
M a x - P l a n c k - I n s t i t u t  f ü r  M e t e o r o l o g i e
Max Planck Institute for Meteorology

Xiuhua Zhu

Berichte zur Erdsystemforschung

Reports on Earth System Science

    39
2007

Low Frequency Variability of the
Meridional Overturning Circulation



Anschrift / Address

Max-Planck-Institut für Meteorologie
Bundesstrasse 53
20146 Hamburg
Deutschland

Tel.: +49-(0)40-4 11 73-0
Fax: +49-(0)40-4 11 73-298
Web: www.mpimet.mpg.de

Die Berichte zur Erdsytemforschung werden 
vom Max-Planck-Institut für Meteorologie in 
Hamburg in unregelmäßiger Abfolge heraus-
gegeben. 

Sie enthalten wissenschaftliche und
technische Beiträge,  inklusive Dissertationen.

Die Beiträge geben nicht notwendigerweise 
die Auffassung des Instituts wieder.

Die "Berichte zur Erdsystemforschung" führen 
die vorherigen Reihen "Reports" und 
"Examensarbeiten" weiter.

The Reports on Earth System Science are published
by the Max Planck Institute for Meteorology in 
Hamburg. They appear in irregular intervals.

They contain scientific and technical contributions,
including Ph. D. theses.

The Reports do not necessarily reflect the 
opinion of the Institute. 

The  "Reports on Earth System Science" continue
the former "Reports" and "Examensarbeiten"
of the Max Planck Institute. 

Layout: 

Bettina Diallo, PR & Grafik

Titelfotos:
vorne:
Christian Klepp - Jochem Marotzke - Christian Klepp
hinten:
Clotilde Dubois - Christian Klepp - Katsumasa Tanaka

 

NoticeHinweis



Xiuhua Zhu
aus China

Reports on Earth System Science

Berichte zur Erdsystemforschung 39
2007

39
2007

ISSN 1614-1199

Low Frequency Variability of the
Meridional Overturning Circulation

Dissertation zur Erlangung des Doktorgrades der Naturwissenschaften
im Departement Geowissenschaften der Universität Hamburg

vorgelegt von

Hamburg 2007



Xiuhua Zhu
Max-Planck-Institut für Meteorologie
Bundesstrasse 53
20146 Hamburg
Germany

ISSN 1614-1199

Als Dissertation angenommen 
vom Departement Geowissenschaften der Universität Hamburg

auf Grund der Gutachten von 
Prof. Dr. Jochem Marotzke
und 
Dr. Johann Jungclaus

Hamburg, den 6. Februar 2007
Prof. Dr. Kay-Christian Emeis
Leiter des Departements für Geowissenschaften



Xiuhua Zhu
Hamburg 2007

Low Frequency Variability of the
Meridional Overturning Circulation





Contents

- 1 - 

Contents

Contents...................................................................................................................1
Abstract...................................................................................................................3
1. Introduction.......................................................................................................5

1.1 Motivation……………………………………………………………….7 
1.2 Objective and outline of the thesis……………………………………..10 

2. Model description……………………………………………………………13 
3. Variability regimes of the Meridional Overturning Circulation…………….19 

§ 3.1 Variability regimes in high resolution models………………………….21 
3.1.1 Introduction……………………………………………………...21 
3.1.2 Simulated mean state and methods……………………………...23 
3.1.3 Variability regimes and scaling………………………………….25 
3.1.4 Summary and discussions……………………………………….31 

§ 3.2 Variability regimes in a coarse resolution model……………………....36 
3.2.1 Simulated mean state and variability regimes ………………….36 
3.2.2 Summary and discussion……………………………………......39 

4. Coexistence of the inter- and multi-decadal variability..................................43 
4.1 Introduction…………………………………………………………......45
4.2 Experimental design………………………………………………….....48 
4.3 Synopsis of the inter- and multi-decadal variability……………………50 
4.4 Are the inter- and multi-decadal variability coupled modes? ……….....55 
4.5 Role of surface wind stress……………………………………………..59 
4.6 Summary and discussions…………………………………..…………..61 

5. Interdecadal Variability as an ocean internal mode………………………....63 
5.1 Introduction………………………………………………………….....65
5.2 Interdecadal variability in CLIM…………………………………….....67 

5.2.1 Dominant role of temperature…………………………………….67
5.2.2 Associated ocean conditions……………………………………...69
5.2.3 Geostrophic balance……………………………………………..72
5.2.4 Interaction between water masses…………………………………78
5.2.5 Ocean dynamics along the subpolar front………………………….83
5.2.6 Role of the GIN Sea……………………………………………..84
5.2.7 Interdecadal variability in the South Atlantic……………………….87

5.3 Interdecadal variability in RAND……………………………………...88 
5.4 Summary and discussions……………………………………………...91 

6. Multidecadal variability as an air-sea coupled mode…………......................95 
6.1 Introduction…………………………………………………………......97
6.2 Role of salinity and temperature……………………………………......99 
6.3 Mechanism of the Multidecadal Variability…………………………...102 

6.3.1 Geostrophic balance……………………………………………...102



Contents

- 2 - 

6.3.2 Role of the atmosphere…………………………..…………….....108
6.4 Multidecadal variability in the North Pacific………………………….120 

6.4.1 Heat budget analysis……………………………………………..120
6.4.2 Atmospheric role in the North Pacific……………………………...122
6.4.3 Atmospheric bridge……………………………………………...127

6.5 Summary and discussions……………………………………………..129 
7. Summary and synthesis…………………………………………………….133 
Bibliography 141 
Acknowledgement 157 



Abstract 

- 3 - 

Abstract

The purpose of this thesis is to investigate the variability of the Meridional 

Overturning Circulation (MOC) using state-of-the-art GCMs, with a special 

interest on interdecadal to multidecadal time scales. We start from the general 

spectral behavior of the simulated MOC variability which is followed by 

detailed discussions on the low frequency variability of the MOC. 

Though most of the current studies focus on specific periodicities of the MOC, 

no consensus has been reached on its general spectral behavior. Results from 

two coupled climate models are analyzed. A general consistency in the MOC 

spectrum exists between two coupled models, which, however, differ from the 

type often assumed with the MOC in previous studies. A comparison between 

two simulations of the same model with different resolution reveals substantial 

deviation on the MOC low frequency variability. These results suggest that 

caution is required concerning the MOC behavior at low frequencies which 

certainly should be considered to test model performance.  

Analyses of a suite of sensitivity experiments suggest the coexistence of the 

inter- and multi-decadal variability (IDV and MDV), which are associated with 

an ocean self-sustained mode and an air-sea coupled mode respectively. This 

provides a new interpretation to the wide-spread time scales associated with the 

low frequency variability of the MOC. 

The IDV is investigated using the ocean-only model driven by climatological 

surface fluxes. The important role of ocean dynamics in the North Atlantic 

subpolar gyre is highlighted. The IDV of the MOC is characterized as a 

geostrophic process, thus tightly associated with the horizontal density 

gradients. Our results provide a strong support to those derived from less 

complex models in previous studies. 
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The air-sea coupling is shown of great importance for the MDV of the MOC. 

While the MDV bears similarity to the mechanism associated with the IDV, our 

results show that presence of the air-sea coupling is critical to the existence of a 

significant MDV mode. This air-sea coupling involves a fast response of the 

ocean gyre to the anomalous wind stress, which enhances the density anomalies 

in the deep convection sites in the Labrador Sea and hence the associated MOC 

anomalies. The MOC-related variability in the North Atlantic also affects the 

North Pacific via atmosphere teleconnection through which the MOC variation 

at low frequencies impacts the North Pacific and potentially interacts with 

ENSO.



Chapter 1

Introduction 
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Introduction 

1.1 Motivation 

Observational studies show that the North Atlantic sea surface temperature 

(SST) dating back to the 19th century exhibits substantial decadal to 

multidecadal variability (Fig. 1.1, from Knight et al., 2005). It is often referred 

to as ‘Atlantic Multidecadal Oscillation’ (AMO) (Kerr, 2000; Enfield et al., 

2001; Knight et al., 2005). It has been linked with the occurrence of Sahel 

drought, variability in Northeast Brazilian rainfall, North American and 

European summer climate and the frequency of Atlantic hurricanes (Knight et 

al., 2006), thus it is a large-scale mode. It is suggested that the AMO as a 

natural variability of the climate system mixes with the anthropogenic global 

warming signals (Andronova and Schlesinger, 2000), both of which with 

comparable amplitude (Knight et al., 2005). Therefore, to reduce the 

uncertainty in estimating the global warming signals, it is important and 

necessary to better understand the natural climate variability on the decadal to 

multidecadal time scales. 

Fig. 1.1: AMO index derived from detrended area-weighted mean North Atlantic SST 

anomalies by using a Chebyshev filter with a half-power period of 13.3 years. SST data 

are from the HadISST data set (from Knight et al. 2005, Fig. 1a). 
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The forcing of the natural climate variability includes the interactions within 

and between the Earth’s subsystems, such as the interaction between the 

atmosphere and oceans. The other source of forcing includes the variation of 

solar variability, volcanic eruptions, and orbital changes (Milankovitch cycles) 

which are often termed as ‘external’ forcing. The connection between the 

‘external’ forcing and the climate variability are often hard to establish (e. g., 

Rind et al. 2002). In this thesis, we consider the climate variability on decadal 

to multidecadal time scales in a system comprising the ocean, the atmosphere 

and sea ice components which are dynamically interacting with each other. 

Numerical models highlight a tight link between the North Atlantic SST 

variability and the meridional overturning circulation (MOC) composed of a 

wind-driven and a thermohaline-driven part (Delworth et al. 1993; Vellinga and 

Wu, 2004; Latif et al. 2004). The associated time scales of the MOC variability 

vary considerably among models, from 25 years in the coupled HadCM3 model 

(Dong and Sutton, 2005), 35 years in the coupled ECHAM-3/LSG model 

(Timmermann et al., 1998), to the 70-100 years oscillation in the Geophysical 

Fluid Dynamics Laboratory (GFDL) model (Delworth and Greatbatch, 2000). 

Three hypotheses have been proposed to explain the underlying mechanism of 

the MOC variability:  

1) A self-sustained mode of ocean dynamics (e. g., Weaver et al. 1991; Te Raa 

and Dijkstra, 2002, 2003; Te Raa et al., 2004). Baroclinic wave dynamics 

(Colin de Verdiere and Huck 1999; Eden and Willebrand 2001) and advective 

processes (Marotzke and Klinger 2000; Goodman 2001: Eden and Greatbatch 

2003) have been suggested to be associated with the ocean adjustment 

processes.  

2) An oceanic response to stochastic forcing (e.g., Delworth and Greatbatch 

2000). Delworth and Greatbatch (2000) reveal a 70-100 years oscillation in the 

GFDL model driven by stochastic atmospheric forcing. The dynamic 
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atmosphere-ocean coupling is not essential but acts to modify the amplitude. 

Similar conclusions have also been found in other studies (e. g., Griffies and 

Tzipermann 1995; Capotondi and Holland 1997).  

3) An atmosphere-ocean coupled mode. The interaction between the North 

Atlantic Oscillation (NAO) and the ocean have been intensively discussed 

(Bjerknes 1964; Deser and Blackmon 1993; Kushnir 1994; Timmermann et al. 

1998; Eden and Jung 2001; Eden and Willebrand 2001). The role of the ocean 

gyre and the thermohaline circulation (THC) in coupling with the atmosphere is 

often discussed separately (e.g., Wu and Liu 2005; see review of Latif 1998), 

though these two are often strongly coupled (Hátún et al., 2005; Dong and 

Sutton, 2005; MacMynowski and Tziperman, 2006). It is also suggested that 

other ocean basins may actively interact with the variability in the North 

Atlantic, for example, the interaction between the tropics and the North Atlantic 

(Latif et al. 2000; Hoerling et al. 2001) and the coupling between the North 

Pacific and the North Atlantic via atmospheric teleconnection (Timmermann et 

al. 1998; Wu and Liu 2005) and/or ocean wave adjustment (Timmermann et al. 

2005).

Therefore, general consensus has not been achieved on the mechanism of the 

MOC variability on decadal to multidecadal time scales; details about how the 

ocean dynamics work and how the atmosphere and the ocean are coupled on the 

time scale concerned are not well understood. Besides, a probably more 

fundamental question is whether the model simulates the ‘correct’ general 

behavior of the MOC in terms of its spectrum. The MOC is generally assumed 

to follow a red-noise spectrum (Lorentzian), ]/[1 22
0 ff , with a damping time 

scale 0/1 f  (e. g., Frankignoul et al. 1997; Von Storch et al. 2001), which was 

suggested by Hasselmann (1976) as a model for a damped, linear ocean forced 

by stochastic atmosphere. The spectral energy increases towards longer time 

scales and is limited by negative feedbacks in the climate system, thus leveled 
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off as white noise. However, this red-noise spectrum cannot explain the 

statistically significant spectral peaks superimposed on the red background. 

Further, this red-noise spectrum also cannot explain the long term memory 

(LTM) in the Greenland Ice Core O18  time series during the Holocene, 

featured as increasing spectrum energy with decreasing frequency up to 

millennial time scales (Blender et al. 2006). This LTM in the ice core, however, 

is well explained in the coupled CSIRO atmosphere-ocean model by the LTM 

in the MOC near Greenland and the Arctic Ocean (Blender et al. 2006). It is 

important to note that, though the LTM itself requires further evaluation, the 

LTM behavior has been found in various fields, such as atmospheric humidity 

(Pelletier and Turcotte 1997), river runoffs (Kantelhardt et al. 2006), surface 

temperature (Huybers and Curry, 2006) and sea level (Barbosa et al, 2006). The 

following interesting question is whether the observed periodicities are an 

inherent property of the nonstationary stochastic processes. This aspect should 

certainly be considered to test the model performance. 

Therefore, we are still at a relatively early stage in understanding the North 

Atlantic decadal-to-multidecadal variability. The major problem is the lack of 

an adequate observational database, which inhibits us from verifying the 

mechanisms proposed.  

1.2. Objective and outline of the thesis 

The main objective of this thesis is to investigate the variability of the MOC on 

interdecadal to multidecadal time scales using state-of-the-art coupled GCMs 

which don’t employ flux adjustment. The central questions addressed in this 

thesis are: 

1) What are the spectral characteristics of the simulated MOC variability? Do 

they depend on the model set-ups? 
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2) What are the dominant time scales of the MOC variability? 

3) What are the physical mechanisms behind the MOC variability? 

To answer the first question, we analyzed the output from ECHAM5/MPI-OM 

and GFDL CM 2.1 in chapter 3. While general consistency is present between 

two different models, considerable differences also exist. Results from two 

simulations of ECHAM5/MPIOM with different resolution differ from each 

other mainly in the low frequency part. Results from § 3.1 of this chapter have 

been published in Geophysical Research Letters1.

The second question is discussed in chapter 4. The fully coupled 

ECHAM5/MPIOM is analyzed together with a suite of ocean-only sensitivity 

experiments. There are two oscillations coexisting: an interdecadal (25-40 years) 

and multidecadal (45-80 years) variability (IDV and MDV). They can be traced 

back to different physical mechanisms as explained in chapters 5 and 6. This 

coexistence provides a new explanation for the wide-spread time scale of the 

simulated MOC variability in different numeric models. 

The discussion for question 3 is presented in chapters 5 and 6. In chapter 5, the 

IDV is presented as an ocean internal mode sustained by the interaction 

between the deep water formed in the Labrador Sea and the subpolar gyre. 

Results of chapter 5 are prepared for a paper ready to be submitted2. Chapter 6 

presents the MDV as an air-sea coupled mode. This chapter is in preparation for 

a publication3.

1 Zhu, X. H., K. Fraedrich, and R. Blender (2006), Variability regimes of simulated 

Atlantic MOC, Geophys. Res. Lett., 33, L21603, doi: 10.1029/2006GL027291. 

2 Zhu, X. H., J. Jungclaus (2006), Low frequency variability of the MOC Part I: 

Interdecadal variability as an ocean internal mode, to be submitted.

3 Zhu, X. H., J. Jungclaus (2006), Low frequency variability of the MOC Part II: 

Multidecadal variability as an air-sea coupled mode, in preparation.
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Model description 

The aim of this chapter is to introduce the numerical models used in this study. 

The main tool is the fully coupled atmosphere-ocean general circulation model 

 ECHAM5/MPIOM with two simulations with different resolution. Both 

simulations are analyzed with respect to the MOC variability regimes (chapter 

3); the coarse-resolution simulation is the reference run with which results from 

the ocean-only experiments are compared (MPIOM only, chapter 4-5). It is also 

the base run for studying the air-sea coupled MOC variability (chapter 6). 

Output from the Geophysical Fluid Dynamics Laboratory (GFDL) CM 2.1 

simulation is also analyzed for studying the MOC variability regimes (chapter 

3), in comparison to the results of the high-resolution simulation of 

ECHAM5/MPIOM. The data set from GFDL model is freely available at 

http://nomads.gfdl.noaa.gov/CM2.X/CM2.1. All simulations in this thesis do not 

employ flux adjustment. My work involves performing ocean-only experiments 

using MPIOM, thus the following introduction of the ECHAM5/MPIOM 

focuses mainly on the ocean component.   

ECHAM5/MPIOM: 

The high-resolution coupled ECHAM5/MPIOM model, like the GFDL model 

introduced below, is prepared for the fourth Assessment Report (AR4) of the 

Intergovernmental Panel on Climate Change (IPCC). It consists of the 

atmospheric component ECHAM5, which has a horizontal resolution of 1.875

1.875  (T63) and 31 vertical levels. For more descriptions of ECHAM5, 

readers are referred to Roeckner et al. (2003).  

The ocean/sea ice component of the model, MPIOM (Marsland et al., 2003), 

has a 1.5 1.5  horizontal resolution on a curvilinear grid with 40 vertical 
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levels. The primitive equations for a hydrostatic Boussinesq fluid are 

formulated with a free surface. The vertical discretization is on z-levels and the 

bottom topography is resolved by way of partial grid cells (Wolff et al., 1997). 

Using the formulation of Arakawa and Lamb (1977) the spatial arrangement of 

scalar and vector variables is formulated on a C-grid. The along-isopycnal 

diffusion is based on the work of Redi (1982) and is implemented following 

Griffies (1998). The effect of horizontal tracer mixing by advection with the 

unresolved eddies is parameterized following Gent et al. (1995). For the vertical 

eddy viscosity and diffusion the Richardson-number dependent scheme of 

Pacanowski and Philander (1981, PP hereafter) is applied. Since the PP scheme 

in its classical form underestimates the turbulent mixing close to the surface, an 

additional wind mixing parameterization is included. The wind stirring near the 

surface is proportional to the cube of the 10 m wind speed and decays 

exponentially with depth. 

In the presence of static instability, convective overturning is parameterized by 

greatly enhanced vertical diffusion. A slope convection scheme has been 

included that allows for a better representation of the flow of statically unstable 

dense water over sills, such as in Denmark Strait or in the Strait of Gibraltar 

(see Marsland et al. (2003) for details) and off shelves, such as on the Arctic 

and Antarctic shelves.  

The simulation analyzed in this thesis uses the same curvilinear grid setup as in 

Jungclaus et al. (2006, their Fig. 1). To avoid the singularity at the North Pole, 

the model’s North Pole is shifted to Greenland and the South Pole is moved 

toward the center of the Antarctic continent. One advantage of the placement of 

the grid poles is a relatively high resolution in the deep-water formation regions 

of the Greenland Sea, Iceland Sea and Norwegian Sea (GIN), the Labrador Sea, 

and the Weddell Sea. A dynamic–thermodynamic Hibler-type (Hibler 1979) sea 

ice model is embedded in the ocean model code (see Marsland et al. 2003 for 



Chapter 2 Model description 

- 17 - 

details). The atmosphere and the sea ice–ocean models are coupled by means of 

the Ocean Atmosphere Sea Ice Soil (OASIS) coupler (Valcke et al., 2003). The 

ocean passes the sea surface temperature (SST), sea ice concentration, sea ice 

thickness, snow depth, and the ocean surface velocities to the atmosphere. River 

runoff and glacier calving are treated interactively in the atmosphere model and 

the respective fresh water fluxes are passed to the ocean as part of the 

atmospheric freshwater flux field. Various aspects of internal variability have 

been discussed by Jungclaus et al. (2006).  

In the coarse-resolution simulation of ECHAM5/MPIOM, the atmosphere 

model has a horizontal resolution of 3.875 3.875 (T31) and 19 vertical 

levels. The ocean component has 3 3 average horizontal grid spacing but 

keeps the same vertical resolution as in the high-resolution simulation, with 40 

unevenly spaced vertical levels. The poles are shifted in the same manner as in 

the high resolution ECHAM5/MPIOM. 

The parameterization that accounts for the effects of ocean currents on surface 

wind stress is implemented in the high resolution model but not applied in this 

coarse resolution simulation. Without this parameterization an unrealistically 

strong westward propagation of SST anomalies in the tropical Pacific is 

simulated. The reasons for the changes in variability are linked to changes in 

both the mean state and to a reduction in atmospheric sensitivity to SST 

changes and oceanic sensitivity to wind anomalies (Jungclaus et al. 2006). 

Another difference is that both simulations employ different cloud schemes.  

GFDL:

The coupled GFDL model is run in the version CM2.1 (Delworth et al., 2006). 

The atmosphere horizontal resolution is 2 2 and 24 vertical levels. The 

ocean model formulation and physical parameterizations are described in detail 

in Gnanadesikan et al. (2006) and Griffies et al. (2005) and are based on the 
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Modular Ocean Model code (MOM4; Griffies et al. 2003). The ocean resolution 

is 1 1 , with a meridional resolution equatorward of 30 becoming 

progressively finer, such that the meridional resolution is 1/3 at the equator. 

There are 50 vertical levels in the ocean, with 22 evenly spaced levels within 

the top 220 m. The ocean component has poles over North America and Eurasia 

to avoid polar filtering (Murray, 1996). Atmosphere and ocean are coupled 

through the Flexible Modeling System coupler for calculating and passing 

fluxes between its atmosphere, land, sea ice, and ocean components. For a 

detail description, readers are referred to Delworth et al. (2006), Gnanadesikan 

et al. (2006). 
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§ 3.1 Variability regimes of the MOC in 

high resolution models1

3.1.1. Introduction 

Climate variability is present on many time scales, ranging from seasons to 

millennia (Huybers and Curry, 2006). In the northern North Atlantic available 

instrumental records of sea surface temperature (SST) show low frequency 

variability (LFV, i.e. increasing power with decreasing frequency) in terms of 

power-law scaling up to decades (Fraedrich and Blender, 2003) revealing f/1

spectra (flicker noise) in particular regions. The f/1  spectra of SST can be 

explained by an ocean energy balance model with vertical diffusion forced by 

stochastic atmospheric surface and advective ocean heat fluxes (Fraedrich et al., 

2004). These advective processes in the North Atlantic, which are related to the 

dynamics of the subpolar gyre, have also been identified as a source of 

oscillations (Eden et al., 2002; Eden and Greatbatch, 2003) and LFV (Junge 

and Fraedrich, 2006). 

Defining the MOC as a circulation of mass, heat and salt, its variability is 

subject to processes which lead to changes of the mass, heat and salt transport, 

such as surface buoyancy forcing, wind forcing and internal ocean dynamics. 

For high frequency (intra-annual and annual) time scales, the spectrum is white. 

On these time scales, wind forcing dominates the MOC fluctuations (see e. g. 

Jayne and Marotzke, 2001), which is related to linear, barotropic dynamics 

1 Zhu, X., K. Fraedrich, and R. Blender, 2006: Variability regimes of simulated Atlantic 

MOC, Geophys. Res. Lett., 33, L21603, doi: 10.1029/2006GL027291.
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(Willebrand et al., 1980). In the transitional frequency regime, the scaling 

behavior is associated with the ocean's self-adjustment of the density field. The 

east-west density gradient can be induced by both wind stress and buoyancy 

forcing (Sturges and Hong, 1995; Delworth and Greatbatch, 2000). Frankignoul 

et al. (1997) found that this ‘reddening’ process is related to the westward 

propagation of the baroclinic Rossby waves and determined by the wave speed 

and basin width. They also identified the characteristic slop of the log-log 

spectrum is -2 )/1( 2f . For low frequencies, the ocean responds to the low 

frequency part of the stochastic atmosphere forcing and appears in the spectrum 

as white-noise plateau (Hasselmann 1976). In addition, oscillations have been 

identified in the North Atlantic at periods from decadal to centennial time 

scales (Mikolajewicz and Maier-Reimer 1990; Delworth and Greatbatch 2000, 

Eden and Jung 2001, Eden and Willebrand 2001; Eden and Greatbatch 2003). 

The first generation of dynamic ocean models reproduced LFV, which, however, 

was not unique for all models. This leads to the conjecture that LFV is possibly 

due to model deficiencies since the oceanic circulation was assumed to be 

white on long time scales (von Storch et al., 2000). Relevant model deficiencies 

are too coarse resolutions and the parameterization of the vertical diffusion. 

However, it was shown that a 10ky simulation with a first generation AOGCM 

exhibits spectral scaling up to millennia in the North Atlantic in agreement with 

the reconstructed temperature variability in Greenland ice cores during the 

Holocene (Blender et al., 2006).  

MOC power spectra are generally assumed to follow a red-noise spectrum 

(Lorentzian), )/(1 2
0

2 ff , with a damping time scale 0/1 f , which was 

suggested by Hasselmann (1976) as a model for a damped, linear ocean forced 

by a white stochastic atmosphere. This cannot explain either long term memory 

or white high frequency response. Thus the aim of this chapter is to revisit the 

spectral behavior of the MOC variability in the Atlantic on monthly to decadal 
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time scales. Emphasis lies on regime behavior, scaling properties and possible 

long term memory. Two 500 year control-runs with different state-of-the-art 

coupled AOGCMs (GFDL and ECHAM5/MPIOM) are analyzed to investigate 

the main characteristics of the monthly MOC fluctuations. The simulated mean 

states and analysis tools are described in Section 3.1.2. Results for particular 

levels and latitudes are compared (Section 3.1.3). Section 3.1.4 follows with a 

discussion and conclusions. 

3.1.2. Simulated mean state and methods 

Although the two integrations differ from each other in various aspects, the 

gross features of the Atlantic overturning are quite similar, i.e. northward 

inflow in the upper 1000-1500m, the subsequent deep-water formation in the 

North Atlantic and southward spreading in the deep Atlantic, and Antarctic 

inflow from still deeper layers. The maximum meridional streamfunction is 

located around 40N, between 1000 and 1500m (Fig. 3.1). The models tend to 

produce two regions of large standard deviation, one in the North Atlantic (45

N, 1500 to 2000m depth), and a second one in the South Atlantic (20 S, 1000m 

to 4500m), which is more intense in MPIOM. 

Fig. 3.1: Mean (upper) and standard deviation (lower) of the zonally averaged stream 

function (Sv) in the Atlantic for the GFDL model (left) and ECHAM5/MPIOM (right). 
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All time series are analyzed using power spectrum package of MATLAB, with 

5 overlapping windows and Detrended Fluctuation Analysis (DFA). Power 

spectrum is often used to display spectrum of climate variables. However, it has 

a disadvantage that the interpretation of the ‘low frequency part’ (the longest 

frequency the time series could contain) depends on whether there are trends 

present in the variables. This shortcoming is well resolved in Detrended 

Fluctuation Analysis as explained in the following.  

The DFA determines time scale dependent fluctuations in stationary anomaly 

sequences (Peng et al., 1994). This method yields the fluctuation function F(t)

which measures fluctuations of the time series on time scales t. First, the 

anomaly time series, calculated by subtracting the monthly annual cycle, are 

integrated to the so-called profile. To determine the fluctuation function F(t),

the profile time series is partitioned in segments of duration t, and linear fits are 

calculated separately for each segment. The fluctuations F(t) are the means of 

the variances of the profile with respect to the fits. If the original time series 

shows trends or higher order polynomial growth types, then, instead of linear 

fits, polynomials of order N are fitted and subtracted in the segments; the 

method is then denoted as DFA-N. Here we apply DFA-2 to eliminate linear 

trends. Thus the DFA is ideally suited to detect low frequency spectral 

power-law scaling in stationary time series when slow changes are present, for 

example, as a result of incomplete spin-up in the model (Fraedrich and Blender, 

2003; Blender and Fraedrich, 2003). Here we apply DFA-2 to eliminate linear 

trends, as a support to the results of the spectral analysis. 

For power-laws in the power-spectrum, S(f) ~ f , the DFA fluctuation function 

scales as F(t) ~ t  with  = 2  - 1. The autocorrelation function of the time 

series decays as C(t) ~ t -  with  =1  / 2. A time series has long term 

memory, if the integral of the autocorrelation function C(t) diverges. In this 

case  < 1 and the related exponents are  > 1/2 and  > 0. Stationarity of the 

time series is guaranteed for 0 <  < 1. A stochastic process is denoted as white 
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for  = 0, while  = 1 is denoted as flicker or 1/f noise (acceptable for  from 

0.7 to 1.3). 

3.1.3. Variability regimes and scaling 

The MOC is analyzed at two levels, near 1200m and 4000m, and at the 

latitudes 20 S, EQ, 20 N, 40 N, and 60 N, in both model runs. The upper 

level at 1200m depth sits inside the MOC cell associated with the spreading of 

North Atlantic Deep Water whereas 4000m depth sits inside the cell associated 

with the spreading of Antarctic Bottom Water. Note that in ECHAM5/MPIOM 

(GFDL) there are 3 (4) model levels below 4000m.  

In order to illustrate the main properties of the time series and to compare the 

power spectrum with the DFA fluctuation function, the MOC at 40N and 

1200m depth from the ECHAM5/MPIOM model is chosen (Fig. 3.2). The time 

series (a) shows that the MOC has become stationary; the remaining parts of 

this figure and the analyses are based on anomalies (annual cycle subtracted). 

Stationarity is checked for all time series (including lower levels) and the low 

frequency power spectra show no differences to the trend-eliminating DFA-2.

The histogram (b) indicates that the MOC can be considered as Gaussian. The 

DFA fluctuation function (c) displays three regimes, identified with  0.5 for 

both short and long time scales, and with  1 in an intermediate range. The 

exponents in the power-spectrum (d) are related by  = 2  - 1 and hint to  = 0 

and  = 1…2 in the corresponding time scale ranges. The intermediate range 

spectrum can either be interpreted as a Lorentzian (red-noise, with 2f ), or as a 

reminiscent of 1f  noise.  
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In the upper ocean (near 1200m depth), GFDL and ECHAM5/MPIOM give 

consistent results on MOC scaling regimes (Fig.3.3-4). In the North Atlantic (at 

40 N, 60 N), three frequency regimes appear: (i) for the highest frequencies 

(months to ~ 3 years), white noise dominates in almost all upper level time 

series. (ii) In the transition range (3 to 30 years) power-law scaling takes place, 

with  1 (  1) in both models. An exception is at 40N in GFDL, with 

1.5 (  2). (iii) At periods of about 30 years an oscillation is superimposed. (iv) 

For low frequencies (beyond 30 years) white background fluctuations occur. At 

60N in GFDL, the spectrum shows a weak long term memory. In the tropical 

and South Atlantic between 20 S and 20ºN, both models reveal a white noise 

spectrum (consistent with a DFA-2 scaling  0.5), besides a peak with a 

period of 2 to 3 years. The white spectrum is even more pronounced in the 

equatorial region. However, GFDL reveals long term memory at 20ºN 

Fig. 3.2: MOC at 40 N, 1200m for the ECHAM5/MPIOM model: (a) time series, (b) 

anomaly frequency distribution, (c) fluctuation function by DFA-2, (d) power spectrum (5 

overlapping windows). Dashed lines in (c, d) denote power-laws for exponents and as

indicated. 
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suggested by  1 (Fig. 3.3-4). 

Fig. 3.3: Power spectra of the upper MOC (near 1200m) in the GFDL (left) and 

ECHAM5/MPIOM model (right).  
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In the deep ocean (near 4000m depth) the spectral behavior is less clear since 

the spectra differ largely between different latitudes and between the two 

Fig. 3.4: DFA-2 of the upper MOC (near 1200m) in the GFDL (left) and 

ECHAM5/MPIOM model (right).  
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models (Fig. 3.5 and Fig. 3.6). The following results are noted: (i) In the North 

Atlantic (40 N), the three-regime characteristics existing at 40N in the upper 

ocean in both models appear only in GFDL, while in ECHAM5/MPIOM the 

spectrum reveals white noise for high frequencies and damped energy with 

decreasing frequencies for low frequency. (ii) At 20 N, GFDL shows 1f

long term memory throughout the accessible range of months to hundred years, 

while ECHAM5/MPIOM spectrum shows damped energy at low frequencies. 

(iii) At the equator, both models show increasing energy for high frequencies 

(blue noise), white noise for low frequencies, and a superimposition of a 3-yr 

oscillation. (iv) At 20 S, a very pronounced oscillation with a period of 3 years 

is superimposed on the white background noise. 
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Fig. 3.5: Power spectra of the lower MOC (near 4000m) in the GFDL (left) and 

ECHAM5/MPIOM model (right).  
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3.1.4. Summary and discussions 

Regime behavior of the variability of the Atlantic MOC is analyzed in two 

state-of-the-art coupled atmosphere-ocean general circulation models, GFDL 

and ECHAM5/MPIOM, which are used for IPCC simulations. The simulations 

Fig. 3.6: DFA-2 of the lower MOC (near 4000m) in the GFDL (left) and 

ECHAM5/MPIOM model (right).  
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are designed as preindustrial control runs with durations of 500 years for which 

oceanic spin-up can be neglected. The variability of the monthly data is 

determined by power-spectra, which are supported by Detrended Fluctuation 

Analysis (DFA-2, which eliminates superimposed trends). The central aims of 

the analysis are the scaling properties of the spectra.  

Table 3.1: sketch of main types of MOC power spectra found in the upper and lower level 

with ranges for the spectral exponent .  is only given for the case of increasing energy 

with decreasing frequency. 

Table 3.1-1: in the upper ocean 

 GFDL ECHAM5/MPIOM 

60N

40N

20N

EQ

20S   

indicates 30 yr oscillation 

Table 3.1-2: in the lower ocean 

 GFDL ECHAM5/MPIOM 

40N

20N

EQ

20S   

indicates the 3 yr oscillation 

The main result is the existence of regimes of variability with distinct 

power-law relationships in the spectra (see table 3.1 for spectra sketch) 

demonstrating a general agreement between the two models. At high frequency, 

the spectrum in the upper ocean is white, which is very different from the 

1

2

1

1

1

2

1 1
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Hasselmann model. This is because, at short time scales, the MOC reflects the 

projection in the vertical plane (after zonal averaging) of the Topographic 

Sverdrup response of the ocean to the wind forcing, thus with barotropic 

structure, which can be seen from the leading EOFs of high pass filtered 

monthly MOC (Fig. 3.7, accounting for 81% of total variance). The strongest 

high frequency variability takes place near the equator (Fig. 3.8), mainly 

contributed by direct Ekman pumping. The absence of the white noise at high 

frequencies in the deep ocean is conjectured due to the frictional damping at the 

bottom levels.  

EOF-1:

EOF-2:
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EOF-3:

Fig. 3.7: The first three leading EOFs of the high pass filtered MOC from 

ECHAM5/MPIOM, with 3 years cut-off. The explained variance is 35%, 22%, and 24% 

respectively. Annual cycle is removed before the high pass filtering. 

Fig. 3.8: standard deviation (Sv) of the high pass filtered MOC from ECHAM5/MPIOM, 

with 3 years cut-off in the case of with (a) and without (b) annual cycle. Note that the 

scale in two plots is different. 

a

b
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The most frequent spectral power-law, S(f) ~ f , is found with  1, which is 

denoted as 1 / f or flicker noise. Although red-noise ( ]/[1 22
0 ff ) is one of the 

most frequently used types of power-spectrum, this functional relationship 

appears to be more an exception than the rule. These types are hints to 

conceptual theories of the underlying mechanisms of MOC variability (see 

Fraedrich et al. (2004) for a stochastically forced vertical diffusion model and 

for references to other models).  

In the low frequency range, both models show the presence of white noise. 

Discrepancy is found in the deep ocean, mainly in the North Atlantic: GFDL 

produces white noise while ECHAM5/MPIOM shows damped energy with 

decreasing frequency. This discrepancy at low frequencies hasn’t been found 

before. It concerns model performance at low frequencies and hence should be 

considered in future studies. 

In the North Atlantic an oscillation of about 30 years is found in both models. 

This oscillation may be accompanied by the ocean adjustment via baroclinic 

Rossby waves (Frankignoul et al. 1997), or geostrophic advection (e. g., Eden 

and Willebrand 2001; Eden and Greatbatch 2003). In the South Atlantic 2 to 3 

years periodicity dominates, whose origin is still unknown.  

The absence of the red-noise spectra has consequences for frequently applied 

significance tests. In some spectra increasing variability for lower frequencies 

described by exponents  > 0 is found. This indicates that the North Atlantic 

circulation possesses long term memory with consequences for the analysis of 

long term climate variability, trends, and the assessment of anthropogenic 

climate signals. 
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§ 3.2 Variability regimes of the MOC in 
a coarse resolution model

This section aims to investigate the changes of the simulated MOC variability, 

in terms of power-law scaling behavior. Both spectrum analysis and DFA-2 are 

applied to the MOC of the coarse resolution ECHAM5/MPIOM experiment, 

referred to as C-EM. The high-resolution ECHAM5/MPIOM experiment 

analyzed in previous section is referred to as H-EM. Readers are referred to 

chapter 2 for details of C-EM set up. 

3.2.1. Mean state and variability regimes in C-EM 

The model run is 1099 years in total; the last 700 years are analyzed during 

which both the MOC and the SST have reached their equilibrium. The 

maximum of the simulated mean MOC is about 18 Sv (Fig. 3.9a). C-EM shows 

a stronger wind-driven cell in the south Atlantic with a maximum of ~ 24 Sv. 

The maximum mass transport of the Antarctic Circumpolar Current (ACC) is 

about 250 Sv (not shown). This is due to a strong wind bias within the 

equatorial and South Atlantic. It is not yet clear what causes the wind bias. 

Wind stress energy input to the ocean exerts strong high frequency variability 

in the equatorial and South Atlantic region (Huang et al. 2006), felt by the 

ocean over the whole depth (Fig. 3.9b), with a maximum at 400 meters. As 

shown below this biased wind energy input is clearly detected in the spectrum 

of the MOC, even in the deep ocean. 
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The time series of the MOC at selected depths, ~1200 m and 4000 m, at 

different latitudes are analyzed (Fig. 3.10-11). There is a general agreement 

between the high and coarse resolution simulation of ECHAM5/MPIOM on the 

spectral scaling, particularly in the range from months to decades. The main 

results are summarized as follows: (i) In the upper ocean (Fig. 3.10), white 

noise dominates from months to years, corresponding to  0 (Fig. 3.10, left 

panel) and  0.5 (Fig. 3.10, right panel). The strong wind bias lifts up the 

spectrum energy level at this high frequency band, particularly pronounced at 

the equator and 20 S. A power-law scaling occurs from years to decades with 

 1 at all latitudes. (ii) In the deep ocean (Fig. 3.11), a) at 40 N, the spectra are 

similar in two models, with white noise from months to decades and decreased 

energy with decreasing frequency at low frequencies; b) at 20 N, in C-EM, 

white noise dominates from months to the largest resolvable time scale, while 

in H-EM spectral scaling occurs from months to decades with  1 and the 

Fig. 3.9: Mean a) and standard deviation b) of the annual zonally averaged stream function 

(unit: Sv) in the Atlantic from C-EM (unit: Sv). 

a

b
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energy is damped at low frequencies (Fig. 3.5 right panel); c) at the equator and 

the south Atlantic (20 S), white noise dominates from months to near a decade 

on which a 3-yr oscillation is superimposed. The strong wind bias is also felt by 

the ocean at this depth, indicated as the higher spectrum energy at the high 

frequency band. 

Fig. 3.10: Power spectrum (left panel) and DFA-2(right panel) of the upper MOC (near 

1200m) in the coarse resolution ECHAM5/MPIOM model. 5 overlapping windows are 

used for spectrum calculation. 
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The common feature between the two simulations is the white-noise spectra in 

the high frequency range (from months to years), reflected by  0 (in 

spectrum plots) and  0.5 (in DFA-2). As explained in § 3.1, the variability at 

this high frequency part reveals the oceanic barotropic response to the 

white-noise wind forcing. A considerable difference occurs primarily in the low 

frequency range: in the upper ocean, the coarse-resolution simulation (C-EM) 

simulates a power-law scaling with  close to or slightly larger than 1 (  1), 

while the finer resolution model shows a leveled – off spectrum (  0 and 

0.5) which is revealed by both the spectrum analysis and DFA-2. This 

discrepancy in the low frequency range is also visible in the lower ocean, 

particularly in the South Atlantic. 

Fig. 3.11: Same as Fig. 3.10 but for the lower MOC (near 4000m)  
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3.2.2. Summary and conclusions 

Table 3.2: as in table 3.1, but with the coarse resolution ECHAM5/MPIOM experiment 

(C-EM) instead of GFDL. Results from the fine resolution ECHAM/MPIOM run (H-EM) 

are listed for comparison. 

Table 3.2-1: in the upper ocean 

 C-EM H-EM 

60N

40N

20N

EQ

20S   

indicates 30 yr oscillation 

Table 3.2-2: in the lower ocean 

 C-EM H-EM 

40N

20N

EQ

20S   

indicates the 3 yr oscillation 

In this section, the spectral behavior in the coarse resolution 

ECHAM5/MPIOM run (C-EM) is investigated. Results are compared with 

those from the high resolution ECHAM5/MPIOM run (H-EM). There is a 

general agreement in spectral behavior between the two simulations (table 3.2), 

particularly in the range from months to decades. Considerable disagreement is 

present in low frequency range, from decades to hundred years: the upper MOC 

in the coarse resolution experiment reveals more often 1/f spectral scaling while 

1

1

1

1

1

1

1

1

1

1
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the finer resolution experiment shows a white plateau. The 30-yr peak in the 

C-EM is embedded in the scaling as part of the long term memory. The 

considerable difference in the lower MOC results from the strong wind bias in 

the coarse resolution simulation which lifts up the spectral energy from months 

to one decade. The 3-yr oscillation is still present. 

The spectral power-law scaling of the MOC is also found in a coarse resolution 

atmosphere-ocean model – CSIRO/Mark 2 (Blender et al. 2006), thus it may 

arise as a common feature among coarse-resolution models. But we also note 

that in our studies, besides different resolution, the two simulations of 

ECHAM5/MPIOM employ different cloud schemes. Also, the influence of the 

ocean current on wind stress is implemented in the high-resolution simulation 

but not in the coarse-resolution simulation. These three factors will need to be 

considered when investigating what leads to the discrepancy between the two 

simulations with ECHAM5/MPIOM. 

The possible presence of the long term memory (LTM) poses the following 

question: are numeric models able to represent high frequency variations (e. g., 

from years to decades) able to adequately represent the physics of multidecadal 

and longer-time scale climate variability? The answer to this question is of 

great importance for paleo-climate modeling, in which coarse resolution 

models are often used and their performance on very-long time scales becomes 

very important. The presence of LTM in the ocean, if it exists, might enable 

long-term climate predictability. The LTM should also be considered for 

trend-detecting issues related to climate change, because the ‘trend’ may come 

as part of the natural variability on ‘long’ time scales, as suggested by the 

higher power energy of the very low frequency variability. 
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4.1 Introduction 

Decadal to multidecadal climate variability receives a lot of attention because it 

intermingles with the greenhouse warming signals in the present climate record 

and increases the difficulty in detection and prediction of global warming 

signals (e.g., Schlesinger and Ramankutty, 1994). It also has strong impacts on 

regional climate, particularly in the European sector (Sutton and Hodson 2005) 

and thus is crucial for climate predictions (Griffies and Bryan, 1997; Pohlmann 

and Latif 2005; Collins et al. 2006; Latif et al. 2006; Pohlmann et al. 2006).  

The low frequency variability of the climate system has been observed in the 

Earth’s natural archives in the form of proxy records, for instance, Mann et al. 

(1995) find variability on a 15-35 yr, as well as a 50-150 yr time scale in a study 

of several proxy data; Gray et al. (2003, 2004) found oscillations with a time 

scale of 30-70 yr and 60-100 yr in drought-sensitive tree-ring records.  

Low frequency variability has also been detected in many oceanic variables. 

Using the historical hydrographic observations for two pentads, 1955-1959 and 

1970-1974, Levitus (1989) identified coherent interdecadal differences from the 

sea surface down to 2000m. Displacements of isopycnals were found associated 

with these changes, but the reason for the displacements remains uncertain. 

Kushnir (1994) analyzed more than 100 years of data from the Comprehensive 

Ocean-Atmosphere Data Set and reported that negative SST anomalies 

prevailed from about 1900 to 1920 and from about 1970 to 1980, whereas the 

1930-1960 period was characterized by warm anomalies. Associated with these 

temporal SST changes is a basin-scale spatial pattern with maxima in the 

Labrador Sea and northeast of Bermuda. This work was extended by Tourre et 

al. (1999) and a spectral peak around a period of 50-60 years was found. Low 

frequency variability with a period of 50-70 yr was also observed in 

instrumental data over the North Pacific, North America and the tropical oceans 

and reconstructed climate records for North America (Minobe 1997). 
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The natural climate variability can be caused by ‘external’ factors, such as 

changes of solar irradiance forcing (e. g., van Der Schrier et al. 2002), and 

volcano eruptions (e. g., Kirchner et al. 1999). However, the statistically 

significant relationships between external factors and climate proxy data are 

often hard to establish ( e. g., Rind et al. 2002). Most likely, the low frequency 

variability of the climate arises within the climate system, as a result of the 

interaction between different subsystems, for example, atmosphere-ocean-sea 

ice coupling, or internal dynamics of one subsystem, such as ocean dynamics. 

Numerical models with different complexity are the main tools to investigate 

the related mechanisms.  

It was found that the low frequency variability in the North Atlantic is closely 

related to the changes of the Meridional Overturning Circulation (MOC) (e. g., 

Delworth et al. 1993; Hakkinen 1999, 2000; Jungclaus et al. 2005). Three 

hypotheses have been proposed to explain the low frequency oscillation of the 

MOC:  

1) An oceanic self-sustained oscillation (e.g., Weaver et al. 1991). The ocean 

adjustment signals may be carried by (viscous) boundary waves (Döscher et 

al. 1994; Winton 1996 Greatbatch and Peterson 1996; Eden and Willebrand 

2001). Colin de Verdière and Huck (1999) suggest that a more general type 

of waves, with propagation speed depending on the background 

stratification. Baroclinic instability of the western boundary current is 

mentioned as the energy source of these waves. Other processes suggested 

involved in the ocean adjustment at low frequencies include the baroclinic 

Rossby waves (Frankignoul et al. 1997) and ocean advection (Marotzke and 

Klinger 2000, Goodman 2001, Eden and Greatbatch 2003).  

2) An oceanic response to stochastic atmospheric forcing. Delworth and 

Greatbatch (2000) describe a 50-70 years oscillation in the Geophysical 

Fluid Dynamics Laboratory (GFDL) Modular Ocean Model (MOM). They 
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find this oscillation exist in the ocean model driven by stochastic 

atmosphere forcing, but not in the experiment when the variability of the 

atmosphere forcing is excluded. Thus they conclud that the low frequency 

variability (named as ‘Multidecadal Variability’ in their paper) is an oceanic 

response to stochastic atmospheric forcing. A two-way atmosphere-ocean 

coupling is not essential to the low frequency variability but acts to modify 

the amplitude. This is consistent with the results of previous studies (e. g., 

Griffies and Tzipermann 1995, Capotondi and Holland 1997).  

3) An atmosphere-ocean coupled mode. In this ’two way’ interaction, the 

ocean not only responds, but also feeds back, via SST anomalies, to the 

atmosphere. The North Atlantic Oscillation (NAO) is involved by a) directly 

changing the evaporation and the oceanic heat losses in the deep convection 

sites, and b) changing the subpolar gyre and the MOC (Timmermann et al. 

1998, Wu and Liu 2005; Dong and Sutton 2005). 

One thing to note is that the role of the gyre and the thermohaline circulation 

(THC) are often discussed separately. For example, Wu and Liu (2005) suggest 

that the coupling between the NAO and the ocean gyre is responsible for 

generating the North Atlantic decadal variability. The SST forces a NAO-like 

atmospheric response, which provides a negative feedback associated with the 

adjustment of the subtropical Atlantic to anomalous wind stress curl in the 

subtropics. However, the wind-driven gyre and the THC are strongly coupled 

(Macmynowski and Tziperman 2006). The dynamics of the subpolar Atlantic 

gyre are particularly important (Hátún et al. 2005), which affects the freshwater 

transport from the Arctic Ocean (Jungclaus et al. 2005) to the Labrador Sea and 

the location, intensity, and composition of the NAC and consequently its 

efficiency in transporting mass and heat from the tropics (Latif et al. 2000). 

In summary, the origin of the low frequency variability of the MOC is still 

under debate and answers from different models are quite divergent. This work 
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aims to reinvestigate the low frequency variability of the MOC using the low 

resolution coupled general circulation model  ECHAM5/MPIOM. One 

advantage of using this model is that it does not employ any flux adjustment. It 

is found that in the coupled atmosphere-ocean model, there are two low 

frequency oscillations, one as an ocean self-sustained mode, and the other as a 

result of dynamic atmosphere-ocean coupling. This chapter is constructed as 

follows. The experiment design is introduced in section 4.2. Section 4.3 

describes the features of the mean state and the low frequency variability in the 

coupled model. Main results are presented in section 4.4 and 4.5. This chapter is 

concluded by summary and discussions in section 4.6. 

4.2 Experimental design 

Since all processes are inherently coupled, it is difficult to confirm the 

speculations about the mechanisms responsible for the low-frequency 

variability within the context of a fully coupled model. Therefore, in addition to 

the fully coupled model, we have conducted a suite of experiments using the 

ocean component of the coupled model, MPIOM, driven by suitably chosen 

time series of surface flux forcing in a similar way as described in Delworth and 

Greatbatch (2000).  

All model parameters in the ocean-only experiments are identical to those in the 

fully coupled model. Monthly surface fluxes from the coupled model 

integration are interpolated into daily data which are then used to drive the 

ocean model. In some experiments, climatological mean surface fluxes taken 

from the coupled model integration are used in stead, in this manner, variability 

of the atmospheric forcing term(s) concerned at time scales longer than the 

seasonal cycle is excluded. This design also allows us to evaluate the relative 

role of the atmosphere forcing terms in generating the MOC variability. In all 

ocean-only experiments, sea ice thickness is restored to climatology calculated 
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from the coupled run. This helps to reduce model drift. The suite of experiments 

is listed in Table 4.1.  

Table 4.1 

Experiments Surface fluxes applied 
Length of runs 

(yr)

CPL atmosphere-ocean fully coupled 1099 

CTR

Full surface fluxes from the fully coupled 

model (CPL) applied in the same 

sequence as they occurred in CPL 

391 

CLIM* Climatological surface fluxes from CPL 1700 

RAND*
Same as CTR, but the year of surface 

fluxes is randomly selected 
1700 

RAND-CLIMHEAT+
As in RAND, but with climatological 

surface heat fluxes 
840 

RAND-CLIMWATER+
As in RAND but with climatological 

surface freshwater fluxes 
840 

RAND-CLIMMOM+
As in RAND but with climatological 

surface wind-stress 
840 

*  the last 1100 years are analyzed. 

+  All experiments start from the ocean conditions at the end of year 1408 from RAND. 

In experiment CTR, the ocean model is driven by the surface fluxes in the same 

sequence as they occurred in the fully coupled model (CPL). In experiment 

RAND, for each year, one year of forcing is randomly selected from the 

coupled model output (from year 709 to year 1099). The forcing thus keeps its 

month-to-month variability every year as in the coupled model, but is randomly 

arranged from year to year. In this manner, there is no feedback from the ocean 

to the atmosphere and hence the ocean cannot change the atmospheric state and 

the air-sea fluxes. To evaluate whether oscillations are self-sustained by the 
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ocean, the ocean model is driven with climatological surface fluxes (CLIM), 

which are extracted from CPL year 700-750.  

These three experiments (CTR, RAND, and CLIM) all start from the oceanic 

conditions at the end of year 708 from CPL. Experiment RAND and CLIM (see 

table 4.1) are in total 1700 years long. The last ~1100 years are analyzed. For 

reasons becoming clear later, three additional experiments are performed (Table 

4.1). The ocean model is driven in the same way as in RAND, but one of the 

surface flux items is set to the corresponding climatological field. These three 

experiments start from the ocean condition at the end of year 1408 from RAND. 

They are 840 years long in total. 

It should be noted that in all ocean-only experiments, there is no damping of 

SST anomalies through the surface heat flux term, since the surface heat fluxes 

are specified independently of SST. However, the restoring of sea-ice thickness 

to a climatological seasonal cycle provides an effective large-scale damping on 

the system. Negative (or positive) SST anomalies at higher latitudes will create 

positive (negative) anomalies of sea-ice thickness. As the sea-ice thickness is 

restored to its climatology, heat is effectively added to (removed from) the 

system. In this manner, there is no substantial model drift in all experiments. 

4.3 Synopsis of the Inter- and multi-decadal variability 

In the Atlantic the maximum of the simulated annual mean MOC (Fig. 4.1a) is 

about 18 Sv (1 Sv=106 m3/s), located between 30 N and 40 N, at 1000 m. The 

model reproduces relatively weak Antarctic Bottom Water (AABW) Circulation, 

~ 3 Sv, in comparison to observational data (4.3 Sv by Zemba, 1991; 6.9 Sv by 

Hogg et al. 1999). Compared to the finer horizontal resolution version of the 

ECHAM5/MPIOM (Fig. 3.1), CPL shows a stronger Deacon cell in the South 

Atlantic with a maximum of ~ 25 Sv and a maximum mass transport of the 

Antarctic Circumpolar Current about 250 Sv (not shown). This is due to a 
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strong wind bias in this model in the southern hemisphere, reflected in the 

MOC as the strong variability south of the Equator (Fig. 4.1b). The reason for 

this bias is unknown. To highlight the low frequency variability concerned, an 

11-yr running mean is applied to the MOC at each grid point. The standard 

deviation has its maximum approximately 1.4 Sv at ~45 N, at 800m depth (Fig. 

4.1c). The influence of the wind bias on the filtered field is negligible.  

The model simulates two deep convection sites in the North Atlantic (Fig. 4.2), 

one in the Greenland, Iceland, and Norwegian (GIN) Sea, with maximum 

Mixed Layer Depth (MLD) ~ 2500m, the other in the Labrador Sea, about 

Fig. 4.1: Mean state (a), standard deviation (b,c) of the zonally averaged steamfunction in 

the Atlantic from the coupled run between year 400 and year 1099 (Units: Sv). In c, an 

11-year running mean is applied before calculating the standard deviation. 

a b 

c
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Fig. 4.2: Mean Mixed Layer Depth (Unit: m) in March in the coupled run from year 400 

to year 1099.  

1500m deep. The convection center in the subpolar gyre is located near the 

southern tip of the Greenland, near the exit of the Labrador Sea, not in the 

interior Labrador Sea basin as observed (Lilly and Rhines 2002; Pickart et al. 

2002). However, we still refer to this as the Labrador Sea (Basin) convection 

center. This simulated location implies that in our model the convection in the 

Labrador Sea is more sensitive to changes in the Irminger Sea and in the eastern 

subpolar gyre, such as East Greenland Current, overflows and the Irminger 

Current. At the same time, we notice that deep convection also takes place in 

the Irminger Sea though with a relatively shallower mean MLD, ~ 600-900m. 

The presence of deep convection in the Irminger Sea has been noted by Pickart 

et al. (2003). They found that it results from a local atmospheric structure and is 

closely related to the NAO. 

The mean global SST experiences time-dependent drift (Fig. 4.3), about 

0.1oC/centry for the first 400 years, and 0.03oC/ceutury for the last 700 years. 

Thus we regard the ocean reaches equilibrium in the last 700 years. 
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The streamfunction at 30 N, 960m is selected as the MOC index, if not 

specified otherwise. It is quite stable through the entire time series (Fig. 4.4a) 

and exhibits considerable variability at timescales ranging from 20 to 100 years 

(Fig. 4.4b). We notice that between year 200 and year 600 the MDV signal is 

strong while the IDV signal is damped; and the IDV signal is strong between 

year 700 and year 1000 whereas the MDV signal is weak. This indicates that 

there is possibly energy transfer between the IDV and the MDV.  

The spectrum of the MOC index is estimated by averaging spectra of 5 data 

subsets each of which contains 500 to 700 points and is randomly taken from 

different ranges of the time series. Consistently with the wavelet analysis (Fig. 

4.4b), the spectrum shows concentrated energy in the periods between 25-40 

years and 45-80 years (Fig. 4.5), which we refer to as Inter- and Multi- Decadal 

Variability (IDV and MDV) respectively. The spectrum of the last 700 years of 

the time series is calculated (red line in Fig. 4.5). The IDV and MDV are still 

captured in the spectrum. This allows us to limit our analysis of the coupled run 

to the last 700 years when the ocean has reached its equilibrium.  

Fig 4.3: Time series of global mean sea surface temperature (6m deep) in CPL. Two linear 

trends are fit to the time series, plotted as thick dashed line. The drift is 0.1 C/century in 

the first 400 years and 0.03 C / century for the last 700 years.  
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Fig 4.4: a) time series and b) wavelet analysis of the MOC index in the CPL. the red line 

in a) is the 11-yr running mean of the MOC index. 

a

b

IDVMDV

Fig 4.5: power spectrum density of the MOC index in the CPL. Gray lines show the 

spectrum for different periods of the time series in Fig. 4.3a for which one window is 

used. Black line is the mean of the gray lines. Red line shows the spectrum for the period 

between year 400 and year 1099; 5 window are used, with 3/4 window length as 

overlapping length.  
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The coexistence of the IDV and MDV provides a new interpretation for the 

widely-spread time scales associated with ‘interdecadal’ or ‘multidecadal’ 

variability reported in previous studies (e. g., 70-100 years in Delworth and 

Greatbatch, 2000; 35 yrs in Timmermann et al. 1998; 25 yrs in Dong and Sutton 

2005). In the following it will be shown that IDV and MDV can be attributed to 

different physical mechanisms.  

4.4 Are the inter- and multi-decadal variability coupled modes? 

As introduced in the introduction, three hypotheses have been proposed 

responsible for the low frequency variability of the MOC. To evaluate which 

one takes effect on the inter- and multi-decadal time scales in our model, a suite 

of experiments using the ocean component of the coupled model – MPIOM are 

conducted (refer to table 4.1 for experiment set-up). 

Experiment CTR almost fully reproduces the oscillations in CPL in the first ~ 

100 years (Fig. 4.6). Afterwards the MOC gradually weakens by about 2 Sv 

relative to CPL. The weaker mean state of the MOC in CTR is possibly due to 

the reduced noise level. It has been found that the simulated mean state of the 

MOC will be considerably greater when daily variability of the forcing is 

considered in a coupled model (Balan, 2006). On the other hand, CTR still 

captures to a large extent the low-frequency oscillatory behavior of the MOC. 

This confirms that the strategy of using only the ocean component of the 

coupled model is appropriate for analyzing the MOC low frequency 

fluctuations.
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We regard ‘coupling’ as a process in which the state of the ocean (SST) strongly 

influences the large-scale state of the atmosphere, which in turn feeds back 

coherently upon the state of the ocean. In experiment RAND, each year the 

surface forcing is randomly arranged from year to year, thus there is no 

feedback from the ocean to the atmosphere. In experiment CLIM, atmospheric 

variability on time scales longer-than seasonal is excluded. Thus ocean 

dynamics are responsible for any present low frequency variability. 

The mean state of the MOC index in RAND and CLIM is ~ 15 Sv, 3 Sv smaller 

than in CPL and 1 Sv smaller than CTR; the MOC in RAND is nosier than the 

one in CLIM (Fig. 4.7a). Considerable low frequency variability is present in 

RAND, which is also simulated in CLIM, however, with smaller amplitude of 

0.8 Sv (Fig. 4.7b). The spectra of the MOC indices (Fig. 4.7c) reveal 

considerable variability centered at 30 yrs in both RAND and CLIM. The 

spectral energy at multidecadal time scales is considerably damped in CLIM 

and RAND compared to CPL. The same message can also be derived from the 

autocorrelation of the MOC indices (Fig. 4.8), CPL has two significant 

Fig. 4.6: time series of the MOC at 30 N, 960m depth from CTR and CPL (Units: Sv). 

CTR starts from year 709 to 1099. Thin gray and red lines denote raw MOC time series, 

and the thick lines denote the corresponding 11 running mean.   
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harmonic frequencies with time scales of 30 and 60 years respectively (shown 

as the negative minima at +/- 15 and +/- 30 years), whereas CLIM and RAND 

both have only one 30 year oscillation. Therefore we conclude that IDV is an 

ocean internal mode which can be sustained by ocean dynamics; and the MDV 

is a result of dynamic air-sea coupling. Thus when the ocean is driven by 

stochastic or even climatological atmospheric forcing, the MDV signal is much 

damped.  

a

b

c
IDVMDV

Fig. 4.7: time series (a,b) and spectrum (c) of the MOC time series at 30 N, 960m depth 

in CLIM (red line), RAND (black line). The spectrum of CPL is also shown in c) as the 

black dashed line. For spectrum calculation, 5 windows are used, with 3/4 of the window 

length as the overlapping length. 
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Our results provide a new view of the results from Delworth and Greatbatch 

(2000) (Fig. 4.9 from their Fig. 5). The oscillation exists in their fully coupled 

run is with a time scale of 70-100 yrs, however, the oscillation exists in their 

RANDOM (comparable to our RAND) is with a period of 50 yrs. Given the 

limited length of their experiments (400 years), the 50 and 70-100 scales cannot 

be differentiated, thus the shifting of the frequency associated with the 

‘multidecadal’ variability of the MOC was not addressed in their work and they 

conclude that the ‘multidecadal’ oscillation of the MOC exists as an oceanic 

response to stochastic forcing. Our results suggest that the 50yr and 70-100 yr 

oscillation are possibly related to different physical modes. It is important to 

note that their model employs flux adjustment which reflects the model is 

incapable of simulating a proper mean state, which may be responsible for the 

much-damped low frequency variability in their experiment ‘CLIM’ (similar to 

our CLIM) . 

Fig 4.8: autocorrelation of 11 yrs running mean of the MOC indexes. The horizontal 

dashed line denotes 90% confidence level. 
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4.5. Role of surface wind stress 

There are two notable differences between RAND and CLIM (Fig. 4.7c): firstly, 

RAND has a higher spectral energy level; Secondly, in RAND white noise 

dominates from years to one decade, whereas the MOC in CLIM shows 

decreasing spectrum with increasing frequency. Three additional experiments 

are designed (table 4.1) to investigate the role of surface fluxes leading to the 

difference. Each experiment is driven in a similar way as in RAND, but one of 

the surface flux items is set to climatology.  

When the variability of the surface heat fluxes is excluded 

(RAND_CLIMHEAT), the MOC index has a mean of about 14.8 Sv, ~ 0.7 Sv 

smaller than the other experiments, whereas the exclusion of the variability of 

the surface freshwater fluxes (RAND_CLIMWATER) or wind stress 

(RAND_CLIMMOM) does not affect the simulated mean state of the MOC 

(Fig. 4.10a). 

Fig 4.9: Spectra of time series of THC from three experiments, with ‘COUPLED’ similar 

to our CPL, ‘RANDOM’ similar to our RAND, and ‘ATMOS’ denoting the THC when the 

ocean model is driven by the low frequency variability of the atmosphere. There were 400 

points in each of the input time series (discussed in Delworth and Greatbatch 2000, Fig. 5)
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When the variability of surface wind stress is excluded, the MOC shows 

damped spectral energy from years to about one decade (Fig. 4.10b). Thus at 

this frequency range the wind stress dominates the MOC variability. But it can 

not fully explain the difference in the spectrum energy level between CLIM and 

experiment RAND_CLIMMOM, thus the other two surface fluxes also 

contribute positively to the lift-up of the MOC spectrum. 

At time scales longer than one decade, switch-off of one of the surface fluxes 

only shows minor impacts on the MOC spectrum (Fig. 4.10 a, b). Therefore 

three surface fluxes all contribute to the low frequency variability of the MOC; 

and damping of any one flux is not able to damp the low frequency variability 

of the MOC as in CLIM.  

Fig 4.10: a) time series (with 11-yr running mean) and b) spectra of the MOC indices. 

Time series are detrended before spectrum calculation. 5 windows are used, with 3/4 of 

the window length as overlapping length. 

a

b
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4.6. Summary and discussions 

We present modeling results on the low-frequency variability of the MOC. Two 

different frequencies are identified, interdecadal variability ranging from 25-40 

years (IDV) and multidecadal variability ranging from 45-80 years (MDV). The 

experiments we present here provide a relatively long sample of low-frequency 

oscillations. The IDV in all experiments and the MDV which exists only in the 

fully coupled run remain robust with different window length and overlapping 

window length used for spectrum calculation. IDV exists as an ocean 

self-sustained mode and MDV as an air-sea coupled mode. 

Previous studies favored one of the three hypotheses: an ocean self-sustained 

mode, an oceanic response to stochastic forcing, and an air-sea coupled mode, 

to explain the low frequency variability of the MOC. Rivin and Tziperman 

(1997) suggest that the decadal/interdecadal climate variability is near the 

bifurcation point between the ocean self-sustained oscillation and the air-sea 

coupled mode. However, all these studies couldn’t provide a satisfactory 

explanation for the wide-spread time scale associated with the low frequency 

MOC variability. Our results suggest that, in fact, several modes can coexist; 

further, there is possibly energy transfer between these modes which may be 

responsible for the varying time scales. 

Wind stress plays an important role in shaping the spectrum of the MOC to 

white noise on the time scale from years to about one decade. This is because, 

at short time scales, the MOC reflects the projection in the vertical plane (after 

zonal averaging) of the topographic Sverdrup response of the ocean to the wind 

forcing (see Jayne and Marotzke 2001; Eden and Willebrand 2001), which 

determines the characteristic barotropic structure at high frequencies (not 

shown) and its white spectrum. At low frequencies, surface heat, freshwater and 

momentum fluxes all contribute to the high low-frequency white-noise plateau. 

Moreover, our results suggest that switch-off of any of the three surface fluxes 
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doesn’t reproduce the damping spectrum in CLIM. Therefore, most likely these 

three items work together to lift-up the spectrum energy at the low frequency 

time scales, none of the three surface fluxes plays a dominant role as suggested 

by Weisse et al. (1994), Delworth and Greatbatch (2000). 
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5.1. Introduction 

As shown in the last chapter, interdecadal variability of the MOC is 

maintained by ocean dynamics and multidecadal variability of the MOC as an 

atmosphere-ocean coupled mode. This chapter focuses on the interdecadal 

variability of the MOC. 

Interdecadal variability of the MOC as an ocean internal mode has been found 

in previous studies (e. g., Weaver and Sarachik, 1991). They describe a 

near-decadal oscillation associated with the propagation of warm and saline 

water generated between the subtropic and subpolar gyre which initiates the 

anomaly development in ocean models forced with mixed boundary 

conditions. However, such boundary conditions have been shown to lead to 

idiosyncratic behavior (Zhang et al. 1993) and do not represent properly the 

large-scale atmosphere-ocean interactions (e.g., Capotondi and Saravanan 

1996). In an idealized ocean basin forced by constant freshwater and heat 

fluxes, Greatbatch and Zhang (1995) successfully reproduce a decadal 

oscillation and reveal that a dynamical atmospheric component does not seem 

necessary to reproduce this decadal oscillation. The relatively long timescale 

of interdecadal oscillations compared to atmospheric thermal inertial 

timescales suggests a fundamental oceanic contribution.  

Greatbatch and Peterson (1996) suggest that frictional boundary waves are 

sufficiently slowed along the weakly stratified polar boundaries, where 

convection takes place, to give rise to decadal periods. Huck et al. (1999) 

argue that, in stead of boundary-trapped waves, internal potential vorticity 

waves are important and that the phase difference is caused by both advection 

and adjustment, which is basically consistent with the results of Te Raa and 

Dijsktra (2002). This advective origin of the low frequency variability in the 

North Atlantic has also been noted by Marotzke (1990), Weaver and Sarachik 
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(1991), and Eden and Greatbatch (2003).  

From the results of previous studies, it seems that an uncoupled, 

single-hemispheric ocean basin is the simplest model configuration in which 

interdecadal thermohaline variability resembling the one described by 

Delworth et al. (1993) can be found. TeRaa and Dijkstra (2002, 2003) used a 

hierarchy of models and found that the interdecadal variability controlled by 

geostrophic processes in their idealized model also exist in more complex 

models, thus established a good connection between the results from models 

with different complexity. 

This variability is caused by a phase difference between changes in the 

meridional heat transport and a zonal redistribution of density anomalies. The 

oscillation is linked to the weakening and strengthening of the high–latitude 

deep water formation and the subsequent generation and removal of east-west 

steric height gradients which cause the MOC to intensify and weaken over 

decadal-to-multidecadal timescale. The variation of the east-west steric height 

gradient is associated with the propagation of temperature and salinity 

anomalies along the subpolar front to the eastern boundary. Horizontal 

advection sets the oscillation timescale which is given by the length of time it 

takes a particle to be advected from the western boundary to the eastern 

boundary along the subpolar front, and then, as subsurface flow, towards the 

polar boundary. Salinity, wind forcing, continental geometry, and bottom 

topography are all nonessential (Te Raa et al. 2004). The heat flux is sufficient 

to drive the variability, while the active salinity reduces the amplitude of the 

oscillations. This dominant role of surface heat fluxes has already been found 

in observations that temperature anomalies in the North Atlantic are often 

associated with salinity anomalies of the same sign, but the temperature 

influence on density prevails (e.g., McCartney et al. 1996). However, some 

numeric models have suggested the possibility that salinity may play a 
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dominant role (Delworth et al. 1993; Timmermann et al. 1998). 

The purpose of this work is to investigate the ocean internal mode using the 

complex ocean model – MPIOM. We focus on the physical mechanism that 

leads to interdecadal oscillations in the North Atlantic region.  

The chapter is organized as follows. A detailed discussion on IDV in the ocean 

model driven by climatological surface forcing (CLIM) is presented in section 

5.2. Section 5.3 presents the results on the IDV in the ocean model driven by 

stochastic atmospheric forcing (RAND). We end this chapter with summary 

and conclusions in section 5.4. 

5.2. Interdecadal variability in CLIM 

In chapter 4 we have shown that IDV exists as an ocean internal mode. In this 

chapter, results from experiment CLIM are analyzed. A short description 

about the IDV in experiment RAND is also presented.  

5.2.1 Dominant role of temperature 

It is anticipated that fluctuations of the MOC are related to changes in the 

density, temperature and salinity structure of the North Atlantic. This relation 

is investigated by calculating linear regressions of the time series of density, 

thermal- and haline-component of density onto the MOC index at grid points 

in the Labrador Basin where the mean MLD in March exceeds 1200m (Fig. 

5.1). These regressions are calculated at various lags in order to provide an 

evolution picture as the MOC varies. The regression coefficients are averaged 

horizontally and vertically over the selected ocean domain. The density 

anomalies lead the maximum MOC by 3 years, suggesting variation of the 

density induces changes of the MOC. The density anomalies attributable to 

temperature changes dominate the density changes, leading the MOC by ~ 2 

yr, whereas the haline part of the density anomalies vary almost out of phase 
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Fig. 5.1: regression coefficients between various quantities and the time series of the MOC 

index at 30 N in CLIM (kg/m3 / Sv). The blue, red, and green line denotes the regression 

of potential density, its haline and thermal part onto the MOC index. The reference depth 

is at 2000 m. The regression coefficients were averaged vertically and horizontally over 

the region where the mean MLD in March larger than 1200m in the Labrador Sea. X-axis 

denotes time lags; positive lags mean the MOC leading. 

with the MOC, counteracting the thermal effects.  

To investigate whether the relative role of temperature and salinity varies with 

depth, the vertical structure of the density anomalies is shown by averaging 

the regression coefficients horizontally (Fig. 5.2). The density anomalies and 

its thermal parts are homogeneous over the upper 2000m (Fig. 5.2, left and 

middle panel), while the saline part has a baroclinic structure: fresh (saline) 

anomalies are capped by saline (fresh) anomalies in the upper 400m (Fig. 5.2, 

right panel). That is to say salinity’s role differs with depth: at intermediate 

depths salinity weakens temperature-contributed density anomalies while near 

the surface it enhances the thermal effects. This out-of-phase vertical structure 

of salinity field is typical of deep convection events in which cold and fresh 

water moves down and relatively warm and saline deep water is brought up. 

For instance, near lag 0, strong deep convection brings more relatively saline 

water up to the surface and leads to the positive near-surface salinity 
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anomalies (Fig. 5.2, right panel).  

5.2.2 Associated ocean condition 

To display the 3-D picture of the ocean conditions associated with the MOC 

change on interdecadal time scale, the zonally averaged steamfunction, 

temperature and salinity are regressed onto the MOC index, shown in Fig. 5.3; 

the corresponding pattern of the upper ocean heat content and barotropic 

streamfunction are shown in Fig. 5.4. Here ‘heat content’ is defined as the 

mean temperature averaged over the upper 560m. 

At lag -15, the MOC is at its minimum (Fig. 5.3a). The minimum MOC 

corresponds to the occupation of warm anomalies in the Labrador Sea seen 

near 60 N between 400-2000m. From lag -15 to lag 0, the MOC evolves to its 

maximum, which is accompanied by the invasion of cold and fresh anomalies 

into the Labrador Sea (Fig. 5.3b, c). At lag 0, warm and saline anomalies 

appear between 48 N and 75 N near the surface, while cold and fresh 

anomalies occupy the intermediate depth corresponding to the maximum 

MOC (Fig. 5.3). The ensuing weakening of the MOC from lag 0 to lag 15 is 

accompanied by the downward propagation of warm and saline anomalies 

(Fig. 5.3b, c)  

Fig. 5.2: same as Fig. 5.1 but regression coefficients were averaged horizontally over the 

selected region. Full density anomalies (left), its thermal (middle) and haline (right) part. 
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Fig. 5.3: regression coefficient of zonally averaged a) streamfunction ( /Sv), b) 

temperature ( C/Sv), and c) salinity (psu/Sv) in the Atlantic onto the MOC index. 

a b c
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Fig. 5.4: Regression coefficient of a) the heat content in the upper 560m and b) barotropic 

streamfunction onto the MOC index (Units: C/Sv and Sv per Sv). Contour line is the long 

term mean barotropic streamfunction. The interval is every 10 Sv. 

a b 
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The recovery of the MOC from its minimum at lag -15 is accompanied by the 

eastward propagation of warm anomalies along the subpolar front (Fig. 5.4a). 

The warm anomalies accumulate in the eastern subtropical basin, indicating 

weakened northward heat transport manifested as the large-scale cooling in 

the subpolar basin. Along the subpolar front, the eastward propagating warm 

anomalies are accompanied by an anomalous anticyclone across the mean 

zero barotropic streamfunction line (Fig. 5.4b), leading to a northward shift of 

the North Atlantic Current (NAC) axis (not shown). When cold anomalies 

appear east of Newfoundland at lag -5 and propagate eastward, they are 

surrounded by anomalous cyclone corresponding to a southward shift of the 

NAC axis (not shown). From lag 0 to lag 15 warm anomalies are released 

from the eastern subtropical basin and spread to the subpolar basin and finally 

to the Labrador Basin (Fig. 5.4a) leading to the weakening of the MOC (Fig. 

5.3a). And one oscillation cycle is completed. 

5.2.3 Geostrophic balance 

The large-scale variation of the MOC is controlled by geostrophic relation 

(Colin de Verdiere and Huck 1999; Te Raa and Dijkstra 2002, 2003). To 

illustrate this relation, two density gradient indices are computed, Dns and 

Dew, indicating the north-south and east-west density gradient respectively. 

Density indices are computed over the following areas respectively, one 

located in the Labrador basin (Dn), one near the zonal band centered at 30 S

in the south Atlantic (Ds), one near the British Islands (De), and one near 

Newfoundland (Dw), by averaging the density over each of the selected area 

and vertically over the upper 2000 m. Dn minus Ds equals Dns, and De minus 

Dw equals Dew. The density gradients are correlated with the MOC index, 

shown in Fig. 5.5. Dns leads the MOC by about 2 years; Dew is almost out of 

phase, but slightly lags behind the MOC change.  
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In order to provide a picture of the associated changes in ocean mass transport, 

a north-south section across the NAC is chosen (Fig. 5.6) to capture the 

changes of the NAC as an indicator of the zonal streamfunction. Through this 

north-south section, there are two water masses passing which we define as 

the upper water (UW) with 2 >1036.4 kg/m3 and the Labrador Sea Water 

(LSW) with 2  ~ [1036.4 1036.7] kg/m3. The mean thickness of the two 

water masses and characteristic current patterns are shown in Fig. 5.6. Note 

that the UW may be absent in certain regions, such as the convection center in 

the Labrador Sea where the LSW is directly exposed to the overlying 

atmosphere. A detailed description of the mean state of the water masses in 

Fig. 5.6 follows in section 5.2.4. 

The mean potential temperature and u-velocity across the selected section is 

given in Fig. 5.7. Two gray lines separate the water mass to three classes: near 

the surface, it is occupied by warm UW, in the intermediate layer it is featured 

as cold subpolar water, mainly the LSW; at the bottom, it is the lower North 

Atlantic Deep Water, mainly the overflow waters.  

Fig. 5.5: Time-lag correlation of the east-west & north-south density gradient (Dew and 
Dns) with the MOC index. 

MOC leading 
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In the UW layer the NAC enters the section from its southern part, occupying 

the upper 1500m. The NAC is characterized by temperature higher than 8 C

and strong eastward velocity with a maximum about 10 cm/s at the surface. At 

the northern part of this section, a mixture of cold subpolar water and the 

NAC flows through. Underneath the UW is the LSW, most of which moves 

eastward and reaches the eastern North Atlantic boundary. There the LSW 

splits into two branches entering the subpolar gyre and the subtropic gyre 

respectively (refer to the vector field in Fig. 5.6b). Part of the branch going to 

the subtropic gyre goes under the NAC and moves westward, separated from 

Fig.5.6: mean thickness (shade) of a) Upper Water and b) LSW (Units: m). Vectors shown 

are mean velocity field at 47m (upper panel) and 1525m (lower panel) (Units: cm/s). The 

yellow square in the upper panel denotes the selected section.  

a

b
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the eastward NAC by the zero u-velocity line. The LSW is distinguished from 

the warm NAC by homogeneous temperature between 6  and 7 C. It should 

be noted that the characteristic physical attributes of water masses (such as 

temperature and density) are not meant to match the range in observational 

data (e. g., Pickart et al. 2002), because the experiment CLIM is an idealized 

case with the ocean model driven by climatological surface fluxes. 

Fig. 5.7: mean potential temperature (shaded, unit: C) at the selected section. White 

contour is the mean zonal velocity (white contour, Units: cm/s), positive values mean 

eastward. Gray lines indicate the interface between the UW, the LSW, and the lower North 

Atlantic Deep Water. The x-axis interval does not correspond to the real distance between 

the selected points. 

N
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The advective heat transport through the selected section (Fig. 5.6a) is 

regressed onto the MOC index (Fig. 5.8), which resembles the corresponding 

mass transport pattern, indicating that this pattern is mainly contributed by 

u-velocity anomalies. From lag -15 to lag 0, the heat transport carried by the 

NAC evolves from its minimum to its maximum, accompanied by the 

Fig. 5.8: Regressions coefficients of the advective heat transport through the selected 

section (Fig. 5.6a, squared dots) onto the MOC index. From up to down, the gray lines are 

the mean position of the UW-LSW interface and the LSW lower boundary. The black dash 

line is the mean position of the interface plus the associated depth change at interdecadal 

scale corresponding to per Sv change in the MOC. The x-axis interval does not correspond 

to the real distance between the selected points. 
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intensification of the slope of the UW-LSW interface (dashed line). At the 

same time, the eastward transport of the LSW weakens. At lag -15, the NAC is 

weak and the eastward LSW transport is strong (Fig. 5.8), corresponding to 

the anomalous anticyclone structure across the subpolar front (Fig. 5.4b). This 

anticyclone structure extends down to 1700m; below 1700m, a cyclonic 

structure is seen, indicating weakening of the eastward transport by the lower 

LSW layer and strengthening of the returning (westward) LSW. At lag 0, 

when the NAC transport reaches its maximum and the eastward LSW 

transport reduces, corresponding to an anomalous cyclone structure across the 

subpolar front (Fig. 5.4b); at the same time an anticyclone structure appears 

below 1700m. From lag 0 to lag 15, the NAC transport weakens and the 

eastward LSW transport strengthens; and the anticyclone structure below 

1700m is gradually replaced by an anomalous cyclone.  

The adjustment of the transport through this selected section is tightly related 

to the changes of Dns reflecting the geostrophic relation. At lag -15, the MOC 

is in its minimum. There are still a portion of warm anomalies in the Labrador 

basin (lag -15, Fig. 5.4a); and Dns reaches its minimum (Fig. 5.5). Dns 

increases when the warm anomalies in the Labrador Sea are replaced by cold 

anomalies from the eastern subpolar basin and the GIN Sea (from lag -15 to 

lag 0). This is in geostrophic balance with the enhancement of the NAC 

transport which lasts from lag -15 to lag 0 (Fig. 5.8). The strong NAC carries 

a large amount of heat to the eastern North Atlantic, reducing the density in 

the eastern basin (De). When cold anomalies from the Labrador Sea enter east 

of Newfoundland, Dew reaches its maximum (Dw at its maximum due to cold 

anomalies and De at its minimum due to the warm anomalies), leading to 

anomalous strong northward transport, manifested as speeding-up of the MOC 

(from lag -15 to lag 0, Fig. 5.3a) and the following large-scale warming of the 

subpolar gyre (from lag 0 to lag 10, Fig. 5.4). Subsequently, the subpolar gyre 

carries the warm anomalies into the Labrador basin and moves cold anomalies 
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to the eastern North Atlantic along the subpolar front, responsible for the 

decreasing Dns and the increasing Dew. The opposite half of the cycle starts. 

Maximum Dns leads the minimum Dew by about 4 years (Fig. 5.5), 

corresponding to the advection time of the LSW from the convective center in 

the Labrador basin to near Newfoundland. This time is consistent with the 

time estimated in other models (Cooper and Gordon, 2002; Eden and 

Greatbatch, 2003). 

In summary, the interdecadal cycle of the MOC is associated with a 

geostrophic advective process. The propagation of temperature anomalies 

along the subpolar front is tightly related to the change of Dew which controls 

the northward heat transport; the westward propagation of temperature 

anomalies in the subpolar gyre is crucial to the transition of Dns which 

controls the changes of the eastward NAC transport. This result provides 

encouraging support to results drawn from less complex models (e. g., Huck 

and Vallis 2001; Te Raa and Dijkstra 2002, 2003).

5.2.4 Interaction between water masses 

The interaction between the UW and the LSW are tightly related to the 

interdecadal variability of the MOC. The mean thickness and current patterns 

at 47m and 1525m are plotted in Fig. 5.6.  

The UW originates from the warm subtropics (Fig. 5.6a). It has two branches 

in the subtropical North Atlantic, the Azores Current and the NAC which 

leaves the coast southeast of the Grand Banks and turns eastward. The UW 

loses heat to the overlying atmosphere on its way along the subpolar gyre and 

becomes heavier and denser. This cooling process is crucial to the 

preconditioning of the LSW (McCartney and Talley 1982; Curry and 

McCartney 2001). Note that the LSW outcrops in central Irminger Sea and 
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central Labrador Basin where the UW is not present, thus the UW is confined 

only within the boundary region. 

The simulated LSW spreads over the entire subpolar basin (Fig. 5.6b). It splits 

into two branches at the exit of the Labrador Basin near Newfoundland, one 

along the deep western boundary corresponding to the classical Deep Western 

Boundary Current (DWBC), and the other entering the eastern North Atlantic 

basin. The latter splits into two parts, one returning to the subpolar gyre and 

the other turning southward from both sides of the Middle Atlantic Ridge 

(MAR), which can be seen clearly from the integrated transport over the LSW 

layer (not shown). It has been suggested that the interaction between the LSW 

and the NAC near the crossover (where the LSW flows below the NAC) 

might provide a source for low frequency variability (Spall et al. 1996 a, b). 

The simulated two pathways of the LSW, one along the DWBC and the other 

entering the eastern North Atlantic, are consistent with observational data (e.g., 

Schott et al. 2004). However, compared to the observations (Schott et al. 

2004), the branch entering the eastern North Atlantic travels too far eastward 

in our model. This is a common shortcoming of coarse resolution models.  
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Fig.5.9a: regression coefficient of upper water thickness (shade, Units: m/Sv) and velocity 

at 47m (vector, Units: cm/s / Sv) onto the MOC index. Positive lags (at the lower right 

corner) mean the MOC index leading. 
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Fig.5.9b: same as Fig. 5.9a but for the LSW layer and velocity at 1525m. 
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The thickness of the UW and LSW layer are regressed onto the MOC index 

(Fig. 5.9a). The UW thickness anomalies (Fig. 5.9a) have a similar spatial 

pattern to the temperature anomalies (Fig. 5.4a): at lag -15, the UW expands 

in the Labrador basin and along the subpolar front where the warm anomalies 

prevail. The UW then experiences thinning from lag -15 to lag 0 (Fig. 5.9a) 

when cold anomalies resume control over the subpolar basin and the subpolar 

front region (Fig. 5.4a). The warm (cold) anomalies along the subpolar front 

are surrounded by anticyclonic (cyclonic) current anomalies.  

The changes in the LSW (Fig. 5.9b) are of opposite sign to the one in the UW 

layer: expanding UW vs. thinning LSW, and anticyclonic (cyclonic) current 

anomalies in the UW layer vs. cyclonic (anticyclonic) anomalies in the LSW 

layer across the subpolar front, consistent with the picture shown in Fig. 5.8. 

This tight connection between the LSW and the UW thickness is suggested 

associated with the changes in the obduction rate (Haines and Old 2005). 

There are also associated changes in the LSW branch returning southward 

through both sides of the MAR: at lag -15 when the LSW thins across the 

subpolar front, more water goes via the eastern side of the MAR and less 

water via the western side of the MAR, indicated by the southwestward 

current anomalies east to the MAR and northeastward current anomalies west 

to the MAR. 

We notice that the thickness anomalies are enhanced along the subpolar front 

(Fig. 5.9a), consistent with the enhanced temperature anomalies along the 

subpolar front (Fig. 5.4a). This enhancement is a result of local ocean 

dynamics, which is discussed in the following section (section 5.2.5). 

It is important to point out that the transition from anticyclonic to cyclonic 

anomalies in the barotropic streamfunction from lag -10 to lag -5 (Fig. 5.4b) 

can be clearly seen by the reversed direction (from southward to northward) of 

the current anomalies near British Islands (Fig. 5.9a). This reversal of the 
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direction of the current anomalies corresponds to the transition of Dew from 

its positive to negative phase (Fig. 5.5), which leads to the release of the warm 

anomalies into the subpolar basin (Fig. 5.4a).  

In summary, water masses interaction in the subpolar gyre is involved on 

interdecadal scales: when the surface subpolar gyre experiences cooling 

(warming), the UW layer experiences thinning (expanding) and the LSW 

expands (thins). The temperature and water mass thickness anomalies are 

enhanced along the subpolar front. 

5.2.5 Ocean dynamics along the subpolar front 

One noticeable feature in Fig. 5.4a and Fig. 5.9 is that temperature and 

thickness anomalies of both the UW and the LSW layer are enhanced along 

the subpolar front. This is contributed by the varying production of the LSW 

and the resulting current adjustment near its upper and lower boundary. For 

instance, during weak MOC, the LSW layer becomes thinner as a result of 

reduced deep water formation. It appears near the ‘crossover’ with lowering of 

the UW-LSW interface and the upward shoaling of the lower LSW boundary 

(denoted by the black dashed line at lag -15, Fig. 5.8). Changes in the slopes 

of the interfaces result in an anomalous anticyclone near the UW-LSW 

interface and an anomalous cyclone near the lower LSW boundary. The warm 

anomalies accompanied with reduced LSW formation are enhanced by 

entrainment of warm water from the warm NAC, and at the same time, being 

isolated from mixing with cold subpolar water by the anticyclone. Thus the 

strong north-south temperature gradient across the subpolar front favors the 

amplification of the LSW temperature anomalies. 

The current anomalies generated in the lower LSW are of comparable 

amplitude to the mean speed at this depth (0-1 cm/s, Fig. 5.7 and Fig 5.9b) 

and hence very important in determining the eastward propagation of 
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temperature anomalies observed in the upper ocean (Fig. 5.4a), consequently 

the transition of the east-west density gradient.  

The lower current anomalies are also important in influencing the preferred 

pathway of the LSW. An anomalous cyclone reduces mass transport from the 

western side of the MAR and consequently more water take the path from the 

eastern side of the MAR (Fig. 5.9b, at lag -15). In contrast, when an 

anomalous anticyclone is generated to compensate the cold-core cyclone in 

the upper ocean, it spins more water to the western side of the MAR (Fig. 5.9b, 

at lag 0). 

5.2.6 Roles of the GIN Sea 

In experiment CLIM, the Denmark Strait overflow exhibits considerable 30-yr 

oscillation (Fig. 5.10). To evaluate whether the oscillation of the MOC can be 

traced back to the overflow changes, one additional experiment 

CLIM_RESTGIN is designed. The ocean-only model is driven with 

climatology surface fluxes as in CLIM, but the temperature and salinity in the 

GIN Sea are restored to their 3-d climatological fields. In this manner, the 

variability of the overflows is suppressed according to the hydraulic theory 

(Whitehead et al. 1974; Whitehead 1989; Nikolopoulos et al. 2003). At the 

same time, the pathway of temperature anomalies through the GIN Sea 

entering the Labrador Sea is blocked. This experiment starts from the ocean 

condition at the end of year 708 from CPL and is ~ 950 years long. The last 

560 years are shown (Fig. 5.11). 
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With the 3-d temperature and salinity restoring in the GIN Sea, the MOC 

index has a mean of 18.5 Sv, ~ 3 Sv larger than CLIM (not shown). The 

simulated interdecadal variability is of comparable amplitude to that in CLIM 

(Fig. 5.11). The associated temperature anomalies resemble those in CLIM 

(not shown). This suggests that the changes in the overflows are not essential 

for the IDV of the MOC as long as the dynamics in the subpolar basin 

including the subpolar front area is allowed to evolve freely.  
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Fig.5.10: Time series of the Denmark Strait overflow and the zonally averaged 

streamfunction at 60 N and 40 N in CLIM (Sv). An 11-yr running mean is applied. The 

blue, red and green lines denote the mass transport carried by Denmark Strait overflow, 

the zonally averaged streamfunction at 960m but at 60 N and 40 N respectively. 
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At the end, one thing to note is that in CLIM there is an out-of-phase relation 

in the deep convection between the Labrador Sea and the GIN Sea (Fig. 5.12). 

This is due to different advection time it takes the temperature anomalies to 

occupy the two basins. This result suggests that the ocean is able to contribute 

to the out-of-phase behavior in the deep convection between the GIN Sea and 

the Labrador Sea, which is a supplement of the results of Dickson et al. (1993). 

They find that the NAO minimum increases the accession of freshwater 

surface water to the Labrador Sea while minimizing its winter storminess and 

cyclonic circulation leading to the reduced winter heat-loss and suppressed 

convection. However, the NAO minimum leads to enhanced ventilation in the 

GIN Sea. Thus they suggest that the NAO is responsible for the out-of-phase 

between the deep convection in the GIN Sea and the Labrador Sea.  

Fig. 5.11: time series of the anomaly of the MOC index from CLIM and 

CLIM_RESTGIN. Thick lines are the 11-yr running mean of the corresponding thin lines. 
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5.2.7 Interdecadal Variability in the South Atlantic 

We have shown the interdecadal variability of the MOC as a geostrophic 

advective process with active interaction between different water masses. We 

notice that the associated temperature anomalies are confined to north of 30

N, however, the associated MOC anomalies spread to the whole Atlantic basin, 

with a variation center at 3000m deep, 30 S (not shown). This involves the 

interaction between the North Atlantic Deep Water (NADW) and the Antarctic 

Bottom Water (AABW) through the up- and down-ward displacement of the 

NADW-AABW interface (Fig. 5.13): strong NADW is accompanied by 

downward displacement of the interface, indicating weakening of the AABW, 

and vice versa. This provides evidence that the low frequency variability of 

the NADW has an impact on the AABW by the up- and down-ward 

displacement of the AABW-NADW interface. This result is reminiscent of 

those of Yin et al. (1992). They use a four-box ocean model to investigate the 

interaction between the deep water masses and find that changes in the 

formation rate of a deep-water source alter cross-isopycnal flows, especially 

along the related circulation route, thus altering the extent that the other 

Fig. 5.12: time-lag correlation between the MLD in the GIN Sea and the Labrador Sea 

onto the MOC index in CLIM.  
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source can travel before they detrain significantly. 

5.3. Interdecadal Variability in RAND 

Interdecadal oscillation exists also in RAND, with bigger amplitude 

(Chapter-4, Fig. 4.7). To show that the same mechanism of the IDV found in 

CLIM also works in RAND, the same analyses are done with RAND. Some 

results are shown in Fig. 5.14-16 for comparison.  
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Fig. 5.13: a) anomaly of the depth of zero-meridional streamfunction at 30S (red line) in 

CLIM and b) its correlation with the MOC index. The black line in a) is the MOC index, 

referred to the left y-axis, while the depth change is referred to the right y-axis. An 11-yr 

running mean is applied. 
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Fig. 5.14: same as Fig. 5.1 but for RAND 

Fig. 5.14 shows that density anomalies lead the MOC variation by a few years; 

temperature dominates the density anomalies; salinity plays against thermal 

effects. The density anomalies and its thermal part lead the MOC index by 

about 5 years, slightly different from those in CLIM (Fig. 5.1). 

The strengthening of the MOC from lag -15 to lag 0 is accompanied by cold 

and fresh anomalies taking over the Labrador Sea (Fig. 5.15). The large-scale 

density gradients (Fig. 5.16) show a similar behavior as in CLIM, not 

discussed in detail here. Thus the IDV in experiment RAND shares the same 

physical characteristics as the one in CLIM and is related to changes in the 

large-scale density gradients and the oceanic adjustment through geostrophic 

processes.  
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Fig. 5.15: same as Fig. 5.3 but for RAND 



Chapter 5  Interdecadal variability as an ocean internal mode 

- 91 - 

Fig. 5.16: same as Fig.5.5 but for RAND 

5.4. Summary and discussions 

We present in this chapter the interdecadal variability of the MOC as an ocean 

internal mode, controlled by geostrophic processes. The IDV is related to the 

generation and removal of east-west density anomalies induced by 

temperature anomalies and increasing and decreasing of the northward heat 

transport which leads to weakening and strengthening of the deep convection 

in the deep water formation sites. Salinity changes oppose the temperature 

effects but play a subordinate role. This result provides an encouraging 

support to results from less complex models (e. g., Te Raa and Dijkstra 2002, 

2003).

The IDV can be divided into a slow and a fast advection process besides the 

deep convection process in the Labrador Basin. The ‘fast advection process’ is 

related to the propagation of temperature anomalies from the eastern North 

Atlantic subtropics to the Labrador Basin, which are mainly carried by the 

surface current (~ upper 600m, not shown). In this process, the UW thickness 

changes out of phase with the LSW thickness. These thickness changes of the 
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UW and LSW are most likely associated with the temperature-induced 

circulation changes which lead to changes in the obduction from the LSW to 

the UW, as suggested by Haines and Old (2005). Further investigation of these 

connections is needed to fully understand the causal links.  

The ‘slow advection’ corresponds to the process in which the temperature 

anomalies carried by the LSW join the NAC from east of Newfoundland and 

continue eastward. It takes approximately 4 years for the LSW-related 

temperature anomalies to reach east of Newfoundland, suggested by the time 

lag of maximum of Dew behind the minimum Dns (Fig. 5.5). The withdrawal 

of the temperature anomalies out of the Labrador Sea corresponds to changes 

in the north-south density gradient; their eastward propagation along the 

subpolar front determines the phase of the east-west density gradient. The 

temperature anomalies at the surface in Fig. 5.4a are a manifestation of the 

temperature anomalies in the deep LSW layer, thus the time scale of the 

surface temperature anomalies is determined by the slow movement of the 

lower LSW. This process is also observed in Hadley Centre coupled climate 

model (Cooper and Gordon 2002).  

The interaction between the LSW and the NAC along the subpolar front is 

tightly related to the current anomalies which control the anomalous 

northward heat transport. For instance, from lag -15 to lag -5, warm anomalies 

accumulating near the eastern boundary of the North Atlantic induce 

anticyclonic current anomalies (Fig. 5.9a). During this period the current 

anomalies near the British Islands direct southward, which suggests reduced 

northward heat transport and accounts for the large-scale cooling in the 

subpolar gyre (Fig. 5.4). When the cold anomalies carried by the LSW reach 

the eastern boundary of the North Atlantic at around lag -5, the induced 

cyclonic current anomalies tend to direct northward the accumulated warm 

anomalies from the eastern subtropics, leading to the spreading of warm 
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signals in the subpolar gyre (Fig. 5.4a at lag 0).  

The NAC responds to the varying thickness of the LSW by shifting 

north-/south-ward. This shifting has been observed in reality: Hátún et al. 

(2005) have noticed that the shift of the subpolar frontal zone is associated 

with changes of the northward salinity transport by the NAC which finally 

influences the intensity of the thermohaline circulation. As suggested by our 

results and previous studies (Spall et al.,1996a, b; Haines and Old, 2005), this 

swing of the subpolar frontal zone may reflect the interaction, mixing and 

transformation between the NAC and the LSW. Whether this interaction exists 

in reality needs to be further verified. However, our result suggests the 

possibility that information of the state of the MOC may be deduced from the 

knowledge of the water mass characteristics near the subpolar frontal zone 

which can be easily observed. 

The current anomalies in the lower depth of the LSW along the subpolar front 

have a potential to influence the preferred pathway of the southward LSW. 

Corresponding to the anomalous cyclone (anticyclone) at the lower LSW layer, 

less (more) water is spun to the western part of the MAR (Fig. 5.9b). Though 

the simulated pathway of the LSW in our model is far too eastward, it does 

not hinder the same mechanism from taking effects in more realistic 

circumstances, such as near the Grand Banks where the deep water splits into 

one branch moving southward along the western boundary and the other 

branch entering the eastern North Atlantic basin (Fischer and Schott 2002). 

The presence of the same mechanism in the ocean model driven by stochastic 

atmospheric forcing reveals that the IDV of the MOC is quite robust. Our 

results also indicate that though ocean dynamics in the subpolar gyre is 

responsible for sustaining the interdecadal signal, the ocean can transmit the 

oscillatory signal to other ocean basins through the displacement of the water 

mass interfaces. As suggested by Yin et al. (1992), this interaction between 
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two deep water sources may feedback to the thermocline circulation and the 

cross equatorial transports. This interaction may be related to Kelvin wave 

propagation (Johnson and Marshall 2002), which is not well resolved in our 

coarse-resolution integrations and remains an interesting aspect for further 

studies.

On the other hand, we acknowledge that the experiment we analyzed is an 

ideal integration without variability of the atmospheric forcing and 

atmosphere-ocean coupling. We know from chapter 4 that there are other 

physical mode(s) in the fully coupled model. Thus one concern is how much 

this interdecadal signal remains in a fully coupled run. This requires 

understanding about whether and how different physical modes interact which 

may give hints about different climate regimes (Raible et al. 2003).  
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6.1 Introduction 

Observational studies show that the North Atlantic sea surface temperature 

(SST) exhibits substantial interannual to multidecadal variability (e.g., Bjerknes 

1964; Deser and Blackmon 1993; Kushnir 1994; Hansen and Bezdek 1996; 

Sutton and Allen 1997; Delworth and Mann 2000; Czaja and Marshall 2001). 

These SST variations are associated with the North Atlantic Oscillation (NAO) 

and changes of the heat and moisture transport, as well as storm tracks over the 

North Atlantic (see reviews by Marshall et al. 2001; Hurrell et al. 2003; Czaja et 

al. 2003).  

On interannual time scales, the SST variation is driven by NAO-like 

atmospheric variability (e.g., Bjerknes 1964; Battisti et al. 1995; Delworth 1996; 

Marshall et al. 2001; Visbeck et al. 2003). However, on decadal to multidecadal 

time scales, the SST variation is closely associated with ocean dynamics (e.g., 

Kushnir 1994; Hansen and Bezdek 1996; Latif and Barnett 1996; Sutton and 

Allen 1997; Halliwell 1998; Visbeck et al. 1998; Eden and Willebrand 2001; 

Eden and Jung 2001; Latif et al. 2004), and feeds back to the atmospheric 

circulation (Rodwell and Folland 2002; and Czaja and Frankignoul 2002).  

The NAO actively couples with the Thermohaline Circulation (THC). 

Timmermann et al. (1998) reproduce a 35-yr oscillation in the northern 

hemisphere. The strengthening of the MOC is accompanied by enhanced 

northward heat transport tending to strengthen the NAO, which leads to the 

generation of negative sea surface salinity (SSS) anomalies off Newfoundland 

and east of Greenland by influencing the surface freshwater fluxes. These SSS 

anomalies weaken the deep convection in the ocean sinking regions and 

subsequently the strength of the THC, thus completing the cycle.  

Eden and Greatbatch (2003) reproduce a coupled damped decadal oscillation 
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using a realistic North Atlantic Ocean model driven with NAO-related surface 

heat fluxes and wind stress anomalies. The subpolar gyre loses more heat 

during positive NAO leading to enhanced deep convection. This process works 

as a fast positive feedback. The delayed negative feedback involves the 

increased heat transport into the subpolar gyre due to strengthened Meridional 

Overturning Circulation (MOC); the consequent warming in the subpolar gyre 

tends to weaken the deep convection in the Labrador Sea. The positive feedback 

turns out to be necessary to distinguish the coupled oscillation from that in a 

model without an influence from the ocean to the atmosphere. Dong and Sutton 

(2005) suggest that a 25-yr oscillation of the MOC is forced by the 

NAO-related atmosphere pattern while the time scale is set by the ocean. The 

NAO affects the MOC by changing the strength of the ocean gyre and by 

directly forcing the region of active deep convection.  

The coupling between the ocean gyre and the NAO can also generate a North 

Atlantic decadal oscillation (e.g., Wu and Liu 2005). The time scale and phase 

transition of the oscillation is set by the ocean dynamics. They argue that the 

atmospheric forcing can drive SST patterns similar to those in the fully coupled 

atmosphere-ocean model, but fails to generate any preferred decadal time scale. 

The low frequency variability in the North Atlantic has significant impacts not 

only on the Atlantic region but rather on a global scale (e. g., Mysak et al. 1990; 

Schlesinger and Ramankutty 1994; Robertson et al. 2000; Raible et al. 2001; 

Latif 2001; Hoerling et al. 2001; Ogi et al 2004; Dong and Sutton 2005). 

Moreover, the other ocean-basins may not only passively respond to the low 

frequency variability in the North Atlantic, but can also actively interact with 

and hence affect the variability in the North Atlantic. An example of such 

cross-basin exchange is the tropical region which has been shown closely 

related to the state of the MOC (Latif et al. 2000; Schmittner et al. 2000; 

Hoerling et al. 2001). The North Pacific is suggested to respond passively to the 
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low frequency variability in the North Atlantic (e. g., Schlesinger and 

Ramankutty 1994; Ogi et al. 2004), but it may play an active role, as suggested 

by Wu and Liu (2005), who find that the low frequency variability in the North 

Atlantic is greatly weakened when the impact of the Pacific is eliminated.  

Therefore, it is still not clear how the atmosphere and the North Atlantic Ocean 

are coupled on low frequencies. How other ocean basins are involved is even 

more elusive. Further studies are required to understand the mechanism.  

In this work, we analyze the fully coupled atmosphere-ocean global circulation 

model - ECHAM5/MPIOM which exhibits two oscillations with time scales of 

25-40 years and 45-80 years, termed as IDV and MDV respectively. The IDV 

exists as an ocean internal mode and is discussed in chapter 5. In this chapter, 

we focus on the air-sea coupled mode MDV.  

This chapter is organized as follows: section 6.2 describes the relative role of 

salinity and temperature in the Labrador Sea. Section 6.3 discusses the role of 

ocean dynamics and the air-sea coupling in generating the MDV. Section 6.4 

presents results on the multidecadal variability in the North Pacific which is 

teleconnected with the North Atlantic via an atmospheric bridge, described by 

the Arctic Oscillation. The chapter is ended with a summary and discussions in 

section 6.5. 

6.2 Role of salinity and temperature 

It is anticipated that fluctuations of the MOC are related to changes in the 

density, temperature and salinity structure of the North Atlantic. This relation is 

investigated by calculating linear regressions of the time series of density, 

thermal- and haline-components of density onto the multidecadal component of 

the MOC index in the Labrador Basin at grid points where the mean MLD in 

March exceeds 1200m. These regressions are calculated at various lags in order 
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to provide an evolution picture as the MOC varies.  

To highlight the multidecadal variability, a high-pass filter is applied to the 

MOC index with a cut-off frequency 100 yrs, then variability with period 

shorter than 40 yrs are subtracted from it to remove the high frequency 

component and the interdecadal variability. Therefore the regression patterns 

are anomalies associated with multidecadal variability of the MOC.  

The regression coefficients are averaged horizontally over the selected ocean 

domain and vertically over the whole water column, shown in Fig. 6.1. The 

corresponding density anomalies lead the MOC by 15 years, suggesting that the 

density anomalies drive the MOC changes. Temperature contributes positively 

to the density anomalies, and salinity plays an opposite role.  

However, the relative contribution of temperature and salinity varies with depth. 

Shown in Fig 6.2 are the corresponding regression coefficients averaged 

Fig. 6.1: regression coefficients between various quantities and the time series of the MOC 

index at 30 N in CPL (kg/m3 / Sv). Blue, red, and green lines denote the regression of 

potential density, its haline and thermal part onto the MOC index. Reference depth is at 

2000 m. Regression coefficients were averaged horizontally over the region where the 

mean MLD in March is larger than 1200m in the Labrador Sea and vertically over the 

whole water column.  

MOC leading 
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vertically over the upper 150m in the same region. The density anomalies near 

the surface are contributed almost solely by salinity changes which leads the 

MOC also by 15 years. To illustrate the vertical structure of the density 

anomalies, the regression coefficients are averaged horizontally over the same 

region, shown in Fig. 6.3. The density anomalies are enhanced near the surface. 

In the upper 150m, positive (negative) density anomalies are associated with 

warm and saline (cold and fresh) anomalies, while in the intermediate depth 

(between 150m to 2200m), they are associated with cold and fresh (warm and 

saline) anomalies. Therefore, both temperature and salinity field have a 

baroclinic structure; salinity dominates the density changes near the surface, 

and temperature dominates in the intermediate depth.  

The baroclinic structure in temperature and salinity field is a characteristic of 

deep convection: strong mixing brings down relatively denser water which is 

generally cold and fresh and at the same time moves up relatively lighter deep 

water which is relatively warm and saline. Thus the surface layer in the deep 

convection sites gains heat and salinity from deeper water; this heat gain will be 

consumed through heat loss to the atmosphere and oceanic advection, as will be 

shown later (Fig. 6.8b). The baroclinic structure is also present on interdecadal 

time scales but less clear in temperature field (Fig. 5.2); in stead, the surface 

temperature field on the interdecadal time scales shows only slightly weaker 

Fig. 6.2: the same as fig 6.1 but the regression coefficients are averaged over the upper 

150m in the selected region. 

MOC leading 
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Fig. 6.3: time-lag regression of density in the LAB onto the multidecadal MOC index 

(Unit: kg/m3 /Sv). Density (a) is divided into its b) thermal and c) haline part. The 

regression coefficients are calculated as in Fig. 6.1 at each grid point but averaged 

horizontally. Positive lags mean the MOC leading.  

signals compared to the deeper layer, which is due to the weaker surface heat 

loss given constant climatological surface heat fluxes in experiment CLIM than 

in a fully coupled case.  

6.3 Mechanism of the Multidecadal Variability 

The water mass characteristics in Labrador Sea are subject to changes in the 

following processes: the local air-sea exchange, deep convection; and nonlocal 

ocean dynamics. Dynamics of the subpolar gyre are tightly related with these 

processes above (Curry and McCartney 2001; Hátún et al. 2005) and are 

particularly important. 

In this section we are going to show that the temperature anomalies in the 

intermediate depths in the Labrador Sea are associated with ocean dynamics, 

however, the dominant saline contribution to density anomalies near the surface 

reveals an important role of the air-sea coupling. 

6.3.1 Geostrophic balance 

On interdecadal time scales, the MOC variation is highly correlated with 

horizontal density gradients. To evaluate whether this geostrophic relation holds 
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on multidecadal scales, north-south and east-west density gradient, Dns and 

Dew, are calculated in the same way as in chapter 5 (refer to chapter 5 for 

details). The density gradients are correlated onto the MOC index (Fig. 6.4); the 

associated changes in the meridional mass, heat, and salinity transport in the 

Atlantic are shown in Fig. 6.5. Heat transport through a north-south section 

across the NAC is regressed onto the multidecadal MOC index to capture the 

variation in the zonal transport (Fig. 6.6). Refer to chapter 5 for the location of 

the section and its mean temperature and u-velocity structure (Fig. 5.6-7). 

When Dns leads the MOC by 12 years, they have maximum correlation; and 

when the MOC leads by 17 years, they have the minimum correlation. Dew has 

a minimum correlation coefficient with the MOC when it leads the MOC by 9 

years and a maximum coefficient when the MOC leads by 17 years. The 

maximum Dns slightly leads the minimum Dew by 3 ~ years. 

The MOC recovers to its maximum from lag -25 to lag 0 (Fig. 6.5a) in response 

to cooling between 45 N and 75 N in the upper 2500m (Fig. 6.5b) which is 

partly counteracted by fresh anomalies (Fig. 6.5c). The maximum Dns near lag 

-15 (Fig. 6.4) corresponds to the penetration of the cold and fresh anomalies 

down to 3000m (Fig. 6.5b). At lag 0 warm anomalies appear near the surface 

between 45 N and 60 N which then become stronger and lead to weakening of 

the MOC (Fig. 6.5b). 

MOC leading 

Fig. 6.4: as Fig. 5.5 but for the coupled integration (CPL). 
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Fig. 6.5: Regression between various quantities with the multidecadal MOC index: 

zonally averaged a) streamfunction (Sv), b) temperature ( C) and c) salinity (psu). Linear 

detrending and an 11-yr running mean are applied before regression calculation. 

a b c
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Fig. 6.6: Time-lag regression of heat transport through the section (defined in Fig. 5.6) 

onto the multidecadal MOC index (Unit: 0.001PW / Sv). The section goes from north to 

south from 1…8. The x-axis interval does not correspond to the real distance between the 

selected points. Numbers at the lower right corners indicate the lead-lag information, 

positive values meaning the MOC leading. 
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From lag -25 to lag 0, the NAC-related heat transport is in its positive phase 

(Fig. 6.6), with the maximum at lag -15 when Dns is at its maximum (Fig. 6.4). 

During the same period, the eastward transport of the subpolar water weakens. 

This suggests that the section is controlled by an anomalous cyclone, which is 

limited to the upper 1700m. An anomalous anticyclone is present below 1700m, 

seen clearly at lag -5 (Fig. 6.6). From lag 0 to lag 30, the condition is reversed: 

the section is controlled by an anomalous anticyclone in the upper 1700m and 

an anomalous cyclone below. The whole cycle is completed. The corresponding 

mass transport pattern has a very similar pattern, suggesting that this pattern is 

associated with anomalous u-velocity.  

The current anomalies in the upper 1700 m at this section is associated with the 

cold (warm) anomalies carried by the newly formed deep water in the Labrador 

Sea, as shown in Fig. 6.7. At lag -25, cold anomalies first appear south of 

Iceland; later the cold anomalies spread to the Labrador Basin. At lag -15, the 

cold anomalies occupy the whole subpolar gyre (Fig. 6.7), corresponding to the 

maximum Dns at this time (Fig. 6.4). From lag -15 to lag 0, the cold anomalies 

move into the subtropics while warm anomalies appear in the northern subpolar 

gyre. Warm anomalies near Portugal at lag -5 (Fig.6.7) are related to changes of 

the Mediterranean Overflow. At lag 0, warm anomalies enter the Labrador basin 

from east of Greenland; cold anomalies have taken control of the whole 

subtropical basin. At lag 5, the Labrador Basin is fully occupied by warm 

anomalies and become stronger with time leading to the minimum Dns at lag 

-15 (Fig. 6.4). At lag 20, the warm anomalies spread to the subtropics via both 

sides of the Middle Atlantic Ridge.  
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In summary, the MOC variation on multidecadal time scale is tightly related to 

the horizontal density gradients. The recovery of the MOC (from lag -25 to lag 

Fig. 6.7: regression coefficients of temperature anomalies at 1525m onto the multidecadal 

MOC index at lag -30, -25, -15, -10,-5, 0, 5, 10, 15 and 20 (unit: C/Sv). Time lags are 

shown at the lower corner of each panel. Positive lags mean the MOC leading.  
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0, Fig.6.5a) is accompanied by cooling in the deep convection sites. These cold 

anomalies penetrate to greater depth (Fig. 6.5b, from lag -25 to lag -15) leading 

to increased Dns (Fig.6.4); when the cold anomalies move out of the convection 

center (Fig. 6.5b and Fig. 6.7, from lag -15 to lag 0), Dns weakens (Fig. 6.4). 

The increasing and the following decreasing of Dns leads to strengthening and 

weakening of the eastward NAC transport (Fig. 6.6), revealing the geostrophic 

nature. The newly formed LSW moving out of the Labrador Sea to east of 

Newfoundland within ~ 3 years, connects the changes of Dns with the ones of 

Dew. The following eastward propagation along the subpolar front sets the 

rhythm of the Dew which controls the meridional heat and mass transport. 

When the temperature anomalies move eastward along the subpolar front, they 

are surrounded by anomalous current anomalies. This process bears similar 

characteristics to the ones related to the interdecadal oscillation of the MOC 

discussed in chapter 5, thus not discussed detailed here. The results above 

suggest that the MDV of the MOC is associated with a geostrophic advective 

process.  

6.3.2 Role of the atmosphere 

In this section, we investigate how the air-sea coupling influences the 

near-surface salinity anomalies in the Labrador Sea. First, to evaluate what 

contributes to the near-surface salinity anomalies in the Labrador Sea, the 

freshwater budget is calculated; then presented are the results about how the 

atmosphere and ocean are coupled on multidecadal time scales. All the 

atmosphere data analyzed start from year 400; the SLP record is 600 years long 

whereas other records are only 574 years long due to damage in data storage. 

When linear regression is calculated between the atmospheric variables and the 

multidecadal MOC index, the MOC index is cut to the same length as the 

corresponding atmospheric variable. 
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i. What contributes to the near-surface salinity anomalies in the 

Labrador Sea? 

The following factors affect the surface salinity in the Labrador basin: 

freshwater exchanges with the overlying atmosphere, ocean advection bringing 

water masses originated from the subtropics or the Arctic, and communication 

with the deep ocean via convection and downwelling. To investigate which 

process is responsible for the near-surface salinity change in the Labrador Sea, 

we calculate the freshwater budget over the region with the strongest 

convection in the Labrador Sea (not shown, a bit larger than the region 

considered for regression calculations in section 6.2 for the upper 100m. The 

freshwater storage is defined by 

dzdxdySSSFWC refref /)(

Where refS  is the reference salinity, here taken as refS = 35.14. The budget 

equation describing the freshwater storage change term is given in a simplified 

form by  

diffusion
fluxessurface

boundariestheallfromfluxesadvectiveFWCt

The term on the left side of the equation (1), tFWC , corresponds to the time 

derivative of the freshwater storage, denoted as ‘DFWCDT’ in Fig. 6.8a; on the 

right side, the first term is the advective fluxes (both lateral and vertical, 

denoted as ‘ADV’); the second is the freshwater input through the surface 

freshwater fluxes, denoted as ‘PEM’; and the third is the diffusion term, 

represented as the residue of other three terms, denoted as ‘RDU’. The time 

series of these four terms are shown in Fig. 6.8a. The freshwater storage in this 

box is also shown as the blue line. The heat budget is calculated in the same 

way, i. e., heat content change equals to the input from the ocean advective, 

(1)
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surface heat fluxes, and diffusion term, termed as DHCDT, ADV, FLUM, and 

RDU in Fig. 6.8b. 

The surface freshwater fluxes are a freshwater source (with a positive sign in 

Fig. 6.8a); and the ocean advects freshwater away from the selected box. While 

the RDU term and the advective term exhibit considerable low frequency 

Fig. 6.8: a). Time series of the freshwater budget terms for the upper 100m in a box in the 

Labrador Sea (unit: m3/s, left axis): advective term (ADV, green line, sum of lateral and 

vertical advection at the bottom), surface freshwater fluxes (PEM, red line), freshwater 

storage change (DFWCDT, gray line), and the diffusion term calculated as the residue, 

denoted as ‘RDU’ (Unit: m3/s). b). same as a) but for heat budget (left axis, unit: W).Blue 

lines in a) and b) (follow right y-axis) are the freshwater content (unit: m3) and detrended 

mean MLD averaged in the Labrador Sea where the mean MLD in March is larger than 

1200m (unit: m) respectively. 

a

b
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variability, the surface freshwater fluxes remain relatively stable. The diffusion 

term is almost in phase with the freshwater content, but out-of-phase with the 

advective term. The heat budget shows that the heat source is the diffusion term 

which is balanced by ocean advective term and surface heat fluxes which move 

heat away from the selected box (Fig. 6.8b). The heat gain through the diffusion 

term is almost in phase with deep convection events indicated by the mixed 

layer depth, but out-of-phase with the surface heat fluxes. In other words, 

enhanced (weakened) deep convection is associated with increased (reduced) 

heat gain through the diffusion term and increased (reduced) heat loss through 

surface heat fluxes. 

It is reasonable to assume that the diffusion term is mainly determined by deep 

convection (vertical mixing) in the Labrador Basin. Therefore, Fig. 6.8 shows 

such a picture: increased surface heat loss leads to strong deep convection, 

which is responsible for increased heat and salinity gain from the deep ocean. 

This process is accompanied by reduced salinity input through ocean advection.  

ii. Air-sea interaction 

We show in this section what leads to the strong surface heat loss and enhances 

deep convection in the Labrador Sea. Because surface heat fluxes are tightly 

related to the atmospheric circulation pattern, to obtain a large-scale picture, 

time-lag linear regressions are calculated between various atmospheric 

variables, SST and the multidecadal MOC index. The mean SLP and surface 

wind stress are shown in Fig. 6.9 and the regressions are shown in Fig. 6.10-14. 

For brevity, pictures from lag -30 to lag 0 when the MOC evolves from its 

minimum to its maximum are shown. For the opposite half of the oscillation, 

the associated ocean conditions are with opposite signs. 

The subpolar low is centered south of Greenland and extends northward to the 

southern part of the GIN Sea (Fig. 6.9). The subtropical high is centered near 
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the Sahara. Thus strong southwestlies prevail in the North Atlantic between 40

N and 60 N.  

The associated SLP pattern (Fig 6.10) shows an east-west dipole structure at lag 

-30, with low pressure overlying the Labrador Basin and high pressure centered 

in the GIN Sea. From lag -30 to lag -15, the low pressure becomes even lower 

when it moves over Greenland while the high pressure becomes even higher 

and shifts to the Azores region. At lag -15, the SLP anomalies resemble a 

positive NAO pattern. From lag -15 to lag 0, the high pressure center shifts to 

east of Newfoundland and the Labrador Basin; the low pressure shifts from 

Greenland to the GIN Sea. Half of one multidecadal cycle is completed.  

Fig. 6.9: mean wintertime SLP and surface wind stress (unit: hPa) 
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The spatial pattern of the SLP anomalies has some correspondence to the SST 

Fig. 6.10: regression coefficients of the SST (shade) and the SLP (contour) onto the 

multidecadal MOC index (Unit: C/Sv and Pa /Sv). Before the regression, linear trend is 

removed from the SST and SLP, and then an 11-yr running mean is applied.  
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anomalies: when cold anomalies intrude into the eastern subpolar gyre resulting 

from the weakened NAC heat transport (Fig. 6.10, at lag -30), the Labrador Sea 

is still occupied by warm SST anomalies. Therefore, an east-west SST gradient 

is formed, corresponding to the east-west dipole SLP pattern. When the cold 

anomalies occupy the Labrador Sea, warming takes place south of the NAC 

route (south of 48 N) resulting from the enhanced NAC heat transport (e. g., at 

lag -15) and a north-south temperature gradient across the NAC is built up 

which favors a NAO-like SLP pattern. The following process in which the 

warm anomalies move to the Labrador Sea while the subtropics still 

experiences warming weakens the north-south temperature gradient and the 

SLP pattern changes accordingly. 

The strong impact of the North Atlantic SST anomalies upon the atmospheric 

SLP anomalies on ‘interdecadal’ time scales has been suggested independently 

by Wohlleben and Weaver (1995). They show that the SST anomalies in the 

vicinity of the Labrador Sea are important in modulating the north-south 

temperature gradient across the Gulf Stream and hence the atmospheric 

baroclinic zone, the accompanying jet stream, and the frequency of the 

baroclinic eddies or storms. Because the atmospheric eddies are the main carrier 

of the atmospheric northward heat transport, they are very important for the 

SLP field. The relation between the SST and the SLP (Fig. 6.10) is supportive 

of their results. We also find that the negative correlation between the SLP and 

the SST (warm anomalies vs. negative SLP anomalies and vice versa) is 

stronger on the multidecadal time scale than on shorter time scales (not shown).  

The wind stress anomalies associated with the SLP pattern are of great 

importance to the strength of the ocean gyres. For example, at lag -30, the 

Labrador Sea is under a positive wind stress curl and the GIN Sea is under a 

negative wind stress curl (Fig. 6.11~12). The positive wind stress curl over the 

Labrador Sea reaches its maximum between lag -15 to lag -10 with its center 
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over Greenland. As a result, the cyclonic gyre in the Labrador Sea speeds up 

leading to more domed pycnocline and consequently stronger heat loss (Fig. 

6.13), which leads to enhanced deep convection in the Labrador Sea, thus cold 

and fresh anomalies sink down and relatively warm and salty deep water are 

brought up to the surface, reflected by the near-surface warm and salty 

anomalies (Fig. 6.3, 6.8).  

Fig. 6.11: regression coefficients of wind stress (unit: Pa /Sv) onto the MOC index.  
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Fig. 6.12: regression coefficients of wind stress curl (thin line, unit: 1e-8* N/m3 /Sv) and 

the barotropic streamfunction (shaded, unit: Sv /Sv) onto the multidecadal MOC index. 

The thick lines are the mean barotropic streamfunction at every 15 Sv.  
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We notice that the subtropics are also affected by the anomalous wind stress: 

from lag -30 to lag 0, part of the subtropical gyre speeds up in response to the 

negative wind stress curl, mainly along the NAC route (Fig. 6.12). Therefore, 

the subtropical gyre carries more warm anomalies back to low latitudes leading 

to the large-scale warming in the subtropical gyre from lag -15 to lag 0 (Fig. 

6.13). In experiment CLIM, this interaction between the wind stress and the 

ocean gyres is missing, which explains why the NAC-related SST anomalies 

Fig. 6.13: regression coefficients of SST (unit: C /Sv) and the surface heat fluxes (unit: 

w/m2 /Sv) onto the multidecadal MOC index. Positive surface heat fluxes mean 

anomalous heat gain from the atmosphere. 
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are confined along the subpolar front and accumulate in the eastern subtropics 

in experiment CLIM (Fig. 5.4). This interaction also contributes to the longer 

time scale of the MDV, because it takes longer to build up the east-west density 

gradient since in the coupled run the ocean gyres are more efficient to move the 

temperature anomalies away from the subpolar front. 

Fig. 6.14: regression coefficients of SSS (shaded, unit: psu /Sv) and the surface freshwater 

fluxes (contour, unit: 10-10m/s /Sv) onto the multidecadal MOC index. Positive freshwater 

fluxes mean anomalous water gain from the atmosphere. 
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Besides directly forcing the ocean gyre and the deep convection sites, the 

forced atmospheric circulation anomalies are also actively involved in the 

preconditioning process. For instance, the warm and saline anomalies are 

accompanied by negative surface heat and freshwater fluxes (Fig. 6.13-14), 

indicating that the atmosphere tends to damp the surface temperature anomalies 

but enhance the surface salinity anomalies. Thus the upstream of the deep water 

becomes less warm and more saline. Considering the dominant role of 

temperature in determining density anomalies, the atmosphere acts to weaken 

the ensuing weakening tendency of the MOC associated with the warm and 

saline anomalies.  

In summary, ocean dynamics are responsible for the MOC variation on 

multidecadal scales by adjusting the north-south and east-west temperature 

gradients; salinity plays against thermal effects. Distinguished from the ocean 

self-sustained interdecadal variability (IDV, chapter 5), the MDV shows a clear 

fingerprint of the air-sea coupling: the atmospheric circulation anomalies, 

which is forced by underlying SST anomalies, enhance the tendency of cooling 

(warming) in the deep convection sites by speeding-up (slowing-down) the 

cyclonic gyre in the Labrador Sea via wind stress curl and surface heat fluxes 

and hence intensifying the strengthening (weakening) tendency of the deep 

convection. In other words, the variability of the deep convection in the 

Labrador Sea is amplified by the air-sea coupling. As a result, salinity 

dominates density anomalies near the surface, which enhances the integrated 

density anomalies and is critical to a significant MDV mode. 

The air-sea coupling also accounts for the longer-time scale of MDV relative to 

IDV. On both inter- and multi-decadal time scales, the ocean sets the time scale. 

The key process is the built-up of the horizontal density gradient. In the fully 

coupled model, the ocean is more efficient to move the temperature (density) 

anomalies away from the subpolar front and hence it takes longer to build up 
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the east-west density gradient. The north-south density gradient depends largely 

on the density anomalies in the Labrador Sea. Temperature still dominates the 

density changes in the coupled case, but the thermal contribution is weakened 

due to atmospheric damping in the preconditioning process in which salinity 

anomalies are enhanced. The net effect is the density anomalies (integrated over 

the upper 2000m) with reduced amplitude compared to the ones in IDV 

(compare Fig 6.1 and Fig. 5.1), which explains the longer time needed to build 

up the north-south density gradient. 

6.4 Multidecadal variability in the North Pacific 

One interesting phenomenon is that the North Pacific exhibits also considerable 

multidecadal variability in the temperature and salinity field (Fig. 6.15) which 

is not present in experiments RAND and CLIM. Strengthening of the MOC is 

followed by warm and saline anomalies in the North Pacific. The change in the 

North Atlantic must somehow project onto the North Pacific.  

Fig. 6.15: time series of the MOC index (black line, right y-axis, unit: Sv) and the 

depth-time plot of the temperature (upper panel, unit: C) and salinity (lower panel) 

anomalies in the Pacific averaged over the range between 45N and 60N, east of 180E. 

Linear trend is first removed and then a 21-yr running mean is applied. 
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6.4.1 Heat budget analysis 

The heat budget is calculated for the upper 100m in the area 20 N – 60 N, 124

E – 153 E (Fig. 6.16). The advective heat transport into the box comes from 

the southern boundary, which is mainly contributed by the Kuroshio Current 

(KC) (‘SOUTH’), from the eastern boundary (‘EAST’) and the bottom of the 

box (‘VERT’). The diffusion term is calculated as the residue of all other terms. 

The KC-related advection is the main heat source (Fig. 6.16a). The diffusion 

term (RDU) and the vertical advection (VERT) also input heat into the selected 

box. The exchanges through the eastern boundary and the surface heat fluxes 

(‘FLUM’) tend to cool the box (negative sign in Fig. 6.16a).  

Horizontal advective terms, the surface heat fluxes and the residue term are 

regressed onto the heat content (Fig. 6.16b). The vertical advection term shows 

similar tendency as the advection term through the eastern boundary but with 

weaker amplitude and is not shown.  

Fig. 6.16: a) heat budget in the upper 100m between 24 N-60 N, 124 E-153 E (unit: W,, 

positive values mean the box gains heat): advective heat transport through the southern 

(‘SOUTH’), eastern (‘EAST’) and bottom (‘VERT’) boundary; surface heat fluxes 

(‘FLUM’), and the diffusion term calculated as the residue from all other terms (‘RDU’). 

b) Time-lag regression of several terms against the heat content (unit: W/J). A 21 years 

running mean is applied in a). In b), all time series are filtered by 31 years running mean 

and high-passed with a cut-off frequency 100 yrs. Positive lags mean the heat content 

leading. 

a b
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Maximum heat content at lag 0 is contributed by the KC-related advection and 

the diffusion term, but is damped by surface heat fluxes and the heat release 

from the eastern boundary. We assume that the diffusion term is dominated by 

the KC-related strong eddy mixing; thus changes of the KC transport are 

responsible for the heat content change in the Kuroshio Extension Region; the 

surface heat fluxes respond to, rather than drive the heat content anomalies. 

This result is consistent with the results of Kelly and Dong (2004) in which they 

found the heat content anomalies near the Kuroshio region lead to changes of 

the surface heat fluxes.  

6.4.2 Atmospheric role in the North Pacific 

To investigate the changes in the North Pacific, linear regressions are calculated 

between various variables and the MOC index (Fig. 6.18-21). The mean SLP 

and the wind stress pattern are shown in Fig. 6.17 for comparison. 

There are two permanent low pressure centers, one in northwestern corner of 

the North Pacific and the other near Alaska (Fig. 6.17). The subtropical high is 

located near 30 N, 130 W. 

The western North Pacific is covered by cold anomalies and an enhanced 

Aleutian Low controls the North Pacific at lag -30 (Fig. 6.18). While positive 

SLP anomalies gradually occupy the North Pacific, the cold anomalies move 

Fig. 6.17: mean wintertime SLP and surface wind stress in the North Pacific (unit: hPa) 
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eastward and turn to a southwest direction after reaching the North America 

coast, which eventually reach the western equatorial region and spread eastward. 

Warm anomalies appear near 40 N at lag -20. These warm anomalies develop 

and spread to the northern North Pacific at lag 0. 

Fig. 6.18: same as Fig. 6.10 but for the North Pacific 
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Fig. 6.19: same as Fig. 6.11 but for the North Pacific 
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Fig. 6.20: same as Fig. 6.12 but for the North Pacific. 
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The associated wind stress leads to shifting of the gyre and changes in the north 

ward heat transport by the KC. At lag -30, the anomalous wind stress pattern 

(Fig. 6.19) shows a positive wind curl between 30 N and 40 N and a negative 

Fig. 6.21: same as Fig. 6.13 but for the North Pacific 
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wind stress curl between 40 N and 60 N (Fig. 6.20), which leads to an 

anomalous cyclone near the Kuroshio Extension Region (KER) and an 

anomalous anticyclone near the southern boundary of the subtropical gyre. This 

corresponds to a southward shift of the gyre and reduced northward heat 

transport by the KC which is responsible for the cold anomalies in the northern 

North Pacific. From lag -20 to lag 0, the KER is under a negative wind stress 

curl (Fig. 6.20), leading to the northward shift of the gyre and consequently 

enhanced northward heat transport by the Kuroshio Current, consistent with the 

prevailing warm anomalies. The important role of wind stress changes in 

affecting the horizontal heat transport in the Kuroshio Extension region has also 

been noted by previous studies (e. g., Kelly and Dong 2004).  

The surface heat fluxes tend to damp the temperature anomalies in the North 

Pacific due to the varying northward heat transport of the KC (Fig. 6.21). For 

example, at lag -30, when the cold anomalies prevail in the North Pacific, there 

is anomalous oceanic heat gain near 40 N. When the warm anomalies develop 

at lag -15, anomalous heat loss appear and tends to damp the warm anomalies.  

It is noteworthy that considerable variations take place also in the equatorial 

ocean circulation (Fig. 6.20) and surface temperature field (Fig. 6.21). 

Therefore the North Atlantic multidecadal variability has a potential to 

influence the equatorial Pacific region, suggesting that it may interact with 

ENSO events on multidecadal time scales. 

6.4.3 Atmosphere bridge 

One question arises: how the North Atlantic and the North Pacific are connected? 

The importance of wind stress to the ocean adjustment in the North Pacific 

highlights the atmospheric role. This connection is most likely associated with 

the prominent atmosphere mode  the Arctic Oscillation (AO) or Annular 

Mode.
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Some studies argue that the AO may be a statistical artifact whereas the NAO 

bears a physical meaning (e. g. Ambaum et al. 2001), while others think the 

NAO is a regional manifestation of a hemispheric-wide pattern of variability 

referred to as the AO or the annular mode (Thompson and Wallace 1998; 

Thompson et al. 2000). The associated difficulty is that a close correlation 

between the Aleutian Low and the NAO is not always clear (Deser 2000), 

Ambaum et al. 2001 and Itoh 2002).  

To evaluate the relation between the NAO, AO and the Aleutian Low, EOF 

analysis is calculated for the wintertime SLP field in the North Atlantic, the 

northern hemisphere (0-90 N), and the North Pacific (120 E-100 W, 20 N-60

N) respectively (Fig. 6.22). The wintertime SLP is the seasonal mean over 

December, January and February.  

The NAO shows one sign of SLP anomalies over the Greenland and the 

opposite sign in the North Atlantic centered near the Mediterranean Region (Fig. 

6.22a). The Arctic Oscillation shows anomalies of one sign over the Arctic and 

Greenland and an opposite sign in the North Atlantic and the North Pacific (Fig. 

6.22b). The Aleutian Low appears as a monopole over the North Pacific (Fig. 

6.22c). These three modes account for 68%, 58%, and 40% of the respective 

total variance.  

The maximum correlation between the AO and the NAO is 0.95 and the 

correlation between the Aleutian Low and the NAO is about 0.5. Both exceed 

95% confidence level (not shown). The weaker correlation between Aleutian 

Low index and the NAO index may be due to the contamination by other 

variability that is antisymmetric over the North Pacific and the North Atlantic, 

such as Pacific North America teleconnection (Wallace and Thompson 2002). 

Thus on multidecadal scales, changes of the NAO, AO and the Aleutian Low 

are closely related, which acts as an atmospheric bridge connecting the North 

Pacific with the North Atlantic. 
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The AO index (Fig. 6.22d) shows concentrated energy centered at 60 years and 

16 years. We believe the 60-yr variability corresponds to the multidecadal 

coupled mode; the 16-yr variability has been found in previous studies and may 

be related to meandering of the Gulf Stream and the local air-sea coupling 

(Czaja and Marshall 2001). In comparison with the MOC wavelet plot (Fig. 

4.4b), the AO index shows less energy near 30 yr supporting the ocean internal 

feature of this interdecadal variability. 
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6.5 Summary and discussions 

We have presented the multidecadal variability of the MOC as an air-sea 

coupled mode. The nature of this oscillation consists of the following 

ingredients:

1) The oscillation mechanism is due to the geostrophic response of the 

meridional and zonal overturning to propagation of the temperature 

anomalies along the subpolar front and the cyclonic subpolar gyre. Thus the 

time scale is set by the ocean.  

2) The associated SST anomalies forces anomalous atmospheric circulation 

with a similar spatial pattern. These atmospheric circulations directly force 

the subpolar gyre through the wind stress and surface heat fluxes in the 

Labrador Basin and affect the deep convection. This coupling increases the 

haline contribution near the surface to density anomalies which enhance the 

thermal effects in intermediate depth and hence act as a positive feedback. 

The SST anomalies transfer the spatial pattern to the atmosphere. Note that this 

spatial pattern is not a standing wave pattern of the NAO. The SST anomalies 

first appear near the subpolar front region due to the varying NAC transport and 

propagate to the eastern subpolar gyre and the GIN Sea first which leads to an 

east-west dipole SLP pattern. When the temperature anomalies move westward 

and occupy the Labrador Basin while south of the NAC is occupied by SST 

anomalies with an opposite sign, north-south dipole SST anomalies form and 

Fig. 6.22: the first EOF for the SLP in a) the North Atlantic (‘NAO’), b) the Northern 

Hemisphere (‘AO’), and c) the North Pacific (20 N-60 N) (‘Aleu’). They account for 

68%, 58%, and 40% of the respective total variance. d) The leading PCs. The black, red, 

green lines correspond to the one of NAO, AO, and Aleu.5 years running mean is applied. 

e) Wavelet analysis of the AO.  
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excite a NAO-like atmospheric pattern. 

The ocean dynamics in 1) is basically similar to the one associated with the 

interdecadal variability of the MOC (chapter 5), consistent with results from 

less complex models by Te Raa and Dijkstra (2002). This process is associated 

with temperature anomalies. However, in the Labrador Sea, near-surface 

salinity resulting from deep convection contributes positively to enhancing the 

thermal effects in the intermediate depths. This haline contribution is amplified 

by the air-sea coupling, which is critical to the existence of a significant MDV 

mode. The contribution of the surface freshwater fluxes is negligible. This is 

different from the results of Timmermann et al. (1998) in which the NAO 

changes the surface salinity anomalies in the deep convection sites via surface 

freshwater fluxes.  

The Aleutian Low is closely related to the anomalous atmospheric circulation in 

the North Atlantic, which can be described by the Antarctic Oscillation. 

Through this atmospheric bridge, the multidecadal oscillation of the MOC 

influences the North Pacific mainly through the wind stress changes which 

leads to variation of the Kuroshio Current transport and consequently heat 

content in the upper ocean in the northern North Pacific. At the same time, the 

atmosphere damps the heat content anomalies through surface heat fluxes. It is 

important to note that considerable changes are observed in the equatorial 

Pacific region. This indicates that the MDV has a potential to influence ENSO. 
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Summary and syntheses 

In this thesis, the variability of the Meridional Overturning Circulation is 

investigated, particularly focusing on the variability on inter- to multi-decadal 

time scales. 

In chapter 3, a general view of the variability of the MOC is investigated using 

two state-of-the-art numerical GCMs: ECHAM5/MPIOM and GFDL CM2.1. 

This work is initiated by the ongoing discussion about the spectral 

characteristics of the MOC. So far, a general picture of the MOC spectrum 

hasn’t been achieved yet. It has been assumed to follow the red-noise spectrum 

(von Storch et al., 2000), with increasing spectrum toward low frequency 

shown as f -2 power law scaling which levels off at low frequencies due to 

negative feedbacks in the system. Although it has been reported that in a 

different model the MOC shows power law scaling with  1 up to millennia 

(Blender et al. 2006), the discrepancy on the MOC spectral behavior hasn’t 

attracted enough attention.  

We find that the ECHAM5/MPIOM and GFDL show similar MOC spectral 

behaviors. In the North Atlantic, the MOC spectrum is featured as white noise 

from months to years and from decades to centuries which are separated by f -1

power-law scaling from years to decades. However, this f -1 power law scaling 

extends up to centuries in a coarse-resolution simulation of ECHAM5/MPIOM.  

Chapter 4-6 focus on investigating the physical mechanism of the variability of 

the MOC on inter-to-multidecadal time scales. Chapter 4 shows that there are 

two oscillations coexisting in the fully coupled atmosphere-ocean-sea-ice 

system: the interdecadal variability (IDV, from 20-45 years) and the 

multidecadal variability (MDV, from 45 to 80 years). The IDV exists in the 

ocean-only model driven by climatological month-to-month surface fluxes, thus 
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it is an ocean internal mode; the MDV can only exist with the presence of the 

air-sea coupling. There are indications of possible interactions between IDV 

and MDV so that when IDV is stronger, MDV tends to be damped and vice 

versa.  

Chapter 5 shows that IDV is associated with large-scale horizontal density 

gradients in the ocean. Temperature dominates density changes, and the 

propagation of temperature anomalies along the subpolar front and in the 

subpolar gyre leads to changes in the east-west and north-south density 

gradients which in turn control the variation of the meridional and zonal 

streamfunction. We find that along the subpolar front it is the LSW at 

intermediate depth which eventually controls the speed of the temperature 

anomalies and sets the time scale of the east-west density gradient transition. 

The similarity between the IDV in MPIOM and the ocean-internal mode in less 

complex models (Te Raa and Dijkstra, 2002, 2003) suggests that the 

ocean-internal IDV is quite robust. 

Chapter 6 shows MDV as an air-sea coupled mode. Similar to IDV, MDV is 

also associated with changes in east-west and north-south density gradients and 

consequently the adjustment of the meridional and zonal streamfunction. 

However, to obtain a significant spectral MDV peak, the air-sea coupling, more 

specifically, the fast response of the gyre in the Labrador Sea to the anomalous 

wind stress, is necessary. Lack of this coupling explains the absence of MDV in 

experiment RAND. The importance of this fast wind driven positive feedback 

has also been noted by Eden and Greatbatch (2003) as a unique characteristic of 

a coupled oscillation.  

In summary, we investigated the spectral scaling and periodicities of the 

simulated MOC. We find that two modern models show more often f -1 power 

law scaling from years to decades, instead of f -2 associated with the Lorentzian

spectrum. Furthermore, this f -1 power law scaling may extend up to centuries as 
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simulated by a coarse-resolution simulation of ECHAM5/MPIOM. It is not 

clear whether the f -1 power-law scaling is unique to the two models analyzed 

here, therefore, analyses with other models are planned in future studies. The 

other concern is what leads to the difference between the two simulations with 

ECHAM5/MPIOM. In further studies three factors will be considered: 

resolution, cloud scheme, and the feedback of ocean currents on wind stress, 

which distinguish the two simulations of ECHAM5/MPIOM.  

Our results call for caution when the AR (1) process is assumed as the 

background noise and used as the significance test to identify ‘significant’ peaks. 

As is shown in chapter 4, the spectral energy of the MDV, an important part of 

the power-law scaling, is enhanced by the air-sea coupling, which suggests that 

the presence of the power law scaling may depend largely on how well the 

models simulate a ‘right’ interaction between different components. This aspect 

should be considered to test the model performance. 

We find IDV and MDV coexisting in the climate system. This result provides a 

new explanation to the wide-spread time scales associated with the ‘Atlantic 

Multidecadal Oscillation’ in observational data; the various time scales may 

correspond to different physical modes in the system. We think that the 

relatively short runs in previous studies prohibited a clear separation between 

different modes. For example, Delworth and Greabatch (2000) have noticed 

that the ‘multidecadal’ oscillation had different time scales in their fully coupled 

model and their ocean-only experiment with stochastic atmospheric forcing 

(‘RANDOM’). However, it was difficult to test whether the period shift was 

statistically significant due to the limited length of the integrations (400 yrs). 

Therefore, in future studies analyses should be conducted with longer runs.  

Our analyses on the ocean internal mode are based on the ocean-only 

experiment driven by climatological forcing. This idealized experiment set-up 

determines that it is not easy to make a direct comparison between our 
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interdecadal mode and observational data, if available. But a nice element in 

this study is that changes in the meridional and zonal streamfunction can be 

related to changes in the vertically integrated east-west and north-south density 

gradients on both inter- and multi-decadal time scales. This motivates 

observation of the horizontal density gradients over a long time scale from 

which, according to our studies, the state of the ocean circulation can be derived. 

The mechanism proposed can be verified by comparing the derived state of the 

ocean circulation with reconstructed MOC state using observational data (Baehr, 

2006).

One concern is that in our studies temperature dominates density changes: near 

the surface salinity enhances temperature-contributed density anomalies, as a 

consequence of deep convection; but in intermediate depth, it works against 

thermal effects. However, salinity can turn out to be the dominant factor in 

determining density changes. For example, Timmermann et al. (1998) identified 

a 35-yr oscillation as an air-sea coupled mode in which salinity associated with 

surface freshwater input controls the weakening and strengthening of the MOC. 

If salinity dominates density changes, the oscillation will be different from what 

we have found. Therefore, the relative role of temperature and salinity needs to 

be evaluated in observational data.  

Our studies show that the changes in the North Atlantic may have large impact 

on the North Pacific through the atmosphere bridge which can be described by 

the Antarctic Oscillation. On the other hand, Wu and Liu (2005) suggested that 

the North Pacific can impact the North Atlantic climate variability substantially. 

Moreover, considerable changes are observed in the equatorial Pacific region, 

suggesting the North Atlantic variability has a potential to interact with ENSO 

at low frequencies. Therefore, climate modes dominating in each basin may be 

interlinked. This interlinking can be achieved through ocean wave adjustments 

(Timmermann et al. 2005), or/and through the atmosphere.  
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One shortcoming of our studies is that we consider only linear aspects which 

can not explain why when IDV is stronger MDV tends to be weaker and vice 

versa (Fig. 4.4b). This alternate dominance of different physical modes may 

contribute to different climate regimes (Raible et al. 2001, 2004). How to 

analyze the nonlinear climate system will remain a big challenge in the near 

future. 
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