 

experiment (red curve) and the control integration (black curve). A low-pass filter in the form of a 

sliding window 10 years wide was used to compute the standard deviations. 

 

 

 

a) 

b) 
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5.5 Changes in the annual cycle and their effect on ENSO 

 

ENSO variability can be also influenced by the interaction with the equatorial Pacific 

annual cycle through the nonlinear frequency entrainment process (Liu, 2002; Timmermann et 

al., 2006). We will first check if there are any changes in the equatorial annual cycle in our 

SPac+2°C experiments. Then, we will investigate whether these annual cycle changes can 

help explaining the simulated changes in ENSO variability. 

One important element for the generation of equatorial annual cycle is the northern 

location of the annual mean ITCZ and the associated meridional temperature asymmetry 

around the equator. Figure 5.11 shows the annual cycle of the sea surface temperature, wind 

stress and thermocline depth in the control integration and anomalous annual cycle for the 

SPac+2°C experiment. In the control integration, the thermocline anomalies are quite small 

(Figure 5.11a) and suggest that the annual cycle of SST in the eastern Pacific does not 

primarily involve thermocline dynamics (Xie, 1994). In response to an enhanced subtropical 

South Pacific warming, an intensification of the annual cycle is simulated (Figure 5.11b).  The 

anomalous fall cooling around 135°W-115°W in the equatorial Pacific is a result of 

anomalous equatorial easterlies in August and September and will lead to a weak 

intensification of the annual cycle. The strong boreal summer warming around 125°W-100°W 

is also due to surface processes, specifically the weakening of equatorial easterly winds in late 

spring and early summer. 

Several studies have produced observational and modeling evidence that the strength 

of ENSO can be anti-correlated with the strength of the annual cycle in eastern equatorial 

Pacific (Gu and Philander, 1995; Guilyardi, 2006). Liu (2002) used a conceptual model to 

study the effect of an external periodic forcing on the amplitude of ENSO and found that 

nonlinear frequency entrainment enables the external forcing, such as the annual forcing, to 

suppress ENSO significantly. For a weak annual cycle, ENSO will maintain its 

eigenfrequency; while for a very strong annual cycle, ENSO’s frequency will be completely 

entrained into the forcing frequency and the interannual variability weakened. Our results are 

consistent with the above-mentioned theory: in response to an enhanced warming in the 

subtropical South Pacific, the annual cycle in the equatorial Pacific intensifies and therefore, 

leads to a weaker ENSO. The opposite is valid for the SPac-2°C experiment (not shown). 
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Figure 5.11 Hovmoller diagram of the seasonal cycle of Pacific equatorial sea surface temperature 

(shaded, in °C), wind stress (vectors, in N/m2), and thermocline depth (contours, in m) climatologies in 

(a) the control integration and (b) the SPac+2°C experiment. The contour interval is 1m. The reference 

vector in (b) is 0.01 N/m2. 

 
 

a) 

b) 
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6. Conclusions 

 
 

 
In this study, connections between the tropical and subtropical Pacific on decadal 

timescales are investigated using an unforced integration and specifically designed 

experiments performed with the state-of-art ocean-atmosphere-sea ice coupled model 

ECHAM5/MPI-OM. The main findings are that subtropical South Pacific climate variations 

play a dominant role in tropical Pacific decadal variability and in the decadal modulation of 

ENSO activity. Since the available observational data is insufficient for these timescales, the 

research in this study focused on model analysis. 

In Chapter 3, the origin of the tropical Pacific decadal climate variability was 

investigated by analyzing the output of an unforced integration of the coupled 

ECHAM5/MPI-OM ocean-atmosphere-sea ice model. The leading mode of decadal 

variability, isolated in the tropical cells index by means of SSA, has a period of about 17yr. 

The associated SST spatial structure is characterized by a horseshoe-like pattern with 

maximum explained variance in the central-western equatorial Pacific and off the equator, 

therefore resembling the signature of the observed decadal climate variability in the tropical 

Pacific. The mechanism for decadal variability in the model involves coupled ocean-

atmosphere processes over the western tropical South Pacific, in the region of the SPCZ. It is 

as follows: anomalously strong tropical cells generate a cold SSTA over the western-central 

equatorial Pacific, due to increased equatorial upwelling. Through the atmospheric 

teleconnection from the central equatorial Pacific, an anomalous anticyclonic circulation is 

induced in the tropical South Pacific. The anomalous winds will lead to a southward shift in 

the SPCZ and thus, to a SE-NW tilted anomalous wind stress curl that favors Ekman 

downwelling. Due to the anomalous Ekman downwelling, the local thermocline deepens and a 

warm subsurface temperature anomaly is generated in the western tropical South Pacific along 

10°S. The anomalous subsurface signal propagates westward and then equatorward. After 

reaching the equatorial Pacific, the positive subsurface temperature signal moves eastward 

along the equator, where via atmospheric response to SST changes weakens the tropical cells 

and complete the phase reversal. Lag-regression analysis between the ocean heat content and 

the decadal TC index suggests that the recharge-discharge mechanism proposed for ENSO 

(Jin, 1997) may also operate in the model at decadal timescales. It is interesting to note that 
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our coupled model results seem to reproduce the decadal variability characteristics described 

by the observational study of Luo and Yamagata (2001). However, the equatorward 

propagation of the South Pacific subsurface temperature signal in our model cannot be 

attributed to the mean flow advection or to the Rossby wave propagation as suggested by their 

study. Changes in ENSO characteristics associated with the decadal mode of the model were 

also investigated. Strong positive TCs are associated with periods of increased ENSO 

variability and vice versa, contributing to the decadal modulation of ENSO activity.  

The impact of subtropical Pacific density perturbations (salinity and temperature) on 

the tropical Pacific mean climate was studied in Chapter 4 using idealized experiments 

performed with the coupled model ECHAM5/MPI-OM and with the stand-alone AGCM 

ECHAM5. The largest impact on tropical mean climate and variability was simulated in the 

SSTA experiments. Subtropical South Pacific thermal forcing had more impact on equatorial 

ocean sea surface temperature than the subtropical North Pacific. In response to a 2°C 

warming in the subtropical South Pacific (SPac+2°C), the equatorial Pacific SST increases by  

+0.58°C, being about 65% larger than the change in the North Pacific experiment 

(NPac+2°C). While the same fast “atmospheric bridge” seems to act in both South and North 

Pacific experiments, the amplitude and the spatial extension of the response differs: the 

thermal forcing of subtropical South Pacific has a maximum impact on eastern tropical Pacific 

climate, while the impact of subtropical North Pacific SST variations is mostly confined to the 

western tropical Pacific. A possible explanation for the weak impact of the subtropical North 

Pacific warming is the “thermodynamic thermostat” that may control the warm pool region 

and thus, prevent the amplification of SSTA through the local coupled ocean-atmosphere 

feedbacks in the western tropical Pacific. 

The subtropical South and North Pacific SSTA have a completely different impact on 

the equatorial thermocline structure. The enhanced warming in the subtropical South Pacific 

forces a fast dynamical adjustment of the equatorial Pacific thermocline, through changes in 

the trade winds. As a result, the surface layer warming is accompanied by an anomalous 

cooling along the mean thermocline. The positive trend of the equatorial ocean heat content in 

the SPac+2°C experiment suggests that the “ocean bridge” plays also a role, albeit secondary, 

in the South Pacific subtropical-tropical connections at multi-decadal timescales. This oceanic 

connection is accomplished through both the delayed adjustment of the meridional 

overturning circulation in the upper Pacific, and the equatorward subduction along the mean 

pycnocline. On the contrary, the equatorial thermocline response in the NPac+2°C experiment 

is slow and exhibits an anomalous subsurface warming that penetrates till about 200m depth 
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and decreases upward towards the surface. We can conclude that the subtropics affect 

equatorial SST mainly through the „atmospheric bridge“ for the SPac experiments and 

through the„oceanic bridge“ for the NPac experiments. This explains the different timescale 

of the response in the two experiments. 

In order to distinguish between the internal variability from externally forced climate 

variability, it is very important to understand the adjustment of climate system not only to 

global warming forcing, but also to global cooling forcing. This is why we also performed 

experiments in which the subtropics of both hemispheres are undergoing a 2°C cooling. 

Although the tropical Pacific surface response to an enhanced warming/cooling in the 

subtropics is to first order linear, we found that the negative thermal forcing has a stronger 

impact on the equatorial thermocline.  

Similar sensitivity experiments conducted with the AGCM ECHAM5 shown that the 

role of air-sea interactions and ocean dynamics is crucial for the generation of simulated 

tropical climate response to the subtropical surface warming/cooling. Here, a surprising result 

is the much weaker atmospheric response to the thermal forcing in the subtropical North 

Pacific, compared to the one in the subtropical South Pacific. 

In Chapter 5 we tried to answer the question: How do ENSO characteristics respond to 

an enhanced Pacific subtropical warming/cooling? We found that the statistics of ENSO 

exhibit significant changes in amplitude and frequency in response to a warming/cooling in 

the subtropical South Pacific: a 2°C subtropical South Pacific SST warming can reduce the 

mean ENSO standard deviation by 28%, while a 2°C subtropical South Pacific SST cooling 

can increase the mean ENSO standard deviation by 21%. Since our model has a rather 

shallow zonal mean thermocline, we suggest that the simulated changes in the equatorial 

zonal SST contrast between the eastern equatorial Pacific and the warm pool region are the 

main contributor to the modulation of ENSO variability in our South Pacific sensitivity 

experiments. ENSO variability can also be influenced by the interaction with the equatorial 

Pacific annual cycle through the nonlinear frequency entrainment process. Therefore, the 

simulated intensification/weakening of the annual cycle in response to an enhanced 

warming/cooling in subtropical South Pacific may also lead to a weaker/stronger ENSO. The 

subtropical North Pacific thermal forcing did not changed the statistical properties of ENSO. 
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7. Outlook 

 
 

Results from earlier chapters underline the importance of subtropical-tropical South 

Pacific Ocean in the generation of low frequency climate variations in the tropical Pacific and 

in ENSO decadal modulation. However, further research is needed to fully determine the 

physical processes responsible for Tropical Pacific Decadal Variability (TPDV) and its 

sensitivity to external climate forcings such as greenhouse gases and natural/anthropogenic 

aerosols.  

Here we focused on decadal climate variability that is internally generated in the 

Pacific Ocean and we did not take into consideration the possible interaction with decadal 

climate variability originating in other ocean basins. It will be interesting to study the possible 

connection between TPDV and Atlantic Multidecadal Oscillation (AMO; Kerr, 2000), which 

is thought to be related to the multi-decadal fluctuations of Atlantic Meridional Overturning 

Circulation (Delworth and Mann, 2000). On the one hand, TPDV can produce changes in the 

sea surface temperature and/or sea surface salinity of the tropical Atlantic, which may 

influence the North Atlantic climate via the atmospheric teleconnections or through changes 

in the ocean circulation. On the other hand, multi-decadal climate variations in the North 

Atlantic may also lead to low frequency climate variability in the tropical Pacific. For 

example, the study of Dong et al. (2006) presented evidence that variations in North Atlantic 

sea surface temperature associated with AMO can modulate ENSO activity at multi-decadal 

timescale. 

The relative coarser horizontal resolution of our coupled model may introduce some 

limitations to our conclusions. Therefore, using a higher resolution AGCM to understand the 

different atmospheric response to SST variations in the subtropical North and South Pacific 

may be a further extension of the present study. A higher resolution ocean model may also 

help to distinguish between the contribution of western boundary and interior pycnocline flow 

to the ocean connection between subtropical and tropical Pacific. 
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