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ABSTRACT

Tropical cyclones have been investigated in a T159 version of the MPI ECHAM5 climate model using a novel technique

to diagnose the evolution of the three-dimensional vorticity structure of tropical cyclones, including their full life cycle

from weak initial vortices to their possible extra-tropical transition. Results have been compared with re-analyses [the

European Centre for Medium-Range Weather Forecasts (ECMWF) 40-yr Re-analysis (ERA40) and Japanese 25 yr

re-analysis (JRA25)] and observed tropical storms during the period 1978–1999 for the Northern Hemisphere. There is

no indication of any trend in the number or intensity of tropical storms during this period in ECHAM5 or in re-analyses

but there are distinct inter-annual variations. The storms simulated by ECHAM5 are realistic both in space and time, but

the model and even more so the re-analyses, underestimate the intensities of the most intense storms (in terms of their

maximum wind speeds). There is an indication of a response to El Niño-Southern Oscillation (ENSO) with a smaller

number of Atlantic storms during El Niño in agreement with previous studies.

The global divergence circulation responds to El Niño by setting up a large-scale convergence flow, with the centre

over the central Pacific with enhanced subsidence over the tropical Atlantic. At the same time there is an increase in

the vertical wind shear in the region of the tropical Atlantic where tropical storms normally develop. There is a good

correspondence between the model and ERA40 except that the divergence circulation is somewhat stronger in the model.

The model underestimates storms in the Atlantic but tends to overestimate them in the Western Pacific and in the North

Indian Ocean.

It is suggested that the overestimation of storms in the Pacific by the model is related to an overly strong response

to the tropical Pacific sea surface temperature (SST) anomalies. The overestimation in the North Indian Ocean is likely

to be due to an over prediction in the intensity of monsoon depressions, which are then classified as intense tropical

storms. Nevertheless, overall results are encouraging and will further contribute to increased confidence in simulating

intense tropical storms with high-resolution climate models.

1. Introduction

In a recent paper by Bengtsson et al. (2006) it was shown

that the Max Planck Institute (MPI) coupled climate model

ECHAM5/MPI-OM was capable of realistically reproducing the

geographical distribution of transient tropical and extra-tropical

atmospheric eddies. The results compared well with those us-

ing the European Centre for Medium-Range Weather Fore-

casts (ECMWF) 40-yr Re-analysis (ERA40) data (Uppala et al.,

2005). Results showed that there was a comparatively small

change between the present climate and a future climate at the

end of the present century, based on the Intergovernmental Panel
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on Climate Change (IPCC) Special Report on Emission Scenar-

ios (SRES) scenario A1B (Nakicenovic et al., 2000), with respect

to the total number and intensities of vortices on a global scale.

However, significant changes were found regionally, such as an

indication of a pole-ward trend of the extra-tropical eddies and

a marked sensitivity to El Niño-Southern Oscillation (ENSO) of

the transient tropical eddies.

General circulation models (GCM) have convincingly demon-

strated that they can generate distinct warm core eddies which

can be interpreted as tropical storms or at least as onset vortices

required to initiate an organized tropical storm or a hurricane,

(Henderson-Sellers et al., 1998). Here we use the term tropical

cyclone to refer to intense storms in any ocean basin. Similarly,

global operational forecasting systems, such as at ECMWF, the

United Kingdom Met Office, National Centers for Environmen-

tal Prediction (NCEP) and the Japan Meteorological Agency
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(JMA) are making steady improvements in predicting tropical

cyclone trajectories while generally underestimating their inten-

sity (e.g. DeMaria et al., 2005). The dominant reason for this

appears to be insufficient horizontal resolution of present oper-

ational models (Bender and Ginis, 2000) but presumably also

the handling of convective processes in the models (Shen et al.,

2006a).

Because of the enormous social and economic impact of trop-

ical cyclones, it is of the utmost importance to explore how credi-

ble the model generated storms are. If we can establish measures

of credibility of model-generated storms in the present climate,

it will provide important support for assessing the credibility of

model generated storms in a future climate. The past approach to

identifying tropical eddies in an extended model run over a pe-

riod of many years has been to use specific selection criteria with

respect to the intensity and structure of the storms as well as their

lifetime. Such selection criteria typically include 850 hpa vor-

ticity, surface pressure, maximum surface wind speed and a well

defined warm core identified from the temperature anomalies

at several levels through the troposphere. Most of the selection

criteria used follow those suggested by Bengtsson et al. (1995).

A summary of past selection criteria can be found in Chauvin

et al. (2006). Studies based on these selection criteria generally

only identify and track the storms when these selection criteria

are satisfied, which results in the early and latter stages of the

storms lifecycle being excluded, although the tracks can be ex-

tended forwards and backwards in time (Camargo and Zebiak,

2002). We will take a different approach here to capture the full

storm lifecycle from a tropical onset vortex to possible extra-

tropical transition.

Most previous studies have used comparatively coarse reso-

lutions, typically T42 or equivalent [Broccoli and Manabe, 1990

(R30), Haarsma et al., 1993 (R30), Camargo and Zebiak, 2002

(T42) and references therein], although Bengtsson et al. (1995,

1996) and Sugi et al. (2002) have used data from model integra-

tions at a higher spectral resolution of triangular truncation 106

(T106). More recently, there have been a few studies exploring

the capability of global models, integrated at much higher reso-

lutions, in predicting and simulating tropical cyclones. These in-

clude prediction studies, for example, Ohfuchi et al. (2004) who

used a resolution of 10 km and Shen et al. (2006a, b) who used

a resolution of 1/4 and 1/8 of a degree. It also includes climate

simulation experiments, such as Chauvin et al. (2006), who used

a spectral transform resolution of T319, and Oouchi et al. (2006)

who used a resolution of 20 km. The results of the high-resolution

GCM experiments confirm the experience gained from high res-

olution limited area models (Bengtsson et al., 1997; Knutson and

Tuleya, 2004) that given sufficient horizontal resolution, models

are increasingly capable of reproducing the detailed structure of

circulation and intensity typical of tropical cyclones.

The purpose of this study is to introduce a new approach for

objectively identifying tropical cyclones in gridded data sets,

based on a simpler set of identification criteria, and then to use

this to study the performance of the atmosphere only ECHAM5

model in multidecadal integrations at horizontal resolutions of

T159. This will act as a prequel to a study of the impact of climate

change on tropical cyclones at a range of resolutions using the

same model, to be reported in a second publication (Bengtsson

et al., 2007). We will employ the notation Tropical Cyclones

(TC), as opposed to the term Hurricane Type Vortices (HTV) as

used in previous studies (Bengtsson et al., 1995, Chauvin et al.,

2006), since storms are identified throughout the tropics. It is left

to the context as to whether TC is singular or plural.

Here we investigate a T159 experiment using observed sea

surface temperatures (SST) that are practically identical to those

used in ERA 40. We compare the model generated storms with

assimilated TC in re-analyses and with observed tropical cy-

clones obtained as the ‘best track’ data for each ocean basin

produced by the international warning centres (see Klotzback,

2006). We restrict the study of the TC to the Northern Hemi-

sphere (NH) but search for TC through the whole year. In order

to identify TC we employ a new search method making use of

the full three-dimensional (3-D) structure of the eddies. We track

the eddies during their full life cycle, from their generation to

their decay as extra-tropical eddies. As the time resolution of

the model and re-analyses databases is 6 hr, and the same cri-

teria are used to identify the TC in the model and re-analyses,

this allows a detailed intercomparison to be made between the

model and the recent re-analyses of ERA40 and the Japanese 25

yr re-analysis (JRA25) (Onogi et al., 2005). We also compare

the model TC with the observed tropical cyclones, though be-

cause different criteria are used for identification of the observed

tropical cyclones this comparison is more problematic. In par-

ticular, since we use the intensity and structure of the vorticity

field to identify the TC it is a problem to compare the TC with

actual tropical cyclones as identified by the Tropical Warning

Centers (TWC) since vorticity is not an easily observed quan-

tity. However, there is a close relation between the maximum

wind speed and the maximum vorticity in both the re-analysis

data and ECHAM5, which can be used as a basis for comparing

with the observed TC. As well as the differences in identifica-

tion between the method used here and operationally there are

also differences in how particular quantities are measured. For

example, wind speeds as a measure of intensity of the storms, are

often measured differently by the different TWC, i.e. one minute

sustained winds or 10 minute sustained surface winds, where as

for our model data, we only have data every 6 hr which may be

seen to represent averaged conditions of the order of 30 min and

typical for an area of some 100 km. Hence, the comparison with

the best tracks from the TWCs should be seen as tentative only

and mainly qualitative.

The scientific objectives of the study are as follows:

(1) To identify what are the systematic differences between

TC in the model experiment, in the re-analyses and the observed
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TC including their structure and behaviour and their distribution

in time and space.

(2) To determine what are the likely causes of the differences

between the model simulated TC and the TC in the re-analyses

and observations.

(3) To explore whether the model can reproduce interannual

variations of the TC and the likely causes for this variation.

2. The model, experiments and data

The model used to produce the data for this study is the same as

that used in the study of Bengtsson et al. (2006) and described

by Roeckner et al. (2003), where further details can be obtained.

The sensitivity of this model to horizontal and vertical resolu-

tion has previously been explored by Roeckner et al. (2006).

This is a spectral model and for the data used here it has been

run in atmosphere only mode at spectral resolution of triangular

truncation 159 with 31 levels in the vertical (T159L31), using

the observed SST’s for the period 1978–1999, based on the At-

mospheric Model Intercomparison Project, version 2 (AMIP2)

protocol (WGNE, 1996). The results from the AMIP2 experi-

ment are contrasted with those from the recent re-analyses of

ERA40 (Uppala et al., 2005) and JRA25 (Onogi et al., 2005)

for the same period. Both ERA40 and JRA25 assimilate histori-

cal observations with a GCM using modern Numerical Weather

Prediction systems. Both are based on spectral models and both

use (3-D) data assimilation (3-D Var.). ERA40 is integrated at

a horizontal spectral resolution of T159 with 61 levels in the

vertical (T159L61), i.e. the same horizontal resolution as the

AMIP2, ECHAM5 experiment, where as the JRA25 re-analysis

is integrated at the lower resolution of T106 with 40 levels in the

vertical (T106L40). Both use the direct assimilation of satellite

radiances. Both the re-analyses and model data are available six

hourly. The model experiment and re-analyses are also compared

with the observed tropical storms over the period obtained as best

track data produced by the Tropical Warning Centers (TWC) for

each ocean basin and obtained from NCAR Data Support Sec-

tion (http://dss.ucar.edu). Throughout the paper, the main com-

parisons will be made between ERA40, ECHAM5 and the obser-

vations with a short contrast between ERA40 and JRA25 being

left till the end.

3. Tracking methodology and TC identification

The initial identification and tracking closely follows that used

for the study of Thorncroft and Hodges (2001) and also used

in other studies of easterly wave and tropical cyclone activity

(Hodges et al., 2003, Bengtsson et al., 2006). This identifies

tropical vortices in the NH as maxima in the 850 hPa relative

vorticity field, available every 6 hr, with values greater than 0.5×
10−5 s−1 at a spectral resolution of T42. Relative vorticity is used

since it focuses on smaller spatial scales than other fields, such

as pressure, and is hence a better indicator of tropical vortices.

The reduced resolution is used to remove the very small subsyn-

optic spatial scales which can result in multiple vorticity centres

and centres associated with subsynoptic phenomena which can

lead to tracking errors. To capture as much of the TC lifecycle

as possible, the region explored covers the whole of the tropics

from the equator and extended to the extra-tropics at 60◦N. At

this stage no discrimination is made between TC and other syn-

optic systems, every system that satisfies the identification and

tracking criteria are obtained. All vortices are retained that have

lifetimes greater than 2 d for further analysis. There is no restric-

tion on the displacement distance of the vortices. Although, this

approach entails identifying and tracking a lot of systems, many

of which are not TC it does ensure that we capture as much of

the TC lifetimes as possible.

Since we want to use the vertical structure of the vortices to

identify those with a warm core structure and to explore the im-

pact of resolution on the properties of the TC, all the available

tracks are referenced to other fields and levels using the follow-

ing procedure. To identify the vortices with warm core structures,

we reference the available tracks to the vorticity field at the 850,

600, 500, 400, 300 and 250 hPa levels at a resolution of T63. This

is done in an iterative way by starting at 850 hPa and using the

T42 maxima as initial starting points for a steepest ascent max-

imization of the T63 850 hPa field interpolated using B-splines.

The 850 hPa maxima are then used as starting points for the

maximization at 600 hPa and so on up to 250 hPa. Additionally,

the same procedure is used to obtain properties along the tracks,

at the full resolution, of the 850 hPa vorticity, 925 hPa maximum

wind speed and the minimum pressure (steepest descent). The

max/minimization is performed within a 5◦ geodesic radius for

the vorticity and pressure and 6◦ geodesic radius for the winds.

Both the position and the intensity values of the new max/min

are stored. If a maxima or minima cannot be found, the value at

the T42 centre is computed and stored and the positional values

are tagged with a missing value. For the vertical structure, the

T63 resolution is used since this is the lowest resolution data

we have for our resolution studies, it also helps in providing a

smoother picture of the vertical structure than at the full reso-

lution, although in principle, the full resolution could be used.

For resolution studies it helps in the comparison to perform the

identification at a common resolution.

The criteria used to identify the TC are as follows:-

(1) Lifetime ≥ 2 d (8 time steps).

(2) Cyclogenesis, defined by first identification, must occur

in (0, 20) N over land and (0–30) N over oceans.

(3) The maximum T63 intensity of relative vorticity at 850

hPa during the lifetime ≥ ξ I for some chosen value of ξ I.

(4) There must be a T63 vorticity maxima at each level up to

250 hPa and the difference in vorticity between 850 hPa and 250

hPa (850–250) ≥ ξV for some chosen value of ξV. This implies

a warm core.

(5) Criteria 3 and 4 must be achieved for at least n consecu-

tive time steps.
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Table 1. Calibration of parameters for TC identification based on

ECMWF operational analyses and observed storms from Tropical

Warning Centers

All Hurricanes,

tropical typhoons,

cyclones cyclones >33 ms−1 (6, 6, 4) (10, 6, 4) (12, 6, 4)

2003 75 33 69 48 39

2004 72 36 78 52 41

2005 80 38 82 62 48

As can be seen, this is a simpler set of criteria that has been

used in previous studies although several fields/levels are used.

All that is required is the choice of values for the triplet (ξ I, ξV,

n). This requires calibration against observed tropical cyclones.

Note, both criteria 3 and 4 could also be applied at full resolu-

tion, but would require a re-calibration. We have performed the

calibration for 3 yr of ECMWF operational analyses for 2003,

2004 and 2005 as this is considered the best available homo-

geneous data set dependent on observations. Table 1 shows the

results for several choices of the triplet compared with best track

data from the TWC. From this, the triplet (6, 6, 4) was chosen as

the best compromise for identifying the TC at this resolution. To

illustrate the methodology, the tracks for the very active Atlantic

year of 2005 are shown in Fig. 1 for the (6, 6, 4) and (12, 6, 4)

selection criteria together with the individual track and further

information for hurricane Katrina.

Figure 1 shows that the tracking and identification scheme is

performing well identifying nearly all the observed TC. In addi-

tion, the specific example of hurricane Katrina is shown (Fig. 1c),

which shows the whole track from first identification in the trop-

ics at 2005/08/20:18, which is 2 d before it was first identified as

a tropical depression, and into the mid-latitudes where it decays.

The total lifetime is ∼20 d which is 12 d longer than the best

track data, other storms have even larger differences depending

on how long they take to grow and how far into the mid-latitudes

they go. Comparing the track of Katrina in ERA40 with that of

the observed track (not shown) shows that the two tracks are

almost identical, in particular when the storm is classified as a

hurricane. Figure 1d, e and f show the T63 vertical structure of

Katrina, the dependence of the intensity (for vorticity) on reso-

lution and the corresponding sea level pressure and maximum

winds at full resolution, respectively, compared with those ob-

served. Note, the differences in resolution have been obtained by

spectral truncation and not new re-analyses. The vertical struc-

ture shows the typical growth of a tropical cyclone with a strong

gradient in vorticity, in particular between 500 and 250 hPa where

the warm core is situated. This gradient can be seen to weaken

and in fact reverse as the storm goes extra-tropical and attains a

cold core before disappearing. The intensity, in terms of the vor-

ticity shows a significant sensitivity to the resolution of the data

with a large difference between the T63 and T159 resolutions

and then an increase in going from T159 to T511 though perhaps

not as dramatic as from T63 to T159, apart from the first ‘spike’

that occurs at day six after genesis. This appears to be due to a

strong horizontal gradient in the vorticity field leading to a possi-

ble ‘overshoot’ in the interpolation used to find the maxima. This

sensitivity to resolution is important when looking for changes

associated with climate change, as will be discussed in our next

paper, and is one reason why vorticity is a useful quantity for

measuring intensity, though off coarse winds are more impor-

tant when considering possible damage. The pressure and winds

show much less sensitivity to the resolution with virtually no

discernable difference between the pressure centre at T159 and

T511. The winds show a little more sensitivity but not as much

as the vorticity. Also, shown in Figure 1f are the observed values,

which show a much deeper centre of pressure and higher wind

speeds than the T511 resolution data. This type of diagnostics

will be used throughout this paper.

4. Structure and behaviour of modelled and
assimilated TC

We first show examples of TC from the model and ERA40 with

similar characteristics. Figure 2a shows an example of a storm

track, with the T159 vorticity as intensity, of an intense TC in

ERA40 for the period 12 September–3 October 1991. The storm

track agrees well with the observed Super Typhoon 21, although

there are large differences in the intensity. The maximum wind

speed in ERA40 is 45 ms−1 , while the maximum wind speed

for the Super Typhoon 21 is 66 ms−1. Furthermore, the observed

maximum wind did not coincide with ERA40 but occurred a

few days earlier. Figure 2c shows the evolution of vorticity at

the 850, 500 and 250 hPa, respectively. Around day six, there is

an increase in the vertical vorticity gradient, indicating decreas-

ing thermal wind due to the generation of a warm core. Around

day 16, the vertical vorticity gradient disappears as the vortex

is transformed into an extra-tropical storm. The corresponding

wind speed at 925 hPa and surface pressure is shown in Figure 2e.

There is no increase in the maximum wind speed at the time of

the major intensification between day 15 and 16. A more detailed

inspection of the wind field shows that it is becoming more ho-

mogeneous around the centre leading to the rapid increase in

vorticity and reduction in central surface pressure.

Although there is a broad agreement in the number and distri-

bution of TC between ERA40 and ECHAM5 during this period

(Table 3) it is of course not possible to find any agreement in the

evolution of individual TC in spite of the fact that the pattern of

SST (according to the AMIP2 protocol) is the same in ERA40

and in ECHAM5, as the atmospheric circulation is only weakly

constrained by the SST. Instead, we select a typical model gen-

erated TC that occurred during the same month but in a different

year in the Western Pacific. Figure 2b shows the track of the

cyclone for the period 24th August–14th September 1987 with

the intensity for the T159 vorticity. The vorticity intensity is
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Fig. 1. Examples from ECMWF operational analyses for 2005, (a) identified TC using (6, 6, 4), (b) identified TC based on (12, 6, 4), (c) track of

hurricane Katrina, first identified 2005/08/20:18, coloured dotes indicate the T159 intensities (vorticity ×10−5 s−1), at each 6 hourly position, (d)

T63 vertical structure of hurricane Katrina, the open circles indicate values at the T42 centre at the relevant level due to failure to find a maximum,

(e), impact of resolution on the intensity of Hurricane Katrina in terms of vorticity, (f) central pressure and maximum winds of hurricane Katrina

compared with observations, full line is pressure and dashed line is wind speed.
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Fig. 2. Examples of similar storms from ERA40 and the ECHAM5 model. (a) Track of Super Typhoon 21 in ERA40, first identified 1991/09/12:18,

intensity is vorticity at T159 ×10−5 s−1 (b) track of a similar storm in the ECHAM5 model, first identified 1987/08/24:06, intensity is vorticity at

T159 ×10−5 s−1, (c) vertical structure of ERA40 storm, vorticity at 850, 500 and 250 hPa at T63, (d) vertical structure of ECHAM5 storm, vorticity

at 850, 500 and 250 hPa at T63, (e) MSLP and 925 hPa winds for the ERA40 storm, (f) MSLP and 925 hPa winds for the ECHAM5 storm. Note,

open circles in (c)–(f) denote an extremum could not be found and values are at the T42 centre.

generally higher in the ECHAM5 storm than in the ERA40 one.

The vertical structure, shown in Figure 2d is slightly different to

the ERA40 storm with the vertical vorticity gradient being larger,

associated with a more marked warm core. We have inspected

a few other storms suggesting that this could be a systematic

difference between ECHAM5 and ERA40. (JRA25 also appears

to have more marked warm cores than ERA40 being more similar

to ECHAM5, see later where composites are discussed). Further
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Table 2. Summary of the number of TC per year as a function of

maximum wind speed

>18 ms−1 >33 ms−1 >50 ms−1

ECHAM5 T159 94.4 34.6 3.7

ERA40 67.5 14.2 0.05

JRA25 58.5 15.3 0.1

Observed 58.9 32.9 15.7

Table 3. Summary of the number of TC per year as a function of

maximum intensity in vorticity at 850 hPa

All (6, 6, 4) >2 ×10−4 >5 ×10−4 >1 ×10−3

ECHAM5 T159 96.8 86.8 28.8 1.2

ERA40 80.2 72.1 1.9 0

JRA25 61.8 44.3 0.33 0

Fig. 3. Lifetime histograms for ERA40 and ECHAM5. Inset shows the

tail scaled to a 20-yr period.

evaluation on this will be presented in the discussion. The be-

haviour of the minimum pressure and 925 hPa winds in general

indicates a more confined structure of the TC though for this par-

ticular storm, shown in Figure 2f, the 925 hPa wind speed and

surface pressure are similar to the ERA40 storm. However, as

will be discussed later the TC in ECHAM5 are generally stronger

than in ERA40 (see Table 2 and Table 3).

We follow each individual storm during its lifetime even be-

fore and after it has lost its typical structure that qualifies the

storm as a TC. The storms can at many times exist as a weak

vortex for many days until it suddenly undergoes a development

into a TC. At the end of its lifetime it is mostly transformed into

an extra-tropical storm as it is caught up in the westerly winds at

middle latitudes. Figure 3 shows the distribution of the lifetime

of the individual storm tracks for ERA40 and ECHAM5, respec-

tively. The result is comparable for ERA40 and ECHAM5, as

we use the same criteria for the identification of the TC, but the

TC are generally more long-lived in ECHAM5. The lifetime of

the observed (best track) storms are shorter (not shown) as they

have been identified with different criteria and do not generally

include the weak initial phase nor the phase as extra-tropical

storms. There are huge variations in the lifetime from the min-

imum of 2 d to a maximum of more than 30 d in ERA40 and

more than 50 d in ECHAM5. There is also a relation between the

maximum intensity and lifetime and stronger storms are active

for a longer time than weaker storms, but with a large variability.

As described in the previous sections, we have calculated all

the tropical warm core eddies in ERA40 and in ECHAM5 for

the period 1978–99. Table 2 summarizes the number of vortices,

for the period 1978–99, with a maximum wind speed higher

than 18 ms−1, higher than 33 ms−1 and higher than 50 ms−1,

respectively. The first column in Table 2 shows the total number

of tropical cyclones per year, including tropical depressions, the

second column the number of category 1 (on the Saffir–Simpson

scale) and higher storms per year and the last column indicates

the number of storms of category 3 and higher. We first note

that ERA40 and even more so the ECHAM5 have more eddies

than the observations. The main reason for this is probably the

somewhat arbitrary criteria used to determine a warm core vor-

tex, here having a minimum difference in vorticity between 850

and 250 hPa of 6 ×10−5 s−1. Sensitivity studies have shown that

the number of storms are sensitive to the value of the minimum

difference in vorticity at the two levels (c.f. Table 1). Another

explanation could be due to differences in lifetime of the eddies.

Finally, it may well be the case that the operational observing

systems may have underestimated the number of tropical storms

in remote ocean regions though they could also have overesti-

mated the wind speeds used as a measure of intensity. These type

of errors are more likely to occur in earlier periods than the data

used here. In addition, the differences in the averaging periods

of the wind speeds may also have an impact on these differences,

though this is difficult to ascertain.

The number of TC fulfilling the criteria for a category 1 or

stronger storm (>33 ms−1) are rather similar in ECHAM5 and

in the observations, while ERA40 has less than half as many TC

in this category. This can clearly be seen from Figure 4 which

shows the tracks of all storms that attain a maximum wind speed

greater than 33 ms−1. This shows that in ERA40 there are hardly

any storms in the Eastern Pacific that fulfil this criteria (this also

occurs in JRA25, see later) as well as the Atlantic appearing

somewhat reduced in activity compared with the observations.

ECHAM5 on the other hand, does have numerous systems in the

Eastern Pacific that fulfil this criteria, though the Atlantic still

appears lacking and the Indian Ocean is far too active (see later).

Finally for the most powerful vortices with a wind speed stronger

than 50 ms−1, corresponding to a category 3 and higher, there is

only one storm in a 20-yr period in ERA40, while ECHAM5 has

74. The observed intense storms with category 3 or higher are
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four times more common in the observations than in ECHAM5.

Preliminary experiments with a model at higher resolution than

T159 indicate that more powerful storms are more common and

similarly experiments with lower resolution show a clear re-

duction in the number of intense storms. We therefore suggest

that the lower number of intense storms in ECHAM5 compared

to observations is mainly a consequence of insufficient model

resolution.

However, the smaller number of powerful storms in ERA40

is not only due to resolution, as ERA40 actually has the same

horizontal resolution as ECHAM5. Furthermore, we have eval-

uated the storms on the same linear grid consisting of 480 × 240

points per horizontal field. The difference in handling intense

storms can also be seen in Table 3 comparing the number of

storms as a function of the 850 hPa vorticity. As the vorticity

increases, the number of storms in ERA40 is rapidly reduced

compared to ECHAM5. There are several possible explanations

why ERA40 has a smaller number of intense vortices. This in-

cludes the consecutive interactions of model information and

contributions from observations, where it is likely that there are

insufficient observations to support the evolution of an intense

vortex in several ocean areas. A small number of observations

might thus pose problems for the data assimilation in particular

if based on 3-D Var where it may be difficult to maintain the

delicate balance between wind field, mass field and convectively

driven latent heat source in an intense tropical storm. It may be

expected that an assimilation based on 4D Var would perform

differently and presumably better preserve such intense tropical

vortices. The example of Katrina shown in Figure 1 appears to

support this, since the operational analysis uses 4D Var.

5. Geographical distribution

We first show distributions for genesis and track density com-

puted from the cyclone tracks for ECHAM5, ERA40 and ob-

servations using the spherical kernel method (Hodges, 1996) as

used in other studies (Thorncroft and Hodges, 2001; Hodges

et al., 2003, Bengtsson et al., 2006).

We show first the densities of cyclogenesis in Figure 5, for

the TWC best track data (Fig. 5a), followed by the densities for

ERA40 and ECHAM5 (Fig. 5b and c), respectively, based on

the full tracks (see later). We define cyclogenesis as the point

where we can first identify a vortex at 850 hPa with a vorticity

of 5 ×10−6s−1. We select all TC that fulfil the criteria (6, 6, 4) as

defined in section 3. With these conditions, the total number of

storms in ECHAM5 and ERA40 are roughly the same (Table 3).

The observed storms as compiled by TWC are not selected ac-

cording to strict criteria due to lack of quantitative observations

in remote areas, and the number of observed storms are less than

the analyzed TC in ERA40 (Table 3).

As can be seen in Figure 5a for the TWC data set, the most ac-

tive and concentrated area of cyclogenesis occurs in the Eastern

Pacific with its centre some 500 km southwest of the Mexican

coast. The area of cyclogenesis in the Western Pacific is more

extended into the central Pacific but with an additional maxi-

mum in the South China Sea. In the Northern Indian Ocean, the

dominant part of the cyclogenesis occurs in the Bay of Bengal.

However, it is interesting to note that the cyclogenesis in the At-

lantic Ocean has only weakly marked centres and is more widely

distributed. It should also be noted that the cyclogenesis in the

observations will differ from those in ERA40 and ECHAM5

since the observations only consist of data for when the storm

is first classified as a tropical depression, whereas the ERA40

and ECHAM5 data consist of storms with earlier stages of their

development included.

The cyclogenesis areas in ERA40, shown in Figure 5b, are

rather similar to the observations except for an area at the African

Atlantic coast that has been noted before for easterly wave ac-

tivity (Thorncroft and Hodges, 2001). There is also higher ac-

tivity in the Northern part of the Bay of Bengal. However, this

may be because some monsoon depressions are classified as TC.

The large genesis seen in the Eastern Pacific is perhaps surpris-

ing when considered with Figure 4, but this just highlights that

most of these storms are quite week having maximum winds

<33ms−1.

For ECHAM5, shown in Figure 5c, there is a marked band of

cyclogenesis in the Pacific Ocean but broadly a distribution sim-

ilar to ERA40. The largest differences are in the Atlantic where

the model has an intense centre of cyclogenesis North of Panama.

The cyclogenesis region in the Bay of Bengal is also more pro-

nounced in ECHAM5. We believe some of the differences in

Central America between ECHAM5 and to some extent even

with ERA40 with the TWC data set is probably due to model res-

olution, as the sharp mountain areas in Central America cannot

be properly resolved by the model. This has the effect that some

storms generated in the Southern Caribbean Sea could find their

way into the Pacific, which is less common in reality. We intend

to consider this in more depth in the second paper (Bengtsson

et al., 2007) where we will be using a higher resolution than

here.

However, the area of genesis in the observations are more

dependent on the identification criteria than those shown for

ERA40 and ECHAM5 since the observations only show the

storms once they have been classified as TC, whereas in ERA40

and ECHAM5, the whole lifecycle is captured from very weak

initial vortex. To explore the impact on the genesis plots of re-

stricting the ERA40 and ECHAM5 tracks to only those parts

of the tracks when the storms are classified as TC, we have re-

calculated the genesis statistics using the parts of the tracks that

satisfy the conditions ξ I ≥ 6 ×10−5 s−1 and ξV ≥ 6×10−5 s−1

at T63, this is equivalent to winds ≥18 ms−1. The new genesis

plots for ERA40 and ECHAM5 are shown in Figure 5d and e,

respectively. For ERA40, the change in the distribution is not

particularly large but does show a reduction in the Eastern Pa-

cific and a shift westwards in the Western Pacific and perhaps

is more similar to the observations. For ECHAM5, the changes
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Fig. 5. Genesis density as number density per year per unit area where the unit area is equivalent to a 5◦ spherical cap (∼106 Km2). (a)

Observations, (b) ERA40 full tracks, (c) ECHAM5 full tracks, (d) ERA40 reduced tracks, (e) ECHAM5 reduced tracks. (d) and (e) are based on the

tracks reduced in length so as to satisfy the identification criteria, ξ I≥6.0 ×10−5 s−1, ξV≥6.0 ×10−5 s−1 only.
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Fig. 6. Track density as number density per year per unit area where the unit area is equivalent to a 5◦ spherical cap (∼106 Km2). (a) Observations,

(b) ERA40, (c) ECHAM5, (d) Observations for the Atlantic, (e) ERA40 for the Atlantic, (f) ECHAM5 for the Atlantic. (b), (c), (e) and (f) are based

on the (6, 6, 4) identification criteria.

are much larger with a reduction in activity through the central

Pacific, and more concentrated activity in the Eastern Pacific

with a corresponding reduction of the Central American gene-

sis. The largest change is the shift westwards and enhancement

of the Western Pacific genesis, which is now much closer to ob-

servations. The changes in the Eastern Pacific/Central America

reinforce the argument that when the entire tracks are used there

are more systems coming through from the Caribbean into the

Eastern Pacific than is observed.

In Figure 6a–c, we investigate the track density. Note that, al-

though there are more storms in ECHAM5 and ERA40 compared

to the observed storms (Table 3), there are nevertheless consider-

able similarities in the patterns of the track density. However, as

with the genesis, the track density computed with the full tracks
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in ERA40 and ECHAM5 will differ from the observed track

density due to the different identification criteria used for the

observations. The most direct comparison can be made between

ERA40 and ECHAM5 since the tracks have been obtained in

the identically same way. This shows a remarkably similar dis-

tribution between the two though with ECHAM5 having larger

values for the track density stretching across the Pacific. There

are several possibilities for this, one is the fact that the propa-

gation of the storms is likely to be smoother in the model than

in the re-analysis resulting in longer tracks, particularly when

the storm is in its weaker stages. Another possibility is the fact

that the storms are generally more intense in the model allowing

them to be tracked for longer than in the re-analysis. As discussed

above, this could be due to problems with the data assimilation

used in ERA40. Also note, the relatively low levels of the density

in the Atlantic compared with the other ocean basins. To enable

a better comparison to be made in the Atlantic, the density for

this region is plotted separately in Figure 6d–f. This shows that

ERA40 and the observations look remarkably similar apart from

the fact that in ERA40 we are identifying them earlier so that the

‘storm track’ extends back further over Africa. For ECHAM5,

this also has a ‘storm track’ extending from Africa, but there is a

marked reduction in track density in the mid-Atlantic in contrast

to the observations and ERA40.

The most apparent difference in the track density is in the

North Indian region where the model generates an intense track

of eddies over the Northern sub-Indian continent that is not found

in the observed data set. ERA40 also appears to have more ac-

tivity in this region than the observations. As discussed else-

where, this is related to the interpretation of monsoon depressions

and the tendency of the model to generate too intense monsoon

depressions.

In a similar vein to the genesis density, we also computed the

track density for just those parts of the tracks that are classified

as TC for ERA40 and ECHAM5 (not shown). This produced

distributions that were more similar to those of the observed

track density as was the case for the genesis density.

We have also compared the geographical variation of inten-

sity of vortices as well as their deepening rate with the obser-

vations. Although the maximum intensity is underestimated in

ECHAM5, and even more so in ERA40, the regions where the

maximum intensity is attained appear very similar (not shown).

Similarly, the model underestimates the deepening rate. We sug-

gest this is due to insufficient resolution and the use of the prim-

itive equations (e.g. Krishnamurti et al., 2005). The same is the

case for ERA40 suggesting that insufficient observations are

available to obtain the correct deepening rate. Lacking obser-

vations ERA40 has the same restrictions as the model.

In Figure 7a, we show the observed number of storms as a

function of the maximum attained wind speed in the four TC re-

gions, Atlantic, Eastern Pacific, Western Pacific and the Northern

Indian Ocean. The largest number of observed storms occurs in

the Western Pacific, where the most intense storms occur with

Fig. 7. Distributions of maximum attained wind speeds in different

ocean basins for (a) Observations, (b) ERA40 and (c) ECHAM5.

sustained maximum wind speeds of more than 75 ms−1. The

Eastern Pacific has the second largest number of storms. The

distribution has a double structure with a proportionally high

number of storms in the range 50–60 ms−1. The number of TC
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Fig. 8. Seasonal and annual variability of storms based on the (6, 6, 4) identification criteria for ECHAM5, ERA40 and Observations. (a) Seasonal

cycle, number per year, (b) annual variability in numbers of storms that have maximum wind speeds greater than 33 ms−1, (c) annual variability in

the Atlantic, all storms and (d) annual variability in the Western Pacific, all storms.

in the Atlantic are less than in the two Pacific regions, but they can

occasionally be very powerful storms. The North Indian Ocean

has the smallest number of storms. In ERA40, the number of

TC is greater than in the observations but in all regions with a

distribution towards proportionally less intense storms (Fig. 7b).

This is particularly the case in the Eastern Pacific where few

storms above 33 ms−1 are found. There are also more storms in

the North Indian Ocean than in the observations with an aver-

age of six storms a year reaching wind speeds of 20–30 ms−1

,whereas the observed data set only indicates two storms in this

range. Finally, ECHAM5 has the largest number of storms in

all regions except the Atlantic where the number is the same as

in ERA40 (Fig. 7c). There are a proportionally large number of

strong storms in the North Indian Ocean. As will be discussed

later, it is suggested that this is due to the fact that ECHAM5 pre-

dicts too intense monsoon depressions, which are then classified

as TC. Finally, the ECHAM5 underestimates the very intense

TC in all regions but less so than in ERA40.

6. Interannual variability and possible large
scale processes controlling the TC

There is an overall agreement in the seasonal distribution of

TC between the observations, ERA40 and ECHAM5 all hav-

ing a maximum in September, as shown in Figure 8a for the

seasonal cycle. The seasonal distribution is somewhat more pro-

nounced in the observations with hardly any storms in the winter

months. However, a more detailed inspection indicates regional

differences (not shown). Both observations and ERA40 show an

early maximum in the Eastern Pacific in July or August, while

ECHAM5 has a flat distribution with storms developing into

late autumn. At the same time there is a later maximum in the

Atlantic in ECHAM5 than both observations and ERA40. The

largest difference is in the North Indian Ocean with a flat distri-

bution from June through September in ECHAM5 that is differ-

ent from the observed maximum before and after the monsoon.

There is a similar distribution in ERA40 as in ECHAM5 but

less pronounced. We suggest that this difference could partly be
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due to differences in the classification of TC in observations and

in ERA40 and ECHAM5 as used here and partly because of a

tendency by the model to over predict the intensity of monsoon

depressions.

The number of identified observed tropical storms in the pe-

riod 1978–1999 varies between 52 in 1983 and 79 in 1992 with

an average value of 65. The period is too short to identify a trend

but there are more storms in the 1990s than in the 1980s. How-

ever, for storms with a maximum intensity of more than 33 ms−1,

shown in Figure 8b, there is no noticeable difference between

the 1980s and 1990s and no obvious trend throughout the period.

This is also true for both ECHAM5, which shows a very similar

number of storms to observed for this criteria (c.f. Table 2), and

ERA40, which shows a much lower level of activity. Correlation

between the de-trended time series are relatively low with values

of 0.23, 0.33 and 0.38 for correlations between observations and

ERA40, observations and ECHAM5 and ERA40 and ECHAM5,

respectively.

As discussed above, the number of tropical storms identified in

ERA40 and ECHAM5 is higher than in the observations, particu-

larly so in the Indian Ocean, though the number of intense storms

is less. We discuss here in more detail the interannual variability

of storms in the Atlantic and in the Western Pacific. Figure 8c

shows the variability of storms in the Atlantic for all storms. The

number of observed storms in observations and ERA40 (using

6, 6, 4) broadly follow each other with the minimum of Atlantic

storms in 1997 and the maximum in 1995 being very similar.

In other years there are larger differences as in 1992 and 1993.

There are also large differences between ECHAM5 and obser-

vations, but generally not much worse than between ERA40

and the observations. Correlation between the de-trended time

series are 0.57, 0.35 and 0.38 for correlations between observa-

tions and ERA40, observations and ECHAM5 and ERA40 and

ECHAM5, respectively. However, as will be discussed below,

there is a consistent response to ENSO in reasonable agreement

with observations.

The agreement with ERA40 and observations is better in the

Western Pacific than in the Atlantic, as shown in Figure 8d, for

all storms. Note, for example the high number of storms in 1996

and the low number in 1998. There is also a good agreement

in the low-frequency variation. ECHAM5 is here significantly

worse with a larger number of storms as well as a larger inter-

annual variability. There is agreement in some years, such as in

1983, 1987, 1988 and the 1998 minimum, but it is overactive

in years with more storms than normal. Correlation between the

de-trended time series are 0.69, 0.23 and 0.0 for correlations

between observations and ERA40, observations and ECHAM5

and ERA40 and ECHAM5, respectively.

More generally, the interannual variation of storms with a

maximum attained wind speed larger than 33 ms−1, as shown

in Figure 8b, indicates the agreement between observations and

ECHAM5 is better for storms satisfying this criteria. However,

the agreement in total number and annual variability is possibly

fortuitous as the number of weaker storms in ECHAM5 is higher

and the number of more intense storms are less than in observa-

tions (see Table 2). The agreement with ERA40 is poor as the

number of the more intense storms in ERA40 is significantly less

than both observations and ECHAM5.

We have also investigated the relation in ECHAM5 between

the SST anomalies, the large-scale divergent flow and the ver-

tical wind shear with the interannual variability of TC in the

Atlantic and in the Western Pacific, respectively. For the At-

lantic, we take the difference between the representative years

of high activity in ECHAM5 (1988 and 1996) and the years of

low activity (1991 and 1997). Years are chosen from the latter

period where we believe the SST’s are more reliable. The corre-

sponding SST difference for the composite years can be seen in

Figure 9a. This shows a marked cold anomaly in the central and

Eastern equatorial Pacific but higher temperatures than normal

in the tropical Atlantic and Western Pacific. The difference in the

850 hPa velocity potential (Fig. 9c) has a marked centre of subsi-

dence over the central Pacific and areas of large-scale ascending

motion over the Western Pacific and Indonesia as well as over the

central and eastern Atlantic. We suggest that such a circulation

pattern would favour development of tropical cyclones in the

regions of the tropical Atlantic (and Western Pacific). Tropical

cyclone studies are in agreement that a strong vertical wind shear

is detrimental to the development of tropical cyclones. Figure 9e

shows the difference of the composite years in the vertical wind

shear (computed between 250 and 850 hPa) for the Atlantic re-

gion, this shows a distinct decrease over the tropical Atlantic

and the West Indies in the high-activity years compared with the

low-activity years consistent with the importance of the wind

shear as a contributing factor to TC activity.

For the Western Pacific, we take the difference between the

years of high activity in ECHAM5 (1986 and 1994) and the

years of low activity (1988 and 1998). The corresponding SST

difference can be seen in Figure 9b. The pattern is in several

respects the opposite of the SST difference in Figure 9a with a

warm anomaly in the central equatorial Pacific but with lower

temperatures than normal in the tropical Atlantic and Western

Pacific. The difference in the 850 hPa velocity potential (Fig. 9d)

is also practically the reverse of the pattern in Figure 9c having

a marked centre of ascending motion over the central Pacific

and areas of large-scale subsidence over the Western Pacific and

Indonesia as well as over the central and Eastern Atlantic. Such

a circulation pattern would favour transport of surface air into

the region of the tropical Pacific where tropical storms normally

develop. Similarly there are favourable vertical wind shear in

the region where Pacific eddies develop into tropical cyclones

(Fig. 9f). So in summary, most of the empirical criteria, such as

high SST, moist conditions and low vertical wind shear stand out

suggesting consistency with the number of TC in ECHAM5. We

thus suggest, in agreement with previous observational (Landsea,

2000) and modeling (Wu and Lau, 1992) studies, that it is the ge-

ographical distribution of SST anomalies and the corresponding
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Fig. 9. Difference between high and low activity years for the Atlantic and Pacific of SST (units of degree Kelvin), 850 hPa velocity potential (units

of m2s−1) and vertical wind shear between 250 and 850 hPa (units of ms−1). High years in the Atlantic are 1988 and 1996 and the low years are

1991 and 1997. For the Western Pacific, high years are 1986 and 1994 and the low years are 1988 and 1998. (a) SST for the Atlantic, high–low, (b)

SST for the Western Pacific, high–low, (c) velocity potential for the Atlantic, high –– low, (d) velocity potential for the Western Pacific, high–low, (e)

vertical wind shear for the Atlantic, high–low, (f) vertical wind shear for the Western Pacific, high–low.

response of the large- scale vertical circulation pattern that seems

to be crucial for the development of TC in specific regions.

Similar results for ERA40 are shown in Figure 10, based on

the same years, and are in both cases very similar to the results

for ECHAM5, but the amplitude of the velocity potential pattern

is slightly stronger in the model. The wind shear is also mostly

in agreement. Other studies (e.g. Oldenbourgh, 2005) have indi-

cated that ECHAM5 has a tendency to over predict the response

to El Niño with the stronger velocity potential in ECHAM5 most

likely to be a systematic error.
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Fig. 10. Same as Figure 9 but for ERA40 and without SST, (a) velocity potential for the Atlantic, high– low, (b) velocity potential for the Western

Pacific, high–low, (c) vertical wind shear for the Atlantic, high–low, (d) vertical wind shear for the Western Pacific, high– low.

7. Discussion

In this paper, we have used a novel methodology to identify

tropical cyclones in the ECHAM5 model integrated at T156 res-

olution and in ERA40. The criteria to select TC are based on the

(3-D) structure of tropical vortices where we require that the rel-

ative vorticity at 850 hPa reaches at least a value of 6 ×10−5 s−1

and at the same time that the difference in vorticity between 850

hPa and 250 hPa differ by at least the same amount at the T63 res-

olution and with these criteria fulfilled for at least 1 d. This means

that the vortices have a warm core structure, typical of tropical

storms. We have determined these conditions by comparing with

analyzed tropical storms by the ECMWF operational system. In

comparing the ECHAM5 model with ERA40, we have used the

same resolution and data for the period 1978–1999 and results

are restricted to the Northern Hemisphere. There are several sim-

ilarities between the model run and ERA40, but the numbers of

TC are some 15% higher in the model run, the lifetime of the

generated storms are longer and the intensity is higher. There are

considerable similarities in the number of storms in the differ-

ent regions but the model has more intense storms in the East-

ern Pacific and in the North Indian Ocean. There are no storms

in ERA40 in the Eastern Pacific reaching category 1 intensity.

And there is only one storm in ERA40 reaching an intensity of

50 ms−1 while in the model run there are 74. In the Northern

Indian Ocean the model has too many storms including during

the monsoon season. We interpret this as an over prediction of

monsoon depressions. The reduced intensity in ERA40 is pre-

sumably related to two factors. Firstly, we believe there are an

insufficient number of wind observations to support the inten-

sity and secondly, it may be expected that the data-assimilation

may have difficulties to properly merge available observations

and model information in an intense tropical storm. As will be

indicated below the additional wind observations used in JRA25

partly overcomes this problem.

We have also compared model results with observed tropical

storms as compiled by the TWC. Such a comparison is difficult

as the criteria in selecting storms are not the same. However,

when using the maximum sustained wind speed in the boundary

layer (in the model we used the wind speed at 925 hPa while

TWC use the wind speed at 10m) there are several important

differences. Firstly, the model has some 60% more storms with
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the maximum wind speed higher than 18 ms−1. This could be

related to observational difficulties in identifying the maximum

wind speed and of course to a deficiency of the model that re-

sults in too many weak storms. ERA40 is somewhere in between

(Table 2). However, when it comes to intense storms stronger

than 50ms−1 or storms in category 3–5 of the Saffir/Simpson

scale, these are significantly underestimated by the model by a

factor of 4. We believe this is related to model deficiencies since

it is likely that much higher resolution and possibly an explicit

treatment of convection (e.g. Shen, 2006a) will be needed to

produce such storms by a model. Nevertheless, in comparing

storms that are category 1 or greater (>33 ms−1) the overall dis-

tribution is quite realistic. There are interesting differences in

the geographical and seasonal distribution, some of them due to

insufficient resolution of coastlines and orographic features as in

Central America and to over prediction of monsoon depressions

as in the North Indian Ocean. There is a general tendency by the

model to have proportionally fewer TC in the Atlantic and pro-

portionally too many in the Western Pacific. We suggest that this

is not a sampling problem but more likely a systematic feature of

the model, which could be related to an overly strong response

to the tropical Pacific SST anomalies as noted by Oldenborgh

et al. (2005).

The model shows clear interannual variability in a way that

shows similarity with ERA40, but with only a minor correlation

of 38%. However, in the Atlantic sector and in the Western Pacific

the agreement is higher with ERA40. However, the period is too

short to determine if the agreement is by chance or whether there

is a genuine predictive skill. A series of ensemble integrations

with a model at this or higher resolution will be needed. The

interannual variability is too strong in the Western Pacific and in

the North Indian Ocean where also the number of simulated TC

are proportionally too high.

In the Pacific and the Atlantic we have identified a response to

Pacific SST, which affects the development of tropical cyclones

because of its influence on the large-scale vertical circulation

patterns bringing in moist surface air into the genesis regions

as well as affecting the vertical wind shear in these areas. This

paradigm of large-scale circulation has recently been reiterated

by Sugi et al. (2002), and Chauvin et al., (2006) stressing the

SST spatial pattern anomaly. We have tested this by studying the

difference between two pairs of years representing high and low

activity, respectively, in both the Atlantic and in the Western Pa-

cific. This comparison shows that a warm tropical Pacific Ocean

as occurs during El Niño events is associated with a marked

anomaly in the large-scale divergence circulation leading to as-

cending vertical winds in the central and Western Pacific and

descending vertical winds in the tropical Atlantic. The reverse

takes place when there is a cold anomaly in the central tropi-

cal Pacific. At the same time the vertical wind shear between

850 and 250 hPa is affected in the regions where tropical storms

normally develop. A warm tropical Pacific Ocean also coincides

with a stronger than normal vertical wind shear and the opposite

in the case of a colder than normal tropical Pacific. We have also

shown that the response pattern by ECHAM5 is supported by the

analyses from ERA40. We therefore emphasize the importance

of considering the distribution of the tropical SST anomaly pat-

tern and the associated atmospheric circulation as being crucial

for an understanding of TC, and it would be misleading to focus

only on the SST.

It is of utmost importance to clarify to what extent TC might

change in a warmer climate. As we are going to address this

in a following paper we will only here give some shorter com-

ments. We believe a time period of 21 yr as studied here is

too short to be able to identify robust trends as the interan-

nual variations are large. Furthermore, the global observing sys-

tem is undergoing considerable development which will both

affect our ability to observe the intensity of tropical storms

and the quality of re-analyses such as ERA40. An increase in

the intensity of tropical storms over time in ERA40 can there-

fore just reflect that there are more reliable observations in the

later data.

Several recent studies (Webster et al., 2005, Emanuel, 2005,

Sriver and Huber, 2006) have shown that there has been a general

increase in intense tropical storms during the last two decades.

An interesting quantity used in these studies is the area integrated

cube of the wind along the storm track and called the power

dissipation (PD) of the storm, (Bister and Emanuel, 1998). As

suggested by Emanuel (2005), a simplified power dissipation in-

dex (PDI) can be defined as the integrated cube of the maximum

wind along the track, P DI = ∫ τ

0
V 3

maxdt , where Vmax is the max-

imum sustained wind speed at 10 meters. We have calculated the

PDI for ERA40 and for ECHAM5 for each individual TC for the

portions of the tracks where the conditions ξ I≥6 ×10−5 s−1 and

ξV≥6 ×10−5 s−1, at T63, are satisfied (see section 2), for the

850 hPa vorticity field, i.e. from the first instance to the last.

Sriver and Huber (2006) used the best track data produced by

TWC and winds from ERA40 integrated over an area around the

storm. They found a result in agreement with Emanuel (2005)

indicating a huge increase in the 1990s. We have repeated this

calculation here, but we have used the TC calculated directly

from the ERA40 as well as the maximum wind speed close to

the centre of the storm. An identical calculation was undertaken

with the ECHAM5. The result from ERA40 shows marked peaks

in the years 1992 and 1994 similar to Sriver and Huber. How-

ever, ECHAM5 differs with two pronounced peaks in 1981 and

1992. Generally, we would here tend to agree with Chan (2006)

that the time period is too short to identify robust trends. Addi-

tionally, to calculate the cube of the wind speed may make the

result overly sensitive to the maximum wind speed. The fact that

the model and ERA40 respond differently suggest a stochastic

component, alternatively it may reflect a systematic model bias.

Additionally, as has been pointed out by Elsner et al. (2006),

the result is highly dominated by high-frequency variability of

the PDI and does not strongly indicate a long-term trend or low-

frequency variability.
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A preliminary comparison between ERA40 and the new

JRA25 has indicated a number of interesting differences, though

consistent with the results shown earlier in this paper for ERA40.

JRA25 has a smaller number of storms than ERA40 but a larger

number of more intense storms (see Table 2 and Table 3) in terms

of wind speed. However, JRA25 suffers from the same system-

atic problem in the Eastern Pacific as ERA40 in terms of a lack

of storms with wind speeds greater than 33 ms−1 (not shown).

However, a more detailed picture is obtained by comparing those

storms that satisfy the (6, 6, 4) and (12, 6, 4) criteria in JRA25

with those in ERA40 and ECHAM5 (not shown), this indicates

that JRA25 shows a much smaller reduction in numbers pro-

portionally in going from (6, 6, 4) to (12, 6, 4) than is seen in

ERA40 or ECHAM5. We suggest that this is due to a stronger and

more coherent TC structure in JRA25 than in ERA40 in general.

That this is so is demonstrated by comparing the same storm in

Fig. 11. (a) Super Typhoon 21 in JRA25, first identified 1991/09/12:18, (b) comparison at full resolution between ERA40 and JRA25 of the

intensity for the same storm in the 850 hPa relative vorticity, (c) vertical structure of the same storm in JRA25 as in Figure 2c, (d) comparison at full

resolution between ERA40 and JRA25 of the central sea level pressure and maximum wind speeds at 925 hPa.

Figure 2 identified in ERA40 with that identified in JRA25,

we have also produced composites (Fig. 12) discussed below.

Figure 11a shows the track from JRA25 in more or less the same

position as for ERA40 but shortened. The JRA25 version of the

storm had a more rapid intensification from an earlier stage in its

lifecycle (Fig. 11b), based on vorticity, than in ERA40 and shows

a much smoother intensity curve. This is further highlighted by

the vertical structure (Fig.11c), which shows a strong warm core

structure from earlier in its lifecycle than in ERA40 and is in

better agreement with the observed Super Typhoon 21. Finally,

these results show consistency with both the central pressure

and 925 hPa winds (Fig. 11d), and that although the JRA25 ver-

sion of the storm has a stronger warm core and stronger winds

over the majority of the lifecycle, the actual peak winds and

minimum pressure are not that different from ERA40. These

differences could have a significant impact on the PDI measure
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for example. It was alluded to in section 4 that the differences

seen between ECHAM5, ERA40 and now JRA25, both for the

examples shown, and the statistics was due to a stronger more co-

herent warm core structure in ECHAM5, and also JRA25, than

in ERA40. To explore this further, we have constructed storm

composites from the 10% of the most intense storms (in vortic-

ity) for both ECHAM5, ERA40 and JRA25, taking the time at

which the storms attain their maximum intensity for the averag-

ing. This is done using the T63 vorticity fields. Full details of

the compositing procedure will appear in the forthcoming pa-

per (Bengtsson et al., 2007). The storm composites are shown

in Figure 12. For ECHAM5 (Fig.12a), there is a strong vertical

gradient in vorticity, in particular above 500 hPa suggesting a

strong warm core. The radial extent of the composite storm is

∼4◦ (∼400 km). The low-level intensity is ∼30 ×10−5 s−1. For

ERA40 (Fig. 12b), there is a much weaker vertical vorticity gra-

dient indicating a weaker warm core structure, the radial extent

of the composite storm is also larger than in ECHAM5 and the

low level intensity is also weaker. For JRA25, the composite is

more similar to ECHAM5 than ERA40 indicating that JRA25

also has a stronger warm core than ERA40 with a similar radial

size also similar to that of ECHAM5. The low-level intensity of

the JRA25 composite is not as large as ECHAM5 but is larger

than ERA40. These results are consistent with all our previous

results and discussion.

We suggest that the main reason for the differences between

ERA40 and JRA25 is the use in JRA25 of additional wind vector

retrievals from historical best track data which are assimilated

as though they where from dropsondes (Onogi et al., 2005),

in particular those of Fiorino (2002), which were not used in

ERA40. Hatsushika et al. (2006) have demonstrated the benefits

of the assimilation of the additional observations to TC, includ-

ing improved detection in the Eastern Pacific and better track

position. However, one downside to this is highlighted by the

shortened track shown in Figure 11a, which misses the decay

stage of the storm. This is possibly due to excessive displace-

ment that violates the tracking constraint for maximum displace-

ment (it could also be due to the formation of a double centre).

This can also be seen in the region of Sea of Japan where the

JRA25 storm shows a very large jump not seen in either ERA40

or the observations. Thus, while the additional wind observa-

tions may result in better simulation of the vertical structure of

the storms for some individual storms, it may be detrimental to

the changes in position of the storm. This can often occur in

analyses where there is a change in observational data cover-

age and is the bane of feature tracking in both operational and

re-analyses.

8. Concluding remarks

Re-analyses systems and GCM at sufficient resolution are

increasingly capable of assimilating and simulating tropical

Fig. 12. Composites of vorticity centered on the 10% of the most

intense storms at multiple levels when the storms reach their maximum

intensity, (a) ECHAM5, (b) ERA40, (c) JRA25. Units are 10−5 s−1.

Composites are produced in a cylindrical coordinate system and

averaged over the angular direction to produce the radial plots.
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cyclones. The ECHAM5 model at T159 resolution as investi-

gated here also have a realistic interannual variability markedly

influenced by the large-scale divergent circulation. To investigate

such vortices, we have here used a novel and powerful methodol-

ogy to calculate the full life cycle of the TC, including their pre-

storm phase as well as their transformation into extra-tropical cy-

clones. The main limitation of both the model and the data assim-

ilation systems is an underestimation of the most intense tropical

storms. Nevertheless, we consider a diagnostic study of the kind

used here as an important tool to determine to what extent high

resolution GCM are useful in studying tropical vortices including

their variability in time and space, and presumably also how they

may change in a warmer climate. A second study to explore this is

underway.

In the longer term, we believe the avenue to follow to im-

prove the simulation of the intensity of TC is by firstly increas-

ing the resolution of the GCM as undertaken by Oouchi et al.

(2006) and secondly by exploring the impact of alternative ways

to treat deep convection including the use of non-hydrostatic

modelling.

Future work will explore even higher resolution integrations,

and we await the ECMWF interim re-analyses which will use

4-D Var at T255 to compare with. Also, we will use the ability to

follow the storms into high latitudes to study the extra-tropical

transition of tropical storms.
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