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Coupled climate models have been extensively used to further
our understanding of the dynamics and physics of the Earth’s
climate system and the potential changes of regional and glob-
al climates in the future, especially due to human activities such
as fossil fuel burning and land-use activities. Nevertheless,
there are still large uncertainties in our knowledge of the glob-
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al climate system and in our representations of such a complex
system. The confidence of our projected future climate change,
therefore, inevitably depends on how well the current climate is
simulated by coupled climate models and how large the scatter
is among the model simulations of current and future climates.
As one of the diagnostic subprojects within the Coupled Model
Intercomparison Project phase II (CMIP2), we present an eval-
uation of 18 CMIP2 coupled model simulations over the
Australian region.

Monthly rainfall and surface air temperature climatologies
over the Australian region have been derived from the 18
CMIP2 control simulations and compared with observations
from the Australian Bureau of Meteorology. The gross spatial
patterns of austral summer rainfall (DJF) are reasonably simu-
lated by the majority of the models. However, there are signifi-
cant model errors in simulating the intensity and location of the
heavy Australian monsoon rainfall in the north and eastern
parts of the continent, with about half of the models showing
more than 100 mm/month biases and a number of models sim-
ulating wrong locations of the monsoon rainfall. The seasonal
cycle of the surface temperature is reasonably reproduced in
the models although there are biases of around 2-4 °C present
in the model simulated surface air temperature climatology.

Based on the 80-year model simulations of perturbed climate,
with 1% per year increase of atmospheric CO, concentration,
the changes of surface air temperature and precipitation have
also been analysed. The average annual surface temperature
change in the last 20-year period of the model simulations
against the model control simulations over the Australian
region varies from 1.00 °C to 2.18 °C, with an ensemble average
of 1.59 °C and = 0.33 °C scatter measured by one standard devi-
ation. The models give a mixed signal in predicting averaged
Australian rainfall changes, with some models simulating more
than 3 mm/month increase while others show more than 4
mm/month decrease with on average no change. The spatial
distributions of the model-simulated surface temperature and
precipitation changes have also been analysed. Surface temper-
ature is increased over the whole continent in all models, while
the changes in precipitation show large spatial variations. The
ensemble mean model shows decreases in winter rainfall across
southern Australia and over northwestern Australia during
summer. Increased rainfall is simulated over parts of eastern
Australia during winter, extending further north during sum-
mer. Besides the analysis of changes in mean climate, the poten-
tial impacts of global warming on Australian climate variabili-
ty is explored in a preliminary way by analysing the changes in
tropical Australian precipitation correlations with surface tem-
perature variations over four key oceanic regions. Results sug-
gest that the influence of tropical and subtropical sea-surface
temperature (SST) forcing on the Australian climate may
change under greenhouse warming.
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Introduction

Coupled climate models have been extensively used to
further our understanding of the dynamics and physics
of the Earth’s climate system and the potential changes
of regional and global climates in the future, especial-
ly due to human activities such as fossil fuel burning
and land-use activities (e.g. Houghton et al. 2001).
Nevertheless, there are still large uncertainties in our
knowledge of the global climate system and in our
representations of such a complex system. The confi-
dence of projected future climate change depends to
some extent on how well the current climate is simu-
lated by the coupled climate models and how large the
scatter is among the model simulations of current and
future climates. A series of international modelling
intercomparison projects have been established to
identify the strengths and weaknesses of current cli-
mate models, to encourage further model development
and improvement, and to help quantify the uncertain-
ty in the model predictions of future climate change,
especially with regard to the increase in global mean
surface temperature (see Zhang et al. (2002) and refer-
ences therein; Cess et al. (1989); Mitchell et al.
(1989)). The Coupled Model Intercomparison Project
(CMIP) (Meehl et al. 2000) was established in 1995
under the auspices of the World Climate Research
Programme’s Joint Scientific Committee and the
International Research Programme on Climate
Variability and Predictability — Working Group on
Coupled Models with the aim of providing climate sci-
entists with a set of coupled global circulation model
(CGCM) simulations under standardised boundary
conditions. While the initial phase of CMIP — called
CMIP 1 — focused on the ‘control run’ of the CGCMs
(i.e. constant external forcing), the subsequent phase —
CMIP 2 (started in 1997) — collected output from both
the control run and an idealised perturbation run in
which the CO, concentration increases at the rate of
1% (compounded) per year.

A large number of CMIP diagnostic subprojects
have been established, exploring differences among the
models and seeking to identify aspects of the simula-
tions in which ‘consensus’ in model predictions or
common problematic features exist. As one of the diag-
nostic subprojects within CMIP2, this paper presents a
preliminary analysis of 18 CMIP2 coupled model sim-
ulations over the Australian region. While Covey et al.
(2003) have given a global overview of CMIP2 model
simulations, this study is focused on the Australian
region. The aim is to present information on how well
the models simulate present day Australian climate and
what changes might occur as a result of increase in a
1% per year atmospheric CO, level (with observed
changes over the past 20 to 30 years amounting to a 0.5
% per year compounded increase) .

The Australian continent extends from the tropics
to mid-latitudes, and poses a particular challenge for
climate models because of the naturally occurring
gradients in surface air temperature and precipitation.
The Australian tropics are strongly influenced by the
surrounding oceans, and are subject to a strongly
varying seasonal cycle of precipitation and surface
pressure, dominated by the Australian component of
the Asian-Australian monsoon (e.g. McBride 1998).
Total precipitation in northern and eastern Australia is
strongly influenced by the El Nifio Southern
Oscillation (ENSO), showing marked interannual
variability. Winter conditions in tropical Australia, on
the other hand, are subject to mild and relatively dry,
southeast trades. Southern regions are subject to east-
ward moving mid-latitude cyclones. The mean loca-
tion of the cyclone belt varies seasonally from south
of the continent in summer, to the southern portion of
the continent in winter, with consequent seasonality
of temperature and precipitation. Central parts of the
continent are predominantly dry, with occasional pre-
cipitation episodes penetrating from the north and
south. Other distinctive features such as northwest
cloudbands contribute to mid-continental precipita-
tion. Topography is generally low, although the east-
ern ranges and parts of central Australia have a sig-
nificant impact on regional temperatures and precipi-
tation. These patterns of precipitation, namely mon-
soonal in the north, Mediterranean in the southwest,
'mid-latitude' in the southeast, and dry in the centre,
are important features to capture in climate models.

As part of an earlier Atmospheric Model
Intercomparison Project Phase 2 (AMIP2) subproject,
Zhang et al. (2002) reported an analysis of sixteen
models in their simulations of key surface climate and
surface fluxes in the Australian region. Significant
model deficiencies in their simulations of rainfall and
surface temperature climatologies were identified.
Similarly Harvey and McAvaney (2002) intercom-
pared AMIP2 models in their simulations of the dou-
ble-jet structure in the southern hemisphere. Using
observed SST conditions, the AMIP2 model integra-
tions may represent an ‘upper limit” in the capability
of current atmospheric GCMs to simulate Australian
current climate. The main aim of this study is to eval-
uate how well basic aspects of the Australian climate
are simulated in the fully coupled experiments.
CMIP2 offers a unique opportunity to examine how a
broad range of coupled models represent the key fea-
tures of the current Australian region climate. It also
provides an opportunity to assess how these important
features change under greenhouse warming in these
models. Coupled climate model simulations have
been used earlier to assess the impact of climate
change in Australia and determine our confidence in
these simulations (Pittock and Wratt 2001). The IPCC



294

Australian Meteorological Magazine 54:3 September 2005

assessment of vulnerability reports (Watson et al.
1998; McCarthy et al. 2001) noted particular concern
for Australia from possible changes to the timing,
intensity and location of tropical monsoon systems,
and location and intensities of mid latitude weather
systems and the subtropical anticyclone belt.

We have analysed 18 CMIP2 model simulations
(see Table 1 for an overview of all models) of surface
air temperature and precipitation over the Australian
region. Additional attention is focused on the tropical
Australian region, where the Asian-Australian mon-
soon system dominates. The main deviations of some
models from the CMIP 2 protocol with regard to the
two fields under consideration are: Model 18 had pre-
scribed sea ice (i.e. not interactive), Model 16 has 75
years instead of 80 years in both runs, and Model 15
has only three years in the control run. Even though
there are good arguments for excluding Models 15
and 18 from this report because of the reasons men-
tioned above, we have included them where appropri-
ate (i.e. they were not used to determine the ‘average
model” and ‘ensemble’, but appear on some figures).
A more detailed documentation of all CMIP2 models
is available at http://www-pcmdi.llnl.gov/cmip/
Table.htm and links therein. Note that these model
results in many cases do not reflect the most recent
model development in each of the modelling groups.

We use the Australian Bureau of Meteorology’s
observational precipitation dataset created from high
quality stations as described in Lavery et al. (1997) as
well as surface air temperature data in the model eval-
uation. Daily average surface air temperature was

Table 1. Participating CMIP2 coupled GCMs.

generated by combining T, and Ty, from high-
quality observational datasets from the National
Climate Centre of the Australian Bureau of
Meteorology. The usage of (Tyax+Tmin)/2 to esti-
mate daily average temperature in Australia has
recently been compared with averages from regular
fixed-hour observations (Trewin 2004) and only a
slight inhomogeneous difference was noted.

Standard model statistics such as model climato-
logical biases, root mean square errors (rmse), and
spatial correlations are calculated for the 18 model
simulations. When assessing change in correlations
between Australian rainfall and tropical SST, we gen-
erated for each 80-year time series of de-trended DJF
anomalies 200 new series randomly selected from the
original one. This Monte Carlo technique resulted in
200 random correlations allowing the estimation of
the 95 per cent confidence level to the original corre-
lation coefficients. Changes between model control
and perturbed simulations are taken as significant if
the confidence intervals of the corresponding correla-
tion coefficients don’t overlap.

Model simulated current surface cli-
matology over Australia

This section will describe the general features of
model climatologies over the Australian region. These
are compared to observed climatologies from the
Australian Bureau of Meteorology datasets for sur-
face air temperature and precipitation for the period

Code Model Version Research Institutes

bmrc BMRCa Bureau of Meteorology Research Centre, Melbourne, Australia

cce CGCM1 Canadian Centre for Climate Modeling and Analysis, Canada

cesr CCSR/NIES2 Centre for Climate System Research / National Institute for Environmental Studies, Japan

cerf ARPEGE/OPA2 Centre European de Recherche et de Formation Avancee en Calcul Scientific, France

csir CSIRO Mk2 Commonwealth Scientific and Industrial Research Organization, Melbourne, Australia

ech3 ECHAMB3/LSG Deutsches Klima Rechen Zentrum, Hamburg, Germany

ech4 ECHAM4/0OPYC Max-Planck Institut fiir Meteorologie, Hamburg, Germany

gfdl GFDL_R30_c Geophysical Fluid Dynamics Laboratory, NOAA, USA

giss GISS2 Goddard Institute for Space Studies, NASA, USA

iap GOALS Institute of Atmospheric Physics / Laboratory for Atmospheric Sciences and Geophysical
Fluid Dynamics, China

inm INMCM Institute of Numerical Mathematics, Russian Academy of Science, Russia

Imd IPSL-CM2 Institute Pierre Simon LaPlace — Laboratoire de Meteorologie Dynamique, France

mri MRI2 Meteorological Research Institute, Japan

ncarcsm CSM National Centre for Atmospheric Research (NCAR) — Climate System Model, Boulder,
USA

nrl NRL2 Naval Research Laboratory, Monterey, USA

pcm DOE PCM Department of Energy Parallel Climate Model / NCAR, USA

ukmo3 HadCM3 Hadley Centre, United Kingdom Met Office, UK

yonu YONU Yonsei University, Seoul, S. Korea
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1950 to 2000. Each model output grid was re-gridded
to a common 2.5° x 2.5° grid before applying a land-
sea mask and analysis procedures.

Bias over the Australian continent

Figures 1 and 2 show the bias of the seasonally aver-
aged climatologies (DJF only) for surface air temper-
ature and precipitation from the 18 CMIP 2 models
against the observed climatologies. Also included is
the multi-model ensemble mean, which is generated
by simply averaging all the model simulations for the
same period.

During the austral summer, the observed rainfall
climatology displays heavy rainfall in tropical
Australia and eastern coastal regions generated by
the summer monsoon system. Figure 1 shows that
more than half of the models show substantial over-
estimation of the rainfall climatology, by up to
approximately 120 mm/month, with high precipita-
tion generally penetrating far too south towards
inland Australia. This deficiency is also reflected in
the multi-model ensemble mean. There is no coher-
ent pattern in the distribution of model biases, with
overestimations occurring in tropical Australia in
some models and northwest Western Australia in

other models. This result was also evident in the
AMIP2 results discussed by Zhang et al. (2002).
There is a general tendency that if a model underes-
timates rainfall, it is more likely to do so in the trop-
ics as this is where precipitation amounts are largest.
Additionally, some models have a systematic nega-
tive bias over almost the entire continent (bmrc,
ccesr, csir, giss). Note that about five of the models
failed in simulating the gross feature of monsoon
rainfall in the region. As found by Ebert (2001) and
Zhang et al. (2002), a simple averaging of all the
model simulations (at each grid point) to produce the
‘poor-man’s’ ensemble mean tends to produce the
best overall results.

Because the analysis has been done at 2.5° resolu-
tion, there could be a contribution of model bias from
this coarse resolution: for example the simulation of
rainfall in northeast Australia is most likely deficient
due to coarse resolution of most GCMs, whereas the
large-scale displacement of monsoonal rainfall in
northwest Australia is most likely due to deficient
large-scale circulation in the tropics, which may be
related to the Walker circulation being affected by a
cold tongue bias in the sea-surface temperature simu-
lated by the CMIP2 models.

Fig. 1 Precipitation bias in summer (DJF) for all 18 CMIP2 simulations. Units: mm/month.
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Fig. 2 Temperature bias in summer (DJF) for all 18 CMIP2 simulations. Units: °C.

;: -

ol O .

4

Y

ol TE W R s A e (W W e

%

x.
=]

Biases tend to have the same sign in winter (JJA)
(not shown here) as they do in summer (DJF),
although the size of the bias is lower in winter than in
summer. Following the southward shift of the rainfall
belt, the general tendency of underestimation switches
from the tropics in summer to the mid-latitudes along
the east and west coasts of the continent in winter.

Although there are large biases present in Fig. 1,
the spatial pattern of precipitation climatology and its
seasonal variation is overall reasonably simulated by
the 18 CMIP 2 models (Fig. 3(a)). Most models show
a correlation above 0.5 for all seasons, although there
are considerable differences between models and
within seasons. In particular, the Australian summer
monsoon does not coincide with markedly increased
spatial correlations of the simulated climatologies,
indicating a mixed representation of the seasonal
migration of the rainfall pattern within the models.
The spatial correlations during winter are comparable
to summer, while most of the low correlations occur
during the spring and autumn seasons. This is proba-
bly related to a decreased north-south gradient of pre-
cipitation in the transition seasons. The ensemble
mean model (created by averaging all models at each
grid-point before calculating the statistic) and the
average model (average of all model results from the
statistic) are shown as well.
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Figure 3(c) shows the corresponding area-aver-
aged root mean square error (rmse) of the 18 model
climatologies over Australia. In accordance with the
results from the bias calculations, the rmse during
summer is higher than in winter and the general devi-
ation from the average model is greater in summer as
well. In December, for example, the range of rmse for
the models varies between 30 and 120 mm/month — a
result of the frequent under/overestimation of rainfall
climatology during this season. Again, results from
the ensemble mean outperform most of the individual
models, especially with regard to the rmse. The rea-
son for this could be twofold: the calculation of the
ensemble mean (a) usually decreases outlying
extremes relative to individual members; and (b)
tends to cancel out systematic errors of opposite sign.
The ensemble averaging process could also create a
smoothed spatial distribution leading to a higher spa-
tial correlation with observations.

As with the rainfall analysis, surface air tempera-
ture climatology in the Australian region was
analysed and compared against the observational data
from the Australian Bureau of Meteorology. Figure 2
shows the bias of the seasonally averaged tempera-
tures during the austral summer (DJF), indicating that
there is no common pattern of the surface temperature
bias in the models. Some models have a negative bias

1



Moise et al.. CMIP2 simulations of Australian current climate and greenhouse changes 297

Fig. 3 Spatial correlation and root mean square error (rmse) of precipitation (a and c¢) and temperature (b and d) cli-
matologies simulated by 18 CMIP2 models. Also shown is the ensemble mean model (heavy solid) and average

(heavy dashed) of the 18 models.
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of -2°C to -4°C over parts of the, or the entire,
Australian continent. One model has a systematic
positive bias of up to +8°C and another has a negative
bias of —6 °C, while several models show a mixture of
positive and negative bias. Again, the ensemble mean
of all models (labelled ‘Ensemble’ in Fig. 2) gives one
of the best results, showing a slight positive bias over
most of Australia. In winter (JJA — not shown here),
more than half of the models show a negative bias of
-2 to -6°C. Meanwhile, there are positive biases over
a central band through Australia in a number of mod-
els, with larger biases towards inland areas. In gener-
al, if a model overestimates surface air temperature in
summer, it is likely that it also overestimates in win-
ter. In both seasons some models show a spatial pat-
tern in the temperature bias that seems to be associat-
ed with a similar pattern in their precipitation bias
over Australia.

The spatial pattern of surface air temperature cli-
matology and its seasonal variation is reasonably sim-
ulated by most of the 18 CMIP 2 models (Fig. 3(b)).
The greatest variation occurs during the summer sea-
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son (with a range in correlation of 0.65 to 0.97 around
an average correlation of just under 0.9), while for the
remainder of the year, most models show a higher
spatial correlation of above 0.9. Most of the low cor-
relations occur during the summer season, coinciding
with a slight negative bias of these models over cen-
tral Australia. Figure 3(d) shows the corresponding
area-averaged rmse of the 18 model climatologies
over Australia. In accordance with the results from the
bias calculations, the rmse during summer is very
similar to that in winter with one model (bmrc) hav-
ing a systematic positive bias for all seasons. Overall,
the average rmse is around 4°C or less throughout the
year. Note that one model (yonu) stands out with a
low spatial correlation and a rather high rmse during
the summer months. This is also the only model with
partly fixed boundary conditions applied to the con-
trol and perturbed runs (see previous section).

The strong seasonality of the pattern correlation as
shown in Fig. 3(b) might be due to the stronger north-
south temperature gradient in winter compared with
other seasons, which is picked up much more readily
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Fig. 4 Taylor plot for CMIP2 models temperature
(capital letters) and precipitation (small let-
ters). Observational values are at (1,1) and the
ensemble value is S and s respectively. The
dashed circles centred around the observation
represents the root mean square error (rmse)
for the models.
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by the models. The ensemble mean model outper-
forms all individual models for both temperature bias
(~ 1 °C for all seasons) and spatial correlation (above
0.97 for all seasons).

The skill of the models in simulating spatial charac-
teristics of the Australian temperature climatology is
enhanced in comparison to precipitation, with most
models showing a higher correlation and less seasonal
variation. The exception for this occurs in DJF, when
some models show a marked drop in the correlation.

Summarising the overall performance of the models
with regard to bias and rmse error, Fig. 4 shows a
Taylor plot (Taylor 2001) of the simulated precipitation
and temperature climatologies. It depicts the nor-
malised standard deviations for all model control runs
compared to observations (distance from origin),
including the spatial pattern correlations to the obser-
vations (azimuth position) and rmse (dashed circles —
indicating distance away from observations at (1,1)). In
general, modelled temperature variability (indicated by
capital letters for each model) is more closely correlat-
ed with observed variability than is precipitation (indi-
cated by small letters for each model) and also shows a
smaller rmse for most models. Interestingly, tempera-
ture variability is usually higher in the models com-
pared with the observations (except for two models and
the ensemble mean model ‘S’), while the modelled
variability in precipitation varies strongly between
models with slightly more than half showing lower
variability than observed. The ensemble mean model
(letter ‘S’ for temperature and ‘s’ for precipitation)
shows a high correlation together with markedly lower
than observed variability. One reason for the higher
spatial correlation of temperature could be a more
homogeneous temperature field across Australia.
Seasonal cycles over the tropical and the whole

Australian regions

In this section we compare the seasonal cycles of pre-
cipitation and surface temperature in the model simu-
lations with observations. One of the key components
of this CMIP2 diagnostic subproject is to analyse sim-
ulations of the Australian monsoon. In Fig. 5 we show
the precipitation and surface air temperature seasonal
cycles over three regions (land only): the whole
Australian continent (left panels; lat = (45°S — 10°S),
lon = (110°E — 155°E)), the ‘top end’ tropical
Australian region (centre panels; lat = (20°S — 10°S),
lon = (120°E - 155°E)), and extra-tropical Australia
(right panels; lat = (45°S — 20°S and 110°E — 155°E)).

The dominant role of the Australian monsoon
leads to similar precipitation seasonal patterns over
the entire Australian continent and over the tropical
region. However, the precipitation seasonal cycle is
much clearer and stronger in the tropical region.
When comparing the simulated seasonal cycles with
the observations, the differences become apparent.
Averaged over the entire Australian continent, most
of the models overestimate the precipitation over the
entire seasonal cycle and even the model ensemble
mean shows an overestimation of about 20-40
mm/month for most seasons. In contrast, over the
Australian tropical region, most models underesti-
mate the summer rainfall seasonal cycle with the dif-
ference between observed and average model being
around 50 mm/month. This is consistent with a fea-
ture seen in the bias analysis i.e. the Australian sum-
mer rainfall penetrates too far into the inland region.
Also more pronounced is the overestimation of trop-
ical Australian rainfall for all other seasons, espe-
cially during spring. Again, the multi- model ensem-
bles mean gives a better simulation than most of the
individual models, resembling the observed cycles
more closely.

In extratropical Australia (Fig. 5(c)), the seasonal
cycle for precipitation does not indicate marked sea-
sonality with most models on average overestimating
rainfall.

The seasonal cycles of surface air temperature for
both the Australian continent (Fig. 5(d) and the sepa-
rate regions (tropical: Fig. 5(e) and extratropical: Fig.
5(f)) are reasonably simulated in the models, largely
following the excursion of the sun. The biases in most
models behave consistently throughout the year: there
is a 7-8°C temperature scatter among the models. The
multi-model ensemble mean underestimates the
observed seasonal surface air temperature seasonal
cycles over tropical Australia by 1°C during the six
months surrounding summer, while there is almost no
difference with the observations over the entire
Australian continent.

In summary, (a) simulated precipitation seasonal
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Fig. 5

Seasonal cycles for precipitation (a, b, ¢) and temperature (d, e, f) for all 18 CMIP2 models for the whole

Australian continent (left panels), tropical Australia (centre panels) and extratropical Australia (right panels).
The panels include observations (heavy solid) and ensemble mean (solid marked).
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cycles show large variation (from model to model)
and large deviation from observed (typically 50
mm/month over tropical Australia) during summer
and extending into spring; (b) simulated surface air
temperature seasonal cycles show large systematic
variations between models with a consistent deviation
from observed of up to + 3-4°C throughout the year.

The overall simulations of current climate by the
CMIP2 models show considerable spread in quality:
while the gross spatial patterns of austral summer
rainfall (DJF) are reasonably simulated by the major-
ity of the models, there are significant model errors in
simulating the intensity and location of the heavy
Australian monsoon rainfall in the north and eastern
parts of the continents. The seasonal cycle of the sur-
face temperature is reasonably reproduced.

Model simulated surface climate
changes

Figure 6(a) indicates that all simulations show signif-
icant warming trends, with a high linear correlation
with time, i.e. most temperature increases are close to
linear. However, the surface temperature warming

rate shows quite notable differences among the mod-
els, with one of the models showing a warming of
2.18 °C averaged over the final twenty years, while
another warms by only 1.0 °C in the same period.
This variability is illustrated in Fig. 6 which high-
lights two example simulations (UKMO3 and
BMRO).

The surface air temperature results in Fig. 6(a) are
consistent (although with relatively greater spread)
with those shown elsewhere for global change of sur-
face air temperature simulated by CMIP 2 models
(Covey et al. 2003) and in the IPCC 2001 report
(Houghton et al. 2001). The models reach about 1.6°C
mean surface warming over Australia by the time
CO, has doubled around year 70. This is shown in
more detail in the last column of Table 2, where the
averages of years 61-80 are listed for each model. The
multi-model ensemble value is 1.6 °C and all but one
of the models are within + 30% of this value.

The time evolution of the Australia-averaged
change in precipitation relative to the control run is
quite different. There is hardly any change at all in
most models. Some models show slight increases and
others slight decreases in rainfall. In Fig. 6(b) there
are two examples of CMIP 2 simulations highlighted
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Fig. 6 The time evolution of the Australia averaged annual temperature (top) and precipitation (bottom) change rela-
tive to the control run of the CMIP2 simulations. Highlighted are two examples for each field. Also shown is the
ensemble mean of all models.
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Table 2. Linear regression statistics of the time evolu- representing a slight decrease (ccsr) and an increase
tion of the annual Australia-averaged temper- (ech3). The ensemble mean shows a non-significant
ature change relative to the control run of slight negative trend with time. Details of each mod-
CMIP 2 simulations. els linear regression analysis are shown in Table 3.
> Note that some models show a slightly higher initial
Model Slope fsiD R Last 2? positive or negative value (at t=0).
[°Cly] O[OSCZ{); 4 [ef Cr; The precipitation results in Fig. 6(b) are quite dif-
ferent to those shown elsewhere for global change of
BMRC 0022 0002 0.61 153 precipitation simulated by CMIP 2 models (Covey et
ccem 0029 0001 0.88 186 al. 2003) and in the IPCC 2001 report (Houghton et
CCSR 0019 0002 0.63 139 a?. 200 1). The global picture shows an increase in pre-
CERF 0024 0001 084 151 f:lpl}:at;on l;or almost all models of up ;026 mm/rr;l(?nt‘h
CSIR 0027 0.002 077 176 int f;last 0-year leeragfl:’(CO\}/ley et}z}i. 00;)1.T is 1}§
ECH3 0026 0002 075 156 not the cai’e over Austra ia w eire: ;: mo /e s rf;lac.
ECH4 0020 0001 0.71 124 f}:‘yw ere 6??5‘6" approxlm?:]et)}/] * mmb;m",ttt, mn
GFDL 0033 0002 078 2.11 ¢ year (61-80) average with the ensemble sitting
very close to zero (but with a relatively large standard
GISS 0.026 0.001 0.84 1.63 .. .
deviation of almost 3.5 mm/month) as shown in Table
IAP 0.036 0.001 0.90 2.18 .. . . . .
3. This implies that the soil moisture reduces in these
INM 0.015 0.001 0.66 1.00 . .
models as the climate warms. This seems to be a
LMD 0.029 0.001 0.90 1.89 .
MRI 0019 0001 070 135 robust feature in most models represented here. It
’ ’ ‘ ’ highlights the importance of detailed analysis of
NCAR 0.021 0.002 0.69 1.35 . . . . . .
regional climate change simulations, with the possi-
PCM 0.018 0.002 0.63 1.23 . . . .
bility of highly different precipitation responses to
UKMO3 0.028 0.002 0.75 183 global warming in different regions.
YONU 0019 0.001 0.88 118 When examining the spatial distributions of
ENSEMBLE 0025 0.0004 0.98 éig‘:}lg changes in surface air temperature and precipitation

over Australia relative to the control runs, the differ-
ence between the models becomes apparent. Figure 7
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Table 3. Linear regression statistics of the time evolu-
tion of the annual Australia averaged precipi-
tation change relative to the control run of the
CMIP2 simulations.

Model Slope  STD of slope R?  Last 20 years:
([mm/months]/y) [mm/mon]
BMRC -0.05 0.04 0.02 -1.46
CCCM -0.01 0.03 0.00 0.24
CCSR -0.02 0.03 0.00 -2.64
CERF 0.12 0.06 0.05 6.61
CSIR -0.08 0.05 0.03 -1.83
ECH3 0.09 0.04 0.06 4.80
ECH4 -0.02 0.03 001 -1.17
GFDL 0.00 0.04 0.00 0.56
GISS -0.09 0.03 0.15 -4.85
IAP 0.03 0.05 001 -191
INM 0.01 0.03 0.00 2.06
LMD -0.09 0.04 0.05 -6.81
MRI 0.12 0.05 0.08 355
NCAR 0.05 0.03 0.02 -0.61
NRL -0.02 0.03 0.00 0.72
PCM -0.06 0.07 001 -2.11
UKMO3 0.06 0.02 0.07 3.25
YONU 0.00 0.01 0.00 -0.30
ENSEMBLE -0.05 0.04 0.02 -0.09 AVG
342 STD

shows the changes in surface air temperature for the
summer season — focusing on the last twenty-year (61-
80) averages, when the CO, concentration has doubled.

For most CMIP2 models, there are reasonably uni-
form overall patterns of warming in both summer and
winter seasons (JJA not shown here). Nevertheless,
models tend to show some difference in the locations
where greatest warming occurs. There is a general
tendency for the majority of the models to have
greater warming in the inland regions than near the
coasts. The shift of the warming patterns between
summer and winter seasons in each of the models is
also relatively small, indicating a remarkably uniform
response in temperature changes across seasons when
CO, has doubled. Confirming this, the ensemble
mean model correlation between summer and winter
temperature change is quite high at around 0.8.

In contrast to the homogeneity seen in surface tem-
perature changes, the precipitation response to global
warming has large spatial variations over Australia
(Fig. 8 for DJF and Fig. 9 for JJA). There is no com-
mon region where all models simulate an increase or
decrease in rainfall. Some models simulate quite sub-
stantial changes for summer (ech3, iap, lmd,
ncar_csm) over certain areas. In general, increases in

rainfall are simulated more often over eastern

Australia and slightly more in the tropics in both sea-

sons, as indicated by the results from the ensemble

mean model in both figures. In winter there is a ten-
dency for a reduction in precipitation broadly across
southern Australia. This decrease of precipitation in
the sub-tropical belt has also been noted in the last

IPCC assessment report (Houghton et al. 2001), for

both the all-Australian annual mean precipitation as

well as the two subsections (NAU=Northern

Australia, SAU=Southern Australia). The shift of the

patterns between summer and winter seasons in most

of the models is quite significant and the correspon-
ding seasonal pattern correlations are very small, sug-
gesting a strong shift in seasonal patterns.

The most recently published climate change pro-
jections for Australia (CSIRO 2001) showed the spa-
tial distribution of seasonal temperature and precipi-
tation changes based on the IPCC Special Report on
Emissions Scenarios (SRES ) (IPCC 2000). While
the SRES scenarios include other forcing besides an
increase in atmospheric CO, , the spatial patterns of
increases in temperature are similar to the CMIP2
ensemble model with Western Australia showing
most of the increase in temperature by the time CO,
has doubled. The CSIRO projections do not show
central tendencies but overall ranges of the change,
which somewhat limits a comparison to our results.
This is particularly the case when comparing changes
in DJF precipitation.

The ensemble averaged changes in rainfall for DJF
and JJA show the following tendencies:

e DJF season: decrease in rainfall in northwestern
and northeastern Australia, and perhaps parts of
Victoria and South Australia. Increase in rainfall
along a band covering northern New South Wales,
southern Queensland and reaching further north-
west into the Northern Territory.

* JJA season: decrease in rainfall across all of south-
ern Australia, including southwest Western
Australia, South Australia, Victoria, Tasmania, and
southern parts of New South Wales. Increase in
rainfall over central eastern Australia, covering
southwest Queensland and northern New South
Wales.

Changes in the role of tropical
oceans in influencing Australian
climate variability

Australian climate is significantly affected by the
tropical SST forcing related to the El Nifio Southern

Oscillation (ENSO) and Indian Ocean conditions
(Nicholls 1989, 1995; Power et al. 1999; Drosdowsky
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Fig.7 Spatial distribution of temperature change for DJF from the 1% CO, runs (yr61-80). Units: °C.
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Fig. 8 Spatial distribution of precipitation change for DJF from the 1% CO, runs (yr61-80). Units: mm/month.
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Fig. 9

Spatial distribution of precipitation change for JJA from the 1% CO; runs (yr61-80). Units: mm/month.
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1993; Drosdowsky and Chambers 2001). Here, we
examine: (a) if there are significant correlations
between precipitation in tropical Australia (usually
dominated by the summer monsoon system), and SST
conditions in a number of key regions; and (b) if such
correlations change between the CMIP2 model con-
trol and perturbed simulations. Four key areas are
examined (see Fig. 10). These areas are: Nifo3.4
which is a centre of action for ENSO and exhibits a
known high correlation with precipitation in
Australia, the western Pacific Ocean (WPO) warm
pool area which affects the Australian monsoon, and
the Indian Ocean (Area7, index area defined by
Mullan (1998)) and western Indian Ocean (WIO)
areas. Here we examine the correlation coefficients
between SST averaged over these areas with model-
simulated rainfall over tropical Australia (10°S —20°S
and 120°E — 155°E).

Note that there is no CMIP2 model SST output for
the analysis. Instead, we have used model simulated
2-metre surface air temperature as an approximation
of SST conditions. Even though there are some dif-
ferences between these two fields, the high correla-
tions between surface air temperature and SST sug-
gest that this approximation will not significantly
affect the conclusions in this section.

Because of its known high correlation with tropi-

cal precipitation in Australia, the Nifio3.4 variability
(expressed as the year-to-year (DJF) standard devia-
tion of SST (in °C)) is a very important assessment for
model performance. Figure 11 shows the Nifio3.4
variability within all models compared with observa-
tion (indices from the NOAA Climate Prediction
Centre, 2004) for both the control and perturbed runs.
Besides the fact that nearly all the models show a
weaker variability than observed, for most models,
there is little difference between the runs, ie. a 1%
compounded CO, increase does not change signifi-
cantly the tropical SST variability. The fact that
almost all models underestimate the variability is also
consistent with the underestimation of interannual
variability we have seen (not shown here).

Following the examination of Nifio3.4 variability
simulated in the coupled models, the correlation of trop-
ical Australian precipitation with SST conditions over
key areas will be discussed in the following section.

Firstly, the correlations between surface air tem-
perature from key areas shown in Fig. 10 and tropical
Australian rainfall (representing the Australian mon-
soon) are computed for all CMIP2 models for both the
control runs and the 1% increase in CO, per year
runs. Only the last 40 years of the transient run have
been used for this statistic because we are interested
in the strength of this relationship at a time when the
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Fig. 10  Grid boxes used in the correlation analysis
(WPO = Western Pacific Ocean, WIO =
Western Indian Ocean, WLD = Index area
defined in Drosdowsky (1996), Area7 = Indian
Ocean index area defined by Mullan (1998)).

Fig. 11  Nifio3.4 variability simulated by the CMIP2
models compared with observations (here:
NOAA’s Climate Prediction Centre NCEP
indices data at http://www.cpc.ncep.noaa/
data/ indices/index.html ). Shown is the year-
to-year (DJF) standard deviation (in °C) for
model control runs (empty bars) and per-
turbed runs (dark bars) — bars furthest to the
right depict the observations. Shown is the
standard deviation in °C.
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climate has already undergone a change. The results
for Nifio3.4, Western Pacific Ocean (WPO), Indian
Ocean (Area7) and the Western Indian Ocean (WIO)
are shown in Fig. 12. The corresponding results from
the validation data sets (NCEP reanalysis for surface
air temperature; Australian Bureau of Meteorology
data for precipitation; time span 1950-2000) have
been added as dashed lines in Fig. 12 for comparison.
¢ Nifo3.4: Based on the Monte Carlo calculations,

the significance threshold for the control run cor-

relations (n = 78, o = 5%) lies at = 0.22, and the

perturbed run correlations (n = 40, a0 =5%) lies at

+ 0.304. Most simulations show a negative corre-
lation in the control as in the observations, but the
strength varies from weak insignificant (giss) val-
ues to strong highly significant values (bmrc, cerf,
ukmo3). There are 10 models that have a non-sig-
nificant correlation in either control or perturbed
run with 6 of them (csir, ech3, giss, inm, ncar-csm,
pcm) unable to establish a significant correlation
in both runs.

* WPO: The observed weak positive correlation in
this area is only simulated by half of the CMIP2
models, while two of the models give stronger
opposite correlations.

e Area7: As shown by a number of studies, the
Indian Ocean plays a key role in Australian climate
variations (Drosdowsky 1993; Frederiksen and
Balgovind 1994; IOCIP 2000). This is underlined
by the observed correlation shown in Fig. 12.
Nevertheless, most models fail to either simulate a
comparable strength or even the same sign, with
six models simulating a positive correlation in
their control runs. Of the 18 CMIP2 models, five
of them (bmre, cerf, csir, iap and ukmo3) show a
correlation comparable to the observations in their
control run.

e WIO: In contrast with results in the more eastern
parts of the Indian Ocean (represented by Area7
here), the observed correlation for the Western
Indian Ocean section is simulated quite strongly
by most models (similar to the Nifio3.4 case). This
is quite striking because the observations point to
a very weak negative correlation, which is seen by
only one third of the models control runs.

Finally, the changes of correlations in the model
perturbed runs, compared with their control simula-
tions, were carefully examined by the scatter between
200 Monte Carlo random correlation calculations
from both control and perturbed simulations. Again,
only the last 40 years of the transient run has been
taken into account. In Fig. 12, any model with an
asterisk (*) indicates that the difference between cor-
relations simulated in the control run compared with
the perturbed run is not significant.

Figure 12a shows that all but one of the models
retain the sign of the correlation between Nifio3 .4 sur-
face temperature and tropical Australian rainfall as in
their control runs. However, under greenhouse warm-
ing, most models simulate statistically significant
changes in the magnitude of correlations between
Nifio3.4 surface temperature and tropical Australian
precipitation. About half of the models show a
stronger negative correlation in their perturbed runs
compared with the control run, while the other half
have either weaker correlations, or an opposite sign.

Over the western Pacific Ocean (WPO), half of the
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Fig. 12  Correlation coefficients for gridbox averaged SST to tropical Australia precipitation correlations in both the
control (dark) and 1% CO; (light) run of the simulations. Shown are the correlations for Nino3.4 (a), WPO (b),
Area7 (c) and WIO (d). Observations are shown by the dashed line. Not significant differences between control
and perturbed run correlations are indicated by (*) next to the model name.
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models simulated statistically significant changes in
their correlations, with about half of them strengthen-
ing their correlations under climate change condi-
tions. Similar model behaviours are also seen in the
results of the eastern Indian Ocean (Area7) and west-
ern Indian Ocean (WIO), with half of the models
showing enhanced correlations.

Discussion and conclusions

This paper has presented a preliminary analysis of 18
CMIP2 models in simulating Australian climate and
its potential changes under greenhouse warming (CO,
forcing only). We also investigated whether the influ-
ence of tropical SST (via approximation of 2 m sur-
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face air temperature) on Australian rainfall has varied
in the model control and perturbed simulations.
Rainfall and surface air temperature monthly cli-
matologies over the Australian region have been
derived from the model monthly datasets in their con-
trol simulations (i.e. with constant CO, concentra-
tion), and compared with observations from the
Australian Bureau of Meteorology. The gross spatial
patterns of austral summer rainfall (DJF) can be rea-
sonably simulated by the majority the models. There
are, however, significant model errors in simulating
the intensity and location of the heavy Australian
summer monsoon rainfall in the northern and eastern
parts of the continent. About half of the models show
more than 100 mm/month biases and a number of
models simulated wrong locations of the monsoon
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rainfall. The model errors in the Australian winter
(JJA) rainfall simulations are relatively small com-
pared with the results in DJF, partly because rainfall
totals are smaller in winter. There are 2-4°C biases
present in the model simulated surface air tempera-
ture climatology, however the seasonal variation of
the surface temperature climatology is reasonably
reproduced in the models.

By way of summary, the Taylor diagram in Fig. 4
(Taylor 2001) suggests that Australian surface tem-
perature is more reasonably simulated by the CMIP2
model control simulations than the rainfall. No sin-
gle model consistently gives a better result in all
respects. Results from a simple multi-model ensem-
ble are better overall than most individual models in
both simulations of surface temperature and precipi-
tation. The interannual variability of simulated pre-
cipitation and temperature is too weak. This is at
least partly due to an underestimate of ENSO-driven
variability in the models.

Based on the 80-year model simulations of per-
turbed climate, with 1% per year increasing atmos-
pheric CO, concentration, the changes of surface air
temperature and precipitation have also been
analysed. The Australia - averaged annual surface
temperature change between the control and transient
runs in the last 20-year period of the model simula-
tions over the Australian region varies from 1.00°C to
2.18°C, with the multi-model ensemble average of
1.59°C, with a standard deviation of 0.33°C. All of
the models simulate warming over Australia at most
locations. Australia-averaged rainfall averages, on the
other hand, are not consistent. Some models simulate
more than 3 mm/month increases while some show
decreases of 4 mm/month or more.

Surface temperature increased over the entire con-
tinent in almost every model, while the changes in
precipitation show quite large spatial variations. The
ensemble mean model shows decreases in winter
rainfall across southern Australia and over northwest-
ern Australia during summer. Increased rainfall is
simulated over parts of eastern Australia during win-
ter, extending further north during summer.

Besides the analyses of changes in mean climate,
the potential impacts of global warming on
Australian climate variability have been explored in
a preliminary way by measuring the changes of trop-
ical Australian (de-trended) precipitation correla-
tions with surface temperature variations over four
key oceanic regions. Results suggest that the influ-
ence of tropical and subtropical SST forcing on
Australian climate may change under greenhouse
warming, with the majority of the models showing
statistically significant changes in correlation coeffi-
cients, although being roughly evenly split as to the

sign of the change.

Coupled model development has moved on since
the submission of data to the CMIP2 program and a
similar analysis needs to be carried out with more
recent model versions.
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