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ABSTRACT

The implications are investigated of representing ocean gyre circulations by a diffusion term in the
Stommel and Rooth box models of the thermohaline circulation (THC) in one and two hemispheres,
respectively. The approach includes mostly analytical solution and study of the bifurcation structure, but
also numerical integration and feedback analysis. Sufficient diffusion (gyre strength) eliminates multiple
equilibria from either model, highlighting the need for accurate gyre circulation strength in general circu-
lation models (GCMs) when considering the potential for abrupt climate change associated with THC
shutdown.

With diffusion, steady-state flow strength in the Rooth model depends on freshwater forcing (i.e., implied
atmospheric water vapor transport) in both hemispheres, not only on that in the upwelling hemisphere, as
in the nondiffusive case. With asymmetric freshwater forcing, two solutions (strong stable and weak un-
stable) are found with sinking in the hemisphere with stronger forcing and one solution with sinking in the
other hemisphere. Under increased freshwater forcing the two solutions in the hemisphere with stronger
forcing meet in a saddle-node bifurcation (if diffusion is sufficiently strong to prevent a subcritical Hopf
bifurcation first), followed by flow reversal. Thus, the bifurcation structure with respect to freshwater
forcing of the diffusive Rooth model of two-hemisphere THC is similar to that of the Stommel model of
single-hemisphere THC, albeit with a very different dynamical interpretation. Gyre circulations stabilize
high-latitude sinking in the Stommel model. In the Rooth model, gyre circulations only stabilize high-
latitude sinking if the freshwater forcing is weaker in the sinking hemisphere than in the upwelling hemi-
sphere, by an amount that increases with diffusion. The values of diffusion and freshwater forcing at which
qualitative change in behavior occurs correspond to the range of the values used in and obtained with
GCMs, suggesting that this analysis can provide a conceptual foundation for analyzing the stability of the
interhemispheric THC, and also for the potential of the Atlantic THC to undergo abrupt change.

1. Introduction

Two international reports (Cubasch et al. 2001; Na-
tional Research Council 2002) and several papers (e.g.,
Stocker 2000; Rahmstorf 2002; Clark et al. 2002; Alley
et al. 2003) have recently reviewed the possibility that

abrupt climate change might be caused by a collapse of
the Atlantic thermohaline circulation (THC). In par-
ticular, the possibility has been investigated that an in-
crease in atmospheric greenhouse gas concentrations
might create a THC collapse (e.g., Manabe and
Stouffer 1993; Stocker and Schmittner 1997). This at-
tention underscores the importance of understanding
the processes that might lead to abrupt change in THC
and climate so that a rational assessment is possible of
the probability of such an event.

National Research Council (2002, p. 14) and Alley
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et al. (2003) suggested two complementary definitions
of “abrupt climate change.” In addition to an impact-
oriented definition that compares magnitude, extent,
and speed of climate change with the ability of societies
to cope with change, it was stated that “technically, an
abrupt climate change occurs when the climate system
is forced to cross some threshold, triggering a transition
to a new state at a rate determined by the climate sys-
tem itself and faster than the cause.”

This paper is motivated by the need for a conceptual
discussion of a fundamental point: Prior to trying to
assess how far climate is from a threshold in, say, at-
mospheric CO2 concentration and THC stability, we
must ask ourselves whether such a threshold exists. In-
deed, the model results shown in the Third Assessment
Report by the Intergovernmental Panel on Climate
Change (IPCC) mostly show a projected THC weaken-
ing (Cubasch et al. 2001), but the changes occur on the
time scale of the forcing and, therefore, are not classi-
fied as “abrupt.” However, the uncertainties of such
estimates are large (e.g., Knutti et al. 2003). Here, we
use two classical box models of the THC, in one hemi-
sphere (Stommel 1961; Marotzke 1990, 2000) and in
two hemispheres (Rooth 1982; Rahmstorf 1996; Scott et
al. 1999), to explore the possibility of such a threshold
existing in reality and the implications of this for re-
versibility and irreversibility of climate change.

In contrast to most previous papers, the work pre-
sented here contains a representation of wind-driven
ocean gyres, which enter the model through a diffusive
parameterization and whose influence is profound. This
aspect has not been analyzed much in previous box
model papers, although the stabilizing influence of
wind-induced salinity transport on the THC has long
been known. Marotzke (1990) and Oka et al. (2001)
emphasized the Ekman salinity transport if a halocline
was present at high latitudes, while Winton and Sa-
rachik (1993) and Schiller et al. (1997) concentrated on
the enhanced subpolar gyre salinity transport in a state
of collapsed THC. Furthermore, diffusion in GCMs is
known to influence the potential for multiple equilibria
of the Atlantic THC (Manabe and Stouffer 1999;
Schmittner and Weaver 2001; Prange et al. 2003).

Nevertheless, gyre salt transport has mostly either
been omitted from box model studies or accounted for
by defining atmospheric water vapor transport to be
only the component that is not redistributed by wind-
driven flow (Rahmstorf 1996; Titz et al. 2002b), thus
preventing feedback between THC and gyre transport.
One exception is Thual and McWilliams (1992), who
included horizontal diffusion in a Stommel and a three-
box model and vertical and horizontal diffusion in a 3 �
2 box model. However, altered scaling, which combined

the diffusive and advective model fluxes, prevented an
explicit exploration of the implications of diffusion. No-
table recent developments are Shaffer and Olsen (2001)
who generalized the coupled box model of Marotzke
and Stone (1995) to include horizontal diffusion, as well
as a vertical split in the oceanic boxes and vertical dif-
fusion. Shaffer and Olsen (2001) found that high-
latitude sinking was stabilized in their model by increas-
ing horizontal or vertical mixing. Pasquero and Tziper-
man (2004) coupled a Stommel-type box model with an
explicit horizontally oriented torus, mimicking gyre cir-
culation, and concentrated on the variability caused by
the interaction of wind- and buoyancy-driven flow.

Here, we use a much simpler rendition of a box
model with a representation of gyre transports than in
either Shaffer and Olsen (2001) or Pasquero and Tzi-
perman (2004) so that we can explicitly present exact
analytical solutions. The implications for abrupt climate
change of incorporating gyre transports in the Stommel
model have been broadly summarized before in Na-
tional Research Council (2002) and Alley et al. (2003).
However, no technical or mathematical detail was
given in either reference. The larger part of the present
paper is then taken up by investigating the role of gyre
transports in the Rooth model. To our knowledge, in-
terhemispheric THC dynamics have never been ana-
lyzed in this way. The layout of this paper is as follows.
Section 2 deals with the Stommel model and section 3
deals with the Rooth model. Combined discussion and
conclusions for both models are presented in section 4.

2. Gyres in the Stommel model

a. Model formulation and steady-state solutions

We use a modification to the original Stommel (1961)
model, in the simplified variant amenable to analytical
solution (Marotzke 1990, 2000). The geometry of the
model is shown in Fig. 1. The North Atlantic high and
low latitudes are represented by two well-mixed boxes,
1 and 2. Freshwater forcing is defined as the influence
on salinity of the cycle comprising net evaporation at
low latitudes, atmospheric water vapor transport to
high latitudes, and net precipitation at high latitudes.
We neglect the mass flux associated with net precipita-
tion at high latitudes, P, and only consider the induced
salinity changes by using a virtual surface salinity flux �
(Bryan 1986):

� � �S0P�H, �1�

where H is depth and S0 a reference salinity (e.g., Ma-
rotzke and Willebrand 1991). Model constants are
those of Marotzke (1996); see Table 1. We assume that
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the temperatures, T1 and T2, are completely prescribed.
This is equivalent to assuming a restoring condition
(Haney 1971) for heat flux with infinitely strong cou-
pling and thus constitutes an extreme but physically
interpretable limiting case of a coupled box model (Ma-
rotzke 1996). We have investigated the validity of as-
suming box temperatures to be fixed external param-
eters through numerical integration of a model variant
with finite restoring strength and have not found any
qualitative difference. For simplicity, and to limit the
paper’s length, we do not include these numerical re-
sults here.

The boxes are connected by pipes near the surface
and the bottom; the pipes are assumed to have vanish-
ing volume but are conduits for the flow. The thermo-
haline circulation strength is denoted by q (strictly
speaking, q represents THC/volume; q has units of per
second). We use the sign convention that q � 0 denotes
poleward surface flow, implying equatorward bottom
flow and, conceptually, sinking at high latitudes. This is
the picture that we are used to when thinking about the
North Atlantic THC. Conversely, q � 0 means equa-
torward surface flow and poleward bottom flow. We
assume a very simple flow law for q, namely, that it

depends linearly on the density difference between high
and low latitudes:

q � k��1 � �2���0 � k	��T2 � T1� � ��S2 � S1�
, �2�

where �0 is a reference density and k is a hydraulic
constant that contains all dynamics, that is, the connec-
tion between density and the flow field. Here � and 

are respectively the constant thermal and haline expan-
sion coefficients, given in Table 1; for simplicity, we
employ a linear equation of state. Expressing THC dy-
namics through the intrahemispheric density gradient
as in (2) is problematical, especially when thinking of
the cross-hemispheric Atlantic THC. Welander (1986)
represented the Atlantic THC by two back-to-back
Stommel models, but it may be more appropriate to use
the density difference between high northern and high
southern latitudes as the driver determining flow
strength, as first done in a box model by Rooth (1982).
Rahmstorf (1996) and Marotzke (2000) have discussed
this juxtaposition of Stommel’s and Rooth’s models,
and the general circulation model results of Klinger and
Marotzke (1999) gave support to viewing Rooth’s
model as dynamically superior. We will nevertheless
proceed with the Stommel model here because it allows
us to make a number of fundamental points in the sim-
plest possible way. Section 3 will analyze the effect of
gyre transports in the Rooth model.

Salt transports by the gyre circulation are parameter-
ized by diffusive terms, where kd (s�1) is a diffusion
coefficient analogous to the hydraulic constant. The salt
conservation equations of the system are thus

Ṡ1 � �� � |q |�S2 � S1� � kd�S2 � S1�, �3�

Ṡ2 � � � |q |�S2 � S1� � kd�S2 � S1�. �4�

With the abbreviations for meridional differences of
temperature and salinity,

T � T2 � T1; S � S2 � S1, �5�

taking the time derivative of (2) using (3)–(5) gives

q̇ � �2k�� � 2� |q | � kd��q � k�T �. �6�

When seeking analytical solutions for steady states,
the modulus in (6) requires us to consider separately
two cases. Equilibrium quantities are marked by an
overbar and are readily verified as

Temperature dominance:

q � 0, �T � �S, �7�

qA�B �
1
2 ��k�T � kd� ± ��k�T � kd�2 � 4k���, �8�

TABLE 1. Parameters of the Stommel model.

Parameter Symbol Value

Thermal expansion coefficient � 1.5 � 10�4 K�1

Haline expansion coefficient 
 8.0 � 10�4 psu�1

Hydraulic constant k 2 � 10�8 s�1

Depth H 5000 m
Reference salinity So 35

FIG. 1. The Stommel model with diffusion. Filled and unfilled
arrows are the advective and diffusive flow components, respec-
tively. Advective arrows reverse under flow reversal but diffusive
arrows are unchanged.
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where A and B denote the solutions. For a positive
radicand, defined by

k��

�k�T � kd�2 �
1
4
, �9�

and provided that condition (7), temperature domi-
nance, is not violated, the model has two equilibrium
solutions for poleward near-surface flow, as has the
original Stommel model. The branch with weaker flow
is unstable to infinitesimal perturbations, again as in the
nondiffusive model. A systematic investigation of the
existence of the various solutions is presented below.

Salinity dominance:

q � 0, �T � �S, �10�

qC �
1
2 ��k�T � kd� � ��k�T � kd�2 � 4k���. �11�

Notice that we must discard the positive root in (11);
the radicand is greater than k�T � kd, so the positive
root would imply q � 0, violating the condition (10).

b. Conditions for existence of equilibria
(bifurcation structure)

The solutions (8) and (11) are governed by two di-
mensionless parameters, the salinity flux, E � k
�/
(k�T)2, and the diffusivity, D � kd/(k�T). Nondimen-
sional equilibrium flow strength, Q � q/(k�T) as a
function of E and D, shows under what conditions mul-
tiple equilibria exist (Fig. 2). The characteristic Stom-
mel bifurcation diagram with three flow solutions is
recovered for D � 0 and E � 0.25. The middle solution
B, on the branch that slopes from the lower left to the
upper right, is unstable to infinitesimal perturbations.
Diffusion increases the maximum freshwater forcing,
E1, for which the high-latitude sinking solutions A and
B exist (e.g., from E1 � 0.25 to 0.5625 for D of 0 and 0.5,
respectively). From (9), we find

E1 �
1
4

�1 � D�2, �12�

with the corresponding flow strength:

QA�B�E1� �
1
2

�1 � D�. �13�

The upper limit of freshwater forcing corresponds to
the maximum salinity flux that the advective and diffu-
sive transports can redistribute, preventing the salinity
gradient from reversing the thermally driven flow. For
growing diffusion, the range of validity of the unstable,
weak solution B diminishes. It is readily shown from (8)
that solution B does not exist if D � 1 or E � 1.

A lower limit, E2, on freshwater forcing for the oc-
currence of multiple equilibria is defined by the inter-
section of the weak positive and the negative flow so-
lutions, B and C respectively, at Q � 0. One readily
finds that the condition E � E2 implies

E2 � D. �14�

Solutions B and C are invalid for E � E2 since this
would imply QB � 0 and QC � 0, respectively. Thus,
only the strong positive solution, A, exists for E � E2.
Physically, this limit arises because diffusion reduces
the meridional salinity difference but not the tempera-
ture difference. As the salinity difference brakes the
THC strength in solution A but drives it in solution C,
the former is strengthened by diffusion whereas the
latter is weakened. Both statements are readily verified
by differentiating (8) and (11) with respect to kd.

In summary, multiple equilibria exist for D � 1 and

D � E2 � E � E1 �
1
4

�1 � D�2. �15�

Alternatively, (12) and (14) show that for a fixed E � 1,
multiple equilibria exist for a diffusion (gyre strength)
in the range of

2�E � 1 � D1 � D � D2 � E. �16�

All three solutions merge at a critical diffusivity, Dc,
and a critical freshwater flux, Ec:

Dc � Ec � 1. �17�

FIG. 2. Bifurcation structure of the Stommel model with diffu-
sion. Black: D � 0; red: D � 0.5; blue: D � 1; green: D � 2. Solid
lines: Permissible solutions, dotted lines: full solutions. Solution A
marks the branch with Q � 0 and a negative slope; solution B the
branch with Q � 0 and a positive slope; solution C the branch with
Q � 0. Point E 1 occurs where the Q � 0 branch runs vertically;
point E2 occurs where the solution curves cut through Q � 0. See
text for definitions.
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For D � 1, an increase of E leads to a direct transi-
tion from solution A to C, without the possibility of the
intermediate unstable solution (see Fig. 2). Conversely,
if E � 1, an increase of D leads to a direct transition
from solution C to solution A. The condition (17) de-
fines a codimension-2 bifurcation (Strogatz 1994, p. 70,
“This fancy terminology essentially means that we have
had to tune two parameters, here D and E, to achieve
this type of bifurcation”).

3. Gyres in the Rooth model

a. Model formulation

The version of Rooth’s model (Fig. 3) used here is
based on that of Scott et al. (1999). The boxes are well
mixed and have equal volumes. Boxes 1 and 3 are the
northern and southern high latitudes, respectively; box
2 is the tropical box. Flow between boxes is via insu-
lated current pathways of negligible mass. The advec-
tive flow component sinks in one high-latitude box and
upwells in the other with return surface flow via the
tropical box. Northern sinking and southern upwelling
correspond to q � 0; reversed if q � 0. Temperature
and salinity of box i are Ti and Si. Consistent with sec-
tion 2, constant atmospheric water vapor transports
from low to high latitudes are assumed, represented by
equivalent salinity fluxes �N and �S, while box tem-
peratures are governed by Newtonian relaxation at rate
�. Parameter values are those of Scott et al. (1999); see
Table 2. Overturning strength is a linear function of the
density difference between the two high-latitude boxes
with a linear equation of state:

q �
k

�0
��1 � �3� � k	��T3 � T1� � ��S3 � S1�
. �18�

Symbols are as those in section 2 except for k, which
is a different hydraulic constant because similar

strength flow now is created by a much smaller density
difference. As in section 2, a diffusion term with coef-
ficient kd parameterizes heat and salt transport by oce-
anic subtropical gyres. Temperature and salinity of
each box are governed by

Ṫ1 � ��Tp � T1� � kd�T2 � T1�

� �q�T2 � T1�; q 	 0

|q |�T3 � T1�; q � 0
�19�

Ṫ2 � ��Te � T2� � kd�T1 � T3 � 2T2�

� �q�T3 � T2�; q 	 0

|q |�T1 � T2�; q � 0
�20�

Ṫ3 � ��Tp � T3� � kd�T2 � T3�

� �q�T1 � T3�; q 	 0

|q |�T2 � T3�; q � 0
�21�

Ṡ1 � ��N � kd�S2 � S1� � �q�S2 � S1�; q 	 0

|q |�S3 � S1�; q � 0

�22�

Ṡ2 � �N � �S � kd�S1 � S3 � 2S2�

� �q�S3 � S2�; q 	 0

|q |�S1 � S2�; q � 0
�23�

Ṡ3 � ��S � kd�S2 � S3� � �q�S1 � S3�; q 	 0

|q |�S2 � S3�; q � 0
.

�24�

b. Numerical solutions

Integration of the Rooth model from the initial con-
ditions (T1, T2, T3) � (1, 10, 0.1), and (S1, S2, S3) �
(35, 35.7, 34.3) is performed under different ratios of

FIG. 3. As in Fig. 1 but for the Rooth model.
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northern to southern freshwater forcing, which is an
additional degree of freedom compared to the Stommel
model. Following Scott et al. (1999), we define cases I,
II, and III as �N � �S (case I), �N � 0.5 �S (case II),
and �N � 1.5 �S (case III). Here �S is fixed at 0.9 �
10�10 psu s�1, corresponding to net precipitation at
high southern latitudes of about 0.5 m yr�1, while �N

takes the values 0.9 � 10�10, 0.45 � 10�10, and 1.35 �
10�10 psu s�1, respectively. An equivalent treatment
could be applied to the Southern Hemisphere flux, but
the effects may instead be implied from symmetry. For
reference, the equilibrium flow strength without diffu-
sion is 1.51 � 10�10 s�1, corresponding to 15 Sv (1Sv �
106 m3 s�1) in a box 5000 km � 4000 km � 5000 m.

Starting from a northern sinking state with zero dif-
fusion, overturning weakens with increasing diffusion
due to redistribution of salt dominating that of heat. In
the Rooth model, the THC fundamentally, and concep-
tually, is thermally driven, as reflected by the high-
latitude sinking (see National Research Council 2002,
p. 103). The THC induces a pole-to-pole temperature
gradient that opposes flow, with northern sinking, T1 �
T3, since warm water is advected from box 2 to 1. For
realistic choices of thermal and haline expansion coef-
ficients, flow strength and direction are therefore
largely “driven” by the pole-to-pole salinity difference
(Scott et al. 1999), in contrast to the Stommel model in

which salinity forcing brakes the thermally driven high-
latitude sinking. As seen from Table 3, diffusion re-
duces T1 � T3 (the opposing temperature gradient),
tending to strengthen northern sinking. The weakened
overturning observed is therefore due to the corre-
sponding decrease of S1 � S3, the driving pole-to-pole
salinity gradient. In case III this decrease causes col-
lapse of northern sinking; for some critical kd between
5.0 � 10�11 and 5.1 � 10�11 s�1, q changes from 6.77 �
10�11 s�1 to �1.54 � 10�10 s�1. Likewise under in-
creased diffusion the southern branch of case II under-
goes a transition to northern sinking for some kd be-
tween 1.7 � 10�11 and 1.8 � 10�11 s�1 (q changes from
�7.19 � 10�11 s�1 to 1.39 � 10�10 s�1).

An interpretation of the magnitude of the critical kd

can be given in terms of either a horizontal gyre
strength or a horizontal diffusivity. As done before for
flow q, using a box volume of V � 1017 m3 allows us to
directly translate the critical kd of case III, kd � 5 �
10�11 s�1 into an equivalent horizontal gyre of 5 Sv,
assuming it operates on the full meridional salinity dif-
ference. If, in contrast, the zonal salinity difference is
only 25% of the meridional difference, the same effect
is caused by a gyre of 20-Sv strength. With a length
scale of 5000 km, the equivalent dimensional critical
diffusivity of case III is around 103 m2 s�1, a standard
value used in numerical ocean models. Variations of kd

on the order of 10�10 s�1 correspond to the ones inves-
tigated systematically in the two-dimensional model of
Schmittner and Weaver (2001), where they were shown
to cause qualitative changes in the solutions.

Yet another interpretation is obtained from calculat-
ing the implied diffusive freshwater transport, FW. Us-
ing again the critical kd of case III gives

FW �
kdV
S

S0
� 0.13 Sv. �25�

TABLE 2. Parameters of the Rooth model.

Constant Symbol Value

High-latitude thermal bath Tp 0°C
Equatorial thermal bath Te 30°C
Newtonian relaxation constant � 12.9 � 10�10 s�1

Hydraulic constant k 1.5 � 10�6 s�1

Depth H 5000 m
Reference salinity So 35 psu

TABLE 3. Steady-state flow characteristics of the Rooth model. Lines in italic are quasi-no-flow states.

kd (s�1) q (s�1) T1 � T3 (°C) S2 � S1 S2 � S3 S1 � S3

Case I 0 1.51 � 10�10 2.52 0.5976 1.1952 0.5976
1 � 10�11 1.48 � 10�10 2.34 0.5961 1.1527 0.5566
1 � 10�10 5.43 � 10�11 0.85 0.5833 0.7886 0.2052
1 � 10�8 4.74 � 10�22 0.00 0.0090 0.0090 0.0000

Case II 0 1.51 � 10�10 2.52 0.2988 0.8964 0.5976
1 � 10�11 1.44 � 10�10 2.38 0.2923 0.8579 0.5656
1 � 10�10 9.62 � 10�11 1.40 0.2294 0.5712 0.3418
1 � 10�8 5.27 � 10�12 0.00 0.0045 0.0090 0.0045

Case III 0 1.51 � 10�10 2.52 0.8964 1.4939 0.5976
1 � 10�11 1.38 � 10�10 2.30 0.9131 1.4601 0.5470
1 � 10�10 �1.24 � 10�10 �1.71 0.8252 0.4019 �0.4234
1 � 10�8 �5.27 � 10�12 0.00 0.0135 0.0090 �0.0045
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By comparison, in the low-resolution, single-hemi-
sphere experiments of Marotzke (1990), a gyre fresh-
water transport of 0.05 Sv and a wind-driven shallow
overturning freshwater transport of equal size were suf-
ficient to reestablish a temporarily collapsed THC.
Thus, the important transitions in box model behavior
happen in a realistic parameter range, implying that any
particular GCM realization might be on either side of a
critical kd.

Under symmetric freshwater forcing (case I), strong
diffusion (kd 	 1 � 10�8 s�1) eliminates the pole-to-
pole density gradient, thus overturning tends to zero.
With asymmetric freshwater forcing, however, a pole-
to-pole salinity (but not temperature) gradient is main-
tained; note that the ratio (S2 � S1):(S2 � S3) is the
same as �N: �S at equilibrium (see italic lines in Table
3). The resulting flow solution is termed a quasi-no-
flow state; hence, flow would be zero were it not for the
asymmetric forcing. Such quasi-no-flow states are dy-
namically different to those of Scott et al. (1999) and
the no-flow state of Rooth (1982). Without diffusion
the no-flow solution is a transient symmetric state, un-
stable to small perturbations (Rooth 1982), whereas the
quasi-no-flow states induced by diffusion are stable to
salinity perturbations up to an anomaly of �1.0 added
to the sinking box. The direction of the quasi-no-flow
overturning for cases II and III are also reversed com-
pared to those with no diffusion; case III has positive
overturning and case II has negative overturning in Fig.
5 of Scott et al. (1999).

We now numerically investigate numerically the sta-
bility of the northern sinking solution to instantaneous
reductions in box-1 salinity. A critical salinity pertur-
bation, �Sc, is defined as the minimum �S that, if re-
moved from the sinking box and added to the tropical
box, causes permanent flow reversal. Critical perturba-

tion magnitude decreases with diffusion for cases I and
III (Fig. 4), so diffusion destabilizes northern sinking in
these cases. The increased magnitude of �Sc for case II
with kd � 2 � 10�11 s�1 relative to kd � 0 indicates
weak stabilization; however, there is destabilization be-
tween kd � 0 and 1 � 10�11 s�1. Critical perturbations
are only given at low diffusion for case II since the
negative overturning solution is not found for kd � 2 �
10�11 s�1 (refer to Fig. 5). That diffusion destabilizes
appears surprising. However, Schmittner and Weaver
(2001) also found destabilization of northern sinking
under increasing diffusion and excess precipitation in
the North Atlantic; an explanation is now provided
through the analysis of a simplified setup, in which the
temperatures in the Rooth model are fixed.

c. Analytical steady-state solutions

In steady state with q � 0, it follows from (22) and
(23) that

S2 � S1 �
�N

�q � kd�
, �26�

S2 � S3 �
q��N � �S� � kd�S

�q � kd�2 , �27�

S1 � S3 �
kd��S � �N� � q�S

�q � kd�2 , �28�

and, with the flow law (18), that

q � k���T3 � T1� �
q��S � kd���N � �S�

�q � kd�2 �. �29�

FIG. 4. Critical salinity perturbations of the Rooth model with
diffusion. Solid circles: case I; open triangles: case II; gray squares:
case III. FIG. 5. Numerical solutions to Rooth’s model with diffusion

under variable temperatures. The lower branch solutions have
been found with initial conditions implying initial southern sink-
ing flow. Dashed vertical lines mark transitions to the opposite
solution branch as kd crosses a critical value.
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By setting kd � 0 we can solve for q and recover the
analytical solution of the nondiffusive Rooth model as
derived by Rahmstorf (1996):

q �
k��T3 � T1�

2
�

1
2
�k2�2�T3 � T1�2 � 4k��S.

�30�

If q � 0, the steady-state solution including diffusion
is readily shown to satisfy

q � k���T3 � T1� �
q��N � kd���N � �S�

�kd � q�2 �. �31�

With fixed symmetric temperatures, T1 � T3, expan-
sion of (29) and (31) yields the cubic equation

q3 ± 2kdq2 � q�kd
2 � k��S�N� � kdk���N � �S� � 0,

�32�

where the upper sign applies for q � 0 and the lower
sign for q � 0, and �S/N denotes �S for q � 0 and �N

for q � 0. With diffusion and asymmetric freshwater
forcing, (32) shows that steady-state flow strength is
influenced by the freshwater flux in both the sinking
and upwelling hemispheres. This stands in marked con-
trast to the nondiffusive steady state, (30), which shows
dependence on freshwater flux in the upwelling hemi-
sphere only; generally, the influence of the sinking
hemisphere forcing increases with diffusion.

Figure 6 shows solutions to (32) as a function of dif-
fusion under the three freshwater-forcing scenarios of
section 3b (�S � 0.9 � 10�10 psu s�1; case I: �N � �S,
case II: �N � 0.5 �S, case III: �N � 1.5 �S). Numerical
integration under fixed temperatures is used to deter-
mine flow stability. Note that the limit, kd → 0, is sin-
gular as no symmetric equilibrium solution, q � 0, ex-
ists, regardless of freshwater forcing (Rooth 1982).

As shown in the appendix, for case I (�N � �S),
there are positive, negative, and zero solutions to (32) if

kd � �k��. �33�

For the parameter choices of Table 2, kd � 10�10 s�1

is required, corresponding to a horizontal gyre of less
than 10 Sv working on the full meridional salinity dif-
ference. For stronger diffusion, no valid nonzero solu-
tions to (32) exist, leaving only the zero flow solution.
Intersection of the three solutions occurs at kd �
�k
�. Numerical integration finds the zero flow so-
lution to be unstable for kd � �k
� and stable for
kd � �k
�, consistent with the numerical results of
section 3b.

Under asymmetric forcing, we always find a stable
strong flow solution with sinking in the hemisphere

with weaker freshwater forcing (northern for case II
and southern for case III, Fig. 6). These solutions ap-
proach zero as diffusion tends to infinity, equivalent to
the quasi-no-flow solutions of section 3b. For weak
enough kd we find, in addition, two steady states with
sinking in the hemisphere with stronger freshwater
forcing. Of these two solutions the stronger, stable, so-
lution weakens with diffusion while the weaker, un-
stable, solution strengthens; both converge at a critical
diffusion strength above which neither is found. Quali-
tatively, the fixed temperature analysis is in agreement
with Fig. 5; quasi-no-flow and stable no-flow solutions
at high diffusion, and collapse of northern (southern)
sinking in case III (II) with increased diffusion.

The appendix shows that multiple equilibria exist in
the Rooth model under the complementary conditions:

q � 0:

0 � kdk���N � �S �

�
2

27 ��kd
2 � 3k��S�3�2 � kd

3 � 9kdk��S�, �34�

q � 0:

0 � kdk���S � �N �

�
2

27 ��kd
2 � 3k��N�3�2 � kd

3 � 9kdk��N�. �35�

Additional equilibria, if they exist, exhibit sinking in the
hemisphere with stronger freshwater forcing. Multiple
equilibria are only possible below an upper limit of
freshwater-forcing asymmetry, which is decreased by
diffusion. A saddle-node bifurcation occurs at a critical
�N � �S, where the stable and unstable solutions with

FIG. 6. Analytical flow solutions to the Rooth model as a func-
tion of diffusion. Temperature is symmetric about the equator.
Solid line: case I; dotted line: case II; dashed line: case III.
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sinking in the dominant freshwater-forcing hemisphere
meet. However, as shown in section 3e, a Hopf bifur-
cation may occur before the saddle node but this is not
the case in Fig. 6.

d. Feedback analysis

To understand which processes stabilize or destabi-
lize the steady states depicted in Fig. 6, we apply the
feedback analysis detailed in Marotzke (1996). Tem-
peratures are fixed and symmetric about the equator.
Now,

q � k��S1 � S3�. �36�

Let S1 � S1 � S�1 (likewise for S3) and q � q � q�, to
obtain, by (36)

q̇� � k��Ṡ�1 � Ṡ�3�. �37�

For q � 0, (22) and (24) give, with S�1 � S1, S�3 � S3,
q� � q,

q̇�

k�
� q��2S�1 � S�2 � S�3� � q���2S1 � S2 � S3�

� kd�S�3 � S�1�. �38�

With q� � k
(S�1 � S�3), by salt conservation, S�2 � �S�1
� S�3, and expressing the steady-state salinity differ-
ences in terms of the freshwater forcing, using (26) and
(28) gives

q̇�

k�
� �3qS�1 � q���N�1 � kd��kd � q�� � �S

�kd � q�
�

kd

k��.

�39�

Linearizing the tendency equation (22) for S1 and com-
bining with (39) gives the system

� Ṡ�1

q̇�
� � A�S�1

q�� �40�

A � �A11 A12

A21 A22
� � ��3�q � kd� ��q � kd�

k�
�

�N

�q � kd�
�

�3qk� �k�
�q � kd���N � �S� � kd�N

�q � kd�2 � kd�� . �41�

If q � 0, the equivalent of (40) and (41) follows accord-
ingly.

Element A11 in (41) shows the negative (stabilizing)
mean flow feedback (Marotzke 1996) aided by diffu-
sion, the tendency in S�1 is of opposite sign to the per-
turbation, due to this term. The off-diagonal terms like-
wise stabilize, as is seen from the odd number of nega-
tive couplings within the feedback loop between S�1 and
q� (Kump et al. 1999). The coupling from S�1 to q�, A21,
is negative and that from q� to S�1, A12, is positive. El-
ement A22 (and hence its associated feedback of q� di-
rectly upon itself, called here the q�-q� feedback) in
(41) is of undetermined sign; its contributions are now
analyzed in detail (Fig. 7).

Regardless of freshwater forcing, for nonzero flow
solutions, the two terms in A22 work against each other
(dashed and dotted lines in Fig. 7). The combined feed-
back for the strong northern sinking solution behaves
as the salinity transport feedback in the nondiffusive
model of Scott et al. (1999), neutral in case I, stabilizing
in case II, and destabilizing in case III. The zero-flow
solution has the q�-q� feedback undergo a transition from
destabilizing to stabilizing at large enough diffusion.

The “pure diffusion” contribution to the q�–q� feed-
back is stabilizing (dotted lines in Fig. 7); therefore,
changes to the q�-q� feedback stabilize if this dominates
over the destabilizing change to the salinity transport
feedback. With symmetric freshwater forcing, the salin-
ity transport feedback increases from zero at the same
rate as the diffusion feedback becomes negative (Fig.
7a) such that the q�-q� feedback is zero regardless of
diffusion. This can also be seen by setting �N � �S in
A22 in (41) and applying the condition (A5) from the
appendix for steady-state flow under symmetric forc-
ing. Decrease of flow strength with diffusion (Fig. 6)
weakens the mean flow feedback in (41) and thus de-
stabilizes; by symmetry this is also true for the southern
sinking solution, while the zero flow solution is stabi-
lized (Fig. 7d). Diffusion significantly reduces the large
positive salinity transport feedback of the latter. The
net feedback acting on a flow anomaly (salinity trans-
port and diffusive) becomes negative (i.e., the no-flow
solution is stable) at the diffusion strength that elimi-
nates the strong flow solutions.

Physically, a negative flow perturbation to high-
latitude sinking freshens each high-latitude box. De-
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pending on the steady-state salinity differences, this
freshening is stronger in either the upwelling or the
sinking hemisphere, or equal in both. In the latter case,
the feedback is neutral. If the freshening is stronger in
the upwelling hemisphere, the flow is reinvigorated,
and the feedback is negative. If the freshening by re-
duced flow is stronger in the sinking hemisphere, we
find positive feedback. With northern sinking, the cri-
terion for neutral feedback is, by (26) and (28), that

S2 � S1

S1 � S3

�
�q � kd��N

�q � kd��S � kd�N
� 1. �42�

Without diffusion, neutrality ensues under symmetric
freshwater forcing. Diffusion makes the salinity advec-
tion feedback less stabilizing; (42) shows that neutrality
requires �N � �S. This occurs because diffusion re-
duces the steady-state salinity differences. At equilib-
rium, the salinity difference in the upwelling hemi-
sphere is larger than that of the sinking hemisphere,
and so is decreased more by diffusion. This implies that

the pole-to-pole salinity gradient is decreased relative
to the salinity difference in the sinking hemisphere. If
the latter is already greater, implying positive salinity
transport feedback, the strength of the feedback is thus
increased. If the salinity transport feedback is negative,
its magnitude decreases. In either case, destabilizing
ensues. The same analysis with symmetric freshwater
forcing gives a positive salinity transport feedback, in
contrast to a neutral feedback with zero diffusion.

e. Hopf bifurcations

Above, Fig. 6 shows the dependence of the flow on a
continuous change in kd, for select cases of freshwater
forcing. Now we continuously vary the asymmetry in
the freshwater forcing, for some select cases of kd. We
are particularly interested in the linear stability of the
steady states, which may be determined from the eigen-
values of the coefficient matrix of (41). The eigenvalues
are complex over the parameter ranges considered;
therefore, stable solutions result if real parts are nega-
tive, which is true if

FIG. 7. Dependence of element A22 of (41) to diffusion in the Rooth model. (a) Case I: strong positive flow; (b)
case II: strong positive flow; (c) case III: strong positive flow; (d) case I: zero flow solution. Solid: total of A22;
dashed: first term; dotted: second term.
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3�q � kd�3 � kd�q � kd�2 � k���N � �S��q � kd�

� kdk��N � 0; q � 0, �43�

3�kd � q�3 � kd�kd � q�2 � k���N � �S��kd � q�

� kdk��S � 0; q � 0. �44�

This can be seen from noting that the sum of the eigen-
values equals trace(A), the sum of the diagonal ele-
ments.

In a phase diagram showing steady-state flow
strength against Northern Hemisphere freshwater forc-
ing, Scott et al. (1999) had speculatively connected the
stable equilibrium branches (northern and southern
sinking) across the zero-flow line by a curve denoting
unstable quasi equilibria (“quasi” because they could
not even be in steady state for symmetric forcing). By
adding even a small amount of diffusion, we can here
make rigorous the connection in phase space between
the northern sinking and southern sinking equilibria,
and present a comprehensive bifurcation diagram
(Fig. 8).

With weak diffusion, three equilibria are found for a
relatively wide range of �N. Above some critical value
of �N (here, about a tenfold asymmetry, Fig. 8), how-
ever, a saddle node bifurcation occurs and the northern
sinking is no longer a solution. As expected, the weaker
of the northern sinking solutions is unstable. In contrast
to the Stommel model, however, the strong sinking so-
lution is not always stable, undergoing a subcritical
Hopf bifurcation. Stronger diffusion destabilizes the
northern sinking further, for �N � �S, and the range of
multiple equilibria shrinks. One consequence is that the
Hopf bifurcation does not occur any more. The blue
and the red curves in Fig. 8 are equivalent to gyre
strengths of 10 Svand 1 Sv, respectively, if operating on
the full meridional salinity difference. They represent
two different ways of destabilizing North Atlantic Deep
Water formation under increased Northern Hemi-
sphere freshwater flux forcing, which could happen
with or without a phase of THC oscillations (e.g.,
Rahmstorf 1995). Even stronger diffusion means that
only the hemisphere with the weaker freshwater flux
shows sinking, consistent with the notion that diffusion
suppresses the “weaker” equilibrium and supports a
unique solution. Note that for all nonzero values of
diffusion, the curves meet at q � 0 for symmetric fresh-
water flux forcing.

4. Discussion and conclusions

A diffusive parameterization of gyre circulations in
the Stommel and Rooth box models of the THC mod-

ifies the existence and stability of multiple flow solu-
tions. We present a quantitative explanation of the re-
sults in National Research Council (2002) regarding the
Stommel model. We argue that our results provide a
conceptual foundation for analyzing complex numerical
models and even the real world: Is the climate system
best characterized by a THC interacting with “strong”
or with “weak” gyre salinity transports? Only in the
latter case would the THC be capable of undergoing
abrupt change, with concomitant potential permanent
change caused by temporary perturbations (e.g., hys-
teresis; Stocker and Wright 1991).

The nondiffusive Rooth model had not been ame-
nable to bifurcation analysis since symmetric or nearly
symmetric equilibria did not exist. In contrast, the dif-
fusive Rooth model can be comprehensively analyzed
for its bifurcation structure, under appropriate simpli-
fications. These are fixed and symmetric tempera-
tures—a reasonable approximation as salinity rather
than temperature gradient changes dominate flow
strength response to diffusion.

We have only analyzed uncoupled models of the
THC here. However, previous experience with coupled
box models suggests that atmospheric coupling does
not change the basic bifurcation structures of either the
Stommel or the Rooth model (Marotzke 1996; Scott et
al. 1999). This statement must remain conjectural at this
stage but forms the working hypothesis for this paper.

With asymmetric freshwater forcing the bifurcation
structure of the diffusive Rooth model is qualitatively
similar to that of the Stommel model, albeit with a very
different dynamical interpretation. In the right range of

FIG. 8. Analytical flow solutions to the Rooth model as a func-
tion of �N, �S � 0.9 � 10�10 psu s�1 (fixed). Temperature is
symmetric about the equator. Black: kd � 0; red: kd � 1 � 10�11

s�1; blue: kd � 1 � 10�10 s�1; green: kd � 4 � 10�10 s�1. Solid
lines are stable solutions, dotted lines unstable; stability is deter-
mined by (43), (44), or numerical integration.
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diffusion strength and asymmetry in freshwater forcing
we find two equilibrium solutions with sinking in the
hemisphere with stronger freshwater forcing, the stron-
ger of which is stable while the weaker is unstable. We
always find one stable equilibrium with sinking in the
hemisphere with weaker freshwater forcing. In contrast
to the Stommel model, the stable solutions have
roughly the same flow strength, which is a better match
with results from numerical models. In contrast to the
nondiffusive Rooth model, all equilibria of the diffusive
Rooth model depend on the freshwater forcing in both
hemispheres.

With relatively weak gyre transport, an increase in
the freshwater forcing in the sinking hemisphere leads
to a subcritical Hopf bifurcation—oscillations set in
with a growing amplitude, and the THC eventually
switches to sinking in the opposite hemisphere (see also
Scott et al. 1999; Titz et al. 2002a). Under stronger gyre
transport, such a transition occurs via a saddle-node
bifurcation, as in the Stommel model, without going
through an oscillatory phase first. Thus, THC collapse
could sometimes be accompanied by oscillations, some-
times not.

We propose that, where the Stommel bifurcation
structure has previously been used to describe GCM
hysteresis (e.g., Rahmstorf 1995), diffusive Rooth dy-
namics provide a more relevant model. The preference
arises since expressing cross-hemispheric Atlantic THC
dynamics through the intrahemispheric density gradi-
ent is problematical. While two back-to-back Stommel
models have been used (Welander 1986), the density
difference between high northern and southern lati-
tudes is more appropriate as the driver determining
flow strength (Stocker et al. 1992; Hughes and Weaver
1994; Rahmstorf 1996; Klinger and Marotzke 1999; Ma-
rotzke 2000; Thorpe et al. 2001). Rahmstorf (1996)
found similarity between GCM THC hysteresis and
that of the Rooth model but required an implied equa-
torward Southern Hemisphere atmospheric water va-
por transport; that is, the gyre transport of freshwater
exceeded that of the atmosphere (also employed in Titz
et al. 2002b). This is inconsistent with the diffusive
Rooth model since it would require Southern Hemi-
sphere salinity differences in excess of 8 psu.

In the diffusive Rooth model, flow weakens with in-
creased freshwater forcing in the sinking hemisphere.
This stands in marked contrast to the nondiffusive
Rooth model in which flow strength is a function of the
upwelling hemisphere freshwater forcing only and in-
creases with it (Rahmstorf 1996; Scott et al. 1999). Only
weak evidence for the latter was found in a GCM study
(Wang et al. 1999); the diffusive Rooth model may well
be more realistic in suggesting a more even role of

Northern and Southern Hemisphere freshwater forc-
ing.

Gyre circulations in the Stommel model stabilize
high-latitude sinking, an expected consequence of pole-
ward salt flux. In the diffusive Rooth model, however,
only the sinking solution in the hemisphere with weaker
freshwater forcing can be stabilized by diffusion. That
diffusion destabilizes a steady state is only seemingly
paradoxical. Strong diffusion eliminates multiple equi-
libria because the system behavior is more nearly lin-
ear. This change comes at the expense of the “weaker”
equilibrium, the one with sinking in the hemisphere of
stronger freshwater forcing.

The values of mixing and freshwater forcing at which
qualitative change in behavior occurs in the Rooth
model correspond to the range of the values used in and
obtained with GCMs, suggesting that this analysis can
provide a conceptual foundation for analyzing the sta-
bility of the interhemispheric THC. Notice that the
heading “mixing” here subsumes a multitude of pro-
cesses such as gyre transport, Ekman transport, isopyc-
nic mixing, eddy-induced transport, or diapynic mixing
(i.e., anything that leads to a reduction in meridional
salinity gradient). The potential for the THC to un-
dergo an abrupt change is dependent on whether THC
dynamics are characterized by strong or by weak mix-
ing. It is possible that relatively subtle changes in a
GCM decide which characterization applies.
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APPENDIX

Bifurcation Structure of the Diffusive
Rooth Model

The subsequent treatment (following that in Strogatz
1994, his section 3.6) shows that the Rooth model with
diffusion and fixed temperatures symmetric about the
equator can be characterized by an “imperfect bifurca-
tion” structure. We analyze the steady-state condition
(32) for the flow with fixed symmetric temperatures,
T1 � T3:

q3 ± 2kdq2 � q�kd
2 � k��S�N� � kdk���N � �S� � 0.

�A1�

To account for asymmetry in the system introduced by
�N � �S we define an “imperfection parameter” (i.e.,
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marking deviation from perfect symmetry: Strogatz
1994):

h � kdk���N � �S�, �A2�

and the abbreviation

y±�q� � q3 ± 2kdq2 � q�kd
2 � k��S�N�, �A3�

where the upper sign holds for positive argument, q �
0, and the lower sign for negative argument, q � 0.
Hence, we can rewrite (A1) as

y±�q� � h � 0. �A4�

With symmetric freshwater forcing, that is, h � 0, (A1)
reduces to

q	�q ± kd�2 � k��
 � 0 �A5�

with the solutions

q � 0; q � �kd � �k��; q � kd � �k��, �A6�

provided that

kd � �k��. �A7�

Condition (A7) defines the maximum diffusion
strength for given � to support three flow solutions. For
stronger diffusion, no valid nonzero solutions to (A5)
exist, leaving only the zero flow solution. If (A7) is met,
there are positive, negative, and zero solutions to (A5);
hence three solutions are found as shown in Fig. 6 (solid
lines). Intersection of the three solutions occurs at kd �
�k
�, which is a cusp point with codimension-2 bi-
furcation; both kd and � must be tuned to attain this
point (Strogatz 1994, p. 70). Numerical integration finds
the zero flow solution to be unstable for kd � �k
�
and stable for kd � �k
�, consistent with the numeri-
cal results of section 3b.

We now investigate the properties of the cubics,
y�(q), (A3), to determine the range of h under which
multiple solutions to (A1) are found. Since y�(q → ��)
→ ��; y�(0) � 0, at least one intersection exists be-
tween y and �h, for any choice of h. For h � 0, �N �
�S, this intersection occurs for q � 0. The converse is
true for h � 0. This means that one solution is guaran-
teed to exist, with sinking in the hemisphere with the
weaker freshwater flux.

A necessary condition for multiple intersections is
that y(q) slopes downward at the origin. If that hap-
pens, y�(q) has a minimum and y�(q) has a maximum.
For h � 0, �N � �S, there could then be two additional
solutions to (A1), upper sign, with q � 0. Analogously,
for h � 0, �N � �S, there could be two additional
solutions to (A1), lower sign, with q � 0. Whether these
additional solutions do exist depends on whether the

minimum or maximum is pronounced enough so that
y(q) intersects �h.

One finds for the derivative of y�(q), from (A3):

y�±�q� � 3q2 ± 4kdq � �kd
2 � k��S�N�, �A8�

y�±�0� � kd
2 � k��S�N. �A9�

Thus, y�(q) has a minimum, at some q1 � 0, if

kd � �k��S �A10�

and y�(q) has a maximum, at some q2 � 0, if

kd � �k��N . �A11�

The additional equilibria can only exist with sinking
in the hemisphere with stronger freshwater flux forcing.
Thus, of the two criteria, (A10) and (A11), the more
stringent one defines the upper bound for kd. We con-
clude that asymmetric freshwater flux forcing reduces
the maximum strength in gyre transport under which
multiple equilibria are possible in the Rooth model.

The location of the extrema in y(q) are found from
(A8) as

q1 �
1
3
��2kd � �kd

2 � 3k��S�, �A12�

which is positive if (A10) holds, and

q2 �
1
3
�2kd � �kd

2 � 3k��N�, �A13�

which is negative if (A11) holds. Insertion into (A3)
shows that multiple equilibria exist in the Rooth model
under the complementary conditions:

q � 0:

0 � kdk���N � �S�

�
2

27 ��kd
2 � 3k��S�3�2 � kd

3 � 9kdk��S�,

�A14�

q � 0:

0 � kdk���S � �N�

�
2
27 ��kd

2 � 3k��N�3�2 � kd
3 � 9kdk��N�,

�A15�

which are (34) and (35) in the main text.
Insertion of the necessary conditions (A10) and

(A11) into (A14) and (A15), respectively, shows that
attainment of the bounds (A10) and (A11) implies �N

� �S. Conversely, asymmetric freshwater forcing im-
plies further reduced maximum kd for which multiple
equilibria are possible. Multiple equilibria are therefore
only possible below an upper limit of freshwater-
forcing asymmetry, which is decreased by diffusion. A
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saddle-node bifurcation occurs at a critical �N � �S,
where the stable and unstable solutions with sinking in
the dominant freshwater-forcing hemisphere meet.
However, as shown in section 3e, a Hopf bifurcation
may occur before the saddle-node but this is not the
case in Fig. 6.
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