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Abstract 

Several recent studies predicted changes in the climatic conditions in 

Europe driven by the increased atmospheric CO2 concentration due 

anthropogenic activities. The climate change can affect the agriculture through 

many aspects of crop production over the European continent. Not only plant 

productivity, but also geographical shifts of cultivation areas, changes in crop 

phenology, in land use, and in soil carbon stocks have to be taken into 

account for assessments of the next future. This study provides a potentially 

powerful baseline to perform integrated assessments on the impacts of the 

changing climate by assessing crop production with a single integrated 

framework for large-scale studies. Not only crops and natural vegetation in a 

single Dynamic Global Vegetation Model, the LPJ-C, but also potential and 

water-limited crop production are included within the same biosphere scheme. 

The LPJ-C is extended to simulate not only natural biomes, but also crops. 

We perform an optimization procedure, which provides a set of crop 

parameters used in the regional assessment over Europe. Further, we used 

the resulting modelling framework to study the changes of potential production 

of maize and wheat together with the shift in their potential growing area. The 

results show that wheat yield will suffer from a decline, but fertilization due to 

the CO2 enriched atmosphere will compensate this effect. For maize, 

cultivation will clearly expand towards north and east. Since maize, as a C4 

plant, is mostly unaffected by the CO2 fertilization effect, the shorter growing 

season will lead to a lower net primary productivity, while the mean over the 

continent will increase according to the large geographical spread. 

Furthermore, LPJ-C is able to reproduce the observed relative increase of 

water use efficiency under water-limited conditions and a CO2 fertilization 

effect. The improved water use efficiency of wheat leads to a relatively smaller 

transpiration per unit of biomass, so that precipitation will partially satisfy the 
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transpiration demand. On the other hand, wheat will suffer from an increase of 

yield variability and a higher frequency of extreme crop failures. Even though 

maize potential distribution will be enlarged, the yield will be affected by strong 

losses, unless largely improved irrigation will satisfy the increased water 

demand. 

We perform also the coupling of LPJ-C with the land-use model KLUM, as 

a connection between a profit maximization procedure for land allocation and 

a process-based description of crop production. The coupled system showed 

that temperature would play a major role in the soil carbon dynamics over the 

expected northward shift of crops. However, important changes have to be 

expected for distribution of  “warm” cereals as rice and maize. 
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Chapter 1 

1 Introduction 

1.1 Overview 
The largest part of carbon flux between land and atmosphere belongs to 

photosynthesis and respiration activities. During daytime, leaves absorb 

sunlight, take up CO2 from the atmosphere and produce organic carbon for 

growth. In parallel, plants, animals and microorganisms respire the organic 

matter and exchange back CO2 to the atmosphere. The amounts of carbon 

moving through photosynthesis and respiration are not constant in time, but 

have seasonal and interannual natural oscillations. Significant amounts of 

carbon can be stored or released on land over periods of years to decades, 

and the human activity influences the dynamic equilibrium of the carbon 

storages. When land use changes from forests to agriculture the carbon 

contained in the living material and soil is quickly released into the 

atmosphere. On the contrary, when agricultural land is abandoned and natural 

vegetation is allowed to grow again carbon is stored slowly back in the 

growing biomass (Caspersen et al., 2000). Global estimation for 1990s show 

an annual carbon flux to the atmosphere of 2240 TgCy-1 due to deforestation, 

and 20 TgCy-1 due to soil carbon loss including cultivation of new lands 

(Houghton, 2003). There is more consistent evidence that this change in land-

use, together with the intensified use of fossil fuels, altered the natural 

equilibrium of the carbon cycle. A consequence seems to be that the 

atmospheric CO2 concentration increased in the last 200 years by about 37%, 

to current levels of more than 370 µmol mol-1 (Keeling and Whorf, 2000). One 

of the responses of the climatic system appears to be an increase of average 

temperature: during the last 100 years the mean global surface temperature 

increased by 0.7± 0.2 °C, with large regional differences (IPCC, 2001a; CRU, 

2003). Focusing on Europe, the surface warming was around 0.95 °C, and 

1998 was the warmest year since 1900, followed by 2002 and 2003 (Jones 
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and Moberg, 2003). Precipitation variability has also shown important changes 

during the 20th century. Between 1981 and 1994, Northern Europe was 

experiencing an increase in precipitation, while less occurred in the 

Mediterranean (Hurrell and van Loon, 1997). 

Current climate predictions indicate that the observed trends will probably 

reinforce within the next 50-100 years. The predicted global mean 

temperature increase between 1990 and 2100 is within the range of 1.4–5.8 

°C (IPCC, 2001a; EAA, 2004). Europe will face an increase likely to be 

between 2 and 6.3 °C, with more intense warming occurring in Southern and 

Northeastern Europe (Parry, 2000; EAA, 2004). It is also expected that the 

observed precipitation trend will intensify, leading to a reduction of 1% per 

decade in Southern and an increase of 1-4% per decade in Northern Europe 

with increased seasonal variability. Additionally, the predicted precipitation 

reduction in some Mediterranean areas will be even higher during the 

summer, with more frequent droughts (IPCC, 2001a ; Ragab and 

Proudhomme, 2002; Chartzoulakis and Psarras, 2005).  

The predicted changes in the climatic conditions in Europe will impact the 

biosphere in all its components, agro-ecosystems included. Agro-ecosystems 

exist as, and depend on, the result of the interaction of natural resources, 

human activity and climate. From the biophysical perspective, they regulate 

the water and carbon fluxes at the land-atmosphere interface, and influences 

the heat fluxes and micro dynamics of weather and climate; on the other 

hand, they also play an important economic role. The European agriculture is 

one of the world's largest food and fiber producers. Even though the 

agricultural sector covers only 2.6% of the total GDP, its share is 10% of 

global cereal and 16% of global meat production (Olesen and Bindi, 2002). 

Furthermore, 5 % of the European workforce is employed in this sector and 

44% of the land is dedicated to agricultural use (European Commission, 2002; 

EAA, 2004). The potential impacts of the predicted changing climate on this 

complex system involve many components as, for example, the productivity 

and phenology of crop plants, the geographical distribution of cultivated land, 

the flux at the land surface, and the carbon content in the soil. 
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1.2 The modelling perspective 
The impacts of the changing climate on such an important production 

system have been already investigated. The modelling tools used in these 

studies were usually crop models adapted to regional level with extensions to 

explicitly include policy and agronomic adaptation (Wolf and van Diepen, 

1995; Rosenzweig and Tubiello, 1997; Tubiello et al., 2000; Tubiello and 

Ewert 2002; Olesen and Bindi, 2002; Rosenzweig et al., 2004). Even though 

these studies give an important picture of the potential responses, they lack 

an integrated biosphere modelling perspective, as well as the necessary 

generalization for studies at the global scale. The use of crop models 

dramatically improves the understanding of possible changes in yields, but it 

excludes often the description of the soil carbon dynamics and natural 

vegetation growth (Kucharick and Brye 2003). The amount and detail of the 

required data limits their use to assessment of specific crops in well-defined 

areas (Scholze et al, 2005). A broader biospheric view is available today in a 

new generation of models designed for regional and global scale 

assessments. The Dynamic Global Vegetation Models (DGVMs) give an 

integrated representation of natural vegetation taking into account carbon and 

water within a single grid-based modelling framework (Smith et al., 2001; 

McGuire et al., 2001; Cramer et al., 2001; Sitch et al., 2003). Moreover, these 

models have been recently developed to include crops and pastures as parts 

of the terrestrial vegetation. The Integrated Biosphere Simulator (IBIS) has 

been extended to include crops and validated on the U.S. Corn Belt 

(Kucharick and Brye 2003; Kucharick, 2003). IBIS was lately used to study the 

influence of land cover and land use changes on nitrate transport through the 

Mississippi Basin (Donner et al., 2004). Another example, with different 

modelling approach, is the Organizing Carbon and Hydrology in Dynamic 

Ecosystems model (ORCHIDEE) (Gervois et al., 2004; de Noblet-Ducoudré et 

al., 2005). This DGVM includes a separate crop model to specifically simulate 

crop variables. Three crops are implemented (wheat, maize, and soybeans) 

and the model was used to assess the water and carbon budget of Europe. A 

similar strategy is implemented in the General Large Area Model (GLAM) 

(Challinor et al., 2004), which operates on large spatial scales using a 

traditional crop modelling approach. GLAM is incorporated into the land 
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surface scheme of the general circulation model (GCM) of the U.K. Met Office 

to investigate large-scale interactions between crops and climate. Even 

though still in development, this new frontier of the integrated biosphere 

modelling represents already a powerful baseline to study long-term changes 

in a changing climate, including agro-ecosystems. However, the existing 

hybrids DGVMs currently lack the description of some important processes, 

such as land-use allocation and soil carbon dynamics. Moreover, none of the 

above-mentioned tools has been used in ecosystem service assessments to 

investigate the impacts on agricultural production of the changing climate in 

Europe. 

This work represents a step further in the integrated representation of the 

biosphere. We incorporate crops within a single modelling framework of a 

state-of-the-art DGVM, the Lund-Potsdam-Jena (LPJ) model (Sitch et al., 

2003) by introducing a crop carbon allocation scheme adapted from a crop 

growth model. The new version of the LPJ model is, therefore, able to 

simulate the growth and development of crops and natural vegetation, soil 

carbon dynamics and fire disturbances within the carbon and water cycle. A 

particular feature of this model is that only the allocation scheme has been 

modified, while photosynthesis, carbon and water balance equations remain 

the same as for natural vegetation. We also introduce a land-use scheme to 

set crops dynamically according to their demand and yield. Such a new 

system was originally designed to be included within an integrated 

assessment modelling framework; in this context, however, it has been used 

independently to investigate several aspects of the impacts of the climate 

change on crop production, water requirements and soil carbon in Europe.  

 
1.3 Structure 

In Chapter 2, we describe the model development and the 

optimization procedure used for validation. Additionally, we 

illustrate and discuss the results of a climate change modelling 

experiment focussed on assessing the changes in potential 

production and geographical patterns of maize and wheat. 

Potential crop production is the production under ideal, well 
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watered and fertilized, conditions. This chapter corresponds to the 

following paper: 

 
Criscuolo L., Knorr W., Ceotto E., Smith B. (2005). An assessment of climate 

change impacts on maize and wheat productivity in Europe using a Dynamic 

Global Vegetation Model. Part I: Model evaluation and potential production. 

Submitted to Earth Interactions. 

 

Further, in Chapter 3, we analyse the water-limited production and, in this 

context, we give a description of the potential changes in the water use. The 

change in the frequency of drought events is often considered even more 

important for future agriculture impacts. Therefore, a study of the changing 

statistics of extreme crop yield failures due to water stress is also performed in 

this chapter, which corresponds to the following paper: 

 
Criscuolo L., Knorr W. (2005). An assessment of climate change impacts on maize 

and wheat productivity in Europe using a Dynamic Global Vegetation Model. 

Part II: Irrigation demand and drought risk. Submitted to Earth Interactions. 

 

In Chapter 4 we perform the coupled study with a land-use model, the 

Kleines Land Use Model (KLUM). The soil carbon in agricultural land is highly 

influenced by the land-use. Depending on the characteristics of the plant 

structure, higher quantities of carbon can be moved to the soil at the harvest. 

The soil carbon decomposition, on the other hand, depends mainly on 

temperature. We further assess, in this chapter, how the climate change may 

potentially lead to new land allocation patterns and how the soil carbon can 

consequently change. The following work corresponds to this chapter: 

 
Criscuolo L., Ronneberger K., Knorr W., Tol R.S.J. (2005). Changes in agricultural 

land use and soil carbon storage in Europe under climate change: results of an 

integrated modelling study. To be submitted to: Global Change Biology. 

 

Chapter 5 provides a summary, an outlook and the concluding remarks. 
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Chapter 2 

2 Model evaluation and potential production 

2.1 Introduction 
The European Union's agriculture accounts for only 2% of its total Gross 

Domestic Product (GDP), but for 10% of global cereal and 16% of global meat 

production (Olesen and Bindi, 2001). The agricultural systems vary strongly 

among European countries, but they are currently connected within the same 

trading boundary, so local impacts may lead to a diffused response through 

the whole market. Furthermore, Europe has faced an increase in its average 

annual mean temperature of 0.8 °C over the last century (Beniston and Tol 

1998), and further increases are expected as a consequence of the 

greenhouse gas concentration increase. New temperature and precipitation 

regimes will lead to a different distribution of meteorological conditions for 

crop growth in Europe (IPCC 2001a, Olesen and Bindi 2002). The CO2 

enriched atmosphere will also have a direct effect on the plant physiology, 

leading for some crops to better productivity and an enhanced water use 

efficiency (Van de Gejin and Goudriaan 1996, Tubiello et al. 1999). For this 

reason, climate change impacts on crops need to be assessed regarding two 

issues. First, how crop plant productivity will respond to the changing 

environment and, second, where the response will occur under the predicted 

new climate patterns.  

Moreover, plants usually respond to a warmer environment with faster 

development. Therefore, the warmer climate will affect the crop phenology 

directly forcing the crops to develop faster and reach maturity earlier. The crop 

biomass production normally decreases with a shorter growth period due to 

diminished cumulative solar radiation interception during the active growing 

season (Abrol and Ingram 1996, Tubiello et al. 2000). In such a warming 

environment, the crop Net Primary Productivity (NPP) and the biomass yield 
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are expected to consequently decrease. Not only NPP can be affected by 

temperature through development, but also respiration can severly impact the 

biomass yield when temperature overcomes some specific threshold. 

However, NPP is also readily enhanced in a CO2 enriched atmosphere, with a 

more substantial effect expected for C3 plants. Consequently the overall effect 

of climate change on crop development and biomass production would be a 

combined effect of the changes in temperature and atmospheric CO2 

concentrations, and could amount to an increase or reduction in biomass 

yield. 

Crops are also included in the wider system of the biosphere, where 

changes in the biomass production of crops need to be included in any 

assessment of the carbon cycle at the continental scale. A new generation of 

Dynamic Global Vegetation Models (DGVMs) has been designed to simulate 

large-scale terrestrial vegetation dynamics, as well as the exchange of carbon 

and water between atmosphere and terrestrial biosphere (Kucharick et al. 

2000, Smith et al. 2001, McGuire et al. 2001, Sitch et al. 2003). These models 

have been used to represent the transient terrestrial ecosystem responses to 

a rapid climate change forcing (Cramer et al. 2001), but only few of them have 

included crops as a dynamic part (Kucharick and Brye 2003, Donner et al. 

2004). Small-scale agro-environmental impacts of climate change have been 

widely assessed using crop models (Tubiello and Ewert 2002). These have 

tremendous value for understanding crop behavior and predicting yields, but 

do not include detailed process-based descriptions of physiological and 

biophysical processes (Boote et al. 1997, Kucharick and Brye 2003), and 

require large numbers of crop specific parameters. 

In this work, we incorporate crops and natural vegetation within a single 

modelling framework of a state-of-the-art Dynamic Global Vegetation Model 

(DGVM), LPJ (Lund-Potsdam-Jena) (Haxeltine and Prentice 1996a, Smith et 

al. 2001, Sitch et al. 2003) by introducing a crop carbon allocation scheme 

adapted from the WOFOST (WOrld FOod STudies) crop growth model (Van  

Diepen et al. 1988, Van Diepen et al. 1989, Supit et al. 1994, Boogard et al. 

1998). All vegetation types use a common photosynthesis-assimilation 

scheme, while specific carbon dynamics rules are implemented for crop 

growth and development. This new version of the LPJ model includes crop-
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specific carbon and water dynamics without model-dependent discontinuities 

when switching from natural vegetation to crops, but still maintains structural 

and dynamical differences between natural and crop plants. The crop 

compartment uses several parameters to drive the crop growth and 

simulation. A full non-linear optimization procedure is used to find the optimal 

crop parameters for the simulation in Europe.  

The resulting optimal parameterization is used to run the model under 

several climate change scenarios to quantify impacts on the crop potential 

yields, and the patterns of productivity. In order to differentiate the effects of 

temperature changes from the direct effects of increased CO2 concentrations 

on plant physiology, the assessment is performed using two modes, ``climate 

and CO2 concentration change'' (CCO2) and ``climate change only'' (CC). In 

this way, it is possible to separate the response to the climate signal from the 

CO2 fertilization effect. In this work, we exclusively focus on the climate 

change impacts of the major crop varieties simulated within a single model of 

natural and crop vegetation dynamics. The effects of technology change, 

cultivar adaptation, and irrigation will be reserved for later studies. 

 

2.2 Methods 
2.2.1 WOFOST 

WOFOST is a semi-mechanistic model to simulate crop growth and 

development for potential and water limited production conditions, using 

climatic variables as driving forces, soil site characteristics, crop specific 

parameters and management options (Van Diepen et al. 1989,Van Ittersum et 

al. 2003). This model has been developed during the late 1980s following the 

pre-existing crop growth model SUCROS (Van Keuelen and Wolf 1986, 

Goudriaan and Van Laar 1994, Van Laar et al. 1997) at Wageningen 

University, The Netherlands. During the last 20 years the model has been 

continuously improved and widely applied in several monitoring (Boons-Prins 

et al. 1993, De Konig and Van Diepen 1992) and forecasting applications 

(Roetter 1993, Zinoni et al. 2004, Marletto et al. 2004). WOFOST calculates 

the daily rate of canopy CO2 assimilation from daily incoming radiation, 

temperature, leaf area index (LAI), and canopy extinction coefficient (k). The 

model contains a set of subroutines to calculate the daily totals by integrating 
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rates of leaf CO2 assimilation both over time and canopy profile. The crop 

production is structured in two hierarchical levels. First the potential 

production is calculated as the maximum production reachable by the crop 

assuming full availability of water and nutrients, and the absence of pests. 

After that, stress factors are applied to reduce the potential yields to water-

limited and nutrient-limited. The water-stress reduction factor is evaluated 

using a detailed soil water balance model. Once the net biomass increase is 

defined, it is partitioned into four crop plant compartments (stems, leaves, 

roots and storage organs) according to crop specific partioning factors, the 

values of which depend on the development stage.  

 

2.2.2 LPJ 

The LPJ Dynamic Global Vegetation Model adopts a large-scale and 

process-based representation of terrestrial ecosystem dynamics taking into 

account carbon and water cycling in vegetation and soil, vegetation structural 

and compositional dynamics, and disturbance by fire. A comprehensive 

description of the model is given by Sitch et al. (2003). Representations of 

plant physiological and canopy biophysical processes are inherited from the 

BIOME3 equilibrium biogeography model (Haxeltine and Prentice 1996a). The 

vegetation of each modelled area or grid cell is represented as a combination 

of Plant Functional Types (PFTs), differentiated by physiological, dynamical 

and structural attributes as well as bioclimatic constraints for survival. Monthly 

climate data, and atmospheric CO2 concentration drive the simulation for each 

grid cell, characterised by a prescribed soil type. Vegetation structure and 

dynamics are explicitly included and populations of PFTs compete for light 

and water. The soil is divided into two layers and contains three carbon pools 

with different carbon decomposition rates. Photosynthesis is modelled based 

on a version of the Farquhar model (Farquhar and Von Caemmerer 1980, 

Farquhar and Von Caemmerer 1982) readapted for global modelling purposes 

(Collatz et al. 1991, 1992). In this model the Rubisco activity is assumed to 

vary both seasonally and within the canopy in order to always maximize the 

net assimilation at leaf level (Haxeltine & Prentice 1996b). Under this ``strong 

optimality'' hypothesis (Dewar 1996, Haxeltine and Prentice 1996b) it is  

possible to predict the light-use efficiency from environmental factors. Even 
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though the underlying mechanism are not completely understood (El Maayar 

et al., 2005), the photosynthetic acclimation (or downregulation) to increased 

CO2 concentration can lead to overestimation of assimilation at leaf level, 

especially for crops (Tubiello et al., 2000). LPJ does not take into account 

such a process; on the other hand, El Maayar et al. (2005) demonstrated that 

acclimation would be taken into account only for small decrease in global net 

primary productivity. 

 
2.2.3 LPJ-Crop  

One of the main differences between wild and crop plants is the biomass 

allocation within the structural parts. Genetic selection of agricultural plants 

designed much higher biomass allocation into the compartments with 

economic value, i.e. roots or grain, but several studies show that the basic 

Figure 2-1 Relation diagram of the LPJ-C, in green the crop compartment. 
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biochemical patterns and ecophysiological processes are only slightly different 

(Singaas et al., 2001).  

 

Table 2-1 List of the experimental datasets used in the optimization. Lon and Lat refer to the nearest CRU TS 
2.0 grid point used in the procedure. 

Location Lon Lat Years Vars Reference 
MAIZE 

Toulouse, France 1.5 43.5 1985, 1986 TAGB, DVS Boons-Prins et al. 1993 

S. Prospero, Italy 11.0 44.0 1997 TAGB, DVS Ceotto 1999 

Zaragoza, Spain 0.5 41.0 1995, 1996 DVS Cavero et al. 2000 

Settima, Italy 9.5 44.5 1997, 1998, 1999 DVS Dal Monte et al. 2002 

Vasto, Italy 14.0 42.0 1997, 1998 DVS Dal Monte et al. 2002 

WHEAT 

Helecine, Belgium 5.0 50.5 1985 TAGB, DVS Boons-Prins et al. 1993 

De Bouwing, The Netherlands 6.0 52.0 1983, 1984 TAGB, DVS Boons-Prins et al. 1993 

Lelystad, The Netherlands 5.5 52.5 1983, 1984 TAGB, DVS Boons-Prins et al. 1993 

Rothamsted, UK 0.0 52.0 1980, 1981 TAGB, DVS Boons-Prins et al. 1993 

S. Prospero, Italy 11.0 44.0 1994, 1995 TAGB, DVS Ceotto 1999 

Settima, Italy 9.5 44.5 1998, 1999 DVS Dal Monte et al. 2002 

Vasto, Italy 14.0 42.0 1997, 1998, 1999 DVS Dal Monte et al. 2002 

 

Agro-ecosystems are generally monocultural and often consist of annual 

plants. One result is that short and intense drought can impose severe 

reduction on the crop yield within a period of few weeks. That implies that the 

time scale of the vegetation processes also needs to be considered differently 

in the modelling of crops, compared to natural vegetation. In its original 

version, LPJ only considers perennial PFTs, while in this work we describe 

crops exclusively as annual plants. Therefore, separate carbon allocation 

schemes with different time steps were implemented in this study for 

modelling of natural vegetation and crops (Figure 2-1). For natural vegetation, 

the standard LPJ biomass production scheme with a yearly time step for the 

allocation and the consequent LAI calculation was adopted. For crop 

development, a daily time step was adopted for all the processes. The 
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adapted LPJ model thus provides a day-by-day quantitative description of the 

growing season of the crop, while preserving the more computationally 

efficient scheme for natural vegetation. In this model version, we only simulate 

potential crop production; the water demand is always fulfilled, so that the 

plant productivity is always at the maximum achievable level under the 

constraining light and temperature condition. The crop carbon allocation 

scheme is derived from the WOFOST model as described in the Appendix I. 

As mentioned above, the integration of the water stressed production will be 

reserved for a later study. 

 

2.2.4 Crop Data  

Experimental crop observations were gathered from several maize and 

wheat field experiments in Europe (Table 2-1; Figure 2-2). Phenological 

records and biomass data were taken from the PHENAGRI project (Dal Monte 

et al. 2002), the Crop Growth Monitoring System (CGMS) of the European 

Community (Boons-Prins et al. 1993) and from some published field 

experiments (Ceotto 1999, Cavero et al. 2000). Since the model simulates 

potential production, only sites with predominantly non water-stressed 

conditions were selected for the optimization procedure. All data sets have 

previously been used for the validation of other crop growth models (Marletto 

et al. 2004, Zinoni et al. 2004). Using the available information we have set up 

two data sets. The first consists of phenological records showing the date of 

emergence, flowering and maturity of the crop experiment. Since no 

information on crop phenology is provided by CGMS, the day of the maximum 

measured LAI was taken as the date of anthesis. The second data set 

consists of Total Above Ground Biomass (TAGB) recorded during the growing 

season. When no specific data were available, the day of the last TAGB 

record was considered the maturity day. 
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2.2.5 Environmental forcings and experimental design  

The CRU TS 2.0 (Mitchell et al. 2004) global climate data set was used for 

the parameter optimization and to drive the simulations for the period 1901-

2000. It provides monthly fields of observed mean temperature, precipitation 

and cloud cover on a 0.5° x 0.5° global grid over land. The complete set is 

one of the high-resolution gridded data sets of the Climate Research Unit of 

University of East Anglia and the Tyndall Center. The TYN SC 2.0 (Mitchell et 

al. 2004) is also part of the same data source; this data set was used to force 

the model for the future climate scenarios for the period 2001-2100. It consists 

of monthly climate data for the period 2001-2100 simulated by General 

Circulation Models (GCMs), covering the global land surface on the same 0.5° 

x 0.5° grid as the CRU TS 2.0. This set includes 16 scenarios of projected 

future climate representing all combinations of four SRES emissions 

scenarios and four GCMs, covering 93% of the range of uncertainty in global 

warming in the 21st century published by the Intergovernmental Panel on 

Climate Change (IPCC 2001b). We choose HadCM3 and CGCM2 outputs, 

Figure 2-2 Locations of the experimental fields (Table 1) providing data for this work. 
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both under the SRES-B2 and SRES-A1 scenarios. A1 and B2 are the 

opposite representation of the world development within the SRES group. In 

the A1, the world is highly globalized and emphasis is on global economic 

growth rather than environmental protection and sustainability; we consider 

the particular case of A1FI, which is the “Fuel Intensive” sub-scenario where 

fossil fuels remain the main energy source. In the B2, on the contrary, Europe 

searches local solution for better solve ecological and social problems. The 

choice of the HadCM3 and the CGCM2 scenarios was motivated by their 

behaviour over Europe, which are characteristic for two clusters/families of 

scenarios in the IPCC analysis. HadCM3 is considered one of the reference 

GCMs within the IPCC framework and shows a clear increase in temperature 

over Europe (IPCC 2001a). In the IPCC simulations CGCM2 shows a marked 

slowdown of the North Atlantic thermohaline circulation (IPCC 2001a), so that 

heat transport to the North Atlantic and Europe tends to decrease. CGCM2 

thus shows a less intense temperature increase until 2100. The land included 

within the borders 10.0° W and 50.0° E in longitude, 35.0° N and 70.0° N in 

latitude is defined as the study area. Mean climate and atmospheric CO2 are 

shown in Figure 2-3, where HadCM3 temperature increases by 0.63° C per 

decade in the A1, and 0.24 °C in the B2 scenario, while for CGCM2 it is only 

0.43 °C per decade in the A1, and 0.17 °C in the B2 scenario. Monthly climate 

data are interpolated to obtain quasi-daily series to drive the simulations. 

Mean global CO2 concentration were taken from McGuire et al. (2001) 

covering the period 1901-1992, derived from ice cores and averaged 

observations from Mauna Loa and South Pole monitoring stations (Keeling et 

al., 1995, Etheridge et al., 1996). For the remaining period 1993-2100, mean 

global CO2 concentration corresponding to the SRES-A1 and SRES-B2 

scenarios (Schlesinger and Malyshev, 2001) were used. 



Chapter 2 - Model evaluation and potential production 

 26 

Soil texture data were based on the FAO soil data set on a global 0.5° x 

0.5° grid, as described by Sitch et al. (2003). A crop map with a global 

resolution 0.5° x 0.5° derived from Ramankutty and Foley (1998), was used 

as a mask to delimit crop areas on the grid. The Ramankutty and Foley data 

sets give a gridded representation of the global cropland distribution of the 

year 1992. The value of each grid point represents the fractional area covered 

by crops, expressed as an index from zero to one. The index is associated 

also to qualitative classes ranging from “other vegetation” (index zero) to 

“crops” (index one). Cells with an index from 0.15 to 1.0 (from class ``other 

vegetation and crop mosaic'' to ``crops'') have been selected for Europe from 

the original data set (Figure 2-4). Two Crop Functional Types (CFT), maize 

and wheat, were simulated, the latter based on parameter optimization (see 

Figure 2-3 Climate annual means over the study area (10.0°W - 50.0°E, 35.0°N - 70.0°N. 
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next section). No natural vegetation was allowed to grow over grid points 

designated as crops according to the crop mask. Development of maize and 

wheat were simulated independently for each grid cell, with no assumption of 

competition for resources between these crop types. 

The model was forced with each of a set of eight scenarios of future climate 

and atmospheric CO2 concentrations: for each climate scenario (HadCM3-A1, 

HadCM3-B2, CGCM2-A1 and CGCM2-B2), separate runs were perfomed 

changing climate and CO2 together (CCO2 mode) or climate alone (CC 

mode). In the CC mode, the CO2 concentration is fixed at the pre-industrial 

level of 280 ppmv for the whole simulation period, while the climate varies 

according to observation (until 2000) and to predictions (from 2001). For the 

CCO2 simulations, the climate forcing is still the same to the CC, but CO2 

varies together with climate. 

 

2.2.6 Crop parameter optimization procedure 

The geographical distribution of crops is linked to many factors such as 

irrigation and fertilization techniques, cropping systems, soil management and 
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Figure 2-4 The applied crop mask; maize and wheat are free to grow on the mask with no competition
for resources. No natural vegetation is allowed to grow on this grid and the grid remains constant over

the whole simulation period. 
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genetic characteristics of the cultivars. In this model, we represent a mean 

maize and wheat plant described by specific model parameter sets (Table 1 in 

Appendix I). Since it should be suitable for large scale simulations, our 

strategy was to find the best parameter set that minimizes the mean squared 

error between simulated values and regionally distributed point observations. 

The model was run for all points where crop data were available (Table 2-1; 

Figure 2-2). In the absence of site measurements of weather variables, data 

from the nearest CRU TS 2.0 grid point were used as climate forcing. The 

optimization procedure was applied to the crop parameterization in order to 

minimize the mean squared error (MSE), defined as follows, over all the 

simulated and the observed local data.  

N
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iinin∑ −

=

2
,, )),((

)(  

kn,i: measured quantity number n on the field experiment number i  

xn,i: simulated quantity number n on the field experiment location number i 

as a function of forcing and the set of parameters  

Forci: climate and soil forcing of the simulation for the field experiment 

location number i  

Parset: crop parameter set used in all the simulations  

N: number of samples 

The result of this procedure is an optimized crop parameter set that allows 

the model to simulate the crop growth as closely as possible to the observed 

values within the study region.  

Crop growth is characterized by dry matter production whilst development 

is characterized by crop phenology (Goudriaan and Van Laar, 1994). In the 

model, the phenology is represented by the development stage (see Appendix 

I), which depends only on past air temperature and on three crop parameters, 

the heat requirement sums for each of the growth phases (tsum1, tsum2), and 

the effective development response to temperature (dtsmtb). The heat 

requirement sums (tsum1, tsum2) determine the length of the growing 

season. Since the length of the growing season has an important impact on 

the biomass production, tsum1 and tsum2 play a dominant role for the 

biomass production when compared to the effective development response to 
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temperature (dtsmtb). The day of the emergence, i.e. the beginning of the 

development stage, is calculated using a simple 10-days running mean 

temperature threshold set to the parameter t_eme for maize, while it is fixed at 

the first day of the year (see Appendix I) for wheat. Biomass production is a 

complex process driven by the development stage involving light interception, 

photosynthesis, carbon allocation and mortality. Since in the model the crop 

phenology is completely independent from the biomass production, the 

development stage optimization was performed first, then, using the results, 

the optimization of the biomass. 

  

2.2.7 Optimization of the development stage submodel  

The phenological data sets contain the dates of emergence, flowering and 

maturity in day of the year (DOY). The development stage submodel not only 

describes the development in time, but also identifies the DOY of the flowering 

and maturity. Since all the phenological data are expressed in days, the MSE 

can be expressed in days. In addition to that, the maize emergence date has 

to be optimized in order to set the starting date for the maize development 

stage calculation. In fact, the maize emergence depends on a 10-day running 

mean temperature (t_eme) and is completely independent from the 

development stage (see Appendix I). Thus, before the beginning of the 

optimization of the maize development stage, the optimal mean temperature 

for emergence (t_eme) has to be found through a separate procedure.  

In order to find the optimal parameter set, we used an unconstrained non-

linear optimization procedure applied to the MSE function: a Matlab routine 

based on the simplex direct search algorithm (Lagarias et al. 1998) starting 

from a user-specified point with a specified tolerance. The beginning points of 

the search were set to literature values found (Boons-Prins et al. 1993) and a 

minimum and a maximum parameter increment (max increment 100.0 °C day, 

min increment 10.0 °C day) were set to speed up the search algorithm. No 

increments were set for the maize emergence temperature parameter 

optimization. Since the effective development response to temperature 

(dtsmtb) plays a secondary role in the development stage calculation, we 

included in the optimization only the heat requirement sum (tsum1, tsum2). 
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2.2.8 Optimization of the production model  

Detailed information on the biomass in all the plant compartments is usually 

unavailable; only the total above ground biomass (TAGB) is present for all 

sites contributing data to this study. The biomass production depends directly 

on the net primary productivity (NPP), which depends in turn on the light 

interception as a basic process for carbon assimilation. We optimized the 

three parameters that define the assimilation at leaf-scale: the light extinction 

coefficient (Kcrop), the specific leaf area (sla), and the LAI at emergence 

(LAIeme). Sla and LAIeme drive and initialize the LAI development that 

controls leaf assimilation. Kcrop defines the capacity of the crop canopy to 

intercept light depending on LAI. The selected parameters have numerical 

limits, so the optimization has to be constrained within boundaries (see 

Appendix I). Therefore, a constrained non-linear optimization procedure was 

used to find the optimal parameters that minimize MSE. The strategy and the 

technical procedure was the same as for the development stage optimisation, 

except that a constrained search was applied. In this case, the MSE 

represents the mean squared error between the observed and simulated 

TAGB. 

 

2.2.9 Climate change impact analysis 

Since the model simulates the potential production of crops, only 

temperature and radiation drive the crop growth during the growing season. 

Radiation is the dominant factor in the biochemical processes at leaf level, but 

usually it is not a limiting factor for the development (Goudriaan and Van Laar 

1994). The enriched CO2 atmosphere can lead plants to improve their 

photosynthetic efficiency, so the joint effects of temperature and CO2 

concentration are expected to interact on crop productivity. The two crops do 

not always reach physiological maturity over the whole crop simulation grid, 

so the grid distribution of the potentially useful points changes in time. We 

apply our analysis only to the grid points where maize and wheat reach their 

full maturity and are theoretically ready to be harvested. Therefore, our 

assessment is divided in two parts, an analysis of the effects on crop 

productivity and another on the geographical patterns where crops reach full 

maturity. 
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The interannual variability of the total productivity over the study area has a 

component related to the change in distribution as well. In order to exclude it 

and to take into account only changes in plant productivity, we analyse the 

means over a fixed number of grid points during all the simulation years. We 

selected those points where maize and wheat reach full maturity at the first 

year of simulation, and we refer to this area as the “fixed reference area” of 

both crops. In this way, when we describe the interannual variability of the 

means, we represent the interannual variability referring to the initial state 

excluding any components due to area change. The initial maize distribution is 

shown in the Figure 2-9. Wheat reaches maturity over virtually the entire crop 

mask already at the beginning of the simulations.  

Here, we analyse the effect on both the growing season length effect and 

the Harvest Index (HI) defined as:  

TAGB
SOHI =  

SO: Biomass storage organs [kgC/m2]  

TAGB: Total above ground biomass [kgC/m2]  

HI expresses the yield efficiency in the carbon distribution within the above 

ground parts of the plant. The assimilated carbon begins to be allocated to the 

grain compartments only during the grain-filling phase, i.e. after flowering. 

Therefore, a high HI means that the plant has allocated more carbon to the 

grain and did so during the grain-filling phase. Biomass growth is coupled to 

photosynthesis, so a high HI indicates growth conditions favourable to 

production during the second part of the development. 
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Figure 2-5 Optimization results for the biomass production model. Error bars show the standard deviation

within all the data from the field experiments for wheat and maize. 
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Table 2-2 Results of development stage (DVS) submodel optimization, refer to Table 1 in Appendix I  for input 
variable description. 

  Maize DVS Wheat DVS Maize emergence 
Parameters tsum1 tsum2 tsum1 tsum1 t_eme 
Beginning point 693.0 768.0 1255.0 909.0 6.0 
Optimal point 1718.0 1135.0 1004.0 954.0 13.7 
MSE [d2] 344.7 429.9 411.8 

Table 2-3 Results of the production model optimization, refer to Table 1 in Appendix I for input variable 
description. 

  Maize Wheat 
Parameters Kcrop sla LAIeme Kcrop sla LAIeme 
Beginning point 0.50 0.0020 0.50 0.50 0.0020 0.13 
Higher limit 0.99 0.0080 0.99 0.99 0.0080 0.099 
Lower limit 0.03 0.0010 0.001 0.03 0.0010 0.01 
Optimal point 0.81 0.0070 0.038 0.81 0.0070 0.099 
MSE [(kgC/m2) 2] 0.225 0.051 

 

2.3 Results 
2.3.1 Optimal crop parameter sets 

The summary and results of the DVS optimization set are given in the 

Table 2-2. The maize optimal points generally deviate more from the starting 

points than for wheat. Wheat MSE is also larger then maize, which reflects the 

intrinsic variability in the phenology data set, where the date of full maturity 

have a much larger variability then in the maize case. 

The results of the production model optimization are given in Table 2-3. 

According to Figure 2-5 and the results in the table, the wheat simulations fit 

better then those for maize. In this case, the shape of the simulated curves 

does not fit the observed data, and during the final phase the simulated 

values are up to 50% smaller then the recorded data. For wheat, the observed 

and simulated curves show a much better fit. 

The delay in the emergence and day of maturity depends on the 

development stage optimization. Maize reaches simulated maturity around 

DOY 300, with a constant delay of mostly 10 days against the last record. 

Wheat has a larger variability in the simulated day of maturity then maize. In 

the case of maize, only three stations do not seem to be sufficient to fully 

characterize the crop, while the ten data sets of wheat lead to a better 

optimization. The optimization results could be improved, hence, with the use 

of more experimental data, especially from CO2 enriched experiments as 

ESPACE-wheat (Bender et al., 1999) or FACE experiment (Tubiello et al., 
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1999; Kimball et al., 2002). The photosynthesis submodel of the LPJ standard 

version has been already tested in the NPP response to atmospheric CO2 

increase (Bacelet et al. 2003, Hickler et al. 2003), but in this context a more 

detailed test has to be carried out before planning an optimization procedure 

with CO2 enriched atmosphere data. We reserve, therefore, this issue for a 

further study. 
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Figure 2-6 A, the mean length of the growing season, in B mean annual temperature over the fixed reference 
area. 
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Figure 2-7 Mean crop production over the fixed reference area. In A the annual net primary productivity, in B 
the total carbon biomass, in C the grain carbon biomass and in D the harvest index. In B,C and D the values 

are referred to the end of the growing season. The model shows a non linear response to the temperature 
increase in the HadCM3 A1. Only in this case maize grain biomass and harvest index strongly decrease, 
while the total biomass decrease is more homogeneous in all the maize simulations. Wheat productivity is 

clearly related to the length of the growing season shown in the Figure 2-6-A. 
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2.3.2 Climate change effect on crop development and growth 

The length of the growing season of maize (Figure 2-6-A) tends to oscillate 

around 180 days with an interannual variability within 10 days during the last 

century. The change within the period 2001-2100 depends on the warming 

conditions of the corresponding scenario (Figure 2-6-B). Thus, in the warmest 

scenario HadCM3 A1, the growing season length decreases by more then 20 

days by the end of the simulation, while in the coldest, CGCM2 B2, the 

decrease is less then 10 days. The increased temperatures lead to higher 

levels of maintenance respiration, so annual NPP (ANPP, Figure 2-7-A) tends 

to decrease in all the scenarios. As described before, the shorter growing 

season leads NPP to decrease as well, so the current NPP decline is the 

result of the combined effect of faster development and higher respiration 

costs. Since maize is a C4 plant, the enriched CO2 atmosphere does not 

affect NPP significantly. Since no external stress is simulated, total biomass 

tends to proportionally follow the decrease in ANPP (Figure 2-7-A). The grain 

carbon mass and the HI decrease during the same period as well (Figure 2-7-

C and D). Further, the maize HI remains more or less stable for all the 

simulations, but it decreases severely in the warmest scenario, i.e. HadCM3 

A1. In this case, the assimilated carbon is allocated more to the stems and 

leaves than to the grain. Since the grain allocation begins only after flowering, 

less biomass in the grain compartment means that the plant assimilates less 

carbon during the grain-filling period.  

Figure 2-8 shows on the left side the decadal increment in monthly 

temperatures from April to September over the fixed maize reference area. 

The grain-filling phase corresponds mostly to the mid or late summer (July, 

August, September), when temperature shows a steep increase. In other 

words, the temperature of the months corresponding to the grain-filling period 

increases faster then these of the vegetative months (April, May and June) 

after 2000. Consequently, the development after flowering becomes faster 

and the grain-filling covers a shorter part of the full development cycle. The 

HadCM3 A1 shows the steepest increase, over 0.5 °C by the end of the 

scenario, compared to initial conditions. This simulation alone is associated 

with a strong decrease in grain biomass as well. While temperature increases  
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Figure 2-8 Decadal increment in monthly mean temperature over the fixed reference area. The increment is 
calculated as the difference between the month of the current year and the climatological mean of the month 
over the whole simulation period. 

 
in all the scenarios, only for HadCM3 A1 the grain biomass production tends 

to collapse. This indicates that the model shows a response related to an 

internal temperature threshold. When the driving temperature is above this 

limit, the development becomes so fast that a clear impact on the maize 

biomass has to be expected in addition to the respiration cost. 

The temperature increase has an even stronger impact on wheat growing 

season. The length decreases in all the simulations (Figure 2-6-A) as in 

maize, but the rate of decrease is much more intense: for HadCM3 A1 it goes 

from around 220 days to 170, a decrease of 50 days. Figure 2-8 on the right 

side also shows that the increase in April, May, and June during the wheat 

season are very similar across the scenarios. Only in July HadCM3 A1 

temperature increases faster, but the development during this month is mostly 

completed or in its very final part. Therefore, large differences in grain 

biomass and HI are not as clearly evident among the simulations as it is for 

maize (Figure 2-7-C and D). 

When the fertilization effect of increased CO2 concentrations is excluded 

(CC scenarios), wheat NPP decreases more markedly than maize. In this 

case, not only respiration, but also the strong shortening of the growing period 
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plays a role. The two groups of simulations, CCO2 and CC, show that A1 and 

B2 scenarios are clearly separated for wheat (Figure 2-7-A, B and C). 

Revisiting Figure 2-6-A, it is possible to note that also here there is a clear 

separation between A1 and B2 groups of wheat growing season length. This 

confirms that, apart from respiration, the length of the growing season controls 

the ANPP and the consequent total biomass. The fertilization effect applies to 

wheat, a C3 plant, so ANPP and total biomass increase in CCO2 (Figure 2-7-

A), but starts to decrease in the A1 group when the high temperature causes 

higher respiration. Grain biomass and HI increase in all the simulations, this 

means that carbon is allocated more efficiently to grain and final yield always 

improves.  

 

Figure 2-9 Change in the maize maturity distribution. Maize can freely grow on the crop mask (Figure 4). In

red, the initial area occupied at the beginning of the simulations (1901).  In yellow, the relative increase at the 

end (2100), the final distribution is is the yellow and red areas together. In blue, the remaining free crop mask.
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2.3.3 Climate change effect on the geographical distribution  

One of the most interesting climate change impacts for Europe is the 

predicted effect on grain yield distribution (IPCC 2001a, Olesen and Bindi 

2001). In this study, both maize and wheat are set on the same crop mask 

over Europe (Figure 2-4) and free to grow with no competition. In this way, 

climate is the only forcing that determines the geographical distribution over 

the study area through its impact on phenology. 

Figure 2-9 shows the areas where maize reaches full maturity. At the 

beginning of the simulation maize reaches full development only in southern 

Europe, but at the end, the central and eastern parts become largely suitable. 

While the climate warms, the suitable conditions for maize development follow 

the temperature paths by moving towards north and east. The largest 

differences are between emissions scenarios rather than GCMs. Both A1 

scenarios provide suitable conditions for maize maturity over the majority of 

the crop mask, while for B2, some large area in north and central Europe 

remain still unsuitable. Not only the areas of full maturity, but also the areas 

with higher grain yield move from southern towards central and Eastern 

Europe. If we consider the quantitative biomass change between the end and 
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Figure 2-10 Mean grain biomass over the study area at the date of maturity. The mean is calculated

over the whole applied crop mask. 
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the beginning of the simulations, we notice that the grain biomass does not 

vary uniformly. In Figure 2-10, the mean of maize grain biomass increases 

rapidly over the whole continent as a consequence of the areal expansion. As 

we see in Figure 2-11-A, while the change in maize grain biomass is mostly 

positive, in some parts of southern Europe it is actually negative. Therefore, 

the carbon biomass decreases in the grain compartments in some points of 

the initial crop area, confirming what was shown before for the plant 

productivity impacts. 

In each simulation year, wheat reaches full development mostly over the 

whole crop mask, but the growing season becomes always shorter so that 

NPP decreases. Since wheat is a C3 plant, the CO2 concentration has a clear 

effect on the assimilation efficiency. In Figure 2-10, the mean wheat grain 

biomass decreases in CC, but slowly increases in CCO2. Since the mean in 

the figure is calculated over the whole crop mask and wheat covers always 

almost all mask, the curves in the figure reflect the same behaviour shown in 

Figure 2-7-C. The change in the grain biomass is mostly negative in all the CC 

simulations, but in the CCO2 it is positive almost everywhere in Europe. This 

difference is more evident in the A1 runs (Figure 2-11-B). In both HadCM3 A1 

and CGCM2 A1, the absolute grain biomass change for CCO2 (Figure 2-B, on 

the right) is negative only in some points in southern Europe, while it is mostly 

negative over the whole continent for CC (Figure 2-B, on the left). Figure 2-11-

B also shows that the areas with the largest decrease in wheat grain biomass 

in CC correspond to the areas with the smallest increase in CCO2. It is 

particularly evident in the eastern central region, where temperature increases 

most. The shorter growing season and the high respiration lead to a decrease 

in biomass accumulation. In CCO2, the CO2 fertilization effect 

counterbalances this effect and the biomass tends still to increase slightly, 

while in CC clearly decreases. Furthermore, in both the cases, some parts of 

southern Europe show always a decrease in grain biomass, as in the case of 

maize. 
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A 

 
B 

Figure 2-11 Change in grain biomass [kgC/m2] at the date of maturity. The change corresponds to the 
absolute difference between the last (2100) and the fist (1901) year of simulation. A, maize, large areas are 
zero because maize does not reach maturity at the first year. B, wheat, relative to the A1 scenarios runs only. 
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2.4 Discussion 
Our model simulations with LPJ-C show that climate change will impact 

crop productivity of maize and wheat in different ways. Maize yield will only 

slightly decrease due to the impact of temperature on respiration, but when 

temperature reaches very high values, a non-linear response is expected. In 

this case, the maize grain production tends to collapse as a result of both 

respiration increase and shortening of the growing season. Wheat yield will 

also suffer from the negative impact of a shorter growing season, but the CO2 

fertilization effect will compensate this effect and lead to a net improvement of 

production efficiency.  

The geographic distribution of both phenology and potential yield will be 

affected as well. Faster growth, driven by increased temperature, will force 

plants to produce less biomass and affect the harvest index. The eastern 

central European region will be affected by a relatively low increase in wheat 

yield, while maize will have a clear improvement. By contrast, both crops will 

experience a decrease in productivity in southern Europe. Therefore, maize 

could become more valuable in some central and northern regions, while 

southern Europe will suffer of a lack of productivity. These conclusions are 

comparable to those reached by Olsen and Bindi (2002) and the IPCC 

predictions (IPCC 2001c). In those studies, northern European regions are 

expected to have some positive effects through the introduction of new crop 

varieties and the CO2 fertilization effect, but in southern Europe the 

disadvantages might be predominant. New policies have to be found to adapt 

the cropping system to the new climate regimes. In this sense, we agree that 

new crop distribution patterns will have to be expected as the result of climate 

change, and new adaptation strategies will have to be applied to maintain 

high yields especially in the more vulnerable regions such as the 

Mediterranean area. In this work, we give for the first time a geographical and 

quantitative description of the potential impacts of climate change using a 

Dynamic Global Vegetation Model. The approaches used in previous works 

(Olsen and Bindi 2001, Tubiello and Ewert 2002, Wolf et al. 2003, Fuhrer 

2003, Van Ittersum et al. 2003) were typically based on information obtained 

from crop growth model simulations at a number of sites and extrapolated to 

larger regions. The modelling approach developed in the present study 
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provides the potential to simulate both natural vegetation and crop production 

on large regions using a single integrated approach. Furthermore, such an 

integrated model enables to estimate the ecosystem-scale carbon budget 

including soil organic pools. 

LPJ-C simulates only potential production and crops are free to grow on the 

whole crop mask. In the real world, crop allocation is driven by economic 

values and land suitability. To help choose crop types and area distributions 

according to their economic profitability, a land use model should be 

integrated in the LPJ-C scheme. Water stress would have to be taken into 

account in the simulation of the production processes. Additionally, no 

extreme events are simulated in the current study, while they are considered 

to have a high-impacts potential in the European agro-ecosystem. The variety 

of crops through Europe is quite large, and wheat cultivars in particular differ 

in plant structure, development and physiological requirements. In this work, 

we selected only one general representation of a single wheat and maize 

cultivar through an optimization procedure. In this context, there is also some 

room for optimization improvement using more experimental data coming also 

from CO2 enriched experiments; additionally, more then one single cultivar for 

each crop could be included in the input parameterisation set. This aspect is 

still in debate within the biosphere modelling community. For each crop 

cultivar a parameterisation set has to be used as model input, so that the 

amount of information to be provided increases quickly depending on the 

crops and their cultivars. An important advantage of DGVM is the limited 

amount of input parameters to be provided; therefore, if a larger number of 

crop cultivars should be included, the simplicity in input parameters should be 

also preserved. As a preliminary modelling framework, we decided to include 

only one single general parameterisation per crop, but a more detailed 

regional agronomic study should be reserved for future works. 

Furthermore, agricultural systems are under continuous technological and 

genetic improvement, and such improvements could be taken into account 

when assessing the future evolution of the agro-environments. However, we 

assume that the change in cultivars and all the adaptation strategies will be 

applied to maintain the productivity as near as possible to the potential level. 
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The potential production, therefore, can be assumed to be close to the optimal 

production resulting from the constant adaptation and improvement. 

In conclusion, this model framework can be considered as a baseline on 

which one can build a grid-based modular system to assess in an integrated 

way the potential impacts of the changing climate on agricultural production in 

Europe. Our study demonstrates clearly that European agriculture is likely to 

undergo major changes as a result of climate change through the 21st century. 

The results of our spatially distributed simulations generally support the 

conclusions of earlier point wise studies of climate change effects on agro-

ecosystems in Europe. 

 

2.5 Conclusions 
Climate and atmospheric change over the coming century will have direct 

impacts on cropping systems in Europe. Improved productivity in the central 

and northern regions could lead to an enhanced food production. Our study 

shows that potential crop productivity in southern Europe is likely to decrease. 

According to the IPCC, the Mediterranean region will be affected by more 

intense droughts in the future, and this would exacerbate the negative impact 

of climate change on crop productivity in this region. In order to mitigate the 

impacts, new agro-ecological strategies have to be implemented by policy 

makers. This model represents a valid tool to simulate crop productions and 

natural vegetation within a single model framework, and after some further 

development, could be used as a tool to support agro-environmental policies 

needed to plan adaptation and mitigation to climate change. 



Chapter 2 - Model evaluation and potential production 

 45

2.6 References 
Abrol Y.P., Ingram K.T. (1996) Effects of higher day and night temperatures 

on growth and yields of some crop plants. In: Global Climate Change 

and Agricultural Production (eds. Bazzaz F and Sombroek WG), FAO, 

Rome Italy and John Wiley & Sons, Chichester, England, 123-140. 

Bachelet D., Neilson R.P., Hickler T., Drapek R.J., Lenihan J.M., Sykes M.T., 

Smith B., Sitch S., Thonicke K. (2003). Simulating past and future 

dynamics of natural ecosystems in the United States, Global 

Biogeochem. Cycles, 17, 1045, doi:10.1029/2001GB001508. 

Bender J., Hertstein U., Black C.R. (1999). Growth and yield responses of 

spring wheat to increasing carbon dioxide, ozone and physiological 

stresses: a statistical analysis of ‘ESPACE-wheat’ results. European 

Journal of Agronomy, 10, 185–195. 

Beniston M., Tol  R.S.J. (1998). Expected Climate Change Impacts in Europe. 

Energy & Environment, 9, 365-381. 

Boons-Prins E. R., de Koning G. H. J., van Diepen C. A., and Penning de 

Vries F. W. T (1993). Crop-specific parameters for yield forecasting 

across the European Communtiy. Wageningen, The Netherlands. 

Simulation Reports CABO-TT. 

Boogard H.L., van Diepen C.A., Roetter R.P., Cabrera J.M.C.A., van Laar 

H.H. (1998). User's guide for the WOFOST 7.1 crop growth model and 

WOFOST Control Center 1.5, Technical Document 52, Wageningen 

Agricultural University, Wageningen, The Netherlands.  

Boote K.J., Pickering N.B., Allen L.H. (1997). Plant modelling: advantages and 

gaps in our capability to predict future crop growth and yield in response 

to global climate change. In: Advances in carbon dioxide research (eds. 

Allen Jr. L.H., Kirkham M.B., Olszyk D.M., Whitman C.E.). ASA Special 

Publication 61, Madison, WI, 179-228. 

Cavero J., Farre I., Debaeke P., Faci J.M. (2000). Simulation of maize yield 

under water stress within the EPICphase and CROPWAT models. 

Agronomy Journal, 92,  679-690.  

Ceotto E. (1999) Exploring cropping systems of the low Po Valley using the 

systems approach. MSc Thesis, Wageningen Agricultural University, 

Wageningen, The Netherlands.  



Chapter 2 - Model evaluation and potential production 

 46 

Collatz J.G., Ball J.T., Grivet C., Berry J.A. (1991). Physiological and 

environmental regulation of stomatal conductance, photosynthesis and 

transpiration: a model that includes a laminar boundary layer. 

Agricultural and Forest Meteorology, 54, 107-136.  

Collatz J.G., Ribas-Carbo M., Berry J.A. (1992). Coupled photosynthesis-

stomatal conductance models for leaves of C4 plants. Australian Journal 

of Plant Physiology, 19, 519-538.  

Cramer W.,  Bondeau A., Woodward F.I., Prentice I.C., Betts R.A., Bronvik V., 

Cox P.M., Fisher V., Foley J.A., Friend A.D., Kucharik C., Lomas M.R., 

Ramankutty N., Sitch S., Smith B., White A., Young-Molling C. (2001). 

Global response of terrestrial ecosystem structure and function to CO2 

and climate change: results from six dynamic global vegetation models. 

Global Change Biology, 7,  357-373.  

Dal Monte G., Cali A., Buttarazzi M. (2002). Censimento e database di dati 

agrofenologici. Acts of National Meeting ``Fenologia per l'agricoltura'', 

Rome, 5-6 december 2002.  

De Koning G.H.J., Van Diepen C.A. (1992). Crop production potential of rural 

areas within the European communities. IV. Potential, water-limited and 

actual crop production. Working document W68, Netherlands Scientific 

Council for Government Policy, The Hague, The Netherlands. 

Dewar R.C. (1996). The correlation between plant growth and intercepted 

radiation: an interpretation in terms of optimal nitrogen content. Annuals 

of Botany, 78, 125-136.  

Donner S.D., Kucharik C.J., Foley J.A. (2004). Impact of changing land use 

practices on nitrate export by the Mississippi River. Global 

Biogechemical Cycles, 17, 1085-2004.  

El Maayar M., Ramankutty N., Kucharik C. J. (2005). Modelling global and 

regional net primary production under elevated atmospheric CO2: on a 

potential source of uncertainty. In press: Earth Interactions.  

Etheridge D.M., Steele L.P., Langenfelds R.L., Francey R.J., Barnola J.M., 

Morgan V.I. (1996). Natural and anthropogenic changes in atmospheric 

CO2 over the last 1000 yearsfrom air in Antartic ice and firn. Journal 

Geophysical Research, 101, 4115-4128.  



Chapter 2 - Model evaluation and potential production 

 47

Farquhar G.D., Von Caemmerer S., Berry J.A. (1980). A biochemical model of 

photosynthetic CO2 assimilation in leaves of C3 species. Planta, 149, 

78-90.  

Farquhar G.D. and Von Caemmerer S. (1982). Modelling of photosynthetic 

response to environmental conditions. In: Physiological Plant Ecology II: 

Water Relations and Carbon Assimilation (eds. Nobel PS, Osmond CB, 

Ziegler H), Springer, Berlin. 

Fuhrer J. (2003). Agroecosystem responses to combinations of elevated CO2, 

ozone, and global climate change. Agriculture Ecosystems and 

Environment, 97, 1-20.  

Goudriaan J. and van Laar H.H. (1994). Modelling Potential Crop Grwoth 

Processes, Current Issue in Production Ecology, Kluwer Academic Pub, 

Dordrecht, The Netherlands.  

Heemst van H. (1988). Plant data values required for simple and universal 

simulation models: review and bibliography. Simulation reports CABO-

TT, Wageningen.  

Haxeltine A., Prentice I.C. (1996a) BIOME3: an equilibrium biosphere model 

based on ecophysiological constraints, resources availability and 

competition among plant functional types. Global Biogeochemical 

Cycles, 10, 693-709.   

Haxeltine A., Prentice I.C. (1996b) A general model for the light-use efficiency 

of primary production, Functional Ecology, 10, 51-561.  

Hickler T., Prentice I.C., Smith B., Sykes M.T. (2003). Simulating the effects of 

elevated CO2 on productivity at the Duke Forest FACE experiment: a 

test of the dynamic global vegetation model LPJ. EGS - AGU - EUG 

Joint Assembly, Abstracts from the meeting held in Nice, France, 6 - 11 

April 2003, abstract #9347. 

Houghton R.A., Hackler J.L.,  Lawrence K.T. (1999) The US carbon budget: 

contributions from the land use change, Science, 285, 574-578.   

IPCC (2001a) Climate Change 2001: Working Group I: The Scientific Basis. 

Contribution of the Working Group I to the Third Assessment Report of 

the Intergovernmental Panel on Climate Change (eds. Houghton JT et 

al.), Cambridge University Press, Cambridge, UK and New York, USA.  



Chapter 2 - Model evaluation and potential production 

 48 

IPCC (2001b) Special Report on Emissions Scenarios (eds. Nakicenovic N 

and Swart R), Cambridge University Press, Cambridge, UK and New 

York, USA.  

IPCC (2001c) Climate Change 2001: Working Group II: Impacts, Adaptation, 

and Vulnerability. Contribution of the Working Group II to the Third 

Assessment Report of the Intergovernmental Panel on Climate Change 

(eds. McCarthy JJ et al), Cambridge University Press, Cambridge, UK 

and New York, USA.  

Keeling C.D,  Whorf T.P., Wahlen M., Vanderplicht J. (1995). Interannual 

extremes in the rate of rise of atmospheric CO2 measurements, Nature, 

375, 666-670.  

Kimball B., Kobayashi K., Bindi M. (2002). Responses of agricultural crops to 

free-air CO2 enrichment. Advances in Agronomy, 77, 293-368.  

Kucharik C.J., Brye K.R. (2003). Integrated BIosphere Simulator (IBIS) yield 

and nitrate loss predictions for Wisconsin maize receiving Varied 

Amounts of nitrogen fertilizer. Journal Environmental Quality, 32, 247-

268.  

Kucharik C.J.,  Foley J.A., Delire C., Fisher V.A., Coe M.T., Lenters J.D., 

Young-Molling C., Ramankutty N., Gower S.T. (2000). Testing the 

performance of a Dynamic Global Ecosystem Model: water balance, 

carbon balance, and vegetation structure. Global Biogeochemical 

Cycles, 14, 795-825.  

Kucharik C. J., (2003). Evaluation of a process-based agro-ecosystem model 

(Agro-IBIS) across the U.S. cornbelt: Simulations of the inter-annual 

variability in maize yield. Earth Interactions,  7, 14, 1–33.  

Lagarias J.C., Reeds J.A., Wright M.H., Wright P.E. (1998). Convergence 

Properties of the Nelder-Mead Simplex Method in Low Dimensions. 

SIAM Journal of Optimization, 9, pp112-147.  

Leff B., Ramankutty N., Foley J.A. (2004). Geographic distribution of major 

crops across the world. Global Biogeochemical Cycles, 18, 10, 

DOI:10.1029/2003GB002108. 

Lloyd J., Taylor J.A. (1994). On temperature dependence of soil respiration. 

Functional Ecology, 8, 315-323. 



Chapter 2 - Model evaluation and potential production 

 49

Marletto V., Zinoni F., Criscuolo L., Fontana G., Marchesi S., Morgillo A., van 

Soetendael M.R.M., Ceotto E., Andersen U. (2005) Evaluation of 

downscaled DEMETER multi-model ensemble seasonal hindcasts in 

northern Italy by means of a model of wheat growth and soil water 

balance. Tellus A, 57, 488-497.  

McGuire A. D., Stich S., Clein J.S., Dargaville R., Esser G., Foley J., Heimann 

M., Joos M.,  Kaplan J., Kicklighter D.W., Meier R.A., Melillo J. M., 

Moore III B., Prentice I.C., Ramankutty N., Reichenau T., Tian H., 

Williams L.J., Wittenberg U. (2001). Carbon balance of the terrestrial 

biossphere in the tweniteh century: analyses of CO2, climate and land 

use effects with four processes-based ecosystem models. Global 

Biogeochemical Cycles, 15, 183-206.  

Mitchel T. D., Carter T. R., Jones P. D., Hulme M., New M. (2004). A 

comprehensive set of high-resolution grids of monthly climate for Europe 

and the globe: The observed record (1901-2000) and 16 scenarios 

(2001-2100). Technical report, no. 5. Norwich, UK, Tyndall Centre for 

Climate Change Research, University of East Anglia. 

Olesen J.,  Bindi M. (2002). Consequences of climate change for European 

agricultutral productivity, land use and policy. European journal of 

Agronomy, 16, 239-262. 

Ramankutty N. and Foley J.A. (1998). Characterizing patterns of global land 

use: an analysis of global croplands data. Global Biogeochemical 

Cycles, 12, pp. 667-685.  

Roetter R. (1993). Simulation of the biophysical limitations to maize 

production under rainfed conditions in Kenya. Evaluation and application 

of the model WOFOST. Materiel zur Ost Afrika-Forschung, Heft 12, 261 

pp +Hannex.  

Schlesinger M.E., Malyshev S. (2001) Changes in near-surfaces temperature 

and sea-level for the Post-SRES CO2-stabilization scenarios. Integrated 

Assessment, 2, 95-110.  

Singaas E.L., Donald R.O., DeLucia E.H. (2001) Variation in measured values 

of photosynthetic quantum yield in ecophysiological studies, Oecologia, 

128, 15-23.  



Chapter 2 - Model evaluation and potential production 

 50 

Sitch S., Smith B., Prentice I., Arneth A., Bondeau A., Cramer W., Kaplan J., 

Levis S., Lucht W., Sykes M., Thonicke K., Venevsky S. (2003).  

Evaluation of ecosystem dynamics, plant geography and terrestrial 

carbon cycling in the LPJ dynamic global vegetation model.  Global 

Change Biology, 9, 161-185. 

Sitch S. (2000). The role of vegetation dynamics in the control of atmospheric 

CO2 content. PhD Thesis, Lund University, Sweden.  

Smith B., Prentice I.C., Sykes M. (2001). Representation of vegetation 

dynamics in modelling of terrestrial ecosystems: comparing two 

contrasting approaches within European climate space. Global Ecology 

and Biogeography, 10, 621-637.  

Sombroek W.G., Gommes R. (1996). The climate change - Agriculture 

conundrum. In: Global Climate Change and Agricultural Production (eds. 

Bazzaz F and Sombroek WG), FAO, Rome Italy and John Wiley & Sons, 

Chichester, England, 1-14.  

Supit I., Hoojer A.A., van Diepen C.A. (1994). System Description of the 

WOFOST 6.0 Crop Simulation Model Implemeted in CGMS,  JRC 

European Commission, 148 pp. 

Tubiello F.N., Rosenzweig C., Kimball B.A., Pinter P. Jr., Wall G.W., Hunsaker 

D.J., Lamorte R.L., Garcia R.L. (1999). Testing CERES-Wheat with 

FACE data: CO2 and water interactions. Agrononomy Journal, 91, 

1856–1865. 

Tubiello F.N., Ewert F. (2002) Simulating the effect of elevated CO2 on crops: 

approaches and applications for climate change. European Journal 

Agronomy, 18, 57-74.  

Van Diepen C.A., Rappoldt C., Wolf J., van Keulen H. (1988). Crop growth 

simulation model WOFOST documentation version 4.1. Center for World 

Food Studies, Wageningen,  299 pp.  

Van Diepen C.A., Wolf J., Van Keulen H., Rappoldt C. (1989). WOFOST: a 

simulation model of crop production. Soil Use and Management, 5, 16-

24.  

Van de Gejin S., Goudriaan J. (1996). The effects of elevated CO2 and 

temperature change on transpiration and crop water use. In: Global 

Climate Change and Agricultural Production, (eds. Bazzaz F and 



Chapter 2 - Model evaluation and potential production 

 51

Sombroek WG), FAO, Rome Italy and John Wiley & Sons, Chichester, 

England, 101-122. 

Van Ittersum M.K., Leffelaar P.A., van Keuelen H., Kropff M.J., Bastiaans L., 

Goudriaan J. (2003). On approaxches and applications of the 

Wageningen crop models. European Journal of Agronomy, 18, 201-234.  

Van Keulen H., Penning de Vries F.W.T., Drees E.M. (1982). A summary 

model for crop growth. In: Simulation of Plant Growth and Crop 

Production (eds. Penning de Vries FWT, Van Laar HH), Simulation 

Monographs, Pudoc, Wageningen, The Netherlands, 87-98.  

Van Keulen H., Wolf J. (1986) Modelling of agricultural production: weather 

soils and crops. Simulation Monographs, Pudoc, Wageningen, The 

Netherlands, 479 pp.  

Van Laar H.H., Goudriaan J., Van Keulen H. (1997). SUCROS97: Simulation 

of crop growth for potential and water-limited production situations. 

Quantitative Approaches in Systems Analysis, No. 14,  C.T. de Wit 

Graduate School for Production Ecology and Resource Conservation, 

Wageningen, The Netherlands, 52 +Appendices.  

Wolf J., Bindraban P.S., Luijten J.C., Vleeshouwers L.M. (2003). Exploratory 

study on the land area required for global food supply and the potential 

global production of energy. Agricultural Systems , 76-3, 841-861.  

Zinoni F., Marletto V., Fontana G., Criscuolo L., Morgillo A., Marchesi S., 

Ceotto E. (2004). Demeter seasonal hindcasts and potential wheat yield 

forecasting. In: Proc. VIII ESA Congress, 11-15/7/2004, Copenhagen, 

Denmark (eds. Jacobsen S.E., Jensen C.R., Porter J.), 2004, 353-354. 

 





Chapter 3 - Irrigation demand and drought risk 

 53

Chapter 3 

3 Irrigation demand and drought risk 

3.1 Introduction 
During the last 200 years, the atmospheric CO2 concentration had an 

increase by about 37%, reaching its current level of nearly of 380 µmol mol-1 

(Keeling and Whorf, 2000). Land use change and anthropogenic emissions 

from the burning of fossil fuels has led to a rapid increase of CO2 

concentration in the atmosphere. If no change to the current use of fossil fuels 

occurs within the next years, the predicted CO2 concentration will almost 

double by the middle of the 21st century (Alcamo et al. 1997; IPCC 2001c). 

One of the main consequences is a warming of the surface temperature. 

Current predictions show an increase on average by 0.4-0.6 °C per decade 

within the next 100 years (IPCC, 2001a), with associated change in 

precipitation regimes (Giorgi et al. 1998). Precipitation variability has already 

shown differentiated patterns during the 20th century between the Northern 

and the Southern parts of the European continent. The precipitation 

anomalies referring to the 1951–1980 period indicate that, between 1981 and 

1994, there has been an increase in the northern areas, while less 

precipitation occurred in the Mediterranean (Hurrell and van Loon, 1997). 

According to the Intergovernmental Panel on Climate Change (IPCC), the 

effect of the increased concentration of greenhouse gases will reinforce this 

trend during the current century and lead to an increase in the frequency of 

extreme events (IPCC, 2001c). In some Mediterranean areas the predicted 

precipitation reduction will reach 20%, with some higher percentage during the 

summer (Ragab and Proudhomme, 2002; Chartzoulakis and Psarras, 2005). 

Many assessments have been carried out to study potential impacts of 

climate change on the agricultural system in Europe (Kenny et al., 1993; Parry 

et al., 1992; Harrison et al., 1995; Chartzoulakis and Psarras, 2005), including 

potential productions (Wolf and van Diepen, 1995; Criscuolo et al., 2005) with 
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adaptation strategies  (Rosenzweig and Tubiello, 1997; Tubiello et al., 2000; 

Olesen and Bindi, 2002). All those studies suggest that yields will generally 

increase in the north, but decrease in the Mediterranean area. This 

differentiated yield pattern is the result of the combined effects of the 

increasing temperature, the change in precipitation regimes and a CO2 

enriched atmosphere.  

A warmer climate generally leads to a faster crop development, which 

leads to a shorter growing season and a shorter photosynthetic period. 

Hence, seasonal net primary productivity can decrease in a warming 

environment, so that the final yield decreases. A possible adaptation strategy 

is to use slow-growth cultivars, which stay longer in the field. On the other 

hand, longer periods in a warmer climate lead to longer evapotranspiration 

periods. The CO2 fertilization effect might improve the water use efficiency 

(WUE), increasing again the productivity; however, more extended irrigation 

may be needed to satisfy the increased seasonal demand of the extended 

evapotranspiration. Tubiello et al. (2000) found that the increased evaporative 

demands due to climate change will require 60–90% more irrigation to 

maintain grain yields of maize and soybean at current levels in some area of 

the Italian peninsula. 

Crops, however, are only one component of the ecosystem, where many 

other elements play key roles. Carbon and water cycling, fire events, runoff, 

water availability, land use and soil carbon storage are important aspects 

often neglected. Furthermore, none of the studies mentioned above were 

based on a dynamic process-based model applied on regular grid. A new 

generation of models is now available to perform general ecosystem service 

assessments of regional and global scales. Several Dynamic Global 

Vegetation Models (DGVMs) give an integrated representation of both natural 

vegetation and crops taking into account carbon and water within a single 

grid-based modelling framework (Kucharik and Brye 2003, Criscuolo et al. 

2005).  

In this paper, we perform an assessment of the crop water requirement for 

different climate change scenarios using a state-of-the-art DGVM, the Lund-

Potsdam-Jena (LPJ) model. We analyze how much water supply will be 

required to maintain maize and wheat productivity at the potential level in 
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Europe. A complete assessment of the water requirement, water use 

efficiency and crop yield is performed using a combination of two General 

Circulation Models (GCMs) under two IPCC scenarios. Additionally, we 

analyze the change in frequency of extreme yield failures of wheat production 

in comparison with a reference period for the past century. 

 

3.2 Methods 
3.2.1 The model 

The LPJ Dynamic Global Vegetation Model represents the large-scale and 

process-based dynamics of terrestrial ecosystem taking into account carbon 

and water cycling in vegetation and soil, structure and composition of 

vegetation, and fire disturbance. A comprehensive description of the model is 

given by Sitch et al. (2003). For the crop growth compartment, see Criscuolo 

et al. (2005). The vegetation of each grid cell is represented as a combination 

of Plant Functional Types (PFTs), differentiated by physiological, dynamical 

and structural attributes as well as bioclimatic constraints for survival. 

Vegetation structure and dynamics are explicitly included, and populations of 

PFTs compete for light and water. The soil is divided into two layers and 

contains three carbon pools with different carbon decomposition rates. 

Photosynthesis is based on a version of the Farquhar model (Farquhar and 

Von Caemmerer, 1980; Farquhar and Von Caemmerer, 1982) readapted for 

global modelling purposes (Collatz et al. 1991, 1992). Crop Functional Types 

(CFTs) are included as annual plants with separate carbon allocation 

schemes.  

Two CFT parameterisations have been used, one for maize and the other 

for wheat. The parameter sets are based on an optimization procedure 

applied for Europe. Crop growth can be simulated under both potential and 

water-limited conditions. No competition for resources occurs between CFTs, 

no natural vegetation can grow where crops are allowed to develop. 

 
3.2.2 The experiment 

The gridded global crop map by Ramankutty and Foley (1998) was used to 

derive the crop mask on the European grid (Figure 3-1). This data set consists 

of a global map with a resolution of 0.5° x 0.5°, in which each grid point 
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represents the fractional area covered by crops for the year 1992. Indices vary 

from “other vegetation” (index zero) to “crops” (index one). Cells with an index 

from 0.15 to 1.0 (from class ``other vegetation and crop mosaic'' to ``crops'') 

have been selected for Europe and have been used to scale the production 

according to the grid area occupied by crops. Soil texture data were based on 

the FAO soil data set on a global 0.5° x 0.5° grid, as described by Sitch et al. 

(2003). 

The model experiment consists of two sets of four simulations, each with 

two modes of the LPJ model combined with four GCM scenarios. In a “CO2 

changing” mode (COy), climate and atmospheric CO2 concentration change 

according to the scenario. In a “CO2 fixed” mode (COn), its concentration is 

fixed at the preindustrial level (280 ppmv). Such an experimental design 

allows analysing the CO2 fertilization effect on the vegetation productivity 

separately from the climate change influence.  

The simulation time covers the period 1901-2100: from 1901 to 2000 

observed climate and CO2 concentration (for COy) are used as model 

forcings, from 2001 to 2100 predicted climate scenarios are used together 

with the correspondent CO2 concentration scenario (for COy). 

Mean global CO2 concentrations for the period 1901-1992 were taken from 

McGuire et al. (2001), derived from averaged observations of Mauna Loa 

stations and from South Pole ice cores (Keeling et al., 1995; Etheridge et al., 

1996). For the remaining period 1993-2100, mean global CO2 concentrations 

Figure 3-1 The crop mask derived from Ramankutty and Foley (1998). 
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were derived from the integrated assessment of Schlesinger and Malyshev 

(2001).  

Observed climate data for the 1901-2000 period were derived from the 

CRU TS 2.0 global climate data set (Mitchell et al., 2004). This data set 

provides monthly fields of observed mean temperature, precipitation and 

cloud cover on a 0.5° x 0.5° global grid over land. Scenario climate data were 

derived from the TYN SC 2.0 data set (Mitchell et al., 2004) for the period 

2001-2100. This data set consists of monthly climate data for the period 2001-

2100 simulated by General Circulation Models (GCMs), covering the global 

land surface on the same 0.5° x 0.5° grid as the CRU TS 2.0. This set 

includes 16 scenarios of projected future climate representing all 

combinations of four SRES emissions scenarios and four GCMs. The climate 

Figure 3-2 Annual means of climate variables and CO2 over the study area (10.0°W - 50.0°E, 35.0°N -

70.0°N, land points only) 
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variability is obtained superimposing the observed variability of the 20th 

century on the mean changes projected for the 21st century. 

We selected the SRES-B2 and SRES-A1 scenarios from HadCM3 and 

CGCM2 GCMs outputs. A1 and B2 are the extremes of the SRES group. In 

A1, the emphasis is on global economic growth rather than environmental 

protection and sustainability; we consider the particular case of A1FI, the 

“Fuel Intensive” sub-scenario, in which the use of fossil fuels is maintained as 

highly as they are available. In B2, on the contrary, Europe searches local 

solution to better solve ecological and social problems within a less globalized 

world (IPCC 2001b). The choice of the HadCM3 and the CGCM2 was 

motivated by their behavior over Europe characteristic of two distinct groups 

of climate response in the IPCC analysis. In the IPCC simulations, CGCM2 

shows a marked slowdown of the North Atlantic thermohaline circulation 

(IPCC 2001a), so that heat transport to the North Atlantic and Europe tends to 

decrease. CGCM2 thus shows a less steep temperature increase compared 

to HadCM3 (Figure 3-2). Furthermore, HadCM3 is currently considered one of 

the reference GCMs within the IPCC framework (IPCC 2001a). 

Our analysis takes into account two representative periods, 1961-1990 

marked as “observation period”, and 2071-2100 as the “climate change state” 

of the simulations. This is also consistent with TYN SC 2.0, in which the first 

time interval is considered the reference period for the climatic conditions of 

the last century; the second is representative for the conditions at the end of 

the current century. 

We consider the cumulative actual evapotranspiration of the growing 

season as the water requirement (WR) and the water use efficiency (WUE) as 

the ratio between the WR and the final carbon biomass. 

 
3.2.3 Analysis of water requirement 

The LPJ model can simulate both potential and water-limited crop 

production; for a description of the crop scheme, see Criscuolo et al. (2005). 

We use this feature to calculate how much water is required to increase 

production from water-limited to potential over the whole simulation grid. For 

potential, we assume no limitation to the water supply, i.e. demand is fully 

satisfied. The water-limited simulation is the current baseline; all the grid cells 
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are analysed in a hierarchical order, from the highest to the lowest WUE. The 

unlimited water supply is allocated following the hierarchy to switch the yield 

of the grid cell to potential. The procedure iterates until all the cells have been 

evaluated and converted to potential. The cumulative sum of grain carbon 

biomass always increases as the correspondent amount of water is allocated 

to the grid. The expected curve is steeper at the beginning, becoming 

increasingly flatter towards the end. 

Figure 3-3 shows a general example of the expected relationship between 

the cumulative water use and the cumulative yield. The two curves in the 

Figure represent a hypothetical water requirement analysis referring to cases 

Z and Z’. The first point of the curve Z (point A, in Figure 3-3) corresponds to 

the water-limited cumulative yield (Ya) when no additional water is given. Last 

point (point B, in Figure 3-3) defines a complete shift to potential production: 

the X component (Xb) represents the amount of water to be added to the grid, 

the Y component (Yb) is the correspondent cumulative potential yield. In the 

experiment Z’ the water-limited baseline is the same of Z (point A, in Figure 3-

3). The curve Z’ reaches the same potential yield as for Z (point C, in Figure 

3-3), but less water is allocated (Xc). This graphical way of describing the 

relationships gives a conceptual picture of a hypothetical farmer’s options. For 

example, if the farmer would increase the water-limited productions (Ya) by 

50%, and the production conditions lead either to the Z’ and Z cases, our 

Figure 3-3 Cumulative yield increase as a function of the cumulative water use. This figure is only for

illustrative purposes (see text). 
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analysis shows that 50% less water has to be used in the Z’ case compared to 

Z. 

Table 3-1 Observed records of water allocated to the agriculture sector in the EU and simulated potential 

irrigation demand. The mean water allocation  (Lallana, 2003) is calculated as the ratio between the total 
water abtraction and the total irrigated land, relative to the 4 selected European regions.  The regional 
potential irrigation demand (see text) is shown for COn and COy; with observed as fraction of potential we 
describe the ratio of regional potential irrigation demand and mean water allocation in percentage. Also the 
related standard deviations are given. 

Observation     

Mean water allocation (m3/ha/year)     

  WSEur WCNEur ExtSEur ExtNEur     

1993 6819 1763 4440 1250     

1994 7010 1787 5810 1024     

1995 7349 1767 5789 827     

1996 7357 1655 6267 859     

1997 7199 1542 6453 478     

1998 7500 1770 6560 579     

1999 7424 2123 6576 488     

St Dev. 244.58 177.97 756.46 290.18     
         

COn 

Potential irrigation demand (m3/ha/year) Observed as fraction of potential [%] 
  WSEur WCNEur ExtSEur ExtNEur WSEur WCNEur ExtSEur ExtNEur 

1993 534 164 1142 441 7.83 9.30 25.72 35.28 
1994 657 436 1268 1049 9.37 24.40 21.82 102.47 
1995 789 404 1017 680 10.74 22.86 17.57 82.21 
1996 842 285 1387 547 11.45 17.22 22.13 63.66 
1997 457 105 1214 376 6.35 6.81 18.81 78.67 
1998 566 92 874 222 7.55 5.20 13.32 38.35 
1999 606 194 981 900 8.16 9.14 14.92 184.35 

St Dev. 138.16 138.66 179.21 294.14 56.49 77.91 23.69 101.37 

         

COy 

Potential irrigation demand (m3/ha/year) Observed as fraction of potential [%] 
  WSEur WCNEur ExtSEur ExtNEur WSEur WCNEur ExtSEur ExtNEur 

1993 523 141 1135 374 7.67 8.00 25.56 29.92 
1994 651 418 1260 1031 9.29 23.40 21.69 100.71 
1995 782 380 1011 662 10.64 21.50 17.46 80.04 
1996 827 253 1382 543 11.24 15.28 22.05 63.19 

1997 441 93 1205 357 6.13 6.03 18.67 74.69 

1998 556 83 871 214 7.41 4.69 13.28 36.97 

1999 595 179 977 881 8.01 8.43 14.86 180.46 

St Dev. 139.07 134.60 177.96 296.71 56.86 75.63 23.53 102.25 
West South (WSEur): France, Greece, Italy, Portugal, Spain      
West Centr North (WCNEur): Austria, Belgium, Denmark, Germany, Netherlands, Norway, United Kingdom, Finland, Sweden  
Extended South (ExtSEur): Turkey, Cyprus       
Extended North (ExtNEur): Bulgaria, Czech Rep, Estonia, Hungary, Latvia, Lithuania, Romania, Slovak Rep., Slovenia  
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We consider the difference of the water requirement between potential and 

water-limited simulations as the “potential irrigation demand”. In this way the 

term “irrigation” assumes the meaning of water to be allocated per unit of 

surface to improve the basic water-limited productivity up to the potential, with 

no constraints to the water supply. We compare the simulated irrigation 

against a set of irrigation records of the European Environment Agency 

(Lallana, 2003). This study combines Eurostat, FAO and national information 

of water resources allocated to irrigation in the EU agricultural sector during 

1993-1999. The mean water allocation data are calculated as the ratio 

between total water withdrawal and the total irrigated land surface, 

aggregated on four regions in which Europe is divided. In order to compare 

the results, we also grouped the simulation data into four regions (See Table 

3-1 for details of the regions). For each region, we consider simulated total 

water withdrawal as the sum over all the cells of the potential irrigation 

demand times the surface occupied by the crop. The irrigated land surface 

corresponds to the sum of the cell surface occupied by the crop. Since the 

crop mask is constant in time, the irrigated surface is constant as well. We 

define, therefore, the regional potential irrigation demand (RPID) for each year 

as: 
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Where, N is the number of grid cells of the region, PID is the potential 

irrigation demand, WRpot and WRwl are the water requirements, calculated as 

actual evapotranspiration under potential and water-limited conditions, S is the 

surface occupied by the crop, A the total surface of the grid cell and c the 

coefficient of the correspondent cell of the crop mask. 

 

3.2.4 Extreme loss frequency analysis 

We define an extreme loss event when the grain yield is below a specific 

threshold derived from the variability of the annual yield during 1961-1990. We 

set this threshold at each grid cell as the average of the third and the fourth 
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lowest annual yield simulated during the period 1961–1990. The frequency of 

extreme loss events is the number of years in which an extreme loss event 

occurs divided by the number of years considered. Consequently, the 

frequency for 1961-1990 is 1/10 for each grid point, or conversely, we 

arbitrarily define a threshold that corresponds to an extreme event occurring 

every 10 years within the reference period. The assumption is that a farmer, 

or a regional planner, will base his projections on the passed risk. Next, we 

calculate the frequency of extreme loss again for each grid cell for the climate 

change period (2071-2100), maintaining the same thresholds. The change in 

frequency, then, gives an indication of the change in risk of crop failure in the 

absence of adaptation. Note that the climate forcings of the scenarios do not 

differ in the interannual variability (Figure 3-2), but in their long-term means, 

so that changes in risk are exclusively created by changes in the mean 

towards or away from the threshold. 

As we illustrate further, maize does not always reach maturity in water-

limited simulations, so we exclude it from our frequency analysis. We also 

exclude wheat simulations with constant CO2 from this analysis (COn 

simulations). 
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Figure 3-4 Annual average of total carbon biomass and WUE of wheat over the study area. The averages
are calculated over the entire European grid. In A, carbon biomass of potential production and in B of

water-limited; in C, WUE of potential production, in D of water-limited. In E, the ratio between water-limited

and potential conditions WUE (5-years-running mean); in F, same as in E, but for total carbon biomass. 
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3.3 Results 
3.3.1 Wheat 

The simulated annual carbon biomass gain is highly scenario dependent. In 

Figure 3-4-A, the potential production shows four groups of mean carbon 

biomass curves, B2 and A1 runs are grouped in two sets of two lines, each for 

COn and COy. The B2 groups increase under the fertilization effect and tend 

slightly to decrease without; the A1 group initially increase in COy, but 

decreases after 2030, while COn decreases immediately after 2000. The 

higher scenario temperatures force the growth to be faster, so that the 

growing season becomes shorter and the consequent Net Primary 

Productivity (NPP) decreases (see Criscuolo et al., 2005). The enriched CO2 

atmosphere counterbalances this effect up to a certain temperature threshold. 

The temperature forcing of A1 overcomes this level; consequently the 

shortening effect prevails against the fertilization.  The four groups are less 

evident in the water-limited case (Figure 3-4-B), while the gap between COn 

and COy is more pronounced. The water stress, hence, tends to reduce the 

differences between scenarios, but to enlarge the difference between non-

fertilizing and fertilizing atmosphere. The WUE is higher in water limited than 

in potential production conditions (Figure 3-4-C, D). The plant responds to 

water deficit reducing the water conductance with the stomata partial closure, 

which tends to increase the WUE (Jones, 1983). Therefore, giving the plant 

the same CO2 concentration but different water stress (COn cases), the WUE 

tends to be larger in the more water-limiting environment, within certain stress 

level. When the CO2 concentration is increased in a water-limiting 

environment, the WUE is even more improved by the fertilizing effect (COy 

cases). The ratio between WUE in water-limited and potential production 

conditions is mostly around 1.03 in COn (Figure 3-4-E, shaded lines), but 

increases to mean of around 1.12 in COy (Figure 3-4-E, solid lines). WUE is, 

therefore, always larger in water-limited conditions and even larger when CO2 

fertilization effect is active. The ratio between the water limited and the 

potential carbon biomass varies between 0.7-0.8 in COn (Figure 3-4-F, 

shaded lines). By comparison, this ratio increases to 0.85-0.9 in the CO2 

fertilized runs (Figure 3-4-F, solid lines), showing again that the differences 
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between water-limited and potential production are decreased through the 

CO2 fertilization effect. In the case with constant CO2 (Figure 3-4-F, shaded 

lines), however, we see a slight decrease, which shows that the climate 

becomes more adverse to non-irrigated agriculture. This effect is 

overcompensated by the effect of CO2 fertilization, if the fertilization is indeed 

as strong as it is simulated by LPJ. 

Europe-wide totals of wheat yield as a function of total water use are shown 

in Figure 3-5 for both 1961-1990 (OBS, bold lines) and 2071-2100 (thin lines). 

For the non-fertilized runs (dashed lines), the curve using the observed 

climate of 1961-1990 (OBS COn), reaches approximately 5.7*1010 kgC at the 

final point, i.e. the point of potential production where all grid cells are fully 

irrigated. The simulation with CO2 fertilization, which uses current CO2 levels 

instead of pre-industrial ones, achieves a markedly higher potential yield 

above 6*1010 kgC (60 mill. tons of carbon). The diagram also shows that the 

potential yield without the extra effect of CO2 fertilization since the pre-

industrial requires a total of 14*1016 m3 of water for irrigation, while the same 

amount can by produced with only 9*1016m3 with CO2 fertilization switched on 

(OBS, COy). In other words, 35% of water is saved due to the additional CO2 

Figure 3-5 The wheat yield increment as a function of the water used, assuming water is allocated
gradually from the highest WUE grid cell to the lowest; OBS represents the 1961-2000 period, the others

the 2071-2100, the yield is scaled by the crop fraction and the area of the grid cell. Three groups of lines
are visible, four COy curves referring to 2071-2100 at the top, two curves for 1961-2000 in the middle, and
four COn again for 2071-2100 at the bottom. 
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fertilization from anthropogenic emissions during the observation period. For 

2071-2100, not surprisingly, the effect is much stronger. For example, 

fertilization improves potential grain yield of B2 CGCM2 (green lines) by 44% 

compared to COn, saving additionally 20% of water; this proportion is almost 

the same for all the scenarios. Furthermore, there are large differences in the 

potential yield and water requirement between the scenarios. A1 CGCM2 

COn reaches around 4*1010 kgC as potential production with the use of 

10.2*1016 m3, while B2 CGCM2 COn reaches the same level with about 

7.2*1016 m3, i.e. there is 33% water saved relatively to A1. Applying the same 

analysis to A1 HadCM3 COn and B2 HadCM3 COn, we find a slightly smaller 

difference, about 28%. In this case we can conclude that the mean “scenario 

effect” is around 30% of water saved when switching from A1 to B2 with 

constant CO2 and at constant levels of grain production. 

For simulations where the increased CO2 level is factored into the 

production, i.e. those assuming full CO2 fertilization, we compare scenario 

simulations (COy) with the simulation using observed climate (OBS COy). We 

find that the combined effect of increasing CO2 and climate change from today 

to what is projected for the end of the century leads to between 25 and 80% of 

water saved assuming constant grain production at the potential level of 

reference observed climate. If we compare the potential productions, we find a 

slight decrease (A1 HadCM1) and an approximately 18% increase (B2 

CGCM2), but in all cases a reduction in water consumption. The “best” 

scenario in absolute terms of impacts on water use is B2 CGCM2 COy. The 

combination of lowest temperature increase and relatively high precipitation 

leads to the best ratio between yield and water used. The water amount 

required to reach the potential production level of the observation period is the 

smallest for this scenario: to reach 6*1013 kgC, 2.2*1016 m3 of water have to 

be used in B2 CGCM2 COy (80% less, relatively to OBS), while 5.0*1016 m3 in 

A1 CGCM2 COy (64% less), 6.6*1016 m3 in B2 HadCM3 COy (52% less), and 

10.0*1016 m3 A1 HadCM3 COy (28% less). Finally, the fully water-limited 

production with no irrigation water always increases with CO2 fertilization, but 

always decreases without. 

The mean observed water allocation, the regional potential irrigation 

demand and the observed as fraction of potential is shown in Table 3-1 (see 
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above and in Table capture for definitions). Appreciable differences are 

evident through regions and time rather than between constant and changing 

CO2 simulations. As expected, the southern regions (ExtSEur and WSEur, 

see Table 3-1 for details) show much higher values for both the observed 

water allocation and the regional potential water demand. The eastern regions 

(ExtNEur and ExtSEur) show a high observed fraction of potential, reaching 

more 100% in northeastern Europe (ExtNEur). The ratio of standard deviation 

of the time series (last line of observed as fraction of potential) is also around 

100% for this region. Consequently, not only the regional potential irrigation 

demand is close to the mean observed water allocation, but also its 

interannual variability is well reproduced, at least for the given time interval. 

The other two regions, WSEur and WCNEur, have much lower fraction; the 

standard deviation fraction is close to 100%, indicating that the interannual 

variability is well reproduced also in these cases. During 1993-1999, the 

difference of CO2 concentration in COy and COn is between 59.5 ppmv (1993) 

and 73.4 ppmv (1999). This difference is reflected in the slightly lower fraction 

of potential of COy simulations. Since the fertilization effect decreases the 

water requirement, the regional potential irrigation demand for COy is smaller; 

therefore, the fraction of the observed mean water allocation is smaller for 

COy than COn. 

In addition to that, agricultural production of Eastern Europe is based 

mainly on wheat and the calculated regional potential irrigation demand refers 

in this work only to wheat. This explains why the European region best 

simulated in terms of interannual variability and absolute values is ExtNEur. In 

Western Europe (WSEur and WCNEur), on the other hand, a large part of 

irrigation is dedicated to high valuable crops as tobacco, fruits, and olives, 

which are often much more water demanding than wheat (IEEP, 2000). 

Hence, our study represents only a part of the irrigation water use in the in 

Western Europe, so that our estimation is lower than the observed. To have a 

detailed analysis of the irrigation demands of wheat, crop specific irrigation 

data are needed; on the other hand, they are generally rare and usually not 

continuous in time (IEEP, 2000). This is a current limit in many irrigation 

studies on large-scale level, especially in spatial explicit DGVM frameworks as 

the LPJ. 
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A B 

Figure 3-6 A) Potential yield loss of wheat due to water stress, expressed as the difference between potential 
and water limited grain carbon biomass for the HadCM3 A1 COy relative to the to 1961-1990 mean 

[percentage]. The values are calculated as (Yieldpot-Yieldwl)/ Yieldpot*100. B) Same as A, but for 2071-2100. 

 

We consider the difference between the potential and the water-limited 

yield as the potential yield loss; this value is representative for the grain 

carbon mass lost due to water stress. The largest potential yield loss is 

distributed in southern and central-eastern regions. The Mediterranean 

Europe, Turkey and a large area in central Eastern show the highest losses 

(Figure 3-6-A, B). Since the temperature forcing is the same between potential 

and water-limited simulations, wheat follows the same phenological 

development. Hence, wheat reaches mostly everywhere its full maturity, at the 

same moment in both potential and water-limited simulations. In addition to 

that, the water stress is never so intense to stop the development and kill the 

crop. Consequently, no differential impacts can be expected on the biomass 

production due to a change in the growing season length. 
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A B 
Figure 3-7 A) Ratio of yield standard deviations for HadCM3 A1 COy for 2071-2100 and 1961-1990. B) The 
ratio of the frequency of extreme yield loss events (see text) for 2071-2100 and 1961-1990, for HadCM3 A1 

COy. 

 

The potential yield loss is, therefore, related only to the water stress.  The 

comparison of Figure 6-A and B gives a picture of how the potential yield loss 

changes between the observation period and the climate change state when 

the atmosphere is enriched by higher CO2 concentration. The fertilization 

effect generally reduces the impact of the water stress, and the potential yield 

loss slightly decreases in most places, and even decreases strongly in the 

currently most water limited areas of southern Europe. 

A further analysis of our results, using the HadCM2 A1 COy scenario, 

shows that large parts of the continent will be affected by an increase in the 

wheat yield variability. The ratio of the standard deviations of the wheat yield 

during the climate change period (2071-2100) divided by that for the 

observational period (1961-1990) is predominantly above one (Figure 3-7-A). 

In particular Anatolia, southern Greece and large parts of northeastern Europe 

increase the standard deviation up to 2 times the observation period. Some 

regions, however, e.g. the Baltic, or southern and western France, show a 

decrease in variability. 

The analysis of the frequency of extreme loss events, still for the HadCM2 

A1 COy scenario, gives a more complete picture of the possible impacts due 

to the changing climate in Europe. As we defined before, the change in 
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frequency of extreme loss events represents the change in risk of crop failure 

occurring at the end of the current century. The high potential yield loss of 

east-central Europe is associated with the highest increase of frequency of 

extreme loss events (Figure 3-7-B). This area shows a widespread increase in 

the frequency between the observation and climate change period up to 4-5 

times. We can, therefore, conclude that east-central Europe is the area where 

the highest risk of crop failure may be expected in the next 70-100 years. This 

area is also associated with a relative increase in variability. Also the 

Mediterranean Basin is projected to suffer from increasing numbers of loss 

events, especially in Southern Spain and on the Balkan Peninsula. The high 

yield loss occurring in Anatolia and Southern Greece (Figure 3-6, A-B) is not 

associated to an increase in extreme events (Figure 3-7-B, white pixels), but 

the standard deviation is rather high (Figure 3-7-A). This lead to the 

conclusion that many non-extreme events will force the mean yield to 

constantly decline around the Aegean Basin. The Iberian Peninsula shows a 

sort of “dipole” behavior. Northern, eastern and central Spain are similar to the 

Aegean Basin, with frequent yield losses, high variability, but no increase in 

the frequency of extreme events. The southwestern area has high increase in 

frequency, but has relative low yield losses and a decrease in variability. In 

this area, therefore, the mean annual water-limited and potential yields have 

to be similar, low in quantity, rather constant, and close to the extreme event 

threshold. Central Europe and the Baltic regions show a decrease of 

frequency (Figure 3-7-B, values between 0 and 1), or simply no change is 

expected. No change in interannual variability between observed and 

projected climate scenario is available in the used climate data set. 

Consequently the change in frequency of extreme events reflects the shift in 

the mean status. However, the yield in water-limited conditions is the result of 

the complex interaction of the climate forcing and CO2 concentration. 

Therefore, even though the interannual forcing variability is constant, the yield 

can have a non-linear response being above or below the selected threshold. 

This is the reason why different scenarios lead to differences in crop yield and 

frequency change. 
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Figure 3-8 A) Percentage of the area of the crop mask where maize reaches full maturity, referring to HadCM3 

A1 scenario. Red area for water-limited and green for potential production simulations. B) The areas of full 
maturity of maize HadCM3 A1 are shown as the mean of the last 10 years: the red area refers to water-limited 
simulation; the green and the red area together define the area of potential production.  

 
3.3.2 Maize 

Maize plants are largely unaffected by the CO2 fertilization effect, but 

sensitive to temperature and highly water demanding. In all the water-limited 

simulations, the maize canopy can barely survive over the simulation grid. The 

potential production simulations show that the area of full maturity 

corresponds to southern Europe at the beginning, but tends to spread far 

northeast with the projected climate change. Temperature is, consequently, 

the only limiting factor in potential production, but water supply limits both 
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productivity and geographical distribution in water-limited conditions. The 

water stress is almost everywhere so intense that it will kill the crop. Figure 3-

8-A shows the fraction of the area of the crop mask in which maize reaches 

full maturity using the HadCM3 A1 scenario. 

The area for potential production is around 10% for the first 100 years, and 

increases constantly mostly to 70%. In other terms, temperature is always 

high enough to ensure development on a rather limited area until 2000, and 

largely favourable towards 2100. However, although temperature will be 

expected to allow crop development, the water supply is not enough to allow 

the growth in anything but 0 to around 5% of the study area until the second 

half of the current century. Around 2060-2080, the area slightly increases to 

around 10%. The geographical distribution for A1 HadCM3 A1 as the mean of 

the last 10 years is shown in Figure 3-8-B. These years have been selected 

Figure 3-9 Annual average of total carbon biomass and WUE of maize over the study area. The averages

are calculated for the entire European area. Total carbon biomass of potential production in A, and of

water-limited one in B; WUE of potential production is given in C, and of water-limited one in D. 
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as an example for the relatively high number of points where maize reaches 

maturity. Water stressed maize survives only within the red area, where the 

right combination of precipitation and temperature allows the growth and full 

development of the crop. The green area together with the red defines the 

potential production distribution. This scenario can be assumed to be typical 

for the future, using a rather extreme scenario of climate warming in Europe; 

the high temperature potentially allows the development everywhere, but only 

the northern and northeastern regions receive enough precipitation to satisfy 

the water demand for the growth. 

The mean potential total carbon biomass over the whole study area is very 

The mean potential total carbon biomass over the whole study area is very 

small, but increases when the warming climate begins to force the 

northeastward spread after 2000 (Figure 3-9-A). The water-limited carbon 

Figure 3-10 Annual average of carbon biomass and WUE of maize over the study area, considering only
areas where maize reaches full maturity. Total carbon biomass for potential production in A, and for the

water-limited case in B; WUE of potential production is given in C, and for the water-limited case in D. 
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gain is very small until 2060-2080 when some grid points begin slightly to 

grow in carbon biomass (Figure 3-9-B). The mean WUE increases with the 

biomass production (Figure 3-9-C, D): unlike wheat, the WUE in water-limited 

simulations is much smaller than in potential production. When maize does 

not reach maturity, the model values in the corresponding grid cell are set to 

zero. We also include the average carbon gain over only the grid cells where 

full maturity is reached (Figure 3-10). Over the whole grid, A1 HadCM3 shows 

the largest potential production biomass increase (Figure 3-9-A); in the mean 

over the points where maturity is reached it shows the smallest production 

and a decline after 2050 (Figure 3-10-A). Also in this case, therefore, the 

shorter growing season and increased respiration lead to a decrease of NPP. 

On the other hand, the high temperature in A1 HadCM3 forces the largest 

geographical spread, leading to an increase in the total area of the carbon 

biomass production. The general variability is high in water-limited 

simulations, and the mean drops frequently to zero before 2050 (Figure 3-10-

B). The WUE follows the oscillations in the carbon gain (Figure 3-10-C, D). As 

for wheat, water-limited WUE is larger than for the potential. The yield 

increment as a function of the water use is shown in Figure 3-11. The mean 

cumulative grain biomass gain over the reference period (OBS, bold line) is 

mostly zero for the water-limited simulation, and at potential production it is 

much smaller then the average over 2071-2100, independent of the scenario 

chosen. In addition to that, the cumulative potential biomass gain for the 

climate change period is almost the same throughout the scenarios, with 

values between 15 and 16*109 kgC. Even though each scenario reaches 

almost the same grain potential production, the associated water use is quite 

different. In the CGCM2 simulations, switching from A1 to B2, about 25% less 

water is required to obtain about the same potential production; in HadCM3, 

on the contrary, 0.5% of water would be lost. In addition to that, A1 HadCM3, 

B2 HadCM3 and A1 CGCM2 reach the same level of cumulative grain 

biomass of 3.5*109 kgC, using 10*e1016 m3 of water. The potential production 

of 1961-1990 is on the same level with more water used. In this case, 

therefore, the climate change has a positive impact on maize productivity: the 

same quantity of grain biomass is obtained using less water. As for wheat, the 

“best” scenario is B2 CGCM2: the largest yield improvement with the 
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minimum water use increase is found in this scenario. The difference between 

the potential production of 1961-1990 and 2071-2100 is 12.5*109 kgC, which 

corresponds to an increase by a factor of 3.5, the largest among scenarios. 

On the other hand, this large improvement is obtained increasing the water 

use 3.2 times, the smallest across scenarios. Additionally, the potential 

production of 1961-1990 is obtained in this scenario with the largest amount of 

water saved (50%). 

The loss of potential yield for maize in general amounts to almost the entire 

potential production. As we already mentioned above, the water stress forces 

the maize plants to die mostly everywhere on the simulation grid. The mean 

potential yield loss for 1961-1990 is shown in Figure 3-12-A, and for 2071-

2100 in Figure 3-12-B, where the figure is close to 100% almost everywhere, 

except near the northern biogeographical limit, where the right combination of 

precipitation and temperature frequently allows the growth and development 

even in water-limited simulations.  

Figure 3-11 Maize yield increment as a function of the water used for four scenarios, assuming water is

allocated gradually from the highest WUE grid cell to the lowest; OBS represents the 1961-2000 period,

the others the 2071-2100, the yield is scaled by the crop fraction and the area of the grid cell. 
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Figure 3-12 A) Loss of potential yield for maize due to water stress, expressed as the difference between 
potential and water limited grain carbon biomass for the HadCM3 A1 COy relative to the 1961-1990 mean 
[kgC/m2]. The values are calculated as (Yieldpot-Yieldwl)/Yieldpot*100. B) Same as A, but for 2071-2100. 

 

3.4 Discussion and Outlook 
Wheat and maize cultivation may face very different production scenarios 

in the future, depending on various factors. Climate change will lead to a 

potential spread of maize towards the north and east of the European 

continent, but the water demand will often not be satisfied by the natural 

precipitation regime. Therefore, climate change will have a strong impact on 

maize yields, unless largely improved irrigation will be installed. Since CO2 

fertilization will not likely affect maize productivity, consequent adaptations 

have to be quickly planned to face the possible impacts or to use the potential 

benefits. As a matter of fact, northern and central European countries could 

benefit from increased maize yields, but only under a satisfactory water supply 

system. The Mediterranean Basin shows a big yield loss due to water stress, 

and the shorter growing season will also not improve the yields. 

Wheat yield will decrease following the shortening of the growing season 

due to the temperature rise. The CO2 fertilization effect will improve the WUE 

and the productivity. Precipitation will partially satisfy the water demand, due 

also to the increased WUE. Therefore, the water stress will affect the yield 

relatively less than maize. Wheat will face an increase of crop yield variability, 

and also a higher frequency in extreme crop failures. In our scenarios, 

therefore, the combination of these two facts will make Southern Europe a 

very vulnerable area for wheat production. 
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The use of slow-growth cultivars is often highlighted as a possible 

adaptation to prevent a yield decrease in a warming climate. However, this 

adaptation strategy may not yield substantial benefits. In case of an extended 

growing season, more water will be transpired, increasing the seasonal water 

requirement, unless WUE is substantially improved. On the other hand, WUE 

is limited mainly by micrometeorology rather than genetic characteristics. 

Consequently, a slow-growth cultivar could increase the productivity, but also 

the water requirement. Furthermore, a summer slow-growth maize could 

extend its growing period throughout the summer. Current projections predict 

warmer and drier summer conditions especially in Southern Europe, where 

maize mainly grows. Slow-growth maize, consequently, could increase its 

water requirement not only for the extended growing season, but also for the 

increased atmospheric water demand. In this context, the use of slow-growth 

summer cultivars should be, consequently, carefully considered as a solution 

to maintain high yields. 

The LPJ model is able to well reproduce the net ecosystem exchange 

(Sitch et al., 2003) and to correctly simulate the increase of WUE under water-

limiting conditions for C3 and C4 crops. However, the response of the field 

crop to CO2 concentration may be small compared to model predictions 

(Tubiello et al., 2000; El Maayar et al., 2005). Crop plant adaptation and site-

specific environmental characteristics can often decrease the CO2 fertilization 

effect. For this reason, we have designed our simulations with and without 

CO2 fertilization. However, our results of wheat COy simulations could be 

reviewed to a slightly lower WUE and yields. Our results show that the water 

requirement is highly scenario dependent. Switching from SRES-A1 to B2, 

30% of water would be saved in wheat production. The best ratio between 

water use and crop yield corresponds to the best combination of the CO2 

fertilization effect and a relatively low increase in temperature, which is B2 

CGCM2 COy. In this case, maize and wheat show the highest increase in 

yield with the lowest water requirements. At the end of the current century it is 

possible to achieve the same yield as at the end of last century, but with less 

water allocated to irrigation. Indeed, comparing the reference (1961-1990) to 

the climate change period (2071-2100), the “best combination” shows that the 

reference yield could lower irrigation up to 80% for wheat and 50% for maize. 
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We found that maize may increase potential yield by 12.5 MtonC, with an 

associated water requirement increase of 3.2 times, reaching 50 million m3. 

The part of the water withdrawal used for agricultural in Southern Europe was 

already high in the period 1998-2002: France 9.81%, Italy 45.10%, Spain 

68.03% and Portugal 78.24% (AQUASTAT, 2005). As mentioned already, 

these regions are projected to likely suffer from a decrease in precipitation 

and river discharge (EAA, 2004); additionally, the largest part of maize 

cropland is concentrated in this area. A further increase of three times in water 

agricultural use, as we predict, is likely to be unsustainable. 

Some recent studies demonstrate the usefulness of extending DGVMs to 

crops for large-scale assessments, rather than the use of crop models 

(Scholze et al, 2005). Crop models have improved dramatically the 

understanding of biomass production and its behavior in the changing climate, 

but they rarely include the description of the soil carbon dynamics. In addition 

to that, the amount and detail of the input data limit their use to specific crops 

assessments in well-defined areas. Several DGVMs have been recently 

developed and tested to represent the biogeochemical cycles with agro-

environmental aspects. Even though still in progress, those studies represent 

the latest challenge in biosphere modelling, giving a grid-based dynamic 

description of the vegetation processes. The Organizing Carbon and 

Hydrology in Dynamic Ecosystems model (ORCHIDEE), for instance, is a 

DGVM designed to include crops as part of land vegetation (Gervois et al., 

2004; de Noblet-Ducoudré et al., 2005). ORCHIDEE was used to assess the 

current water and carbon budget in Europe. 

This version of the LPJ model represents a step further in the development 

of DGVMs. The LPJ is now at the interface between crop and vegetation 

ecosystem modelling, maintaining its original potential for studies of the 

biogeochemical cycles. Not only crops and natural vegetation in a single tool, 

but also potential and water-limited production are included within the same 

crop scheme. This important new feature gives the possibility to perform water 

requirements and yield impact assessments in a spatially explicit way. This 

feature, combined to the detailed photosynthesis description, make this model 

a valid tool to simulate crop productions and water requirements within the 
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carbon and water cycle for general ecosystem impact assessments in climate 

change scenarios. 

Further development could improve the representation of crop production 

including agro-environmental adaptations and crop distribution. Actual crop 

patterns are determined by both biophysical and agro-economic conditions. In 

order to better predict the impacts of the changing climate, the combined 

effect of crop yield and land use has to be included in an integrated modelling 

framework. Beside this, a comparison with experimental WUE data is needed 

to adjust the response to changing CO2 concentration. Experimental data of 

water-limited crop production are often a very complex issue. Not only the 

status of the canopy, but also that of the soil compartment needs to be 

accurately prescribed from data. Only validation of the potential production 

has been performed in a previous work (Criscuolo et al., 2005). Further, the 

photosynthesis response of the LPJ standard version to atmospheric CO2 and 

soil water has been already tested (Bacelet et al., 2003; Hickler et al., 2003) 

against data of the Duke Forest Free Air CO2 Enrichment (FACE) experiment 

(DeLucia et al., 1999). The model shows good agreement and an increase of 

CO2 fertilization effect under water-limited conditions. As described before, 

photosynthesis in this LPJ version is computed in exactly the same way as in 

the standard LPJ model. We also put in evidence the need for common data 

sets consisting of all the necessary information to validate the crop-extended 

DGVMs. A common standardized data set of crop field data, would allow the 

DGVM community to test the results and cross compare the features of these 

challenging integrated models. 

 

3.5 Conclusions 
Water supply and demand for agricultural purposes is currently an 

important issue in the European continent. Climate change will reinforce the 

need for an efficient use of the water resources, especially in southern 

regions. The warming environment and the CO2 enriched atmosphere could 

be an important opportunity for north and central European countries, but can 

lead also to highly unsustainable water consumption conditions in southern 

Europe. Guidelines for environmental impact analysis and management tools 

for the improved use of water resources should be developed to improve 
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water use in Europe. In this framework, the LPJ can be used as an important 

component in the integrated study of the crop production, water and carbon 

cycling. 



Chapter 3 - Irrigation demand and drought risk 

 81

3.6 Refernces 
Alcamo J., Kreileman G.J.J., Bollen J.C., van den Born G.J., Gerlagh R., Krol 

M.S., Toet A.M.C., de Vries H.J.M. (1996). Baseline scenarios of global 

environmental change. Global Environmental Change, 6, 261–303. 

AQUASTAT (2005). http://www.fao.org/ag/agl/aglw/aquastat/dbase/index.stm 

Bachelet D., Neilson R. P., Hickler T., Drapek R. J., Lenihan J. M., Sykes M. 

T., Smith B., Sitch S., Thonicke K.  (2003). Simulating past and future 

dynamics of natural ecosystems in the United States, Global 

Biogeochemical Cycles, 17, 1045, doi:10.1029/2001GB001508. 

Chartzoulakis K., Psarras G. (2005). Global change effects on crop 

photosynthesis and production in Mediterranean: the case of Crete, 

Greece. Agriculture, Ecosystems and Environment, 106, 147–157. 

Collatz J.G., Ball J.T., Grivet C., Berry J.A. (1991). Physiological and 

environmental regulation of stomatal conductance, photosynthesis and 

transpiration: a model that includes a laminar boundary layer. 

Agricultural and Forest Meteorology, 54, 107-136.  

Collatz J.G., Ribas-Carbo M., Berry J.A. (1992). Coupled photosynthesis-

stomatal conductance models for leaves of C4 plants. Australian Journal 

of Plant Physiology, 19, 519-538.  

Criscuolo L., Knorr W., Ceotto E., Smith B. (2005). An assessment of climate 

change impacts on potential maize and wheat productivity in Europe 

using a Dynamic Global Vegetation Model. Submitted: Global Change 

Biology. 

De Lucia E. H., Hamilton J.G., L. Naidu S.L., Thomas R.B., Andrews J.A., 

Finzi A., Lavine M., Matamala R., Mohan J.E., Hendrey G.R., 

Schlesinger W.H. (1999). Net primary production of a forest ecosystem 

with experimental CO2 enrichment, Science, 284, 1177–1179. 

De Noblet-Ducoudré N., Gervois S., Ciais P., Viovy N., Brisson N., Seguin B., 

Perrier A. (2005). Coupling the Soil–Vegetation Atmosphere Transfer 

Scheme ORCHIDEE to the agronomy model STICS to study the 

influence of croplands on the European carbon and water budgets. In 

press: Agronomie. 



Chapter 3 - Irrigation demand and drought risk 

 82 

EAA (2004). Impacts of Europe’s changing climate an indicator-based 

assessment, EAA Report No 2/2004, European Environment Agency, 

Copenhagen, Denmark. 

El Maayar M., Ramankutty N., Kucharik C. J. (2005). Modelling global and 

regional net primary production under elevated atmospheric CO2: on a 

potential source of uncertainty. In press: Earth Interactions. 

Etheridge D.M., Steele L.P., Langenfelds R.L., Francey R.J., Barnola J.M., 

Morgan V.I. (1996). Natural and anthropogenic changes in atmospheric 

CO2 over the last 1000 yearsfrom air in Antartic ice and firn. Journal 

Geophysical Research, 101, 4115-4128.  

Farquhar G.D., Von Caemmerer S., Berry J.A. (1980). A biochemical model of 

photosynthetic CO2 assimilation in leaves of C3 species. Planta, 149, 

78-90.  

Farquhar G.D. and Von Caemmerer S. (1982). Modelling of photosynthetic 

response to environmental conditions. In: Physiological Plant Ecology II: 

Water Relations and Carbon Assimilation (eds. Nobel PS, Osmond CB, 

Ziegler H), Springer, Berlin. 

Gervois S., de Noblet-Ducoudré N., Viovy N., Ciais P., Brisson N., Seguin B., 

Perrier A. (2004). Including Croplands in a Global Biosphere Model: 

Methodology and Evaluation at Specific Sites. Earth Interactions, 8, 16, 

1–25. 

Giorgi, R., Meehl G.A., Kattenberg A., Grassl H, Mitchell J.F.B., Stouffer R.J., 

Tokioka T., Weaver A.J., Wigley T.M.L (1998). Simulation of regional 

climate change with global coupled climate models and regional 

modelling techniques. In R.T. Watson et al. (ed.) The regional impacts of 

climate change: An assessment of vulnerability. Cambridge University 

Press, New York. 

Harrison P.A., Butterfield R., Downing T. (1995). Climate Change and 

Agriculture in Europe: assessment of Impacts and Adaptations. 

University of Oxford, UK Research Report No. 9. Environmental Change 

Unit. 

Hickler T., Prentice I.C., Smith B., Sykes M.T. (2003). Simulating the effects of 

elevated CO2 on productivity at the Duke Forest FACE experiment: a 

test of the dynamic global vegetation model LPJ. EGS - AGU - EUG 



Chapter 3 - Irrigation demand and drought risk 

 83

Joint Assembly, Abstracts from the meeting held in Nice, France, 6 - 11 

April 2003, abstract #9347. 

Hurrell J.W., van Loon H. (1997). Decadal variations in climate associated 

with the North Atlantic oscillation. Climate Change, 36, 301-326. 

IEEP (2000). The environmental impacts of irrigation in the European Union, a 

report to the Environment Directorate of the European Commission. 

Institute for European Environmental Policy, London, UK. 

IPCC (2001a). Climate Change 2001: Working Group I: The Scientific Basis. 

Contribution of the Working Group I to the Third Assessment Report of 

the Intergovernmental Panel on Climate Change (eds. Houghton JT et 

al.), Cambridge University Press, Cambridge, UK and New York, USA.  

IPCC (2001b). Special Report on Emissions Scenarios (eds. Nakicenovic N 

and Swart R), Cambridge University Press, Cambridge, UK and New 

York, USA.  

IPCC (2001c). Climate Change 2001: Working Group II: Impacts, Adaptation, 

and Vulnerability. Contribution of the Working Group II to the Third 

Assessment Report of the Intergovernmental Panel on Climate Change 

(eds. McCarthy JJ et al), Cambridge University Press, Cambridge, UK 

and New York, USA.  

Jones H.G. (1983). Plants and Microclimate. Cambridge University Press, 

Cambridge, UK and New York, USA. 

Keeling C.D., Whorf T.P., Wahlen M., Vanderplicht J. (1995) Interannual 

extremes in the rate of rise of atmospheric CO2 measurements. Nature, 

375, 666-670.  

Keeling C.D., Whorf T.P. (2000). Atmospheric CO2 records from sites in the 

SIO air sampling network. In Trends: A compendium enriched aerial 

environment. Agronomy Journal, 81, 692–695.  

Kenny G.J., Harrison P.A., Parry M.L. (eds) (1993). The effect of climate 

change on agricultural and horticultural potential in Europe. 

Environmental Change Unit. University of Oxford, Oxford, UK. 

Kucharik C.J., Brye K.R. (2003). Integrated BIosphere Simulator (IBIS) yield 

and nitrate loss predictions for Wisconsin maize receiving varied 

amounts of Nitrogen fertilizer. Journal of Environmental Quality, 32, 247-

268. 



Chapter 3 - Irrigation demand and drought risk 

 84 

Lallana C. (2003). Mean Water Allocation for Irrigation in Europe, Indicator of 

the European Environment Agency, 

http://themes.eea.eu.int/Specific_media/water/indicators. 

McGuire A., Sitch S., Clein J., Dargaville R., Esser G., Foley J., Heimann M., 

Joos F., Kaplan J., Kicklighter D., Meier R., Melillo J., Moore B., Prentice 

I., Ramankutty N., Reichenau T., Schloss A., Tian H., Williams L., 

Wittenberg U. (2001)  Carbon balance of the terrestrial biosphere in the 

twentieth century: Analyses of CO2, climate and land use effects with 

four process-based ecosystem models. Global Biogeochemical Cycles,  

15, 183-206. 

Mitchel T. D., Carter T. R., Jones P. D., Hulme M., New M. (2004). A 

comprehensive set of high-resolution grids of monthly climate for Europe 

and the globe: The observed record (1901-2000) and 16 scenarios 

(2001-2100). Technical report, no. 5. Norwich, UK, Tyndall Centre for 

Climate Change Research, University of East Anglia. 

Olesen J.,  Bindi M. (2002). Consequences of climate change for European 

agricultutral productivity, land use and policy. European journal of 

Agronomy, 16, 239-262. 

Parry M.L., Carter T.R., Porter J.R., Kenny G.J., Harrison P.A. (1992). Climate 

Change and Agricultural Suitability in Europe. Environmental Change 

Unit, University of Oxford. Report No. 1. Oxford, UK. 

Polley H. W. (2002). Implications of atmospheric and climatic change for crop 

yield and water use efficiency. Crop Science, 42, 131–140. 

Ragab R., Prudhomme C. (2002). Climate change and water resources 

management in arid and semi-arid regions: prospective and challenges 

for the 21st century. Biosystems Engineering, 81, 3–34. 

Ramankutty N., Foley J.A. (1998). Characterizing patterns of global land use: 

an analysis of global croplands data. Global Biogeochemical Cycles, 12, 

667-685.  

Ronneberger K., Tol R. S. J., Schneider U. A. (2005). KLUM: A simple model 

of global agricultural land use as a coupling tool of economy and 

vegetation. Hamburg, Germany. FNU Working paper. 



Chapter 3 - Irrigation demand and drought risk 

 85

Rosenzweig, C., Tubiello F.N. (1997). Impacts of future climate change on 

Mediterranean agriculture: current methodologies and future directions. 

Mitigation Adaptation Strategies Climate Change, 1, 219–232. 

Rosenzweig C, Strzepek K.M., Major D.C., Iglesias A., Yates D.N., McCluskey 

A., Hillel D., 2004. Water resources for agriculture in a changing 

climate:internatio nalcase studies. Global Environmental Change, 14, 

345–360. 

Schlesinger M.E., Malyshev S. (2001). Changes in near-surfaces temperature 

and sea-level for the Post-SRES CO2-stabilization scenarios. Integrated 

Assessment, 2, 95-110.  

Scholze M., Bondeau A., Ewert F., Kucharik C., Priess J., Smith P. (2005). 

Advances in Large-Scale Crop Modeling. Eos, 86, 26, 28 June 2005. 

Sitch S., Smith B., Prentice I., Arneth A., Bondeau A., Cramer W., Kaplan J., 

Levis S., Lucht W., Sykes M., Thonicke K., Venevsky S. (2003).  

Evaluation of ecosystem dynamics, plant geography and terrestrial 

carbon cycling in the LPJ dynamic global vegetation model.  Global 

Change Biology, 9, 161-185. 

Tubiello F.N., Donatelli M., Rosenzweig C., Stockle C.O. (2000). Effects of 

climate change and elevated CO2 on cropping systems: model 

predictions at two Italian locations. European Journal of Agronomy, 13, 

179–189. 

Tubiello F.N., Rosenzweig C., Kimball B.A., Pinter P.J. Jr, Wall G.W., 

Hunsaker D.J., Lamorte R.L., Garcia R.L. (1999). Testing CERES-Wheat 

with FACE data: CO2 and water interactions. Agronomy Journal, 91, 

1856–1865. 

Wolf J., Van Diepen C.A.(1995). Effects of climate change on grain maize 

yield potential in the European Community. Climate Change, 29, 299–

331. 





Chapter 4 - Changes in agricultural land use and soil carbon storage in Europe 

 87

Chapter 4 

4 Changes in agricultural land use and soil carbon 
storage in Europe 

4.1 Introduction 
The European continent faced important changes in agricultural production 

and land use over the last 50 years. The fast increase of land productivity, the 

enhanced efficiency in the production processes and the changing agro-

economic markets led to a contraction of cultivated areas (Rabbinge et al.,  

2000; Rounsevell et al.,  2003). The increase in crop productivity has 

counterbalanced the shrinkage of area so that the current food supply 

exceeds the demand (Ewert et al.,  2005). Thus, a stagnation or further 

decline of the current agricultural areas has to be expected also for the future 

(Rounsevell et al.,  2005). On the other hand, croplands made up nearly half 

of the terrestrial land surface of Europe in 1998 (EUROSTAT, 2005) and 

important quantities of carbon and water fluxes within the biosphere are 

regulated trough croplands. Therefore, agricultural land-use decisions 

severely influence directly carbon, nutrient and water fluxes between soil and 

atmosphere. Hence, changes in agricultural land use represent one of the 

essential links at the interface between biosphere and anthroposhere. 

Furthermore, recent studies show that the climatic conditions of Europe 

have changed during the last hundred years. The average annual mean 

surface temperature has increased by 0.8 °C over the last century (Beniston 

et al.,1998); also the precipitation variability has shown differentiated patterns 

during the 20th century between the Northern and the Southern parts of the 

European continent (Hurrell et al.,1997). According to the Intergovernmental 

Panel of Climate Change (IPCC), the effect of the increasing concentration of 

greenhouse gases will reinforce this trend during the current century and 

increase the frequency of extreme events (IPCC, 2001a). Current predictions 

show an average mean surface temperature increase of up to 6 °C within the 
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next 100 years (IPCC, 2001b), and a reduction in precipitation by up to 20% in 

the Mediterranean areas (Ragab et al.,  2002; Chartzoulakis et al.,  2005).   

The impact of the changing climate on current crop yield patterns in Europe 

has been assessed in recent studies with a new generation of Dynamic Global 

Vegetation Models (DGVMS) (Criscuolo et al.,  2005). These models provide 

an integrated representation of both natural vegetation and crops, taking into 

account carbon and water cycles within a single grid-based modelling 

framework. In these studies the combined effects of the increasing 

temperature, the change in precipitation regimes and the enriched CO2 

atmosphere force the crop potential productivity to generally increase in the 

north, but decrease in the Mediterranean area. 

 During the last years, an increasing emphasis is given to the possibility of 

storing carbon from the atmosphere to terrestrial ecosystems to reduce the 

amount of atmospheric CO2 emitted from fossil fuel burning. For agricultural 

lands, decreased tillage and efficient use of irrigation and fertilizers have been 

considered as strategies to increase soil organic carbon (SOC) and decrease 

atmospheric CO2 (West and Marland, 2003). Once agricultural land is 

abandoned and the area is colonized by natural vegetation again, not only 

carbon is accumulated back in the living pools and in the soil, but also the new 

vegetation has a fertilized growth according to the previously stored SOC 

(Caspsen et al., 2000). Therefore, the assessment of the SOC in agricultural 

land is an important issue, especially to quantify the potential impacts of the 

global warming. Even though new methodologies to estimate the SOC have 

been recently proposed (Jones et al., 2005), the impacts of climate change on 

agricultural soil has been neglected in most large-scale modelling studies. In 

this context, DGVMs offer the opportunity to assess not only the impact and 

interaction of vegetation and crops within the carbon cycle, but also the 

changes in SOC.  

Actual crop patterns are determined by both, the biophysical as well as the 

agro-economic conditions. To understand the combined effect of these factors 

on land-use decisions, an integrated modelling framework is required to 

represent essential biophysical and economic processes. Current approaches 

to simulate large scale land-use changes still tend to over-emphasize either 

the geographic or the economic aspect, neglecting their interactions 
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(Heistermann et al.,  2005). Geographic models are commonly based on 

detailed biophysical characteristics of land. They focus on the dynamics of 

spatial patterns of land-use types by analysing land suitability and spatial 

interaction. Projections of human actions are based rather on observed 

behaviour than on underlying theoretical economic motivations. This limits 

their capability to represent the impact of market interactions, such as 

economic competition among land intensive sectors (for more details on 

geographic land-use models see e.g.Veldkamp et al., 2001). In economic 

models, land is usually implemented as a constraint in the production of land-

intensive commodities and the focus is more on market impacts and resulting 

emissions of land-use than on its allocation. The limitation of these models 

mainly manifests itself in the representation of land, which is treated as 

homogeneous and space-less, ignoring biophysical characteristics and spatial 

interactions (for more details on economic land-use models see e.g. 

Balkhausen et al.,  2004; van Tongeren et al.,  2001). A number of integrated 

approaches try to overcome these weaknesses by combining economic 

rationale and biophysical assessment in an integrated framework 

(Heistermann et al.,  2005). In the ACCELERATES project, for example, the 

farming model SFARMOD is coupled to the crop model ROIMPEL 

(Rounsevell et al., 2003; ACCELERATES, 2004). SFARMOD determines the 

most profitable combination of crops based on yields under several 

management options and exogenously determined crop prices, while 

ROIMPEL provides the respective crop yields and management parameters. 

This is an agro-climatic and process-based simulation model, which uses 

climate data derived from GCMs and GIS-based soil data. Due to the detailed 

description of management options and impacts on farm level, the coupled 

framework depends on an enormous amount of input data. 

In this work, we include the global agricultural land-use model, the Kleines 

Land Use Model (KLUM) (Ronneberger et al.,  2005) in a state-of-the-art 

DGVM, the Lund-Potsdam-Jena model for crops (LPJ-C) (Criscuolo et al., 

2005) to estimate the impacts of climate change on biosphere and economy 

for the EU25 countries. LPJ-C is an expanded version of the standard LPJ 

model (Sitch et al.,  2003) with an added crop growth compartment. It 

provides a dynamic representation of vegetation and crop growth. KLUM is a 
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coupling tool, designed to interlink global economic and vegetation models. By 

determining the most profitable crop allocation, based on crop prices and 

spatial explicit yields it reflects the essential biophysical and economic 

aspects of large-scale agricultural land-use changes. 

Similar to the ACCELERATES-approach, this framework provides a link 

between dynamically modelled yield projections and economically motivated 

agricultural land-use decisions. In contrast to the ACCELERTAES approach, 

however, our system requires a less detailed input set, allowing large-scale 

applications and long-term predictions. Beyond, KLUM provides an interface 

to dynamically couple the framework to a state-of-the-art global trade model, 

in order to further enhance the integration of economics.  

We demonstrate the potentials of the coupled system by studying the 

impact of two characteristic climate change scenario simulations on biomass 

production, crop distribution and soil carbon accumulation. In order to 

investigate the impact of the changing crop allocation on the SOC, we study 

the development of the soil carbon accumulation under fixed and dynamically 

simulated crop allocation. For the moment, we exclude hard predictable 

drivers such as management and demand changes with the intention to focus 

on the coupling effects.  Therefore, crop production is simulated in potential 

production conditions and the crop prices are fixed to current values. 

 

4.2 Modelling Framework 
The KLUM@LPJ framework runs on a 0.5x0.5 longitude-latitude grid, with 

a time-step size ranging from one day to one year, depending on the modelled 

process. The framework is designed for global coverage and a possible time 

horizon of several centuries. In this study, however, we restrict our analysis to 

the area of the countries of the EU25. The two original models are 

dynamically coupled, exchanging data on a yearly basis. 

 

4.2.1 The LPJ-C model 

The LPJ-DVGM model is a representation of the terrestrial ecosystem with 

large-scale and process-based dynamics. The modelled dynamics take 

account of the carbon and water cycling in the vegetation and the soil, of the 

vegetation structure and the composition, and of fire disturbance. The LPJ-C 
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model incorporates crops and natural vegetation within a single modelling 

framework in which the two vegetation types use a common photosynthesis-

assimilation scheme, while carbon dynamics and development are differently 

described. A comprehensive description of the general model is given by Sitch 

et al. (2003), and by Criscuolo et al. (2005) for the crop growth compartment. 

The natural vegetation in each grid cell is represented by a combination of 

plant functional types (PFTs). A PFT is a conceptual and numerical way to 

represent vegetation type inside a modelling framework. PFTs are 

differentiated by physiological, dynamical, and structural attributes as well as 

bioclimatic constraints for survival. Vegetation structure and dynamics are 

explicitly included and populations of PFTs compete for light and water. 

Photosynthesis is based on a version of the Farquhar model readapted for 

global modelling purposes (Farquhar et al.,  1980; Farquhar et al.,  1982).  

The soil contains one litter pool for each PFT or CFT, and two SOC pools, 

the slow and the fast decomposing. A fraction of the litter is respired as CO2 

directly into the atmosphere with a decomposition rate at 10°C of 0.35 yr-1. 

The remaining litter is divided in fast and slow SOC pools with a 

decomposition rate at 10°C of 0.03 yr-1 and 0.001 yr-1 respectively. These 

rates correspond to a turnover time of 2.86, 33.3 and 1000 yr. Decomposition 

depends explicitly on temperature (adopted from Lloyd and Taylor, 1994) and 

soil moisture (adopted from Foley, 1995), for details of SOC equations refer to 

Sitch et al. (2003). The crop biomass enters directly the litter pool; during this 

process a part of the carbon is moved to the atmosphere directly, while a 

certain quantity of SOC and the remaining litter are left in the soil. The amount 

of carbon moved to the atmosphere mainly depends on temperature; 

generally, a warm environment allows a larger flux of CO2 to the atmosphere, 

leaving less SOC in the soil. 

As natural vegetation is identified by the PFTs, crops are represented as 

crop functional types (CFTs) with specific carbon dynamics and canopy 

attributes. CFTs are modelled as annual plants with no competition for 

resources, and free to grow where no natural vegetation is allowed. The crop 

growth can be simulated under potential and water-limited conditions. No 

stress affects the plant in the first case, so that the growth is driven only by 

temperature and light; in water-limited simulations, water availability limits the 
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productivity. In this work, six CFTs (rice, wheat, maize, barley, potato, sugar 

beet) are simulated in potential production conditions. The crop 

parameterisation sets are derived from Boons-Prins et al. (1993) and adapted 

for the modelling requirements of LPJ. No specific calibration was performed 

on the crop parameters. 

The harvest index (HI) is an important commercial and plant physiology 

index, giving a simple numerical representation of the carbon biomass 

distribution inside the plant structural components. Here we define the HI as 

the ratio of the storage organs and total biomass. In this study, we assume 

that only the storage organs are taken away from the field for harvest. The 

rest of the plant carbon biomass goes directly in the soil litter and follows the 

decomposition process. Tubers generally allocate much more carbon in the 

storage organs than cereals, which distribute the biomass more 

homogeneously in the plant compartments. Therefore, only a small part of the 

total carbon biomass of tubers (potatoes and sugarbeet, in this work) is 

conveyed to the soil carbon litter, but more than half of a cereal’s biomass is 

transferred to the soil at the harvest day. Consequently, the HI also quantifies 

the part of the biomass transferred to the soil litter. 

Since the SOC depends on the litter, the flux of biomass from the 

vegetation to the litter pool has to be analysed to determine the contribution of 

each single CFT. For this reason, we define the potential litter (PL) as the 

quantity of biomass per area of each crop moved from the vegetation to the 

soil pool every year, scaled by the area share. Consequently, the amount of 

biomass actually entering the soil litter (PLtot) in year n at the harvest is the 

sum of the crop PLs: 

 

 

 

 

TB is the total biomass, SO is the biomass in storage organs pool at the 

harvest of year n and crop k, HI is again the harvest index and l is the area 

share. In the detail, the PL for the crop k represents the biomass transferred 

to its litter pool at the harvest day of the year n, taking into account of the land 

share. The litter of the year n represents the carbon litter accumulated and 
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decomposed from the beginning of the simulation to the day of the current 

harvest; therefore, the PL represents the yearly increase of the litter pool, 

before performing the reduction due to decomposition and direct respiration 

(Figure 4-1 for a schematic representation). 

 

4.2.2 The KLUM model 

The global agricultural land-use model KLUM is designed to interlink 

economy and vegetation by reproducing the key-dynamics of global crop 

allocation (see Ronneberger et al. (2005) for a detailed description of the 

model). For this, the maximization of achievable profit under risk aversion is 

assumed to be the driving motivation underlying the simulated land use 

decisions. In each spatial unit, the expected profit per hectare, corrected for 

risk, is calculated and maximized separately to determine the most profitable 

allocation of different crops on a given amount of total agricultural area (see 

the Appendix II for mathematical formulation). In this, decreasing returns to 

scale is assumed. Mathematically the sum of these local optima is equivalent 

to the global optimum, assuring an overall optimal allocation.  

Figure 4-1 Coupling scheme of the KLUM@LPJ system; SOC indicates the soil organic carbon, CFTn the

number n crop functional type and Rest the difference between total biomass and yield. 
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Profitability of a crop is determined by its price and potential yield, which 

are the driving input parameters to the model. Furthermore, a cost parameter 

per crop and a risk aversion factor for each spatial unit are calibrated 

according to observed data. Risk is quantified by the variance of achievable 

profit, calculated according to preceding five yearly time steps.  

For the current study, we recalibrated the original KLUM version to match 

the resolution of LPJ-C: the allocation of six crops (rice, wheat, maize/corn, 

barley, potato and sugar beet) on a 0.5°x0.5° grid of the area of the EU25 

countries is simulated. For the calibration-procedure we used data of the 

years 1991-2001 on yields and planted area on NUTS2 level of the 

EUROSTAT database New Cronos (2005) and country level data on prices of 

the FAOSTAT (2005). We adjusted prices for inflation and converted them to 

1995 US$ by means of data of the Word Bank (2003). Prices are averaged to 

5-year means and aggregated to three multi-national-regions (Western 

Europe, Eastern Europe and Former Soviet Union) as described in 

Ronneberger et al.  (2005), matching the typical resolution of a global trade 

model in order to enable a possible coupling. We assigned each grid cell of 

the 0.5°x0.5° grid to a NUTS2 region according to the minimal distance of 

centers. The agricultural area in each grid cell is supposed to be an equal 

share of the agricultural area in the original region. Cost parameters are 

adjusted accordingly as described in Appendix II. To represent crops with 

insufficient data or not yet emerging crops (as e.g. maize or rice in Northern 

Europe) we adopted the cost parameters (again adjusted) and initial profit 

variability of adjacent or close-by units within the same world region1 and with 

similar biophysical characteristics as indicated by the yield structure of the 

remaining crops. For NUTS2 regions with no data available we either used 

data on NUTS1- or even country-level for the calibration (for large parts of 

Germany, the UK, Portugal and Finland) or adopted the complete calibration 

of adjacent, biophysical similar regions (e.g. for Smalland and Västsverige, 

the calibration of Östra Mellansverige was adopted). For most of Finland yield 

data was only available on country level, whereas the planted area could be 

                                                 
1 For the Former Soviet Union we had to adopt some prices and the complete calibration for 
rice from countries of Eastern Europe. In Finland for maize and rice in Latvia and Eszak-Alfold 
(Hungary) gave a better fit than all western European regions. 
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taken on NUTS2 level.  Some crop prices for the region of the Former Soviet 

Union were missing, so we adopted slightly adjusted prices from Eastern 

Europe. NUTS2 regions, which are representing large city areas, such as 

London, Hamburg or Stockholm were left out of the calibration. 

 

4.2.3 KLUM@LPJ 

Conceptually, the two models are coupled via an exchange of potential 

yields and the crop allocation pattern. More concretely, KLUM calculates the 

share of the agricultural area to be allocated to each crop using their potential 

yields, as determined by LPJ-C. In order to provide KLUM with the potential 

productions of all the crops, in a first instance LPJ-C simulates all crops 

alternatively, as if they would occupy the entire grid cell without any interaction 

among the CFTs. Since in LPJ-C crops are not assumed to compete for 

resources, the only impact of the actual allocation pattern of the crops is on 

the soil carbon pool, which is determined by the accumulation of biomass in 

the plants litter. Thus, the area shares, as calculated by KLUM are used in 

LPJ-C to determine the contribution of the different crops to the soil carbon 

pool. The crop PL is scaled by the land allocation coefficients at the harvest  

 

Figure 4-2 The reference grid and its sub-regions; the reference grids include the EU25 countries. 
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Table 4-1 Crop prices for the three economic regions (see text), used for 

the projection period 2001-2100. 

$/ton Wheat Maize Rice Sugar beet Potato Barley 

WEU 157.20 167.03 343.45 50.79 148.67 142.91 

CEE 116.08 97.74 339.04 25.31 65.24 104.21 

FSU 107.13 104.23 361.25 33.66 73.29 92.69 

 

day and transferred into the soil litter, where it is finally decomposed 

according to the SOC sub-model. We technically realize the coupled system 

of LPJ-C and KLUM by directly implementing a C++ version of KLUM into the 

LPJ-C framework. In each yearly time step, the potential production and the 

allocation shares are exchanged between KLUM and LPJ-C, according to the 

above described scheme (Figure 4-1).  

 

4.2.4 Design of model experiment 

We use the coupled system to investigate the combined impacts of climate 

change on biomass production, changes in crop allocation and soil carbon 

accumulation. We chose the two extreme IPCC scenarios A1 and B2 to better 

highlight the different potential effects of temperature and atmospheric CO2 on 

crops and allocation dynamics. To further separate the effect of crop 

allocation on the SOC, we performed the same simulations with fixed crop 

allocation. In this way, it is possible to distinguish the changes resulting from 

altering allocation from those due to climate forcing. 

The simulation time covers the period 1991-2100. We use observed data 

for climate (precipitation, temperature and radiation), CO2 concentration and 

crop prices for the period of 1991-2001. From 2001 to 2100 we use predicted 

climate scenarios together with the correspondent CO2 concentration 

scenario. Crop prices are kept constant on the 5-year averages of 1995-2000 

for the complete projection period (see Table 1). The 1991-2000 period is 

considered as a reference period in order to evaluate the performance of the 

modelling framework.  To reach equilibrium in the SOC for the initial year, we 

spin up the model for 100 years using the 1961-1990 climatology provided in 

TYN 2.0 (Mitchel et al., 2004) and observed CO2 concentrations. 
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We consider the area of the NUTS2 regions as “reference area”.  The 

reference area is also subdivided in four sub-regions for the regional analysis 

(Figure 4-2): British Islands and Central Europe (BCEur, including 344 grid 

cells), Scandinavia and Finland (NEur, including 574 grid cells), Southern 

Europe (SEur, including 605 grid cells) and Eastern Europe (EEur, including 

463 grid cells). We refer to “regional mean” as the mean calculated over the 

grid cells corresponding to the regions. 

 

4.2.5 The scenarios 

We derive mean global CO2 concentrations from McGuire et al. (2001), for 

the period 1991-1992, while data from the integrated assessment of 

Schlesinger et al. (2001) cover the remaining period after 1992. Soil texture 

data is based on the FAO soil data set on a global 0.5° x 0.5° grid, as 

described by Sitch et al. (2003). Observed climate data for the 1991-2000 

Figure 4-3 Climate means over the simulation grid. 
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period is derived from the CRU TS 2.0 global climate data set (Mitchel et al., 

2004). This data set provides monthly fields of observed mean temperature, 

precipitation and cloud cover on a 0.5° x 0.5° global grid over land. For the 

scenarios we use climate data from the TYN SC 2.0 data set (Mitchel et al., 

2004) for the period 2001-2100. This data set consists of monthly climate data 

for the period 2001-2100 simulated by General Circulation Models (GCMs), 

covering the global land surface on the same 0.5° x 0.5° grid as CRU TS 2.0. 

This set includes 16 scenarios of projected future climate representing all 

combinations of four SRES emissions scenarios and four GCMs. We select 

the SRES-B2 and SRES-A1 scenarios from HadCM3 (Figure 4-3). A1 and B2 

are the extremes of the SRES group and give two very different CO2 

concentration paths for the 2001-2100 period (IPCC, 2001c). The choice of 

HadCM3 is motivated by its behaviour over Europe, which is characteristic for 

a cluster of scenarios in the IPCC analysis. In the IPCC simulations, HadCM3 

shows a clear increase in average temperature. Furthermore, HadCM3 is 

currently considered one of the reference GCMs within the IPCC framework 

(IPCC, 2001b). 

 

4.2.6 Evaluation 

In order to evaluate the performance of the coupled system we compare 

the resulting area shares and potential productions to observed data of the 

year 2000. We choose the final year of the reference period 1991-2000 for our 

evaluation, because the results of KLUM show strong perturbations for the 

first years of the simulation. This is a result of the differences in observed and 

simulated yield, which initially causes an unusual high variance in the 

profitability. The variance is calculated based on the profitability of the 

preceding five time steps and used in the algorithm as a risk estimator (see 

Appendix II). During the spin up period the land shares are kept constant and 

no calculations are carried out by KLUM. Thus, for the first years after the spin 

up period the variance is based on simulated as well as initialised observed 

yields and variances, causing the respective perturbations in the calculated 

variances and consequently also in the area shares. Only after around ten 

years the dynamic equilibrium is reached. As we discuss later on, this 

initialisation strategy could be reviewed, providing a longer spin up period. 
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Figure 4-4 Ratio of simulated and observed area share for the year 2000. The values are compared on NUTS2 level, 
where the simulated values are averaged over all grid cells within one NUTS2 region. Overestimations are marked in red, 

underestimations in blue. White coloured grid cells match the observed value within a 10% error range. 

 

Figure 4-4 and Figure 4-5 depict the ratio of simulated over observed 

values for yield and area shares of all crops for the year 2000. Blue colours 

indicate underestimated values whereas overestimated values are depicted in 

red. White areas indicate an accordance of simulated and observed values 

within a 10% range. 
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Sugar 
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Figure 4-5 Ratio of simulated and observed yield for the year 2000. The values are compared on grid level, where the 
observed values of the NUTS2 region are assumed to be identical to in each grid of this region. Overestimations are 

marked in red, underestimations in blue. White colored grid cells match the observed value within a 10% error range. 

 

In Figure 4-6, we show the frequency of occurrence of different percentage 

deviations among simulated and observed values. The colour bars depict for 

each crop the percentage share of all simulated data points that show a 

defined percentage deviation from the observed value. The length of a certain 

colour bar quantifies the share of data points, while the colour defines the 

respective deviation, where yellow to red colours mark positive and blue to 

green colours mark negative deviations. The simulated area shares are 
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aggregated to the NUTS2 regional level in order to compare them to the 

observed values. For the evaluation of the simulated potential productions the 

comparison is performed on 0.5° x 0.5° resolution, where observed yields of 

the same NUTS2 region are assumed to be identical on all included grid cells.  

The simulated potential production of nearly all crops does not exceed but 

underestimate the observed yields in the majority of simulated data points 

(Figure 4-6). For most crops the blue to green part of the bar clearly exceeds 

the 50 % mark, indicating that more than half of the simulated data points 

show a negative deviation from the observed values. Only for wheat the 

potential production is actually exceeding the observed yields for a majority of 

nearly 65% of the simulated data points, visualized by the yellow to red 

coloured bars starting from the 35% mark. The potential production represents 

the maximum production achievable under the forcing of a given radiation and 

Figure 4-6 Frequency of occurrence of the different percentage deviations of simulated and observed for

the year 2000; the colour characterizes the extent of the percentage deviation from simulated to the
observed value. The length of the respective colour bar quantifies the percentage share of all simulated
data points for this crop that lie within the marked range. 
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temperature. Thus, theoretically the simulated values should be always larger 

than the real world observation. The marked underestimation might be partly 

due to the fact that simulated yield is represented as dry matter. The observed 

harvested yields have a certain percentage of water, which increase the 

weight compared to the harvested dry matter. Furthermore, we do not apply 

any calibration to the crop parameters and we do not include any 

technological and cultivar improvements. 

Figure 4-5 shows that the underestimated areas of potential productions for 

wheat and barley are concentrated in Central Europe and some parts of 

Southern Europe. For potatoes the area of underestimation shows a similar 

pattern but is a bit more spread also to Northern Europe. For both potential 

productions and area shares we observe the greatest underestimation for 

maize, sugar beets and rice. In Figure 4-6, a dark blue, indicating that the 

values are underestimated over nearly the entire grid, dominates the 

respective bars for the potential productions. For sugar beet 100% of the data 

points are underestimated by more than 60%; for maize and rice over 90% 

(maize) and respectively 60% (rice) of all data points are underestimated by 

more than 50%. For the area shares the picture looks slightly better. Here 

maize shows the largest share of underestimated data points with a share 

over 60% that is underestimated by more than 50%. For sugar beets and rice 

the shares of data points that are differing from the observed values by more 

than –50% lies at ~55% (sugar beet) and ~30% (rice). The underestimated 

area shares of these three crops are, on the one hand, a direct consequence 

of the underestimated yields. On the other hand it has been observed before 

that in KLUM the reproduction of minor crops is comparably weak 

(Ronneberger et al., 2005). Yet, overall we observe more balanced 

proportions of underestimated and overestimated data points for the area 

shares.  

The simulated area shares for wheat, barley and potatoes match 

comparably well with the observed values. It is interesting to note that the 

observed pattern of underestimated versus overestimated yields for wheat 

and barley is not reproduced in the results of KLUM. For the case of wheat it 

is even inverted, showing an overestimation of area shares in Central Europe 

and parts of South Europe. However, the underlying reason becomes evident 
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when looking at the relative shift of yields compared to the observed values. 

The yields of all crops are underestimated in Central Europe, yet for wheat the 

deviation from the observed value is the smallest, resulting in the highest 

profitability, when compared to the observed situation. In other words, 

compared to the observed situation for Central Europe the yield of wheat is 

least underestimated and thus for the simulated yield pattern the profitability of 

wheat relative to the other crops is increasing. Consequently, compared to the 

observed yield pattern more wheat is planted. 

 

4.3 Results 
For the projection period 2001-2100 the simulation of biomass production, 

crop allocation and soil carbon accumulation reveal clear interaction. 

According to the specific crop characteristics, the mean total carbon biomass 

over the reference area shows different time evolution for different crop 

typologies (Figure 4-7-A). As expected, the mean biomass of potatoes is 

generally way larger than of the rest of the simulated crops; additionally, the 

increase in biomass is larger for potatoes than for most other crops. The 

mean biomass increases constantly from around 1.00 to 1.20 kgC/m2, with an 

increase slightly steeper for scenario A1 than for scenario B2. Potatoes are 

known to be a low temperature-demanding crop. In other terms, potatoes do 

not need high temperatures to complete the growth and, consequently, are a 

broadly spread crop; in our simulations the potential growing area covers 

mostly the whole reference area. A complete analysis shows that potatoes, at 

the beginning of the simulations, cover the whole continent with the exclusion 

of Northern-central Sweden. At the end of the simulation almost the complete 

simulation grid is covered.  

Yet, the contribution to the reference means of this expansion is very small 

compared to the direct influence of the CO2 fertilization effect and temperature 

on net primary productivity (NPP). We can conclude, hence, that the increase 

of mean potatoes biomass on the reference area in Figure 4-7-A is explained 

mainly by the CO2 fertilization and the temperature effect. Wheat and barley 

accumulate comparably less biomass per plant, but the potential growing area 

covers almost the whole grid. The mean total biomass is around 30% smaller 
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than for potatoes but around five times larger than for rice, maize and sugar 

beet, which are much more localized in the south and centre of Europe. 

For C3 cereals, such as wheat, barley and rice, the mean carbon biomass 

tends to slightly increase until around 2040. After this period, for scenario B2 it 

is almost constant whereas in scenario A1 a clear decrease for “cold” C3 

cereals (wheat and barley) and an increase for the “warm” C3 cereal (rice) 

can be observed. This difference in scenarios for wheat and barley is a result 

of the shortening of the growing season due to high surface temperature and 

the CO2 enriched atmosphere. It has been demonstrated that an increase in 

mean temperature leads to a shortened growing season and a decreased 

Figure 4-7 Means over the reference area (see text for details). In A, mean total carbon biomass; in B, mean

storage organs carbon biomass; in C, mean land allocation coefficient; in D, mean soil carbon. 



Chapter 4 - Changes in agricultural land use and soil carbon storage in Europe 

 105

NPP (Criscuolo et al., 2005). On the other hand, NPP is sustained by the CO2 

concentration increase, so that the final total biomass tends to slightly 

increase. In A1, the temperature effect prevails on the CO2 fertilization effect 

after 2040. On the contrary, since rice is highly temperature demanding, the 

potential growing area of rice increases following the temperature increase. 

Thus, the mean total biomass of rice over the reference area consequently 

increases in A1. Maize increases constantly in both the scenarios, with a more 

pronounced steepness in B2. No CO2 fertilization effect improves the maize 

NPP, as a C4 plant; hence, the mean biomass increase is related only to the 

temperature increase. Temperature affects the maize production mainly 

through the enlargement of the potential growing area, rather than the plant 

productivity (Criscuolo et al., 2005). Sugar beet is mainly constant with a very 

low variability. 

Potato and sugar beet allocate biomass mainly in the storage organs 

(tuber), and the associated HI is very high in our simulations, around 0.6-0.8. 

Maize is the third crop in the HI rank; wheat and rice are respectively the forth, 

the fifth and barley the sixth, with 0.35-0.40. The relationship is evident 

comparing the mean total carbon biomass and the storage organs (namely 

the yield) in Figure 4-7-A and B. As mentioned above, the fraction of the litter 

associated with the six crops is reflected in HI: for potatoes e.g. about 40-20% 

of the total biomass is moved to the soil carbon litter, whereas more than 60% 

of the barley biomass is transferred to the soil pool. For rice, we observe a 

large decrease in the HI: even though the mean biomass is largely increasing, 

the mean carbon allocated to the storage organs remains more or less 

constant, increasing the amount of carbon being transferred to the litter pool. 

When the biomass is moved to the litter, it is scaled by the land allocation 

coefficient to take into account of the actual share covered by the respective 

crop. The averaged land shares (Figure 4-7-C) show a high variability within 

the first ten years of the simulated allocation period due to the above- 

mentioned spin up strategy. Figure 4-7-D depicts the effect of land-allocation 

on SOC. The differences between fixed (green lines) and simulated (blue 

lines) allocation are not clearly evident, with the exclusion of the fist 10-15 

years after the spin up period. The rapid changes in the land shares lead the 

litter to rapidly increase after the spin up; consequently the SOC tends to 
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increase following the increased biomass flux from the litter pool. This initial 

impulse, on the other hand, is relatively quickly adsorbed and the soil carbon 

reaches a new equilibrium after 10-15 years; moreover, the new equilibrium is 

similar to the one reached with fixed allocation. On the long term, the soil 

carbon shows a typical dependence of respiration on temperature (Lloyd and 

Taylor, 1994). As mentioned, the increase in biomass fluxes to the litter lead 

to an increase in SOC until about 2040. After this period the SOC decreases 

markedly in A1, while steady increases in B2. The intense temperature 

increase in A1 forces a faster decomposition after 2040, so that a large part of 

the litter and SOC are quickly released as CO2. At the end of the A1 

simulation, the soil pool tends to slightly increase again, indicating a 

stabilization of the decomposition rate. In scenario B2, temperature increases 

as well, but not enough to counterbalance the increased biomass flux to the 

soil pool caused by the higher respiration rate.  

Still, the development of the mean soil carbon pool shows a certain 

dependency on the mean allocation share on regional level, especially during 

the first years after the spin up. To better clarify this issue, we show regional 

means of SOC and of the PL with simulated allocation respectively in Figure 

4-8 and Figure 4-9. SOC increases within the 10-15 years in all the regions, 

NEur excluded (Figure 4-8). 
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   Figure 4-8 Mean soil carbon pool over the selected four regions. 

 

The initial impulse is related to the initial increase in the PLtot (Figure 4-9). 

This increase indicates a larger flux of biomass to the litter, due to the initial 

change in allocation and biomass production (see above for PL definition). 

Yet, an increase in litter is generally reflected in an increase in SOC with a 

delay of some years; in NEur, however, a slight decrease of SOC is evident. 

During the spin up period, the complete reference grid is initialised with the 

observed allocation patterns. When KLUM receives the simulated yield from 

LPJ-C after the spin up, the simulated yields are zero for a number of grid 

cells, especially in large part of the north. Consequently, no crops are 

allocated in these cells and the respective PL is set to zero, leading to a stop 

of the biomass flux to the litter in these grid cells. At the same time the 

allocation coefficient of barley as well as the biomass of the plant rests (TB-
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SO, see definition of PL) increases in the south of Scandinavia, outweighing 

on average the decrease of PL in the north. Therefore, the resulting PL 

decreases in the northern part of NEur but increases markedly in the south, 

leading to an increase of the mean over this region. Hence, an increase in 

litter occurs only in the southern part of the region. Since SOC pool receives 

carbon from the litter decomposition only in the south, but respiration occurs 

everywhere, the mean over the whole region tends to slightly decrease. In this 

way we observe an increase in average in the PL (and in the litter) but a slight 

decrease in SOC. When the temperature is high enough to allow a faster 

decomposition, the flux from the litter to the SOC and from the SOC to the 

atmosphere increases. Moreover, the fraction of litter that is decomposed and 

Figura 4-9 Mean PL and PLtot over the selected four regions (see text for the definition of PL). 
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moved to soil carbon pool is larger than the respired fraction of SOC; hence, 

SOC has a net increase around 2020, which continues for the next 50 years. 

It is also interesting to note that the decrease in SOC due to lately and 

stronger increase of A1 temperature occurs in NEur only after 2075, while 

already after 2040 in the other regions; this implies a delayed temperature 

increase only in this region. 

Figures 4-10 to 4-12 outline the spatial development of the crop allocation 

over time. We show rice (Figure 4-10), wheat (Figure 4-11) and maize (Figure 

4-12) as characteristic representatives for the overall development. One of the 

main impacts in the climate change simulations is a northward shift of crop 

cultivation. Whereas for rice this mainly involves an extension over the grid 

area, for wheat and maize the maps additionally reveal an increase in the 

area share in Northern Europe. For most parts of Europe, this implies for both 

scenarios an increasingly diverse crop pattern. Only, in the south (Spain, 

Portugal and Italy) we observe a strong increase in wheat shares, up to over 

90%, indicating a trend to a more monocultural structure. 

In general the intensity and extent of the expansion to the north is much 

more pronounced for the warmer scenario A1. Comparing the two scenarios 

we note an interesting pattern for Denmark and Southern Sweden. In our 

starting year, barley is the dominant crop in terms of area share, being 

cultivated on around 60% of total agricultural area. For the warmer scenario 

A1 maize production is not only introduced to these regions, but at the end of 

the simulation the major part of the total agricultural area (around 60%) is also 

allocated to maize. In contrast to that, in the colder scenario B2 wheat is 

becoming the dominant crop in these regions, allocated to some 50-70% of 

the total agricultural area. This is a direct result of the above described 

scenario development of the accumulated carbon biomass for wheat and 

maize. The above-described trend in mean biomass over the simulation time 

horizon is reflected in the development of the cropping pattern. For instance 

we observe an increase of the area share for wheat - in particular in Northern 

Europe - followed by a slight decrease towards the end of the simulation, 

which is more evident for scenario A1. 
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Figure 4-10 Spatial distribution of the allocation coefficients for rice. 

 

Figure 4-11 Spatial distribution of the allocation coefficients for wheat. 
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Figure 4-12 Spatial distribution of the allocation coefficients for maize. 

 

 

 

In Figure 4-13 we visualize the economic implications of climate change for 

agricultural production. Figure 4-13-A shows the crop distribution over Europe 

and plot B depicts the total value of production in constant 1995 US dollars. 

Ignoring again the spin up phase, we observe an overall nearly constant 

economic value with small inter-annual variability. Still, for the colder scenario 

B2 a slight increase in total value and for the warmer scenario A1 a definite 

decrease in total value is visible. This trend is in accordance with the 

observed development of the storage organ biomass and the respective area 

shares of the dominating crops. 
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In general the production value mainly follows the respective area shares. 

The greatest part of the production economic value is gained in wheat (around 

50%) and barley (around 25%), which also capture an equivalent share of 

total agricultural area in Europe. Only for maize and potatoes the development 

of area share and production value differ tremendously. Whereas only around 

10% of the area is used for potato cultivation, the corresponding production 

value makes up around 20% of the total value.  For maize production we 

observe an opposite but even more extreme scenario; cultivated on 15% of 

the agricultural area, up to even 20% for the end of the simulation horizon, 

maize production adds only around 4% to the total value of agricultural 

production. For maize this is mainly a result of the largely underestimated 

yields, which we already discussed in the previous section. For potatoes, the 

reason lies in the interplay of price and relative yield. As shown above in 

Figure 4-7-B, the yield per area of potatoes is around five times larger than 

the yield of cereals such as wheat and barley. However, as can be seen in 

Table 1, the price per weight of the dominant cereals and potatoes for the 

Figure 4-13 The overall economic impact of climate change. In A, the allocation shares of the complete

reference grid; in B, the resulting value of production, crop-wise and in total. 
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Western region, which makes up by way the largest part of our reference grid, 

are nearly equivalent; also in the Eastern regions only a factor close to two is 

assumed. Consequently, the profitability of potatoes (and also of sugar beets) 

is much higher than the profitability of cereals. Yet, also the involved costs are 

usually much higher, leading to the comparably low area share of the tubers. 

Only in the economic region of the Former Soviet Union the costs of potatoes 

have been estimated in the calibration to be very low leading to the high area 

shares of potatoes in EEur, discussed above. 

 

4.4 Discussion and conclusions 
In this study we coupled the DVGM LPJ-C to the agricultural land use 

model KLUM by dynamically exchanging simulated potential productions and 

the resulting crop patterns. This is a first step to a more comprehensive 

modelling and understanding of the mutual interaction of vegetation and 

human activity. The evaluation of the coupled system reveals weaknesses, in 

particular for the simulation of rice, maize and sugar beets. However, within 

the limits of the current system the overall performance provides an 

acceptable basis for future trend estimations. 

By forcing the coupled system with future scenarios of climate change we 

showed the importance of the connection between economic decision, 

biomass production, and carbon soil pools within the context of a changing 

climate. Increases in SOC have to be expected following the northward shift of 

crops, but temperature will play a major role, highly dependent on the 

increase in time. The differences in SOC between fixed and simulated 

allocation runs put in evidence that allocation plays a secondary role if 

compared to the effect of temperature on soil respiration. On the other hand, 

the dynamics of the soil litter and SOC in a warming climate are currently a 

source of uncertainties in the biospheric modelling (Knorr et al., 2005). The 

established theories that prescribe an increase in decomposition rates as a 

response to the increasing temperature has recently been questioned due to 

a hypothesized “acclimatization” of micro-organisms to higher temperatures 

(Giardina and Ryan, 2000; Luo et al., 2001). However, a recent study found 

that the hypothesis of an increased CO2 soil flux related to global warming to 

be fully consistent with evidences (Knorr et al., 2005), without the need to 
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consider biological adaptation of decomposition rates. LPJ-C includes a direct 

dependency of respiration rates on temperature and soil humidity according to 

the formulation by Lloyd and Tayler (1994), which is similar to the Arrhenius 

equation used by Knorr et al. (2005); the description of the SOC 

decomposition could be, therefore, reviewed following the new proposed 

theories. Moreover, we describe the crop harvesting with a very simple 

approach: storage organs are taken out of the field and the rest of the 

biomass is moved to the agricultural soil. Therefore, we do exclude specific 

harvesting and agronomic techniques, which can be very relevant in the soil 

carbon balance. Also the influence of management and technology changes 

will certainly play a major role in shaping future agricultural land use, 

influencing soil carbon pools as well as the water cycle. However, these 

changes and impacts are highly uncertain and hard to predict. Thus, a sound 

understanding of the independent management trends can build a useful 

basis for further assessments. 

The simulations show for the future a clear impact of land allocation on soil 

pools, underpinning the importance of dynamic land use modelling for a 

comprehensive description of the soil carbon pools. The results of biomass 

production, crop allocation and economic impact show a clear connection. For 

all crops we observe a shift of potential as well as actual growing area to the 

north. Rice will be increasingly cultivated also in Central Europe and maize 

will cover Southern Scandinavia as well. In the simulation of the warmer 

scenario A1, maize is even becoming the dominant crop in terms of area 

share for Denmark and Southern Sweden. From the economic side the 

simulation results suggest a slight gain in a moderately warming climate, and 

clear losses in the more drastically warming scenario. This is mainly a result 

of the evident shift from wheat and barley production towards an increasing 

share of maize production, which, in our simulation is a less profitable crop. 

For the less warm scenario this trend is less pronounced, as the CO2 fertilized 

wheat yields result in a greater share of wheat production. 

However, these results are based on the assumption that crop prices as 

well as the total amount of agricultural area will not change and should be 

critically assessed within that context. We chose these scenarios because no 

scenarios based on more realistic assumptions were available. Ronneberger 
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et al. (2005) showed that the assumption of simple linear extrapolation of past 

trends leads to highly unrealistic results and suitable dynamic projections of 

future crop prices are rare. Yet, prices will change along with cultivation habits 

and according to a changing economy, which will be impacted by climate 

change from more than just the agricultural side strongly impacting the 

simulated pattern. Even though a stagnation or decline of total agricultural 

area is often projected, this aspect has to be judged with care. A changing 

climate will affect cultivars and management practices, which feed back on the 

total area used for cultivation. For instance the observed increase of wheat 

production in the south of Europe is most likely only a result of the model 

structure, which provokes the use of the complete area for at least one of the 

simulated crops. Under a warming climate, however, it is more likely that new 

heat-resistant crops are used in the South, or that a large part of the 

agricultural area is abandoned due to shortening water supply. On the 

opposite, Northern Europe might benefit from an increase of total agricultural 

area as a result of the improved plant growth under a warming climate. 

However, even though there is large scope for improvement, our modelling 

approach is a new baseline on which it is possible to build a high potential 

integrated tool to assess the carbon cycle. This is a first step to assess the 

possibility to appropriately represent the trend of future crop patterns under 

the influence of climate change. 
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Chapter 5 

5 Conclusions 

5.1 Summary 
Climate change impacts European agriculture through many aspects of 

crop production. Not only plant productivity, but also geographical shift of 

cultivation areas, changes in crop phenology, in land use, and in soil carbon 

have to be taken into account for assessments of the next future. The 

modelling framework we provide is a potentially powerful baseline to study the 

impacts of the changing climate by assessing crop production with a single 

integrated approach for large-scale studies. LPJ-C enables to describe and 

quantify the carbon budget at ecosystem scales in natural and agro 

environments. Yet, LPJ-C provides a description of the crop production 

process at the interface between detailed crop and general vegetation 

ecosystem modelling. Not only crops and natural vegetation in a single tool, 

but also potential and water-limited crop production are included within the 

same biosphere scheme. 

We provide here, for the first time, a grid-based assessment of potential 

impacts of climate change in Europe using an extended Dynamic Global 

Vegetation Model (DGVM). Our results show that the increase of CO2 

concentration and the rise of temperature may allow earlier sowing dates, 

shorten growing seasons, enlarge the potential growing areas and increase 

the potential crop yield. On the other hand, the climate change could lead to 

an increase in crop water demand, frequency of extreme loss events and 

heavily impact the soil carbon budget through the cropland allocation. All 

those changes may affect the European continent with several distinct 

regional differences. 

Reviewing the work we described in Chapter 2 the model development and 

parameter optimization of LPJ-C. The model is now able to simulate crops 

and natural vegetation within a single grid-based modelling framework. The 
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optimization procedure provides a set of crop parameters, subsequently used 

in a regional assessment over Europe. Further, we used the resulting 

modelling framework to study the changes of potential production of maize 

and wheat together with the shift in their potential growing area. In this 

modelling context, the results show that wheat yield will suffer from a marked 

decline through a shorter growing season, but fertilization due to the CO2 

enriched atmosphere will often more than compensate this effect. The net 

result is an improvement of potential production. The area of potential growth 

of wheat will largely be unaffected by the future climate regimes that were 

considered in our simulations. For maize, however, cultivation will clearly 

expand towards north and east. Since maize, as a C4 plant, is mostly 

unaffected by the CO2 fertilization effect, the shorter growing season will lead 

to a lower NPP, while the mean over the continent will increase according to 

the large geographical spread. 

Furthermore, in Chapter 3, we perform scenario runs to analyse the water-

limited production of maize and wheat, and their water requirements. We 

include an assessment of the change in frequency of extreme yield loss 

events of wheat, and a study of the water use efficiency (WUE). We show that 

LPJ-C is able to reproduce the observed relative increase of WUE under 

water-limited conditions and a CO2 fertilization effect. The improved WUE of 

wheat leads to a relatively smaller transpiration per unit of biomass, so that 

water provided by precipitation will partially satisfy the transpiration demand. 

On the other hand, wheat will suffer from an increase of yield variability and a 

higher frequency of extreme crop failures. Maize will suffer from strong losses, 

unless largely improved irrigation will satisfy the highly increased water 

demand. Moreover, comparing our reference period (1961-1990) to the 

climate change period (2071-2100), the potential production of maize for the 

reference period could be obtained at the end of the century saving a large 

part of the water demand. Even though this result occurs in the “best scenario 

combination”, this water requirement is likely to be highly unsustainable, so 

that large potential losses will likely occur. In addition to this, we confirm that 

the agriculture in the Mediterranean Basin will be a very vulnerable sector due 

to large water deficit and frequent localized extreme loss events. 
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As the last part of our assessment, in Chapter 4, we describe and discuss 

the coupling of LPJ-C with the land-use model KLUM. In this work, we link a 

profit maximization procedure for land allocation to a process-based 

description of crop production and soil carbon dynamics. In this way, we 

provide for the first time a modelling framework to connect economic decision, 

biomass production, and carbon soil pools within the context of a changing 

climate in Europe. The coupled system showed that increases in soil carbon 

have to be expected following the northward shift of crops and their area 

share changes, but temperature will play a major role in the soil carbon 

dynamics. Important changes have to be expected for “warm” cereals as rice 

and maize. Rice will be increasingly cultivated in Central Europe and maize 

will potentially cover Southern Scandinavia. 

 

5.2 Outlook 
The complex nature of the agroenvironmental production system in Europe 

is the result of the interaction of various natural, human and economic 

compartments; the predicted impact of climate change is consequently still 

subject to considerable uncertainties. Agriculture has usually shown a high 

adaptive capacity to changes in external forcings, and as a result, the actual 

impacts of the changing climate will depend on the adaptation and mitigation 

strategies adopted within the coming years and decades. 

The inclusion of agronomic aspects of crop production is, therefore, an 

important step to improve this modelling framework. Even though still poorly 

understood, nitrogen cycling dynamics and fertilization effect are an aspect of 

primary importance in agroenvironment. As a next step, hence, it is 

recommended to include nitrogen in the present context of biosphere 

modelling. The inclusion of nitrogen fertilization could improve not only the 

representation of agriculture production, but also the decisions on land use 

due to relative costs (for fertilizers) and benefits (from yields). Yet, in the 

present version of the model, the representation photosynthesis is based on a 

“strong optimality hypothesis”; this hypothesis implicitly considers nitrogen 

availability as a non-limiting factor by setting photosynthetic capacity to its 

nitrogen-related optimum as part of LPJ. Even though this hypothesis might 

be valid for global scale simulation, it is often discussed for smaller scales. 
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The development of a nitrogen cycling scheme should, therefore, be a high 

priority, to improve the general representation of the terrestrial vegetation from 

the basic photosynthetic process.  

Moreover, the observed acclimation of photosynthesis rates to increased 

CO2 concentration at the leaf level may lead to a smaller degree of CO2 

fertilization, as it is the case in LPJ. However, it remains unknown whether the 

short-term responses of plants to atmospheric CO2 increase will be the same 

as responses over long timescales under either natural selection or continuing 

breeding techniques for crops. Both can be expected to make maximum use 

of the advantages of higher CO2 levels. Finally, the exact degree to which soil 

and plant respiration rates respond to warming over long timescales still 

remains a topic of intensive research. 

We assume implicitly in the potential production that improvements in 

technology and cultivars occur constantly to maintain the productivity as near 

as possible to the potential level. This assumption reflects the idea that 

competition between seed producers may, over the long-term, result by itself 

in near-optimal adaptation to the given climatic environment. In this context, 

we exclude regional differences in cultivars, so that only one parameterization 

is used to represent each crop over the whole European continent. This 

simplified modelling strategy could be improved by the inclusion of several 

cultivar parameterisations per crop. This issue is often discussed as a point of 

controversy when it comes to the representation of crops within DGVMs. If a 

parameterisation set should be assigned to each cultivar, the input data to be 

provided increases. On the other hand, the limited amount of input represents 

a valuable advantage in large-scale simulation and should be preserved. We 

provide here a basic modelling framework, which could be expanded and 

extended in a modular way. At the present time, however, it appears wise to 

include only a single general parameterisation per crop. 

Since LPJ is a well-established DGVM that is widely used in the global 

research community, this work presents an extension of an important tool in 

global climate change and carbon cycle assessments to agroecosystem, 

describing potential and water-limited crop production and coupling to land-

use allocation on the basis of economic decision-making. This new system is 

used to assess several aspects of the agroecosystem in Europe. As such, the 



Chapter 5 - Conclusions 

 125

modelling framework presented is a promising new baseline on which it is 

possible to build a modular tool to quantify the impacts of climate change in 

large-scale assessments within earth system modelling frameworks. 
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Appendix I 

Appendix I - LPJ-C model description 

Here, we describe only the new crop compartment of the LPJ-C, for the 

general LPJ-GUESS structure please refer to the cited literature (Smith et al., 

2001; Sitch et al., 2003). For detailed explanations of the mathematical 

equations driving the crop development refer to the cited literature of 

WOFOST (Van Diepen et al. 1989,Van Ittersum et al. 2003).  

 

Emergence  
In the model, the plants immediately emerge as soon as the conditions are 

satisfied. Thus, no delay between sowing and emergence is simulated. 

However, the sowing date can be fixed by the user or calculated with a simple 

procedure: two conditions have to be satisfied to start the growth, the first 

concerning temperature and the second soil moisture. To satisfy the soil 

moisture condition, the following FAO general relation has to be verified for 

ten subsequent days: 

PETP
<=

2
 

ETP: Potential evapotranspiration [mm] 

P: Precipitation [mm] 

The temperature condition is represented by a specific mean temperature 

threshold (t_eme). Crop plants emerge only when the mean temperature of 

the last ten days is above this threshold. Since wheat is a winter cereal, its 

growth is always fixed on the first day of the year. If the model simulates no 

water-limited growth, only the temperature requirement has to be satisfied.  

 

Phenology  
The crop passes through successive phenological development stages that 

are described as two phases, the pre-anthesis (vegetative) and the post-
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anthesis (grain filling) stage. The length of each stage depends on the 

development rate that in turn is controlled by temperature. The development 

rate is expressed on a numerical scale that ranges from 0 to 2, with 0 being 

emergence, 1 anthesis and 2 maturity. Development rate is then the ratio of 

an effective daily temperature and temperature sum needed to complete the 

stage, this assumes proportionality between temperature and development 

rate. The effective daily temperature is used instead of the normal air 

temperature because the plant grows differently when the temperature is 

within certain ranges. The effective daily temperature is specified in a vector 

(dtsmtb) using average air temperature as the independent variable. 

Development rate can be obtained by:  

i

eff

Tsum
tT

tDr
)(

)( =  

Dr(t): Development rate at time step t [d-1]  

Teff(t): Effective temperature [°C]  

Tsumi: Temperature sum required to complete stage i [°C d]  

The effective temperature, Teff(t) and the temperature sum required to 

complete stage i, Tsumi are crop dependent and must be specified.  

Development stage at time step t is the integral of development rate over 

time:  

ttDrtDstDs ∆+−= *)()1()(  

Ds(t): Development stage at time step t  

Dr(t): Development rate at time step t [d-1]  

∆t: Time step [d]  

 

Crop biomass production  
APAR  

LPJ-C calculates the absorbed photosynthetic active radiation (APAR) in 

order to compute NPP at a daily time step. Note that in the APAR calculation 

the αA parameter is set as 0.90 for crops instead of 0.5 as for the standard 

model version. This value was changed to take into account a lower light 

canopy dispersion compared to natural vegetation (C. Prentice personal 

communication). The APAR depends on the foliar projective cover (FPC) that 
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represents the proportion of ground area covered by leaves. FPC is calculated 

using the Lambert-Beer extinction equation using a specific crop canopy 

extinction coefficient: 

)*exp(1 LAIKcropFPC −−=  

APARFPCAPAR α**=  
FPC: foliar projective cover 

Kcrop: crop canopy extinction coefficient 

LAI: leaf area index 

PAR: photosynthetic active radiation 

αA: scaling factor for PAR absorption, set for crop at 0.90 

APAR: absorbed PAR 

 

NPP  

Comparing to the standard LPJ-GUESS in the photosynthesis/assimilation, 

only respiration is evaluated in a slightly different way for crops. In the model, 

the NPP is calculated as the difference between the assimilated carbon and 

the total respiration costs. The assimilation depends on APAR, and other 

environmental factors. The sum of the maintenance and growth respiration is 

the total respiration cost: 

)( GRespMRespAssimNPP +−=  

NPP: Net primary productivity [kgC m-2]  

Assim: Assimilation [kgC m-2]  

MResp: Maintenance respiration [kgC m-2]  

GResp: Growth respiration [kgC m-2]  

 

Maintenance respiration  

Maintenance metabolic costs may be estimated based on the quantities of 

biomass components and on crop metabolic activity. Based on this, typical 

values for the maintenance coefficients for various plant organs are used to 

calculate the crop maintenance requirements, which are considered 

proportional to the dry weights of the plant organs to be maintained:  

∑= )*(* iiair CmassmrgtempMResp   
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Mresp: Maintenance respiration rate at reference temperature of 25 °C 

[kgC d-1 m-2]  

mri: Maintenance coefficient of pool i [kgC kgC-1 d-1]  

Cmassi: Carbon biomass in pool i [kgC m-2]  

gtempair: respiration air temperature response 

The maintenance coefficient of pool i, mr (mrr, mrs, mro in the code), is 

crop dependent. Maintenance respiration in leaf pool is not included in the 

crop scheme because it is already evaluated directly at the photosynthesis 

level. The gtempair is the response of respiration to air temperature 

implemented in the standard LPJ. This is an empirical relationship takes into 

account of temperature acclimation (Lloyd and Taylor, 1994): 

)
02.46

1
02.56

1(*56.308exp(
+

−=
T

gtempair  

This relationship is a modified Arrhenius equation, designed to evaluate the 

soil respiration process, but in the LPJ context it is used to evaluate also the 

tissue respiration response depending on the C/N ratio.  

 

Growth respiration  

The primary assimilates in excess of the maintenance costs, are converted 

into structural plant material. In the conversion process of glucose molecules, 

CO2 and H2O are released and this process has a specific efficiency. Each 

structural compound is formed along a distinct, non crop-specific pathway. 

The assimilates required to produce a unit weight of a certain plant organ can 

be calculated. Therefore one conversion coefficient has to be specified for 

each pool of the plant and the amount of assimilated carbon used in this 

conversion depends also on specific carbon amount allocated to pools.  

))1(*(

1*
∑ +−

=

r

r
r

i

i

cv
ff

cv
f

NPPNPPcorr  

NPPcorr: Net primary productivity having into account the conversion costs 

[kgC d-1 m-2]  

fi: Allocation coefficient of the pool i, with r referred to root pool 

cvi: Conversion efficiency factor of the pool i, with r referred to root pool  
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The conversion efficiency factors, cvi (cvf, cvl, cvr, cvs in the code) and the 

allocation coefficients fi (fstb, frtb, fotb, fltb), have to be specified for each 

crop. In this case the growth respiration is also taken into account for the leaf 

pool because it concerns the conversion from sugars to tissues biomass. We 

consider growth respiration as the assimilated carbon used for the biomass 

increase and the NPPcorr as the net carbon allocated in the pools: 

NPPcorrNPPspG −=Re   

 

Carbon allocation  

The distribution over the carbon pools in the plant is strictly related to crop 

development stage. Once the NPP is completely defined, the allocation can 

be performed and the carbon is partitioned into roots and the above ground 

pools as stems, leaves and storage organs using the already mentioned 

allocation coefficients. During the vegetative phase (DVS<1, pre-anthesis) no 

carbon is allocated to the storage organs, it is mainly directed to roots and 

leaves. After the anthesis, mainly storage organs receive a large increase in 

biomass. The biomass increase is defined:  

rrootincr fNPPcorrCmass *, =  

iriincr ffNPPcorrCmass *)1(*, −=  

Cmassincr,root: carbon mass increase in roots [kgC m-2]  

Cmassincr,i: carbon mass increase in the above ground pool i  [kgC m-2] 

The total carbon biomass (Cmass) is the integral over time of the carbon 

biomass increments.  

 

Leaf Area index  

The carbon mass is stored in the leaf pool among age classes. The total 

LAI is therefore expressed as the sum of LAI of all living classes. Classes 

older then the leaf longevity (leaflon, expressed as the fraction of the year) are 

dropped down and goes to the soil litter carbon pool.  

∑= SLACmassLAI kleaf *,  

SLA: pecific Leaf Area [m2 kgC-1]  

Cmassleaf,k: Carbon biomass of the leaf pool of age k [m2 kgC-1] 
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Crop leaf drop factor  

Mortality in the leaf pool is considered as the sum of senescence and 

mutual shading expressed as a reduction coefficients:  

leafageshcoeff CmassMortMortMort *)( +=  

Mortcoeff : mortality coefficitent 

Mortsh: mutual shading mortality rate  

Mortage: ageing mortality rate  

Cmassleaf: total carbon biomass in the leaf pool [kgC m-2] 

When the LAI exceeds a critic value a drop of leaves is imposed on the 

crop canopy:  

Kcrop
LAIcrit

2.3
=  

crit

crit
sh LAI

LAILAI
Mort

−
= *03.0  

Kcrop: extinction coefficient (Lambert-Beer) of the crop canopy 

LAIcrit: critical LAI   

When a leaf age class overcome the leaf longevity, it is dropped down and 

a fractional reduction is calculated  

leaf

kleaf
age Cmass

Cmass
Mort ,=   

All the dead matter is moved to the soil pools as the LPJ-GUESS standard 

prescribes to close the carbon cycle. After the crop reaches the maturity 

(DVS=2) the whole canopy dies and all the biomass is transferred to the soil 

pools. In case the NPP<=0 the crop dies immediately even without reaching 

maturity.  
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Table 1 Crop parameters. 

Variable name Description Maize Wheat 

pathway Photosinthesis path C4 C3 

leaflon Leaf longevity 0.5 0.80 

Pstemp_min Min photosynthesis temperature [°C] 6.0 0.0 
pstemp_low Low photosynthesis temperature [°C] 8.0 3.0 
pstemp_high High photosynthesis temperature [°C] 30.0 40.0 
pstemp_max Max photosynthesis temperature [°C] 40.0 50.0 
intc Precipitation interception coefficient 0.01 0.01 
dtsmtb Effective daily temperature table [°C, °C] See Table 2 See Table 2 
tsum1 Required temp sum stage 1 [°C d] 1718.0 1004.0 
tsum2 Required temp sum stage 2 [°C d] 1135.0 954.0 
fltb Allocation fract. leaves as function of DVS table See Table 3 See Table 4 
fstb Allocation fract. stems as function of DVS table  See Table 3 See Table 4 
fotb Allocation fract. storage organs as function of DVS table See Table 3 See Table 4 
frtb Allocation fract. Roots as function of DVS table  See Table 3 See Table 4 
rmo Maintenance resp. rate storage organs [kgCH2O kg-1 d-1] 0.01 0.01 
rmr Maintenance resp. rate roots [kgCH2O kg-1 d-1] 0.01 0.01 
rms Maintenance resp. rate stems [kgCH2O kg-1 d-1] 0.015 0.015 
cvl Conversion efficiency od leaves 0.68 0.68 
cvs Conversion efficiency od stems 0.66 0.66 
cvr Conversion efficiency od roots 0.69 0.69 
cvo Conversion efficiency od storage organs 0.70 0.70 
slatb Specific leaf area [ha kg-1] 0.0070 0.0032 
LAI_eme LAI at the emergence 0.038 0.099 
T_eme Mean 10 days temp required fo emergence [°C] 13.7 not used 
Kcrop Extinction coefficient 0.81 0.81 

 
 
 
 
Table 2 Effective daily temperature table, dtsmtb. Effective daily temperature (tdsm in the model, Teff in the 
text) [°C] depends on air temperature [°C]. As an example, tdsm is 30.00 when temperature is 25.00 for maize. 

Values in between are interpolated, so when temperature is 12.50, tdsm is 18.00 

Maize Wheat 
°C °C °C °C 

0.00 0.00 0.00 0.00 
6.00 0.00 30.00 30.00 
30.00 25.00   
35.00 25.00   
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Table 3 Maize allocation factors. Variables are expressed as arrays with values depending on DVS, values in 
between are linearly interpolated (refer to Table 2). 

Fltb fstb fotb Frtb 
DVS Value DVS Value DVS Value DVS Value 
0.0 0.55 0.00 0.45 0.00 0.00 0.00 0.40 
0.71 0.40 0.71 0.60 0.71 0.00 0.50 0.23 
0.99 0.15 0.99 0.85 0.99 0.00 0.60 0.18 
1.00 0.00 1.00 0.00 1.00 1.00 0.80 0.10 
2.00 0.00 2.00 0.00 2.00 0.00 1.00 0.00 
      2.00 0.00 
 
Table 4 Wheat allocation factors. Variables are expressed as arrays with values depending on DVS, values in 
between are linearly interpolated (refer to Table 2). 

Fltb fstb fotb Frtb 
DVS Value DVS Value DVS Value DVS Value 
0.10 0.65 0.10 0.35 0.00 0.00 0.10 0.65 
0.25 0.70 0.25 0.30 1.50 1.00 0.20 0.60 
0.70 0.60 0.70 0.40 2.00 0.00 0.40 0.30 
0.99 0.00 0.99 0.00   0.70 0.07 
2.00 0.00 2.00 0.00   1.20 0.00 
      2.00 0.00 
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Appendix II 

Appendix II - KLUM’s interior 

Model description 
The allocation algorithm of KLUM is based on the assumption that the most 

profitable allocation is chosen. Total achievable profit per hectare π of one 

spatial unit is assumed to be: 

The first part of the equation 1 describes the expected profit, where kp  is 

the price per product unit, kα  is the productivity per area and kl denotes the 

share of total land L allocated to crop }1{ nk K∈  of n crops. kc  is the cost 

parameter for crop k. Total costs are assumed to increase in land according 

to: 

where LlL kk =  denotes the total area allocated to crop k. 

The second term of the equation 1 represents the risk aversion of the 

representative landowner. Risk perception is quantified by the variance of the 

expected profit, weighted by a risk aversion factor 10 << γ . 
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Maximizing π under the constraint that all land shares need to add up to a 

total not greater than one: ∑≤
k

kl1 , an explicit expression for each land-share 

il allocated to crop }1{ ni K∈  can be derived: 

where for simplicity  kkk p αβ =  displaces the profitability of crop k, 

][2
kβσ Var= displaces the respective variance and Lcc kk

~= . The temporal 

variability of total costs is assumed to be negligible compared to the variability 

of prices and productivities. 

 

Adjustment of the cost parameters in KLUM 
The assumption of decreasing returns to scale (equation 2) underlying the 

cost structure of KLUM has consequences for the interpretation and 

transferability of the calibrated cost parameters. We interpret the increasing 

cost with increasing area share such that the most suitable land is used first 

and with further use more and more unsuitable land is applied. This implies 

that the calibrated cost parameters are depending on the total amount of 

agricultural area assumed in the calibration and on its relative distribution of 

quality concerning crop productivity. Thus, the cost parameters calibrated for 

the sub-national regions cannot simply be adopted in the corresponding 

gridcell or in other regions. Instead these values need to be adjusted 

according to the differences in total agricultural area. Assuming that the 

relative quality distribution does not change, a doubling of the total area would 

imply a bisection of the cost, since the double amount of suitable area would 

be available. So, the cost parameter c of a sub-national region to its adjusted 

level c~  by scaling it according to: 
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where L~ and L  represent the total agricultural area in the adjusted plot and 

the original region, respectively. For the simple downscaling of the calibrated 

cost parameters from NUTS2-regional to gridcell level, the fraction of L~ and L 

is equal to the total number of gridcells in this region. This procedure assures 

that under identical conditions, the downscaled model will produce the same 

results at the large-scale version. 
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