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Abstract

This dissertation describes the analysis of the monthly, seasonal and interannual rainfall vari-

abilities over the Maritime Continent and describes the potentials and limits of a wide range

of climate models in simulating these variabilities. The study analyzes the simulated rainfall

variability from two global reanalyses, an atmospheric general circulation model (AGCM), an

atmospheric regional climate model (RCM) and an ocean general circulation model (OGCM).

The two reanalyses and the AGCM output is available at T42 and T106 resolutions, while the

RCM resolves 0.5◦ and 1/6◦. The study explores the uncoupled as well as the coupled mode of

RCM and OGCM and focuses mainly on the period 1979 to 1993.

With a regionalization method introduced in this study, the Maritime Continent is divided into

three distinct climate regions, the south monsoonal, the northwest semi-monsoonal and the

Molucca anti-monsoonal region. All three regions show different responses to monsoon and El

Niño/Southern Oscillation (ENSO).

Two important rainfall variabilities ranging from monthly to interannualy time scale are the

annual monsoon cycle and the irregular ENSO. The monsoon regulates local SST variability

via ocean circulation, which in turn influences heat content of the upper ocean and eventually

local rainfall. The study points to remote ENSO influences through SST forcing. Indeed, there

is a local ocean circulation mechanism that drives the ENSO impact on Indonesian rainfall.

The rainfall climate of this region is potentially predictable on monthly and seasonal scales but

only for limited and specific periods and regions. Despite such a potential, the study shows a

consistent predictability barrier in spring as an intrinsic character of the Indonesian rainfall and

a challenge to climate modeling in the region, because it limits model applications. The barrier

is found by all models and at different resolutions.

The RCM and the OGCM have been especially tailored to the region and they produce re-

alistic results. The global atmospheric model produces the large scale system well and the

nested regional model shows a local phenomenon obscured in the global. A coupled atmo-

sphere/ocean regional model shows improved dynamics through a better sea-air interaction and

ocean/atmosphere feedback. However, also the uncoupled ocean and atmosphere models, se-

parately, produce realistic results of rainfall and ocean variability albeit with some drawbacks.

The quality of the RCM simulations is confined, in most cases, to the quality of the prescribed

boundary forcings.
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Chapter 1

Introduction

The rainfall climate of the Maritime Continent is very unique as it is located in the most ac-

tive convective area of the world. This uniqueness has attracted scientists since the early 20th

century. Rainfall variability in this region is very complex and is considered as the chaotic

part of the monsoon variability (Ferranti 1997). The complexity in land representation and

incoherency of spatial and temporal rainfall patterns are quite a challenge for scientific inves-

tigations. Rainfall variability, indeed, influences the way of life for several hundred million

people in the region. The economic and agricultural importance of rainfall variability, just men-

tioning two main sectors, is a strong motivation of the study. For example, the El Niño leads to

devastating droughts with low crop yields, while too much rainfall in the peak of the wet season

may produce devastating floods.

Regional climate study of rainfall in the region has so far been limited to smaller areas due to a

limited amount of rain gauge station data. This study utilizes a maximum gauge data available

to build a spatial and temporal rainfall data representation in this region. This is needed to work

with a hierarchy of climate model. The climate modeling approach and comprehensive multi-

resolution analyses of climate model rainfall variability in this region are relatively new. This

study explores climate models from global to regional and from uncoupled to coupled ones.

The study shall present the potentials and limitations of applying state of the art climate models

for rainfall and climate studies in Indonesia.

Despite its flexibility to reach different spatial resolutions, the in-situ data set has limited tem-

poral resolution, as it consists of monthly averages covering the period 1961 to 1993. However,

most model analyses use the period 1979-1993 due to limited forcing data. Thus, analyses of

the intra-seasonal or higher frequency rainfall variability are unattainable. On the other hand,

the minimum possible low frequency analyses will be the 5 year variability.

Two main themes will be presented in this thesis. Firstly, studies and analyses of the monthly,

1
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Figure 1.1: Schematic diagram of the structure and relationship among chapters in this thesis.

seasonal and interannual rainfall variability in the region, which focuses on the monsoonal and

El Niño/Southern Oscillation patterns. Those two patterns are believed to be dominant factors

in the region for such time periods. Secondly, studies on the performance and skill of state of

the art climate models in representing rainfall variability in the region. The main question is

whether we gain significant performance by going to higher resolution models. For this, we

will utilize the results of a global climate model, reanalyses, a regional climate model, a global

ocean model and a coupled ocean/atmosphere model.

Fig. 1.1 illustrates the structure and relationships among chapters in this thesis. In the remaining

part of this introduction, brief descriptions of the chapters of this thesis are given. Each chapter,

especially chapter 2 to 6, is designed to be an independent and full paper, thus some repetitions

may inevitably occur in data and method descriptions.

Chapter 2 presents an overview of the main rainfall data used and the climatic characters of rain-

fall in the maritime continent, focusing on monsoonal and ENSO characteristics. This chapter

discusses the monsoonal climatic regions that subdivide Indonesia into three climatic regions

and the role of local and remote Sea Surface Temperature (SST) forcings.

In Chapter 3, the global representation of Indonesian rainfall in two reanalyses and a global

climate model is analyzed together with their monthly and seasonal skills and their relation to
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the three climate regions, the monsoon and ENSO. Also the sensitivity to spatial resolution will

be addressed.

After the analysis of the global representation of rainfall, Chapter 4 presents the rainfall sim-

ulations of a Regional Climate Model that is driven by two reanalyses and a global climate

model. This chapter presents the simulations at resolutions 0.5 ◦ and 1/6 ◦ and the implication

of resolution.

Since the Maritime Continent is mostly occupied by the sea, the ocean has important influences

on atmospheric climate and its variability. In Chapter 5, the monsoonal character of the In-

donesian waters is discussed in detail. The focus of the chapter is ocean variability that drives

the different monsoonal regions and ocean variability simulated by a global ocean circulation

model with detailed regional resolution. Also the implication of different resolutions will be

addressed.

After having simulated the regional atmosphere with the Regional Climate Model and the re-

gional ocean with a global ocean model, the result of the coupled model is presented in Chapter

6. The chapter focuses on the consequences of coupling a regional atmospheric model and a

global ocean model for rainfall variability, ocean circulation and SST. The simulations were

performed with forcings from two reanalyses and with two different resolutions of the ocean

model.

A brief summary of the conclusions of all chapters, a discussion of some implications and

outlooks are presented in the final Chapter 7.



Chapter 2

Characteristics of Climatic Rainfall

Patterns in Indonesia

Abstract

The characteristics of climatic rainfall patterns in Indonesia are investigated using a new dou-

ble correlation method, which is compared to the Empirical Orthogonal Function (EOF) and

the rotated EOF methods. Also local and remote responses to Sea Surface Temperature (SST)

are discussed. The result suggests three climatic regions in Indonesia with their distinct cha-

racteristics. Region A is located in southern Indonesia from south Sumatera to Timor island,

part of Kalimantan, part of Sulawesi and part of Irian Jaya. Region B is located in northwest

Indonesia and Region C encompasses Molucca and part of Sulawesi. All three regions show

both strong annual and, except Region A, semi-annual precipitation signals. Region C shows

the strongest El Niño Southern Oscillation (ENSO) influence followed by Region A. In Region B,

the ENSO-related signal is suppressed. Except for Region B, there are significant correlations

between SST and the rainfall variabilities indicating a good possibility for seasonal climate

predictions. March to May is the most difficult season to predict. From June to November, there

are significant responses of the rainfall pattern to ENSO in Regions A and C. A strong ENSO

influence during this normally dry season (June to September) is hazardous in El Niño years,

because the negative response means that higher SST in the NINO3 region of the Pacific will

lower rainfall amount over the Indonesian region. Indonesian rainfall patterns reveal some

sensitivities to SST variabilities in adjacent parts of the Indian and Pacific Oceans.

4



5 2.1. INTRODUCTION

2.1 Introduction

There exist several studies on rainfall over Indonesia and its relation to large-scale climatic phe-

nomena (Braak, 1921; Wyrtki, 1956; Sukanto, 1969; Hackert and Hastenrath, 1986; McBride,

1999; Kirono et al., 1999; Haylock and McBride, 2001). The influence of large-scale climate

phenomena varies across the region due to island topography and/or ocean-atmosphere fluxes,

which are imposed by Sea Surface Temperature (SST) variability. To investigate the relationship

of rainfall to the climatic phenomena, we need not only long-term rainfall time series but also

more stations to better resolve the spatial variability over the entire Indonesian region. Better

spatial and temporal resolutions of the climate over Indonesia allow a more quantitative under-

standing of the causal links of Indonesian rainfall to larger scale climate features. Hence, it is

important to study the climatic rainfall pattern in the Indonesian region using more complete

data sets and appropriate statistical tools. The results based on a new double correlation method,

a covariance Empirical Orthogonal Function (EOF) and a rotated EOF will be discussed here.

Using monthly rainfall data from 33 stations over 48 years, Kirono et al. (1999) noted that du-

ring the El Niño 1997/1998, virtually the entire country had rainfall below the 10th percentile,

with many stations recording the lowest rainfall on record. Haylock and McBride (2001) ex-

tended the studies using rainfall data from 63 stations from 1950 to 1998 to determine the spatial

coherence of wet season anomalies.

It has been demonstrated that the SST anomalies in the region of Indonesia and northern Aus-

tralia are closely related to the El Niño Southern Oscillation (ENSO; Philander 1983) phe-

nomenon (Newell et al., 1982; Rasmusson and Carpenter, 1982; Nicholls, 1983, 1984, 1985;

Gutman et al., 2000). The relationship of Indonesian SST to ENSO and the tendency for them

to lead east Pacific SST suggests that they might provide forecasts of Indian monsoon with

longer lead times than is possible using either Darwin pressure tendencies (Shukla and Paolino,

1983) or east Pacific SST (Rasmusson and Carpenter, 1982). Using global rainfall and SST

data from 1979-1998, Lau and Wu (1999, 2001) indicated the importance of regional processes

in affecting the Asian summer monsoon rainfall variability. On average, ENSO-related basin

scale SSTs can account for 30% of the rainfall variability, and regional processes can account

for an additional 20%. The results suggest that in order to improve seasonal-to-interannual pre-

dictability of the Asian monsoon, we need to investigate and exploit not only the relationship

between monsoon and El Niño, but also intrinsic regional processes coupled with monsoon.

Our study investigates the relation between SST in both the Pacific and Indian Oceans and its

influence on the rainfall pattern in Indonesia.

Given the complexity of the region and many factors affecting the rainfall pattern, more com-

plete data sets and a suitable statistical method are needed. In this chapter, we introduce a new

regionalization method, the ”double correlation method” (DCM), based on the annual rainfall
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Figure 2.1: The distribution of rain gauges stations over 30 ◦S - 30 ◦N, 20 ◦E - 180 ◦E with 5419

stations and over the Indonesian archipelago over 15S- 8N, 90E - 140E (inside box) with 884

stations.

cycle. The first regionalization attempt for this region was done by Wyrtki (1956), when he

divided the Indonesian waters into 9 subregions. The main objective of this chapter is to find

an objective method for a division of Indonesian climate using DCM. In the next section we

shall describe the data and the double correlation method. Section 3 discusses the result based

on the double correlation method and its comparison with the covariance and rotated EOF and

then evaluates the responses of each region to SST in local and surrounding seas. The section

ends with an analysis of all ENSO years. Finally section 4 contains the overall discussion and

conclusions.

2.2 Data and Methods

The study area covers the Indonesian archipelago or an area between 15 ◦S to 8 ◦N and 90 ◦E to

140 ◦E (Fig. 2.1). There are 884 rain gauges within the region. Among those are 526 stations

of the Indonesian Meteorological & Geophysical Agency (BMG). The rest of stations comes

from the World Meteorological Organization-National Oceanic and Atmospheric Administra-

tion (WMO-NOAA) project on the Global Historical Climatology Network (GHCN; Vose et al.

1992). We use monthly rainfall data from 1961 until 1993. Using the Cressman objective

analysis (Cressman, 1959), these data are then gridded into the T106 resolution of the global

models, which corresponds to a spatial resolution of 1.125 ◦ latitude by 1.125 ◦ longitude. Fig.

2.2 illustrates the rainfall climatology of the region using this data.

The gridded SST data from the Global Ice and Sea Surface Temperature dataset (GISST2;

Rayner et al. 1996) version 2.3b are used in this study. This dataset is compiled from SST

observations from 1871 - present, with a spatial resolution of 1 ◦. To have the same period as
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the rainfall data, we use data from 1961 to 1993 only.

Due to the high spatial variability of the Indonesian rainfall, we need a statistical method that

can reduce the bias error. It will be shown that the DCM provides comparable results in classi-

fying the climate division to the EOF method. A region that consists of grid cells with similar

annual cycles is likely to respond specifically and homogeneously to a climate phenomenon.

The applied regions must be distinct (no overlap) from its neighbor and each should represent

the dominant climate phenomenon acting on it. One could use a simple box with a definite

longitudinal and latitudinal boundary to set a region. This approach is biased to some extent

because many climatic factors, as previously mentioned, interplay over the region. The DCM

could reduce this bias.

With the DCM, we look for a region, in which the annual cycles of its grid cells are correlated

among themselves by more than a certain threshold value. To make it more efficient, rather

than correlating all grid cells to each other, we first select some referenced cells. Secondly

we correlate all other cells to these reference cells based on their annual cycles. Cells that

are correlated above a certain threshold value are selected to belong to a region. Thirdly we

correlate all grid cells again with the mean annual cycle of the resulting region using the same

threshold value. The aim of the second correlation is to produce a region independent of the

choice of the reference grid. The threshold value should be the highest correlation value, which

produces no overlapping boundaries. In this paper, the threshold value chosen is 0.67, which

statistically has above 99% significance level on our rainfall data set from only one correlation.

Thus, with double correlations, the level of significance is much higher than a single correlation.

With such a high degree of significance, the choice of reference cells is not difficult and not very

relevant for the result.

To fulfill the above criteria, a simplified procedure has been carried out as follows. First, we se-

lected 100 rain gauge stations with a high quality record and gridded them at the T42 resolution

(2.8125 ◦). Those stations are distributed unevenly over Indonesia and cover 48 land grid areas.

By visually comparing their mean annual cycles, they are attributed to 5 climatic regions. Then

we selected our reference cells from these regions to start the double correlation method at the

T106 resolution. All regions bounded by the same coordinates (15 ◦S - 8 ◦N, 90 ◦E - 141 ◦E).

2.3 Results

The result of the DCM is three climate regions as shown in Fig. 2.3. Region A (solid line)

covers south Indonesia from south Sumatera to Timor Island, parts of Kalimantan, parts of

Sulawesi, parts of Irian Jaya. Region B (short dashed line) is located in northwest Indonesia

(close to the Asian continent) and Region C in Molucca and parts of Sulawesi (close to the



CHAPTER 2. CLIMATIC RAINFALL PATTERNS 8

Figure 2.2: The 33 year (1961-1993) monthly rainfall average of the Maritime Continent.
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A

B

C
Kalimantan

Irian

Java

AustraliaIndian Ocean

Pacific
Ocean

Sum
atera

Figure 2.3: The three climate regions according to the mean annual patterns using a ”double

correlation method”. Indonesia is divided into Region A in solid line (Australian monsoon), Re-

gion B in short dashed line (NE Passat monsoon) and Region C in long dashed line (Indonesian

throughflow).

western Pacific Region). With the threshold value 0.67, we obtain a clear boundary among

regions without overlapping, although there are some discontinuities (the intermediate region).

Region A, which covers the largest area, is the dominant pattern over Indonesia. Hamada et al.

(2002) classified Indonesia into four climatological regions. They found similar characters of

the three regions we found and the intermediate region with no clear rainy and dry seasons.

The mean annual rainfall cycles of each region and their interannual standard deviations are

described in Fig. 2.4. From this figure, each region has its own distinct feature. Region A has

one peak and one minimum and experiences strong influences of two monsoons. Those are the

wet northwest (NW) monsoon from November to March (NDJFM) and the dry SE monsoon

from May to September (MJJAS). Region B has two peaks, in October November (ON) and

in March to May (MAM). Those two peaks are associated with the southward and northward

movement of the Inter Tropical Convergence Zone (ITCZ). There is no clear reason why the

peak in ON is much higher than that of MAM. There is a possible influence of a cool surface

current coming from the north out of the South China Sea during January - March (JFM) that

suppresses the rainfall amount. Otherwise the annual cycle of Region B would be similar to

that of Region A. Region C has one peak in June to July and one minimum (NDJF). The JJ

peak in Region C is about 10 mm/day, while the peaks in Region A and B are 10.7 and 10.3

mm/day respectively. The minimum in Region A is the lowest and reaches a mean below 3.3

mm/day. Thus, Region A is the driest region during the dry season in JAS and the wettest region

in December.
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Figure 2.4: The annual cycles of the three climate regions (solid lines) using the ”double corre-

lation method”. Dashed lines indicates 1 standard deviation (σ) above and below average.
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Figure 2.5: The first two principal components of the EOF method using the same data set as

the double correlation method. Regions A and C in Fig. 2.3 are present in PC 1 and Region B

(not obvious) in PC 2 with a broader intermediate region in east Indonesia between Region A

and C. Below are the coefficient time series of each PC, which explain that PC 1 and PC 2 are

the annual and the semi-annual patterns.

Region C, in comparison to the other two, has a unique annual cycle. The other two regions

have their peaks near the end of the year, while the peak of Region C is in the middle. There

is a strong evidence of the possibility of ocean influence in Region C. Region C or Molucca is

along the eastern route of the Indonesian Throughflow (ITF) (Gordon and Fine, 1996). The ITF

flows mainly through the Makassar Strait with a small part flowing through the Molucca Sea

(Gordon et al., 1999). The ITF in Molucca brings sea water from the warm pool area, which is

located northeast of Irian Jaya Island (New Guinea). As suggested from the distribution of the

region itself, there is some part of this region that lies north of Irian Jaya. Hence, the SST over

Molucca is determined mainly by the condition over the warm pool. During the drier season

of Region C (NDJFM) the sun position is in the southern hemisphere. The ITF brings cooler

surface water from the warm pool to the Molucca Sea. This cooler SST inhibits the formation

of a convective zone. On the other hand, during the wet season of Region C (MJJAS) the warm

SST enhances the convective zone. Hence, we obtain the peak in MJJ and the minimum in

ONDJ.

The standard deviation in Region A is smaller throughout the whole year, which indicates a

strong coherent pattern. On the other hand, the other two regions have stronger interannual

cycles than Region A. The homogeneous pattern in Region A indicates a wide extent of the dry

season that reaches all Java and Lesser Sunda Islands, Sumatera and part of Kalimantan.
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Figure 2.6: The first two principal components of the rotated EOF method using the first 100

PCs (explain 90.7% of all variances) from the unrotated EOF. Region A and C are indicated

with boundaries > 0.5 and < 0.0 respectively in PC 1. While Region B is present in PC 2 with

boundary > 0.5. Below are the coefficient time series of each PC, which explain that PC 1 and

PC 2 are the annual and the semi-annual patterns.

2.3.1 The Covariance EOF and the VARIMAX Method

We compare the DCM with the covariance EOF method (von Storch and Zwiers, 1999) and the

rotated EOF method. In this paper the VARIMAX rotation (Kaiser, 1958) was used as a way

in rotating EOF. The EOF method is capable of extracting the principal components (PC) of

patterns in a time series. Each of the PCs will be orthogonal to the others. The first PC (PC1)

will be the most dominant pattern and explains most of the variance. Then PC2 will be the

second most dominant PC followed by PC3, etc. There will be in total the same number of PCs

as the number of data in the time series. The original data set will be the combination of all PCs

multiplied by the time series of their respective coefficient time series.

The spatial pattern of PC1 and PC2 of the EOF method for the same data set is given in Fig.

2.5. PC1 and PC2 explain 30.08% and 8.09% of all variances and represent the annual and semi

annual patterns. The distribution of apparent regions in PC1 resembles that of the DCM. Region

A, B and C from the DCM are approximately represented in PC1 by the areas with values above

1.0, between 0 and 1.0 and negative values, respectively. The opposite sign of Regions A and

B with respect to C for the EOF method implies the opposite annual cycle (as already seen in

Fig. 2.4). The main differences between the results of both methods are the border of Region

B, and the intermediate region in the east. The annual cycle of the intermediate region would

be a mixture between pattern A and C with two peaks and minimums and a flat annual cycle.
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Figure 2.7: The frequency spectra of the three regions and the all indonesian region after

smoothing with 1-2-1 convolution.

Figure 2.6 shows the first two principal components from the rotated EOF using the VARIMAX

method. PC1 and PC2 explain 23.47% and 12.65% of all variances, respectively. Those PCs

are calculated using the first 100 PCs (that explain 90.7% of all variances) of the EOF method.

Again Region C corresponds to the negative valued region of PC1, while the border of Region

A is obvious only in the eastern part. Region B has values above 0.5 of PC2. The presence of

Region B in PC2 is understandable because Region B has similar semi annual characteristics as

PC2.

In summary, it is difficult to judge whether the EOF or the VARIMAX methods give a better

regionalization. With the EOF method, the boundaries of Region A and C exist in PC1, but

not the boundary of Region B. While the boundaries of Regions B and C exist in PC1 and PC2

of the VARIMAX method, respectively, but not the western boundary of Region A. sometimes

patterns derived from EOF analyses can be misleading and associated with very little physics

(Dommenget and Latif , 2002).
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Figure 2.8: The frequency spectra of the first two PCs of the EOF method (left) and rotated

EOF method (right) after smoothing with 1-2-1 convolution. PC 1 EOF has an overflow value

of 64.9 in the period of one year.

2.3.2 Spectral Analysis of the EOF and the Double Correlation Method

To clarify which frequency dominates the rainfall pattern, we investigate the power spectra

of each region from the DCM and each coefficient of the EOF and the VARIMAX methods.

Figure 2.7 illustrates the power spectra of rainfall from the three regions and all-Indonesian

(a box bounded by 15 ◦S, 8 ◦N, 90 ◦E and 140 ◦E). The spectra are shown with a logarithmic

time scale for periods from 2 months to 30 years. Important time scales are indicated along

the x-axis. Those important periods are 0.25, 0.5, 1, 2, 4 - 7 and 10 years, which represent

three-monthly, semi annual, annual, biennial, ENSO related and decadal signals, respectively.

Since the spectra are white noises or AR(0) processes (a time series whose statistics (e.g., mean,

variance, etc.) do not depend upon a fixed starting point, but only on time separation), all peaks

are significant.

The spectrum of Region A has a strong annual signal. It dominates the overall pattern with a

value more than six times any other maximum. The strongly prevailing annual signal of Region

A suggests a strong homogeneous pattern as also shown by a small standard deviation of its

annual cycle in Fig. 2.4.
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The spectrum of Region B has strong annual and semi annual signals, with the semi annual

one being slightly stronger than the annual. The strong semi annual signal is evident from the

annual cycle, because of the presence of two peaks and two minimums (Fig. 2.4). Interestingly,

there is a remarkable signal in a period of more than a decade. It is possibly due to decadal

variability in the Indian Ocean.

The spectrum of Region C has two strong peaks and several weaker ones. The annual signal

dominates the rainfall patterns of this region. The semi annual signal designates the presence

of two peaks in the annual cycle. From the annual cycle, there is a peak in MJJ, and a smaller

peak in NDJ. Other notable signals are the biennial and ENSO related signals (4 - 7 years) that

contribute to the high standard deviations to the annual cycle of Region C. As shown in Fig.

2.4, Region C has large standard deviations from June to November.

Overall, the three regions show strong annual signals and, except Region A, semi annual signals.

This is an indication that the DCM works well in isolating signals in a region based on its annual

cycle. Region C shows the strongest ENSO signal, followed by Region A. In Region B, the

ENSO related signal is suppressed, which is indicated by a minimum instead of a peak in the

period range 4 - 7 years. The spectrum of all-Indonesian rainfall shows the dominance of annual

and semi annual signals or monsoonal type of climate. The annual signal is three times stronger

than the semi annual one. Low frequency signals (period more than one year) are stronger than

high frequency signals (period less than one year). The strong decadal signals in all four spectra

are in agreement with weak low frequency variabilities in EOF coefficients of PC1 (Fig. 2.5

and 2.6).

The spectra of the first two PC coefficients from both the EOF and VARIMAX methods are

shown in Fig. 2.8. The units of y-axis are arbitrary. It is impossible to compare the amplitude

values from both methods directly. Our interest is locations of significant peaks. The two

spectra of EOF show strong annual and semi annual signals. Low frequency signals (period

more than one year), semi annual signal and intraseasonal signal with a period of four-months

in PC1 are overshadowed by the strong peak of the annual signal. Thus, compared to the result

of the DCM, the EOF method gives a stronger annual signal. Although the three regions from

the DCM are also obvious in PC1, the resulting spectra are different. The VARIMAX method

shows both the annual and semi annual signals in the first two spectra. The signal strength is

reduced from the annual, semi annual, and intra-monthly signals. The spectra of PC2 derived

from both EOF and rotated EOF methods are comparable to the one of Region B, which shows

annual and semi annual signals.

Hence DCM can be used to regionalize climate patterns based on the annual rainfall cycle. The

DCM produces clear boundaries and indicates the dominance of the annual signal (to some ex-

tent the semi annual signal) in their spectra. If we compare the spectrum of the all-Indonesia

with those of each PC, only PC1 from the VARIMAX method gives a comparable result. The
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spectrum of all-Indonesia region exhibits particularly strong annual and semi annual signals.

One may argue that the EOF analysis was done on the basis of monthly data, while our DCM

was done on the basis of annual cycles. However, we utilized only the annual and semi annual

components of the EOF and the VARIMAX methods. It is possible to do the DCM with the

whole monthly data set, with the consequence of a lower threshold value for the same signi-

ficance level. The results will differ according to the variability in each region. Regions with

high variabilities such as Region C would not receive a comparable boundary as by the method

applied here. The DCM is optimized in classifying regions according to their mean annual

cycles. The high significance level of the threshold value contributes to regions with highly

correlated grid cells. One major drawback of the method is the intermediate region. As stated

before, the annual cycle of this region will be a flat annual one with two small peaks and two

small minimums.

2.3.3 Local SST Responses

We are interested in semi annual and annual cycles of rainfall, the prominent time scales in this

region. Therefore we also investigate the rainfall response to the ocean temperature in order to

understand sea-air interaction locally and regionally. With regard to the local SST responses,

we selected three ocean regions or boxes bounded by a certain longitude and latitude. The

boxes chosen lie inside Regions A, B and C: South Molucca or Timor Sea (15 ◦S - 5 ◦S, 120 ◦E

- 135 ◦E) for Region A, the South China Sea (1.5 ◦S - 8 ◦N, 102 ◦E - 110 ◦E) for Region B and

Molucca Sea (6 ◦S - 2 ◦N, 122 ◦E - 135 ◦E) for Region C. In Fig. 2.9, the scatter plots of rainfall

versus local SST are grouped by month for 33 years of monthly data (1961-1993).

In Region A, the rainfall is clustered by month in the temperature range from 25.6 ◦C to 30.3 ◦C

and shows a SST-related function, as previously suggested by Bony et al. (1997a,b) and Lau

et al. (1997). They showed that below 29 ◦C, the rainfall amount increases with SST, however

the increase is not linear. Above 29.6 ◦C in contrast, the increase of local SST causes a decrease

in the maximum rainfall amount. There is a clear distinction between the dry and the wet

seasons. The dry season (MJJAS) has smaller SST than the wet one. Both SST and rainfall

amount decrease from January to August and increase from August to December, as indicated

by the mean annual cycle in Fig. 2.4. The rainfall in each month varies less in the dry season

than especially in the wet season months in January and February. However, the majority of

rainfall is distributed in narrow bands on both axes. This is in agreement with our previous

result, which shows small standard deviations in the annual cycle of Region A all year long.

In Region B, there is no clear rainfall-SST relationship, especially from October to March. In

DJF, high precipitation amount exists at low local SSTs, whereas in other regions SSTs are

high in DJF. The rainfall is scattered from 25.5 ◦C to 30.5 ◦C and from as low as 1.27 mm/day
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Figure 2.9: The monthly precipitation vs local SST patterns of the seas represent the three

regions. Region A (top) is represented by the Timor Sea, Region B (middle) by the South China

Sea and the Malaccan Strait and Region C (bottom) by the Molucca Sea.
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to 24.7 mm/day. The range of SST in each month in this region is also high, reaching almost

3 ◦C (JFM) compared to 1.5 ◦C in Region A. From April to September, the data scatter less. The

absence of a clear relationship between rainfall and SST in Region B suggests that the rainfall is

independent of local ocean temperature and its variability. Possibly strong atmospheric forcing

plays some role here.

Compared to two Regions A and B, Region C has the narrowest range in both axes especially

in DJF. The rainfall is distributed from 27 ◦C to 30 ◦C and from 0.47 mm/day to 12.5 mm/day.

There seems to be some weak relationship between SST and rainfall, but less obvious than in

Region A. The scatter of rainfall amount is high from June to September as these months also

show high standard deviations (Fig. 2.4).

In general, relationships between SST and rainfall appear in Region A and less obvious in C.

It is important to investigate further other atmospheric factors that govern the rainfall pattern in

Region B. This result is quite surprising because the area of our investigation is the maritime

continent, which is surrounded by oceans. Since Region B is close to the Asian continent, the

land ocean interaction may have impact on the rainfall pattern.

2.3.4 Seasonal and Remote SST Responses

In this subsection, we discuss rainfall responses to remote SST on a seasonal basis, i.e. for DJF,

MAM, JJA and SON. This seasonal division does not exactly fit the local condition because

in this region there are two monsoons in this region, the SE (MJJAS) and the NW monsoon

(NDJFM), and two transitional months (April and October). Our analysis covers major oceans

surrounding Indonesia up to the NINO3 region (5 ◦S - 5 ◦N, 150 ◦W - 90 ◦W) in order to see

the ENSO response. The responses will be based on the correlation values between seasonal

rainfall in each region and SST. Only correlation values above a certain significance level are

presented.

For Region A, the rainfall responses to SST are given in Fig. 2.10. In DJF, there are significant

negative correlations of rainfall to local SST (< −0.3) in the adjacent Indian Ocean and over

Indonesia, from the South China Sea to the Banda Sea. The pattern indicates a relation to the

Asian winter monsoon and the location of the ITCZ. Positive correlations exist for some parts

in the central Pacific. In MAM, significant positive correlations exist east of Australia and in

some parts of the northwestern Pacific. In JJA, the map shows two dipoles of correlation va-

lues. One is designated by opposite correlations between the maritime continent (positive) and

the equatorial Indian Ocean (negative), while the other dipole is between again the maritime

continent and the equatorial western Pacific. Positive correlations exist for the warm pool area,

eastern Indonesia seas and the South Pacific Convergence Zone (SPCZ). Negative correlations

exist for the NINO3 region and some parts of the Indian Ocean. In SON, these dipoles are
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getting stronger with correlation values above |0.7|. In general, except in MAM, Region A ex-

periences positive local SST influences on rainfall but also strong negative influences of ENSO

and positive ones of SPCZ in JJA and SON. The responses to both phenomena are stronger in

SON.

Region B, as shown in Fig. 2.11, exhibits only weak rainfall response to SST all year. There are

only a few strongly positive responses in SON to SST in the West Pacific. Again, the weakest

spatial pattern emerges for MAM. The result is consistent with the analysis to local SST (Fig.

2.9). Region B does not respond to ENSO at all, as already shown by a small amplitude in the

rainfall spectrum for the ENSO time scale (Fig. 2.7).

Figure 2.12 shows the seasonal rainfall response in Region C to SST. In DJF significant signals

exist in the western equatorial Pacific and the Indian Ocean. The response distribution in DJF

is much wider and stronger than for Region A. The response in MAM is again the weakest,

but stronger than for the other two regions. Strong signals appear in JJA and SON. In JJA,

the spatial pattern shows smaller positive areas compared to Region A. However, the strongly

negative western Pacific ENSO responses in JJA are stronger than in Region A. Thus Region C

is more strongly influenced by ENSO in JJA than Region A. However, the response to Indian

Ocean SST in JJA is smaller in Region C than in A. In spite of their opposite annual rainfall

cycles, the SON responses in Region C and A are alike with two strong dipoles at the equator.

In general, MAM is the most unresponsive season with least significant correlation values in

all three regions. The rainfall of Region A and C responds significantly negative (< −0.55)

to ENSO events from June to November (an additional response exists in DJF for Region C).

The confirmation of the seasonal or monthly variations of rainfall in all regions during ENSO

events needs further investigations. High correlation from June to November in most parts

of Indonesia suggests a good possibility for seasonal prediction using SST values. It may be

possible to extend the prediction on a monthly basis, especially from June to November. Hay-

lock and McBride (2001) showed that with regard to the relation of the all-Indonesian Rainfall

index (63 stations) to the Southern Oscillation Index (SOI) during 1950-1998 the wet season

(DJF) rainfall in Indonesia is inherently unpredictable. Nicholls (1981) presented evidence that

interannual fluctuations of early wet season rainfall in the Indonesian Archipelago can be suc-

cessfully predicted from prior observations of atmospheric pressure anomalies. It is shown that

this predictability is related to SST anomalies.

Strong two dipoles in SON or boreal fall are associated to the atmospheric teleconnection be-

tween the Pacific and the Indian Oceans. Arpe et al. (1998) suggested that SSTs over the north-

ern Indian Ocean are partly forced by SSTs over the tropical Pacific through ENSO related

atmospheric forcing. The teleconnection strengthens during El Niño event and the teleconnec-

tion causes a dipole like variability in the Indian Ocean. In a non ENSO year, dipole like SST

anomaly pattern exists in the boreal fall season, which can be explained by atmospheric forcing
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Figure 2.10: The seasonal correlation of rainfall in region A against SST. This figure shows

correlation values |0.30|, |0.45|, |0.55|, |0.6| and |0.70|, which the first three correspond to

90%, 99% and 99.9% significant level for 33 years of the seasonal correlation.
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Figure 2.11: as Fig. 2.10, but for region B.
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Figure 2.12: as Fig 2.10. but for region C.
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(Baquero-Bernal et al., 2002).

2.3.5 Ensemble ENSO Years

After seeing strong ENSO influence to Indonesian rainfall, we examine how the influence

evolves on a monthly basis. With the definition of an ENSO year by Roeckner et al. (1996b),

SST anomalies are classified as an ENSO event if they are greater than 1 ◦K in amplitude and

persist for more than one year in the NINO3 region. As a result, the ENSO years from 1961 -

1993 are as follows:

El Niño year: 1965, 1969, 1972, 1982, 1987, and 1991

La Niña year: 1964, 1970, 1973, 1975, and 1988

After we have determined the ENSO years, we will divide the rainfall data into normal, El Niño

and La Niña years and then we calculate an ensemble average of each classification above. The

aim of this ensemble average is to give superimposed views of anomalies in each month. Using

46 stations data Hamada et al. (2002) analyzed rainfall anomaly during composite ENSO year

in this region. The anomaly of each month is defined as

rainanom =
rainENSO− rainnormal

rainnormal
×100 (2.1)

From Fig. 2.13, the influence of El Niño is detected first in April with a sharp decrease of rain-

fall amount in northern Australia. In March there is no indication of El Niño, since there is no

significant signal (> |20%|) over Indonesia. There are some areas even with rainfall reductions

up to 100%, i.e. totally dry. From May onward, the anomalies increase and diverge towards the

Indonesian archipelago. The distribution of negative anomalies extends from southeast Indone-

sia westward and northward. By August the anomaly covers almost the whole country except

North Sumatera and North Kalimantan or Region B. The distribution of highly dry areas varies

among regions. However, most of the regions experience negative anomalies above 60%.

The maximum anomaly occurs in September. Anomalies of less than 60% cover the same areas

as in August. Then from October onwards, the influence of El Niño decays and the influence

disappears in December. In November, there is an indication of higher rainfall amounts coming

from the north. November is the onset month of the Asian winter monsoon, as the ITCZ moves

southward through this region. The significant positive anomaly of rainfall amount north of

Indonesia suggests an El Niño - Asian monsoon interaction. The positive anomaly exists until

February in the following year. There is a need of further investigations on this issue, which is

beyond the scope of this paper.
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Figure 2.13: Percentage of rainfall anomaly during El Niño years.

Figure 2.14 shows that the situation in the ensemble La Niña year is the opposite of the ensemble

El Niño year with a very similar spatial and temporal distribution. The La Niña signal or positive

anomaly can be detected as soon as March, although these signals are not significant (mostly

below 40% anomaly). Like in the El Niño year significant but now positive anomalies exist in

north Australia in April. From that month onward, the positive anomalies increase spatially and

in values, although some areas with unsignificant anomalies remain. The positive anomalies

extend northward and westward from southeast Indonesia. There is an abnormity in July, where

the rainfall in north Australia is negative, which reminds us of the similar case of July in the

following El Niño year. That abnormity comes from La Niña years, which followed the El Niño

years immediately (1970 and 1973). The difference between the pattern in July in this ensemble

La Niña year and the July of the following El Niño year is a more positive anomaly in some

other areas, which can be attributed to signals of the other three La Niña years.

The peak of the La Niña influence occurs like for El Niño in August and September, when the

extension of highly correlated areas is largest. In September, most of the affected areas get

more than double the rain. Like for El Niño, La Niña years do not affect rain in Region B.

After September, the influence decay with time and the influence of La Niña has disappeared in
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Figure 2.14: As Fig 2.13. but for La Niña years.

December. Interestingly, from October to December, the Asian winter monsoon is influenced

by La Niña as in by El Niño but with opposite sign. Hence, areas, which receive more rain in

winter during El Niño years, will receive less during October to December in La Niña years.

This consistent feature indicates a possible negative influence of ENSO on the onset of Asian

monsoon in the Southeast Asian region.

2.4 Discussion and Concluding Remarks

We have introduced a new regionalization method, the double correlation method (DCM). With

DCM Indonesian rainfall climate can be divided into three clearly distinct regions. A compari-

son to the EOF and rotated EOF (VARIMAX) methods by analyzing their spatial patterns, and

spectra has been done. Since the DCM gives strong annual and semiannual signals, the analy-

sis of rainfall response to the ocean was also addressed. The analysis focused on monthly and

seasonal response to the local and remote seas.

The DCM is reliable in isolating regions with a specific annual cycle of precipitation. The
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method is simple and flexible. One can adjust the threshold correlation value to one’s needs

and use for other criteria. The resulting regions can have any shape. The spatial pattern of PC1

derived from the EOF and VARIMAX methods resembles, to some degree, regions found by

DCM. Some limitations of the EOF method include patterns that are not dominant (they only

explain 30.1% of all variance) and that have no clear boundaries. The DCM also provides a

better spectrum in comparison to the other methods both for the spectrum of each region and

all-Indonesian rainfall. The spectra from the DCM show strong annual and semiannual signals

as the case of the spectrum for all-Indonesian rainfall. The VARIMAX method produces similar

spectra to the all-Indonesian one and a similar boundary (PC2) for Region B to the DCM.

The DCM delineates three distinct regions of Indonesia with a characteristic annual cycle of

precipitation. Region A, the southern part of Indonesia influenced by the SE (Australian) mon-

soon; Region B, the northwestern part of Indonesia with two precipitation peaks per year; and

Region C, the Molucca region (western Pacific Region). Except Region C all other parts of

Indonesia experience strong influences from the Asian monsoon or ITCZ.

Region B has remarkably small standard deviations and a strong annual and semiannual signal

in its spectrum and does not respond to remote SST. From the diagram of monthly rainfall versus

local SST and from the seasonal analysis, there is no consistent feature apparent in this region.

The other two regions, however, respond strongly and thus promise capability for monthly to

seasonal climate prediction. This capability is least in MAM or spring. This idea follows the

lowest SST responses of each region in MAM compared to other seasons. This phenomenon

is known as the spring predictability barrier. The spring predictability barrier refers to a lower

skill generally observed for predictions that extend through boreal spring (see i.e. Webster and

Yang 1992; Balmaseda et al. 1995; Flügel and Chang 1998; Latif et al. 1998; Goddard et al.

2000). Latif and Graham (1992) in a GCM experiment found that between April and June,

the correlation coefficients between observed and predicted SST in the Pacific Ocean are much

reduced in comparison to other periods, irrespective of when the prediction has been started.

Haylock and McBride (2001) found that the correlation between all-Indonesian rainfall index

(63 stations) and the SOI is lowest in DJF and MAM and higher for the other two seasons.

Local SST ranges for which rainfall occurs are from 25.7 ◦C to 30.5 ◦C. Region C has the

narrowest range of SST and of rainfall variabilities. A narrow range of SST variability is sus-

ceptible to the effect of global climate change, which is presently estimated as an increase of the

global surface temperature between 1.4 and 5.8 ◦C in the next hundred years (Cubasch et al.,

2001, Fig. 9.14). Whereas the rainfall in this archipelago occurs near the critical temperature

of 29.6 ◦C, above which an increase in SST means a decrease of the rainfall amount. Thus sea-

sonal and annual cycle changes of rainfall are highly possible in the future for Regions A and

C.

Strong negative rainfall responses in Regions A and C to higher SST in the NINO3 area (the
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warm phase of El Niño event) for northern hemisphere summer and autumn (JJASON) lower

an already low rainfall and thus cause drought. On the other hand, during La Niña or the

cold phase, the dry season gets considerable more rainfall. The ENSO influence to Indonesian

rainfall lasts only until November, although some other parts of the world may still receive the

impact later. Surprisingly, Region B does not experience any ENSO impact. If we look at

Fig. 2.3, Regions A and C coincide with the ENSO affected parts from the result of the earlier

assessment by Ropelewski and Halpert (1987). This paper advances further with the analysis

of seasonal effects of ENSO.

Indonesian rainfall responds strongly to the remote ocean SST in the warm pool, the NINO3 and

SPCZ area in regions A and C. The two dipoles in the rainfall SST response pattern indicate the

Walker cell. The Walker cell is a tropical atmospheric phenomenon centered in the warm pool

near Indonesia. The two dipoles show that with the Walker cell, the variability of precipitation

from the Pacific and Indian oceans are important. Strong activities of this cell, which affect

rainfall pattern in Indonesia, occur especially during the northern hemisphere summer (JJA)

and autumn (SON). Moreover, that period is the period of intense influence of ENSO. Thus,

there is a need for a further research on the interaction among ENSO, ITF, Walker cell and their

influences on Indonesian rainfall, which is beyond the scope of this paper.



Chapter 3

Variability of Indonesian Rainfall and the

Influence of ENSO and Resolution in

ECHAM4 Simulations and in the

Reanalyses

Abstract

A study on the skill of the atmospheric general circulation model ECHAM version 4 and two re-

analyses in simulating the Indonesian rainfall is presented with comparisons to 30 years of rain

gauge data. The reanalyses are those performed by the European Centre for Medium-Range

Weather Forecasts and of the National Centers for Environmental Prediction jointly with Na-

tional Center for Atmospheric Research. This study investigates the skill of the reanalyses and

ECHAM4 with regard to regional, annual and interannual variability of rainfall and its respon-

ses to El Niño-Southern Oscillation (ENSO) events. The study is conducted at two resolutions,

T42 and T106.

A new regionalization method called the double correlation method is introduced. With this

method, the Maritime Continent is divided into three climate regions, the south monsoonal, the

northwest semi-monsoonal and the Molucca anti-monsoonal region. Except over Molucca, the

reanalyses and ECHAM4 simulate these annual rainfall patterns quite well.

The three regions are used to study the variability of Indonesian rainfall and to measure the

skills of the reanalyses and ECHAM4. The skill of rainfall simulations in Indonesia depends on

the region, month and season, and the distribution of land and sea. Higher simulation skills are

confined to years with ENSO events. Except for the region of northwest Indonesia, the rainfall

from June (Molucca) and July (south Indonesia) to November is influenced by ENSO, and it is

28
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more sensitive to El Niño than La Niña events. The observations show that the Moluccan re-

gion is more sensitive to ENSO, receives a longer ENSO impact and receives the earliest ENSO

impact in June. The ENSO impact will diminish in December. It is found that the reanaly-

ses and the climate model simulate the seasonal variability better than the monthly one. The

seasonal skill is the highest in June/July/August, followed by September/October/November,

December/January/February and March/April/May. The correlations usually break down in

April (for monthly analysis) or in spring (for seasonal analysis). In general the performance of

ECHAM4 is poor, but in ENSO sensitive regions and during ENSO events, it is comparable to

the reanalyses. The introduction of a higher resolution land-sea mask improves the model per-

formance. Besides rainfall variability, signatures of the ENSO impact, the spring correlation

breakdown and annual cycles are better represented by the higher resolution model.

3.1 Introduction

The Indonesian Maritime Continent is an interesting region for climate research. In atmospheric

dynamics, this region is influenced by both the Hadley and Walker cells. The seasonal to inter-

annual variabilities of Indonesian rainfall are characterized mainly by the monsoon (Ramage,

1971) and the El Niño-Southern Oscillation (ENSO; Philander 1989; Ropelewski and Halpert

1987, 1989; Halpert and Ropelewski 1992). Indonesia experiences two monsoons every year.

They are the wet monsoon from November until March, which coincides with the presence of

the Inter-Tropical Convergence Zone (ITCZ) in this region (Asnani, 1993), and the dry monsoon

from May until September, when the dry southeasterly wind blows from Australia. Ramage

(1971) and Cheang (1987) mentioned April and October as the transitional months. Annual

and interannual climate variability in Indonesia is quite unique, as it is not homogenous over

the whole region (Wyrtki, 1956) and the coherence of rainfall patterns varies with the season

(Haylock and McBride, 2001). ENSO contributes to the rainfall pattern in this area and its in-

fluence is interconnected with the monsoons (Lau and Nath, 2000). During El Niño (La Nina)

events or warm (cold) phases, this region experiences lower (higher) rainfall than in other years

(Gutman et al., 2000). So far, discussions of Indonesian rainfall variability in relation to ENSO

have used the Southern Oscillation index (SOI). For example Braak (1919); Berlage (1927);

Schell (1947); Reesinck (1952) and later Nicholls (1981) reported a good correlation between

rainfall variations in Indonesia and the SOI. Here, we will use another ENSO predictor, the

NINO3 sea surface temperature (SST), which has been used by many ENSO forecasting groups

(Barnston et al., 1999).

Recent analysis extends to include atmospheric general circulation model (AGCM) simulations.

Goddard et al. (2000) gave a comprehensive review of the seasonal and inter-annual skill of cli-

mate simulations over recent decades, including the performance of AGCMs in general. Barnett



CHAPTER 3. RAINFALL VARIABILITY IN ECHAM4 AND REANALYSES 30

et al. (1997) did a predictability analysis of mid-latitude climate on ensembles of simulations

with the ECHAM4 (Roeckner et al., 1996a) and the NCEP atmospheric model and found that

the models’ skill is higher by about 50% during strong SST events in the tropical Pacific. Mo-

ron et al. (1998) examined the skill and reproducibility of seasonal rainfall in the tropics for the

ECHAM4 model at resolution T30. They found that with regard to the June to September inter-

annual variability over southeast Asia from Pakistan to Taiwan (including Indonesia), the skill

of ECHAM4 is mainly confined to years of strong tropical Pacific SST variability. Nonetheless

there is yet no specific study addressing the influence of higher resolution on the skill of a GCM

in the region.

There have been many studies on the quality of the simulated rainfall for the National Centers

for Environmental Prediction and National Center for Atmospheric Research (NCEP-NCAR)

reanalysis (Kalnay et al., 1996) and the ERA15 (Gibson et al., 1997) from the European Centre

for Medium-Range Weather Forecasts (ECMWF). Janowiak et al. (1998) found good agreement

with regard to large scale features and substantial differences in regional precipitation between

the NCEP reanalysis and observation from the Global Precipitation Climatology Project (GPCP;

WCRP 1990). Stendel and Arpe (1997) found that ERA15 precipitation fields were superior in

the extra tropics to other reanalyses when compared with GPCP data. Annamalai et al. (1999)

found the ERA15 to be better than other reanalyses in describing the Asian summer monsoon,

while Newman et al. (2000) point to a substantial problem with the precipitation in the warm

pool area near the Maritime Continent by all reanalyses.

The purpose of this chapter is an assessment of the performance or skill of the two reanalyses

and the Max-Planck-Institute’s atmospheric model ECHAM4 in simulating the variability of

Indonesian rainfall as documented by gauge observation and how their performances vary in

regard to the monsoon, ENSO, ITCZ and model resolution. The study will focus on monthly

and seasonal means, but will examine interannual aspects of rainfall. One of the problems in

simulating the Indonesian rainfall is the land-sea representation. Most of the areas are highly

complex with oceans and chains of islands, which are difficult to represent even by a high-

resolution model. Thus, it is important to study the role of the model resolution. Due to the

high level of heterogeneity in the region, it has to be speculated that the typical horizontal

resolution used in GCMs cannot adequately represent the complex interactions of mountains,

air and sea. We have therefore included a higher resolution simulation with the same model

in order to determine the ECHAM resolution required to make useful simulations in the region

and classified regions according to major climate controls using rain gauge data.

The outline of this chapter is as follows. Section 2 discusses data and the ECHAM4 model, sec-

tion 3 regional and annual climate cycle analyses, section 4 inter-annual variability and section

5 seasonal and monthly variability. In section 6 the relation of rainfall variability to ENSO is

investigated while section 7 discusses the land-sea mask effect at different resolutions. Finally,

section 8 presents conclusions.
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Figure 3.1: The distribution of rain gauge stations over the Indonesian archipelago or over 15S-

8N, 95E - 145E with 884 stations.

3.2 Data and Model

The data used in this study are monthly rainfall data collected by the Indonesian Meteorological

& Geophysical Agency (BMG) at 526 stations all over Indonesia, and monthly mean rainfall

data from the WMO-NOAA project on The Global Historical Climatology Network (GHCN;

Vose et al. 1992) from 1961 to 1993. In our area of interest (15 ◦S - 8 ◦N and 95 ◦E - 145 ◦E),

there are 884 rain gauges (Fig. 3.1). These data are gridded to match the other datasets at T42

and T106 resolutions.

This study uses two reanalysis data sets. The first is ERA15 (Gibson et al., 1997), which is

available at the horizontal resolutions of T42 and T106 (the original calculation) or equivalent

to 2.8125 ◦ and 1.125 ◦ in the tropics, respectively, from 1979 until 1993. The second one is the

40 year NCEP reanalysis (NRA; Kalnay et al. 1996), from which the time period from 1961

to 1993 with a fixed spatial resolution of T62 (equivalent to 2.5 ◦ in the tropics) is used. For

comparisons with other T42 products, a regridding procedure is applied to change the NRA grid

format from T62 into T42.

The ECHAM4 (Roeckner et al., 1996a) model is a spectral model with a triangular trunca-

tion at the wavenumbers 42 (T42) and 106 (T106). For the vertical representation a 19 level

hybrid sigma-pressure coordinate system is used. The time integration is carried out using a

semi-implicit ”leap-frog” method. The orography and the land-sea mask are calculated from a

high resolution (1 km) US Navy data set. Unfortunately, due to limited computer resources, the

T106 output is available only for 10 years from 1979 - 1988, while the coarser resolution (T42)

is available from 1979 - 1993 (see Table 3.1). The ECHAM4 model was driven by interannu-
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Table 3.1: Resolutions and time span of data sets used

Resolution Time span

Rain gauge data T42 / T106 1961 1993

ERA15 T42 / T106 1979 1993

NRA T42 (regridded from T62) 1961 1993

ECHAM4 T42 / T106 T42: 1979 1993;

T106: 1979 1988

ally varying SSTs from the Atmospheric Model Intercomparison Project 2 (Gates, 1992; Gates

et al., 1999) at both resolutions.

In addition, SST data from the GISST2 (Global Ice and Sea Surface Temperature) dataset

(Rayner et al., 1996) are used. This dataset is compiled from SST observations from 1903 -

1994 with a spatial resolution of 2.50, and is used to determine the ENSO years. The resolution

of this data set is not of main concern here, because only an area average on NINO3 (5 ◦S -

5 ◦N, 150 ◦W - 90 ◦W) is taken into account. With the definition of an ENSO year by (Roeckner

et al., 1996b), SST anomalies are classified as an ENSO event if they are larger than 1 ◦K in

amplitude and persist for more than one year in the NINO3 region. As a result, the ENSO years

from 1961 - 1993 are as follows:

El Niño year: 1965, 1969, 1972, 1982, 1987, and 1991

La Niña year: 1964, 1970, 1973, 1975, and 1988

3.3 Regional Annual Cycle Analysis

Due to a high horizontal variability in this region (Haylock and McBride, 2001), there is a need

to classify regions according to their annual rainfall cycles. The first regionalization attempt was

made by Wyrtki (1956), when he divided the Indonesian waters into nine subregions. Here we

introduce the double correlation method in which it is noted that grid cells with similar annual

cycles are likely to respond similarly and homogeneously to a climate phenomenon and shall

belong to a region. Each of the regions must be distinct from the others and each is influenced

by the specific dominant climate phenomenon acting on it. To establish a strong climate pattern,

this section utilizes long term observations from 1961-1993.

With the double correlation method, we look for a region, in which the annual cycles of its grid

cells are correlated among themselves above a certain threshold value. For higher efficiency,
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Figure 3.2: Three climate regions using the double correlation method, which divides Indonesia

into region A (solid curve); the southern monsoonal region, region B (dashed-dotted curve); the

semi-monsoonal region and region C (long dashed curve); the anti monsoonal region.

rather than correlating all grid cells to each other, we first select some reference cells. Secondly

we correlate all other cells to these reference cells based on their annual cycles. Cells that are

correlated above a certain threshold value are belonging to a region. Thirdly we correlate all

grid cells again with the mean annual cycle of the resulting region using the same threshold

value. The aim of the second correlation is to produce a region independent of the choice of

the reference grid. The threshold value should be the highest correlation value that produces

no overlapping boundaries. In this paper the threshold value chosen is 0.67, which is the 99%

significance level in our data from only one correlation. Thus, with double correlations, the

level of significance is much higher. The result of this method is illustrated in Fig. 3.2, where

the Maritime Continent is divided into three climate regions, the southern Region A, the north-

western Region B and the Moluccan Region C. From now on, all analysis will use these three

regions.

In order to show the similarity of the approaches, the first two Principal Components (PC) of

Empirical Orthogonal Function (EOF) analysis from monthly rainfall over 25 ◦S - 25 ◦N and

20 ◦E - 180 ◦E were also calculated (not shown). PC 1, which represents the annual pattern,

has 30.08% of all the variances and shows Region C over Molucca. The areal extent of this

region is similar to Region C of the present method. Additionally, PC 1 shows Regions A and

B (the positive part). PC 2 with 8.09% of total variance also shows Region B and represents the

semi-annual patterns such as the double peaks of Region B. Those two PCs only explain less

than half of the total variance because we took the whole dataset of 33 years. Other PCs explain

non-annual patterns, while we are aiming only at the annual patterns for our regionalization.

The annual cycle given by observed data at T106 resolution in Region A is shown in
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Figure 3.3: The annual rainfall cycle (mm/day) of each region at T106 resolution for observation

with rain gauge (bold), ERA15 (thin dashed) and the ECHAM4 simulation (thin dot-dashed).
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Figure 3.4: As Fig. 3.3, but for the T42 resolution, and NRA (bold dashed).
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Fig. 3.3. We observe maximum in December/January/February (DJF) and a minimum in

July/August/September (JAS). This illustrates two monsoon regimes: the wet northeast mon-

soon from November to March (NDJFM) and the dry southeast monsoon from May to Septem-

ber (MJJAS). With a strong monsoonal cycle and the southern location, we refer to this region

as the southern monsoonal region. The annual cycle of Region B has two peaks, in Octo-

ber/November/December (OND) and March/April/May (MAM). The peaks in OND and in

MAM represent the southward and northward movements of the ITCZ respectively. David-

son et al. (1984) and Davidson (1984) described in detail the ITCZ movement in this region in

boreal winter. We thus call Region B the northwest semi-monsoonal region. We also note in

Fig. 3.3 that Region C is quite different from the others and has a peak in May/June/July (MJJ),

and we therefore refer to this region as the Molucca anti-monsoonal region.

Along with the annual cycle from observations, Fig. 3.3 shows the annual cycle of ERA15 and

ECHAM4 at T106 resolution over corresponding regions of Fig. 3.2. Patterns in Region A of

ECHAM4 and ERA15 agree well with observations although the peaks of the wet season are

less than observed. It is interesting to note that in Region A ERA15 and ECHAM4 show a very

similar annual march. In Region B, ERA15 produces more rainfall than observations throughout

the year in contrast to less rainfall given by ECHAM4. However, their correlations with regard

to time with observations are above 0.80, which means that the representation of the annual

cycle is excellent. In Region C, the performances differ considerably. There the annual peak of

ERA15 and ECHAM4 is found in MAM instead of in MJJ, and there is a strong overestimation

of December rainfall. It is possible that these peaks represent an erroneous movement of the

ITCZ.

At T42 resolution (Fig. 3.4) the reanalyses and model behave differently. In Region A, the

reanalyses agree well and follow the observed annual cycle and they are particularly good in

JAS, but again underestimate the wet DJF. ECHAM4 has a peak in MAM instead of NDJ and

extends the wet season far too long into May and June. In Region B, ECHAM4 considerably

overestimates rainfall from June to October i.e. during the dry period. In this region ERA shows

an almost perfect annual cycle. NRA has a similar annual cycle as ERA15 but underestimates

the peak in OND. In Region C, ECHAM4 and ERA15 again misplace the peak observed in June

and July. The worst correlation in Region C is that of NRA, which is considerably different

from to observations. In fact, NRA’s annual cycle is similar to that in Region A. Table 3.2

summarizes the reanalyses and model skills with regard to their annual cycles. The reanalyses

simulate temporal patterns of Region A and B quite well, while ECHAM4 shows large errors

in Region B. However, neither reanalyses nor model show good agreement in Region C.

In summary of Fig. 3.3 and 3.4, NRA has a poorly pronounced annual cycle with no clear peak.

NRA was produced at T62 and was truncated to T42, so should have the benefit of a higher

resolution land-sea mask. Obviously, this information is not passed on to the atmosphere. In

Region C ERA15 has a clear peak at both resolutions, but it occurs too early in the year. ERA15
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Figure 3.5: As Fig. 3.2, the climate regions at the T106 resolution as simulated by ERA15

(above) and ECHAM4 (bottom) using annual rainfall patterns of gauges as shown in Fig. 3.3.

at a coarser resolution has a less pronounced annual cycle. The performance of ECHAM4 at

higher resolution resembles that of ERA15, although less pronounced, while ECHAM4 at lower

T42 resolution disagrees with observations in all three regions.

This analysis can be used to explain correlation values in Table 3.2 or the deviations of their

annual cycles in Fig. 3.3. Fig. 3.5 shows the regionalization that would result from ERA15

and ECHAM4 at T106 using the corresponding annual cycle procedure as in observations (Fig.

3.3). In Fig. 3.5 for both ERA15 and ECHAM4 Region A and B, as expected, are located in

southern and northwestern Indonesia, respectively. Meanwhile the climate of Region C is not in

the proper location in the ERA15 results. ECHAM4 represents Region C climate only for one

grid cell in central Molucca plus some areas south of Indonesia. These results show that ERA15

and ECHAM4 cannot perform well with regard to Region C in the previous analysis. ECHAM4
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Table 3.2: Correlations of ERA15, NRA and ECHAM4 in three regions with the observed

annual cycles. One, two and three asterisks indicate correlations at 90%, 99% and 99.9% signi-

ficance levels, respectively.

Region A Region B Region C

Obs - Obs - Obs - Obs - Obs - Obs - Obs - Obs - Obs -

ERA15 NRA ECHAM ERA15 NRA ECHAM ERA15 NRA ECHAM

T42 0.97*** 0.94*** 0.56** 0.86*** 0.97*** 0.32* 0.27 0.01 0.13

T106 0.91*** - 0.93*** 0.88*** - 0.88*** 0.27 - 0.2

gives a broader Region B while ERA15 gives a broader Region A, the latter indicating a wider

dry area or area affected by the southeast monsoon and the former indicating a longer period

of wet northeast monsoon. Another feature are broader intermediate regions in both cases. The

expected annual cycle of the intermediate region will be a flat one with two small peaks. Similar

analysis at T42 resolution (not shown here) can be used in explaining values in Table 3.2 and

patterns in Fig. 3.4.

3.4 Interannual Variability

The analysis of interannual variability in this study is based on monthly and seasonal (three-

monthly) averages for the three climate regions. Fig. 3.6 to 3.8 show interannual variations

of seasonal means of rainfall for different seasons from observations from 1961 to 1993, two

reanalyses and ECHAM4 at T42. Values represent the interannual variations of the rainfall after

removing their averages and trends in units of a standard deviation (σ). In Fig. 3.6 for Region A

there are good correlations between observations and NRA in JJA and SON. Except for a weak

El Niño of 1969, El Niño years coincide with rainfall below −σ in JJA and SON. In general,

the two reanalyses and the model simulation have the worst skill in MAM and the best in JJA.

During extreme El Niño events such as in 1982, all show good skills from JJA and simulate this

event quite well (<−σ) as it extends to DJF, except ECHAM4 in DJF. In the case of the weak

1987 El Niño, all simulate the event only in JJA and SON. The impact of La Niña is not as clear

as El Niño’s and occurs only in SON. The La Niña events of 1964, 1970, 1973 and 1975 have

clear signals in SON. In general, the impact of El Niño on Region A is greater than the impact

of La Niña. Chen and van den Dool (1997) indicated significantly higher predictability during

El Niño phases than during La Niña.

Fig. 3.7 shows similar information for Region B. Agreement between observed precipitation

and reanalyses or ECHAM4 is low in all seasons. This region seems to show no El Niño effects
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Figure 3.6: The inter-annual variation indices of seasonal rainfall in region A at T42 resolution

for observation (bold solid), ERA15 (thin dashed), NRA (bold dashed) and ECHAM4 (thin

dot-dashed). The ordinates are the variation of rainfall in units of standard deviation (σ).
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Figure 3.7: As Fig. 3.6, but for region B.

on rainfall (Ropelewski and Halpert, 1987), unlike in Region A. Surprisingly, the peaks from

observations in the spring (MAM) of El Niño year 1965 and La Niña years 1973 and 1988 are

high. They may be connected to strong monsoon activities, as the ITCZ is leaving Indonesia

during this time of year.

Fig. 3.8 illustrates the interannual variations for Region C. SON has the highest skill for reanal-

yses and ECHAM4. Like Region A, all have the worst skill in MAM. In SON, the variations

during the El Niño events of 1982, 1987 and 1992 are well simulated by the reanalyses and the

model. Like Region A, Region C receives strong El Niño impacts that last from JJA to DJF with

smaller magnitudes. Smaller magnitudes imply that Region A is more sensitive to El Niño than

Region C. Since the El Niño impact or rainfall reduction occurs during the peak of the rainy

season, the impact will be less devastating than that of Region A, which receives the impact
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Figure 3.8: As Fig. 3.6, but for region C.

during the dry season.

In the case of La Niña years there is no consistent feature among models and observations. In

La Niña years 1964 and 1970, Region A has larger values in SON than in JJA. However, in JJA

of the same year the index is higher in Region C. In La Niña year 1970, the variation index of

Region C is higher in SON. All models show the La Niña of 1988 (JJA and SON) quite well.

Reanalyses show the decreases of this La Niña activity in SON over Region A and C. In sum-

mary, reanalyses and ECHAM4 behave in accordance with observations only during extreme

ENSO events. This agrees with the results of analysis of seasonal climate forecasts, which was

found to be minimal in non-ENSO years (Barnston et al., 1994; Landman and Mason, 1999).

An example of a non-ENSO year, when the rainfall index is high in Regions A (JJA) and C

(MAM and JJA) is 1984. The models do not simulate this well. The high rainfall index in this
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year is associated with a strong monsoon. Thus, models simulate variations due to ENSO events

better than those due to monsoons.

3.5 Seasonal and Monthly Variability

In Fig. 3.9 the seasonal mean correlations between observations and reanalyses and the model

simulations, respectively, are compared for resolutions T42 and T106. Except for ECHAM4 at

T106, which uses data from 1979-1988, correlations are calculated for data from 1979-1993.

The measure of significant correlation is the 95% significance level.

Correlations show a distinct variation during the annual cycle. In Region A at T42, ECHAM4

has the same annual cycle variation as NRA. Only ERA15 shows a good correlation in DJF.

Except for ECHAM4 in JJA in Region C, the correlations are significant in Region A and C for

JJA and SON. In Region C the NRA reanalysis performs best. In Region A and C, the least

insignificant correlation is in MAM and the highly significant one in JJA. There is a consistent

breakdown of correlations in spring in Regions A and C. In Region B NRA and ECHAM4 do

not agree with the positive correlation of ERA15.

At the T106 resolution, the seasonal correlations of ERA15 and ECHAM4 in Region A are

higher than those at T42. As at T42, the correlation breaks down in Regions A and C in the

spring. Except for a low skill in DJF of ERA15 in Region C, the skill in Region A and C in

general is similar to that at T42. In Region B, ERA15 at T106 has a similar feature and a better

skill than at T42. As in the case of the annual cycle, the ECHAM4 performance in Region

B is better for JJA at T106 than at T42. In Fig. 3.4 and 3.5, we saw that the annual cycle

of ECHAM4 at T42 deviates significantly in JASO and higher resolution improves the annual

cycle. Furthermore, there is a considerable improvement for ECHAM4 in the higher resolution

in Region A and C in these seasons. In fact in JJA, ECHAM4 outperforms ERA15 in all regions.

The inconsistent features in Region B in both resolutions suggest weak skill and low forcing by

reanalyses and the ECHAM4 model.

Fig. 3.10 shows the monthly correlations of the T42 (left) and T106 (right) resolutions for the

three regions. The variations from month to month are very high and do not retain the skill

suggested before in seasonal mean analysis. In Region A at T42, the correlations of ECHAM4

are not in accordance with those of ERA15 and NRA, while the correlation of NRA agrees well

with that of ERA15. In Region B at T42, again the correlation of NRA and ERA15 vary during

the annual cycle in a similar way, but NRA has much smaller values. ECHAM4, on the other

hand does not agree with either of them. In Region C at T42 the annual cycle of the correlations

of the three are alike with the exception of ECHAM4 in August. NRA shows higher positive

values while ERA and ECHAM4 agree at lower values most of the year. In Region A at T106
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Figure 3.9: The average seasonal correlation in region A (above), region B (middle) and region

C (bottom) at T42 resolution (left) and at T106 resolution (right) between observation and

ERA15 (∗), NRA (2) and ECHAM4 (•). Solid horizontal lines represent 95% significance

levels on two sides for all data except ECHAM4 at T106; dashed horizontal lines represent

95% significance levels on two sides of ECHAM4 at T106.
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Figure 3.10: As Fig. 3.9, but for the average monthly correlation.

ECHAM4 agrees well with the monthly correlation of ERA15 except in JA and ON and with

lower values. In Region B at T106 ECHAM4 resembles ERA15, but with smaller values. Again

in Region C ECHAM4 is in phase with the variation of ERA15 except in August. The model

shows yet again, as detected in the seasonal analysis of Regions A and C, the spring breakdown

with the lowest correlations from February to April.

3.6 Interannual Variability Related to ENSO

From the above discussions, the impact of ENSO events is prominent in Regions A and C,

that is, over most of Indonesia. Nicholls (1984) showed strong seasonal relations between

SST in Indonesian waters and over the Pacific. Before that, Nicholls (1981) showed evidence
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of air sea interactions in Indonesia and that Indonesian rainfall is related to SST anomalies.

Using the Southern Oscillation Index (SOI), an index based on the difference of mean sea level

(MSL) pressure over Darwin and Tahiti, Ropelewski and Halpert (1989) showed that in an

ensemble ENSO year annual variations of rainfall patterns in Indonesia (except in northwest

Indonesia) are 89% in coherence with SOI from 1885-1983, and that annual rainfall variations

over Indonesia are associated with SST anomalies at 91% coherence during July of ENSO

event years until June of the following year. Ropelewski and Halpert (1987) calculated that

in Indonesia (except the northwestern part) during the period of June - November there is a

coherence of interannual variation of rainfall with SOI of 82%.

ENSO events characterize the seasonal and monthly skills of the reanalyses and the ECHAM4

simulation. During ENSO years, reanalyses, the model simulation and observations show good

agreement, especially in JJA and SON. Our results confirm that ENSO is the main driving

force of high skill, which is in agreement with Barnston et al. (1994) and Landman and Mason

(1999). From Fig. 3.6 and 3.8, ECHAM4 variability agrees with observations strongly only

during ENSO events. However, the high predictive skill of ENSO impact is lost when the

correlations in Region A and C break down in spring.

3.6.1 Spatial Patterns of the Rainfall Sensitivity to NINO3 SST

Fig. 3.11 depicts the sensitivity of the Indonesian rainfall to NINO3 SST forcing during the

dry monsoon (MJJAS) and the wet monsoon (NDJFM) (Ramage, 1971; Cheang, 1987). The

sensitivity is indicated by the correlation between rainfall and NINO3 SST. This figure considers

only correlation values with significance levels above 95%, 99% and 99.9%.

The impact of ENSO as defined by the observations is more prominent during MJJAS with a

significant coherent area of negative signals in most parts of Indonesia. In NDJFM the observed

rainfall data show significant negative responses to SST in south Indonesia, Molucca, northeast

of Australia and a part of north Borneo. Some areas have good correlation values above 99%

significance level in both seasons over 33 years (1961-1993). Region B does not have responses

to NINO3 SST at all as shown by Ropelewski and Halpert (1987).

The ERA15 response in MJJAS is too weak and covers only a small area. In NDJFM, ERA15

shows good response over Kalimantan, north of the warm pool and south of New Guinea.

ERA15 also gives a significant positive response in west Sumatera in NDJFM. ECHAM4 shows

too strong response in MJJAS east of 125 ◦E. In NDJFM, ECHAM4 gives a good response over

Kalimantan, northern Molucca and north of the warm pool. For the remaining area, precipitation

in ECHAM4 does not show a significant correlation to observations.

The exact period of ENSO impact on each region varies and needs further research on a seasonal
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Figure 3.11: Spatial patterns of rainfall - NINO3 SST correlations for observations (top),

ERA15 (middle) and ECHAM4 (bottom) during MJJAS (left) and NDJFM (right) at T106

resolution. All are shown with their statistically significant correlation level, where the solid

(dashed) lines represent positive (negative) correlation. The three level of gray scales on both

sides represent 95%, 99% and 99.9% significance levels. For example, for observed data (1961

- 1993), these significant levels correspond to correlation values |0.33|, |0.42| and |0.52| respec-

tively.
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or monthly basis. Chen and van den Dool (1997) and Haylock and McBride (2001) showed that

the ENSO cycle predictability has a large seasonal dependence.

3.6.2 Seasonal and Monthly Variability Related to ENSO

Fig. 3.12 illustrates the negative seasonal mean correlation between rainfall and NINO3 SST

for the three regions. A high correlation is indicated for T42 only in JJA for Region C for

observations and in JJA and SON for Region A and C for ERA15. The two reanalyses follow

the pattern for observations, especially in DJF, but are reduced to almost zero in MAM. In both

these seasons, ECHAM4 gives erroneous positive correlations. The correlations between SST

and precipitation for reanalyses and ECHAM4 follow highly observations in Regions A and C

with strong negative values in JJA and SON. For ECHAM4, there are significant (above 99%

correlation level) SST responses in SON (-0.51) in Region A, MAM (-0.52) in Region B and

JJA (-0.47) and SON (-0.59) in Region C. In Region B correlations are insignificant indicating

ENSO effect.

At T106 resolution, the positive role of a higher resolution becomes very clear in seasonal

mean correlations of observations, ECHAM4 and ERA15. At this resolution, significant im-

provements of negative responses in JJA and SON, in agreement with observations, are seen

for Regions A and C. ECHAM4 performance is improved and the breakdown of correlations in

spring is even clearer with lower positive MAM values in Region C. Only in DJF and MAM for

Region A are the deviations of ECHAM4 responses higher than observations and reanalyses.

No significant values in Region B again confirm that this region shows no ENSO influence at

all. In Region B, ECHAM4 is very close to ERA15 and both have large errors compared to

observations in SON and DJF. Higher resolution only improves the model simulation in MAM.

A summary of seasonal rainfall response to SST variations at two different resolutions is given

in Table 3.3.

The correlations for monthly means similar to Fig. 3.12 are shown in Fig. 3.13. At T42, the

Table 3.3: The seasonal correlation of rainfall with. NINO3 SST. One, two and three asterisks

indicate the correlations at the 90%, 95% and 99% significance levels, respectively.

Region A Region B Region C

Obs - Obs - Obs - Obs - Obs - Obs - Obs - Obs - Obs -

ERA15 NRA ECHAM ERA15 NRA ECHAM ERA15 NRA ECHAM

T42 0.16 0.26 -0.08 0.98*** 0.19 0.97*** 0.64* 0.90*** 0.45

T106 0.81** - 0.99*** -0.17 - -0.22 0.82** - 0.89***
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Figure 3.12: The seasonal mean values of correlations between NINO3 SST and average rainfall

in region A (above), region B (middle) and region C (bottom) at the T42 resolution (left) and

the T106 resolution (right) of observed data (¦), ERA15 (∗), NRA (2) and ECHAM4 (•). Solid

horizontal lines represent 95% significant levels on two sides of all data except ECHAM4 at

T106, while dashed horizontal lines represent 95% significant levels on two sides of ECHAM4

at T106.
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Figure 3.13: As Fig. 3.12, but for the monthly mean correlations.

observations show more complicated structures and more significant correlations compared to

the seasonal analysis in Fig. 3.12. Correlations between observations are significant from July

to November in Region A and from June to November in Region C. In other words, the ENSO

impact is significant in the dry period and the transition period to the wet period and ENSO has

no impact on the peak of the wet northeast monsoon in DJF (Fig. 3.3). A significant response of

rainfall in Region C on Nino3 SST in June indicates that this region receives an ENSO impact

earlier than Region A, and the rainfall in June foreshadows the ENSO event. However, there

is no clear improvement at the higher resolution. In both resolutions, the reanalyses and the

model follow quite well the observed response between June and December in Regions A and

C. The observed data show that the correlations at T42 are higher than at T106 in Region C.

In spring, the correlation breaks down in Region A and C as before. The correlation values

of ECHAM4 for both resolutions exhibit erroneously high values in Regions A and C in the
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Table 3.4: The monthly correlation of rainfall vs NINO3 SST. One, two and three asterisks

indicate correlation at the 95%, 99% and 99.9% significance levels, respectively.

Region A Region B Region C

Obs - Obs - Obs - Obs - Obs - Obs - Obs - Obs - Obs -

ERA15 NRA ECHAM ERA15 NRA ECHAM ERA15 NRA ECHAM

T42 0.78*** 0.69*** 0.83*** 0.24 0.42** 0.22 0.78*** 0.88*** 0.66**

T106 0.76*** - 0.84*** -0.21 - 0.44** 0.53** - 0.89***

spring. As before, the performance of ECHAM4 improves considerably for higher resolution.

NRA and ECHAM in Region C have the best responses all year long, with correlation values

of 0.88 with observations. In Region B, there is yet again no indication of an ENSO impact.

3.7 Effects of Land-sea Mask Resolution

The correlation analysis at two different resolutions raises the question of the role of the land-

sea mask. Does a higher resolution land mask contribute to higher model skill ? At the T106

resolution there are some additional land areas that do not appear at the T42 resolution. This

section focuses on the effect of these additional land grid cells on rainfall errors. The analysis

below is restricted to ECHAM4 results, since only ECHAM4 has two independent simulations

at two resolutions.

Fig. 3.14 illustrates the land-sea distribution at both resolutions. Even at the T106 resolution,

the model cannot represent some small islands or even the correct shape of a big island such

as Sulawesi. The rainfall for those additional land points will be compared to observations at

T106, and then the differences will be analyzed. The following section describes as an example

the rainfall error at two resolutions in January 1979 for the additional grid cells. We study the

statistics of the errors by a scatter plot and frequency distribution diagram.

Fig. 3.15 shows a scatter plot of errors at both resolutions from ECHAM4. This plot indi-

cates the difference between the newly introduced land points at T106 and the corresponding

grid points at T42. Although there is no significant shift of peaks or medians between the two

curves, the frequency distribution at T42 is broader than that at T106. Thus, there are more

underestimations at T42 than at T106 and a more coherent result at T106. Other statistical mea-

sures are the mean error and the root mean square (RMS) error values. A greater RMS error at

T42 is seen in Fig. 3.15, where the frequency distribution of T42 is skewed toward the negative

side. Overall, the introduction of a new land-sea mask at the higher resolution improves the
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Figure 3.14: The land sea mask of the T42 (top left) the T106 (top right) and two examples of

calculated errors (mm/day) of newly introduced land grids (top right minus top left figures) by

higher resolutions in Jannuary 1979. The bottom left shows errors in T42 and the bottom right

in T106.

model performance. Lal et al. (1997) found that ECHAM simulation at T106 captures both

the spatial and temporal characteristics of the Indian monsoon climatology better than the T42

and produces less erroneous diurnal and seasonal cycles of area-averaged surface air tempera-

ture. Stendel and Roeckner (1998) studied the influence of horizontal resolutions on ECHAM4

model simulations, and found a more vigorous tropical convection at higher resolution and that

a higher resolution model has a positive impact on regional rainfall patterns, which are affected

by the orography. With regard to the rainfall simulated by ECHAM, May and Roeckner (2001)

found that the resolution effect is particularly strong over the tropical oceans with sharper gra-

dients between wet and dry areas as a result of enhanced convection at T106 in comparison to

T42.

3.8 Concluding Remarks

We have examined the performance of two reanalyses and the ECHAM4 model with regard

to rainfall over Indonesia at two different horizontal resolutions. We have introduced a new

regionalization method in order to separate climate zones. The analysis focuses on regional,
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Figure 3.15: Scatter plots of error distributions by ECHAM4 in two different resolutions of

newly introduced land grids. The plots show cases of all errors in 120 months (1979-1988).

The bottom part illustrates the normalized frequency distributions of those errors.

monthly and seasonal means as well as the annual cycle and interannual variability for three

such climate regions. The correlation of rainfall to SST variations in the NINO3 region has

also been investigated. In addition, the resolution dependence by a changed land sea mask

representation at two different resolutions has been addressed.

With the new double correlation method, we have identified three main climate regions each

with its own characteristic annual precipitation cycle. These regions simplify the previous re-

gionalization by Wyrtki (1956). Many authors use a simple box with definite latitudes and

longitudes to designate a climate region. The method presented here is more flexible because

the resulting region can have any shape. The regionalization method produces three main cli-

mate regions; the southern monsoonal, the northwestern semi-monsoonal and the Moluccan

anti-monsoonal.

The simulated rainfall has a seasonal dependence and an ENSO cycle dependence. From the

interannual analysis of Region A and C (Fig. 3.6 and 3.8), El Niño (La Niña) years are indicated

by rainfall index below −σ (above −σ) in SON, except the very weak 1969 El Niño. Thus, the

rainfall in SON in either region can be used as an ENSO index. The observation shows that

Region A is more sensitive to ENSO (section 4), while Region C has the same length of ENSO

impact as Region A and receives the earliest significant ENSO impact (section 6) and there is
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no ENSO impact in the peak of the wet southeast monsoon. The reanalyses and ECHAM4

simulate variability during ENSO years better when coherent signals appear especially during

El Niño years. The study shows better seasonal than monthly model skills. The highest skill

occurs in JJA, followed by SON, DJF and MAM. Haylock and McBride (2001) showed bet-

ter predictability of Indonesian rainfall in SON than in DJF. Good skills in JJA promise good

ENSO forecast, since the most severe environmental and socio-economic impact of ENSO on

Indonesia occurs in SON (Kirono et al., 1999). The study shows the breakdown of the correla-

tion in spring (MAM). Observed SSTs are used as lower boundaries for the reanalyses and very

likely the same observed SSTs are used to run the ECHAM4 simulation. Nonetheless the com-

bination of meteorological data and SST yields only a very small correlation for reanalyses in

spring (MAM). The observed SST applied to the model even yields an erroneous positive corre-

lation. Trenberth and Caron (2000) showed a northward shift of a high correlation area between

rainfall over Indonesia and SOI in MAM, whereas in other seasons the Maritime Continent is

covered by strong correlations.

Indonesia, except Region B experiences consistent ENSO related rainfall anomalies. These

results are in agreement with the results of Ropelewski and Halpert (1987, 1989); Halpert and

Ropelewski (1992). The present study not only gives similar rainfall-anomaly maps as shown

by these authors, but also the seasonal march of impact received in each region. Southern

Indonesia or Region A is the most El Niño sensitive region. While Region C, which is located

in the Indonesian throughflow region, is also an ENSO sensitive region, where the throughflow

variation itself is also affected by ENSO (Meyers, 1996). This study could be extended with

ERA40 (Simmons and Gibson, 2000) and the whole NRA40.



Chapter 4

Long Term Simulation of the Indonesian

Rainfall with the MPI Regional Model

Abstract

Simulations of the Indonesian rainfall variability using the Max Planck Institute regional cli-

mate model (RCM) REMO have been performed using three different lateral boundary forcings:

Reanalyses from the European Centre for Medium-Range Weather Forecasts (ERA15), the Na-

tional Centers for Environmental Prediction and National Center for Atmospheric Research

(NRA) as well as from ECHAM4 climate model simulation. REMO simulations were performed

at 0.5 ◦ horizontal resolution for the whole archipelago and at 1/6 ◦ for the Sulawesi Island.

REMO could, in general, reproduce the spatial pattern of monthly and seasonal rainfall over

land areas but overestimated the rainfall over sea. Superiority of REMO over the land is due to

much improved orography, while over the ocean REMO suffers from surface flux and the cou-

pling to an ocean model seems to be needed. REMO reproduces variability during ENSO years

but fails to show a good monsoon contrast. Despite the strong influence of the lateral boundary

fields, REMO shows a realistic improvement of a climatic local phenomenon over Molucca.

Significant improvement for the step from global to 0.5 ◦ resolution are notable, but not from

0.5 ◦ into 1/6 ◦. The REMO simulation driven by ERA15 has the best quality, followed by NRA

and ECHAM4 driven simulations. The quality of ERA15 is the main factor determining the

quality of REMO simulations. A predictability study shows small internal variability among en-

semble members. However there are systematic intrinsic climatological errors as shown in the

predictability analysis. These intrinsic errors have monthly, seasonal and regional dependences

and the one over Java is significantly large. The intrinsic error study suggests the presence of

the spring predictability barrier and a high level of predictability in summer.

54
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4.1 Introduction

The Indonesian part of the Asian monsoon has received less attention in comparison to other

Asian monsoon areas like India and China. Studies of the monsoon over the region using

global and regional climate models are rare. This study is motivated by the inadequate results

of the high resolution global circulation model (GCM) over Indonesia at the T106 resolution.

Due to the presence of complex topography and insufficient model resolution in the region,

current GCMs shows a mediocre performance in simulating the rainfall variability in the region.

Furthermore, previous studies showed significant improvements of rainfall representation when

a moderate resolution was replaced by a higher GCM (Stendel and Roeckner 1998, Jha et al.

2000). In addition, there is no study yet using a regional climate model (RCM) in the region.

The complexity of the region especially the land sea representation requires a high resolution

model.

One possibility for downscaling GCM results to the regional scale is to apply a nested RCM. For

reviews of RCM, the readers are referred to Mesinger (1997) and Staniforth (1997). The Max

Planck Institute (MPI) RCM or REMO (Jacob 2001 and Jacob et al. 2001) is suitable for this

purpose because REMO provides detailed forecasts of weather parameters close to the ground

and an improved simulation of clouds and rainfall compared to GCM. The regional model is,

however, dependent upon the lateral boundary prescription (Warner et al., 1997), which lim-

its their capability in studying long-term climate behavior. The purposes of the study are to

show REMO capabilities in simulating the monthly to interannual rainfall variability, to see

the downscaling effect at two different resolutions (0.5 ◦ and 1/6 ◦), to compare the variability

with three different lateral boundary conditions from the European Centre for Medium-range

Weather Forecast (ECMWF) Reanalyses (ERA15; Gibson et al. 1997), the National Centers for

Environmental Prediction and National Center for Atmospheric Research (NCEP-NCAR) Re-

analyses (NRA; Kalnay et al. 1996) and the MPI ECHAM4 (Roeckner et al., 1996a) simulation

at the resolution T106 and to explore the rainfall predictability with different initial conditions.

This chapter focuses on the rainfall simulated by REMO. The regional model produces large-

scale and convective type precipitation, however due to limited observations, the study focuses

mainly on the total rainfall. The time scale is limited to monthly, seasonal and interannual from

1979 - 1993 (except ECHAM4, which is only available from 1979 - 1988). The outline of

this chapter is as follows. Section 2 discusses the data and model setup, section 3 the results

of REMO simulations in five major islands and three sea regions with three different boundary

forcings, the results of some sensitivity studies conducted to improve the rainfall simulation over

the sea and the results of the down scaling effects. Section 4 discusses the REMO predictability.

Finally, section 5 summarizes some highlights of the findings.
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Figure 4.1: The experiment setups with three lateral boundaries and two different resolutions.

4.2 Data and Model Setup

4.2.1 Data

The data used in this study are monthly rainfall data collected by the Indonesian Meteorological

& Geophysical Agency (BMG) at 167 stations all over Indonesia, and monthly mean rainfall

data from the WMO-NOAA project on The Global Historical Climatology Network (GHCN;

Vose et al. 1992) from 1979 to 1993. In our area of interest (19 ◦S - 8 ◦N and 95 ◦E - 145 ◦E),

there are 545 rain gauges. These data are gridded to match the other datasets at T106 and 0.50

resolutions using the Cressman (1959) method. As the second observation data set, a combi-

nation of gauge observations with satellite estimates from the Global Precipitation Climatology

Project (GPCP; Huffman et al. 1997) at the 1 ◦ spatial resolution is used. The data has been

interpolated into the REMO grid.

The simulations were driven by lateral boundary conditions interpolated from two reanalyses.

The first one is ERA15, at the horizontal resolutions T106 or equivalent to 1.125 ◦ in the tropics

and the second one is the 40 year NCEP reanalysis (NRA) with a fixed spatial resolution of T62

(equivalent to 2.5 ◦ in the tropics). The reanalyses data are used from 1979 until 1993 every 6

hours.

The third lateral boundary data set is the product of the ECHAM4 climate simulation for a

resolution sensitivity study (Stendel and Roeckner, 1998). The ECHAM4 model is a spectral

model with a triangular truncation at the wavenumbers 106 (T106). For the vertical representa-

tion a 19 level hybrid sigma-pressure coordinate system is used. The time integration is carried

out using a semi-implicit ”leap-frog” method. The orography and the land-sea mask are calcu-

lated from a high resolution (1 km) US Navy data set. This simulation is part of the Atmospheric

Model Intercomparison Project (AMIP; Gates 1992), in which several global atmospheric mod-

els participated in simulating climate over 1979 - 1988. The ECHAM4 model was driven by

interannually varying SSTs from the AMIP 2 (Gates et al., 1999) at T106 resolution.
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Figure 4.2: The five major islands and three sea areas examined in this study.

The gridded SST data from the Global Ice and Sea Surface Temperature dataset (GISST2;

Rayner et al. 1996) version 2.3b are used in this study to validate other SST data. This dataset

is compiled from SST observations from 1903 - present, with a spatial resolution of 1 ◦. To have

the same period as the rainfall data, we use data from 1979 to 1993 only.

4.2.2 REMO Model Descriptions

REMO is capable to run with the European Model/Deutschland Model (EM/DM; Jacob and

Podzun 1997) or the ECHAM4 parameterizations (e.g., Jacob 2001). In this study, the phys-

ical parameterizations of the Max-Planck Institute climate model ECHAM4 have been used.

The dynamical core of the model as well as the discretisation in space and time are based on

the Europa-Modell. However, in REMO with ECHAM-4 physics not enthalpy and total water

content but temperature, water vapour and liquid water are prognostic variables. In addition

to temperature, water vapour and liquid water the horizontal wind components and surface

pressure are prognostic variables in REMO. The model uses the Arakawa-C grid for the hor-

izontal representation and a hybrid system of p and η using 20 levels of vertical coordinates.

Vertical discretization follows Simmons and Burridge (1981). The time discretization uses a

semi-implicit leapfrog scheme and an explicit advection scheme. The lateral boundary interpo-

lation uses the method of Davies (1976), where the lateral boundary relaxation zones extend to

8 grid rows. The lateral boundary consists of all prognostic variables except some parameter

described in Table 4.1. At the upper boundary a radiative upper boundary condition according

to Klemp and Durran (1983) and Bougeault (1983) is applied.
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The radiation parameterization is adopted from the European Centre for Medium Range Fore-

casts’ model (Fouquart and Bonnel, 1980; Morcrette and Fouquart, 1986) with only few

changes described in Roeckner et al. (1996a). The grid scale parameterization of cloud mi-

crophysics is based on the solution of budget equations with the bulk schemes from Kesler

(1969) and the sub grid-scale precipitation processes follow Tiedtke (1989), with deep convec-

tion adjustments due to Nordeng (1994). Condensation follows Sundqvist (1978).

Clouds are divided into stratiform and convective clouds. The liquid water content of strati-

form clouds is determined by the corresponding budget equation including sources and sinks

due to phase changes and precipitation. An empirical, temperature dependent, function is used

to determine the cloud ice content, thus influences on the radiation are included. The parame-

terisation of the convective clouds is based on the mass flux concept from Tiedtke (1989) with

changes in the deep convection.

REMO has three types of convection: penetrative, shallow and mid-level convection. Only one

scheme is allowed in a grid cell and no different layers of convection. Penetrative convection is

considered when the cloud base is in the planetary boundary layer and large-scale convergence

prevails in the lower troposphere. In shallow convection, the cloud is formed in conditions of

a slightly divergent flow and is often driven by evaporation at the surface or over water. In

mid-level convection, the cloud has its cloud base in the free atmosphere and occurs together

with large-scale lifting in the vicinity of fronts with regions of thermal instability. Penetrative

convection is assumed if the dynamic fraction due to advective humidity transport predominates,

while shallow convection is assumed if evaporation from the surface (land or ocean) is of larger

importance.

In REMO, soil temperatures on land are calculated from diffusion equations solved in five

different layers covering the uppermost 10 m of the soil. The global data set of fields of land

surfaces is constructed from the major ecosystem complexes of Hagemann et al. (1999), for

which the new improved version is also available (Hagemann, 2002). Surface mean orography

and variances are calculated from the USGS GTOPO30 data with a spatial resolution of 1 km x

1 km. All surface parameters are constant in time, i.e., do not vary monthly or seasonally. The

land surface scheme follows Dümenil and Todini (1992). The non partial REMO is used in this

study, where only one type of surface cover is present on each grid cell (land, water or ice).

4.2.3 Model Setups

The model was run in the climate mode at the resolution 0.5 ◦ with lateral boundaries from

ERA15 (REMO-ERA), NRA (REMO-NRA) and an ECHAM4 simulation (REMO-ECHAM).

The lateral boundaries have a temporal resolution of 6 hours and are interpolated for a 5 minute

time step. A simulation of 15 years (1979 - 1993) was performed for each reanalysis and a
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Table 4.1: The quality of the three different lateral boundaries

Forcings Days Time span Liquid water content Specific humidity Original resolution

ERA15 365 1979-1993 yes all layers 1.125

NRA 365 1979-1993 no not upper 9 layers 1.875

ECHAM4 360 (Julian) 1979-1988 yes all layers 1.125

simulation of 10 years (1979 - 1988) for the ECHAM4 model. Table 4.1 points out major

differences among the three lateral boundary fields.

A regional model has to be initialised and supplied with lower and lateral boundary values

during the whole simulation. Initialisation is done once for all prognostic variables in all model

levels. In addition, surface temperature, soil temperatures for five soil layers down to a depth

of 10 m, soil moisture, snow depth and temperature as well as the skin reservoir content (water

stored by the skin of the vegetation) must be supplied.

The study was conducted at two resolutions. At the resolution 0.5 ◦ (55 km), the model is

formulated in a finite difference grid with 101 points in longitude, 55 points in latitude and

20 hybrid vertical layers with a bottom left corner at 91 ◦E/19 ◦S. This grid system covers the

whole archipelago. At the resolution 1/6 ◦ (18km) the model has 63 grid points in longitude and

71 points in latitude and 20 hybrid vertical layers with a bottom left corner at 117 ◦E/7 ◦S. The

latter grid system covers the Sulawesi Island. The Sulawesi simulation (REMO-1/6) was driven

by the lateral boundary from REMO-ERA outputs. Fig. 4.1 illustrates the structure of REMO

simulations at two resolutions.

In the predictability analysis, those simulations become the control runs and six other simu-

lations were performed for REMO-ERA and REMO-ECHAM, which make up two ensemble

simulations. Thus each ensemble consists of a control run and ensemble members, whose initial

condition differs from the control run by 12 to 72 hours, and each is integrated for 15 years.

4.3 Results of REMO Simulations

The annual and interannual climate over the region is characterized mainly by the monsoons

and ENSO events. The region is divided into three types of climate patterns, the monsoonal,

the semi-monsoonal and the anti-monsoonal type of climates. According to rain gauge mea-

surements, the monsoonal pattern exhibits a precipitation maximum in May/June/July and a

dry period in December/January/February, while the semi-monsoonal pattern shows two peaks,

a larger one in November/December and a smaller one in March/April. The anti-monsoonal

pattern has almost the opposite pattern of the monsoonal pattern. In the forthcoming analysis,

we will examine the long term rainfall variability simulated by REMO in comparison with ob-
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servation. Then we will look at the improvement by using a resolution hierarchy from T106,

REMO 0.5 ◦ and 1/6 ◦ resolutions and will perform some the sensitivity studies. The analysis

will focus on the five major islands and the three sea regions as shown in Fig. 4.2.

4.3.1 The Five Major Islands

Figure 4.3 illustrates the results of REMO simulations with three different lateral boundaries

over five major islands. Java is a unique island with a homogenous strong monsoonal pattern,

while the others have mixed patterns between monsoonal, semi-monsoonal and anti-monsoonal.

REMO-ERA produces Java’s pattern quite well. However there are some overestimations du-

ring the peak of the wet season and REMO-ERA produces a longer dry period with underesti-

mated rain amount. Whereas REMO-NRA overestimates the wet season and REMO-ECHAM

does not show a good contrast between the wet and the dry seasons. From a previous analysis

with the ERA15 data (Chapter 3), the dry monsoon region (region A) has spatial extent cover-

ing most of the Sumatera Island and this indicates a dryer Java or longer dry period for Java.

While in the analysis with ECHAM4 data, the spatial extent of the wet season region (region B)

reaches Java Island and indicates a longer wet season. The analyses of the rain gauge (Chapter

3) shows that the rain gauge, the border between the dry and wet regions lies in the third portion

of southern Sumatera. REMO is a hydrostatic climate model which suffers from weaker verti-

cal movements near steep orography. Under dry conditions, the limitation is even worse, when

the supply of water vapor is lacking and the remaining convection is initiated from orographic

uplifting. The orographic convection is barely present in REMO because the 0.5 ◦ grid system

does not resolve the orography over the region well. A similar finding with a 1 ◦ grid RCM

for the Indian monsoon region has been reported by Bhowmik and Prasad (2001). Thus, there

are large discrepancies between observations and REMO, when REMO-ERA underestimates

rainfall in the dry period. Over the other islands, the problem does not appear as strong as

over Java because the contrast between dry and wet season is not so strong. During two ENSO

events in 1982 and 1991, the variability of the reanalyses driven REMO simulations agrees with

observation. Even REMO-ECHAM4, which usually shows an overestimated dry period, has a

significant drop at the beginning of the dry period.

Over the other islands, REMO simulations do mostly underestimate rain amount. All simula-

tions over Irian, agreements in correlation over land areas with observation are high. The quality

of the simulated variability of REMO-ERA15 decreases consequently from Java to Kalimantan,

Sumatera, Sulawesi and Irian Island. During a strong El Nino year of 1982 the variability of

the model results for major islands with different model boundaries are consistent, including

REMO-1/6. The correlation between REMO-ERA and REMO-1/6 is high (0.946) in all years.

The correlation values in Irian are low because the island is located at the lateral boundary zone

of the RCM. The prognostic variables on the entire outer boundary of REMO are identical to
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Figure 4.3: Variability of simulated and observed rainfall for the five major islands.



CHAPTER 4. SIMULATION WITH THE MPI REGIONAL MODEL 62

the values of the corresponding driving model. The prognostics equations are only solved for

the interior model grid points. Spurious precipitation values appear in the outermost part of

the interior domain. Beside that, Irian has the lowest number density of rain gauges, which

contributes to a poor quality of observed rainfall area averages.

REMO-ERA performances are always better than those of REMO-NRA and REMO-ECHAM.

REMO-ERA has a better monsoon representation than the others. ERA15 has the best forcing

fields among the three. NRA has originally lower resolution than ERA15, no specific humidity

in the upper 9 levels and no information on the liquid water content. Although having such

quality limits, REMO-NRA could produce good simulations because we are dealing with the

lower atmosphere and the NRA quality in the lower level is good. Unlike the other simulations,

REMO-NRA fails to improve the representation of the local phenomenon over eastern Sulawesi

(Table 4.2).

At T106 ECHAM4 exhibits considerably less variability than the two REMO simulations and,

the monsoons are not well simulated. However, during strong ENSO years its quality is better.

Similar characteristics appeared in REMO-ECHAM at 0.5 ◦ resolution. Furthermore, ECHAM4

has different time quality, which is using Julian days instead of real calendar year. As monthly

averages in ECHAM4 are based on 30 days (see Table 4.1), there might be accuracy issues

related to that date discrepancy. In spite of this, REMO-ECHAM produces good results over

Kalimantan, Sulawesi and especially over Sumatera. Moreover, there are stronger improve-

ments during the ENSO years of 1982 and 1991.

Over Sulawesi Island, there is also a REMO simulation at 1/6 ◦ resolution available. The REMO

simulation at 1/6 ◦ has a correlation value to observations similar to that of 0.5 ◦ simulation. In

fact in the last ten years, the higher resolution simulation is a reproduction of the coarser one.

Thus, in comparison to the observations at the 0.5 ◦ resolution, there is not much improvement

by going into a higher resolution for Sulawesi. Limited data quality in 0.5 ◦ degree may not be

suitable for that comparison.

Despite all of this, the quality of each REMO simulation is highly comparable to its original

lateral boundary counterpart. A high correlation result, as shown in Table 4.2, corresponds to

a high correlation at the GCM resolution and so do most low correlation results. Exceptions to

these are the results for REMO-ERA and REMO-ECHAM over Sulawesi and REMO-ERA over

Irian, where there are significant improvements by REMO simulations. Both Sulawesi and Irian

are nearby the missing anti-monsoonal climate pattern over Molucca Sea, thus improvements

in both areas are understandable. At 0.5 ◦ the rest of land correlations show merely the down

scaling implication of a limited area modeling. As a note all correlations are made at the 0.5 ◦

resolution.

Although REMO uses similar parameterizations as ECHAM4, the quality of REMO-ECHAM
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Table 4.2: Correlations between rainfall simulations in REMO and global models and observa-

tions for the five major islands

Island REMO Global

ERA NRA ECHAM4 ERA NRA ECHAM4

Java 0.798 0.716 0.173 0.815 0.691 0.533

Kalimantan 0.780 0.668 0.422 0.780 0.761 0.417

Sumatera 0.708 0.682 0.637 0.764 0.639 0.472

Sulawesi 0.645 0.577 0.541 0.450 0.680 0.506

Irian 0.434 0.350 0.143 0.399 0.443 0.223

is not better than the others. The quality of REMO simulations tends to follow the quality of

the original forcing field at the coarser resolution. Thus, the quality of the REMO output is

determined more by the quality of the boundary forcing than by the physical parameterizations.

ECHAM4 at T106 is driven by AMIP2 SST, which is presumably as good as the other observed

SST in reanalyses, however the quality of atmospheric circulation is lower due to inadequate

orography representation and the uncoupled atmospheric simulations. REMO may inherit many

of the systematic errors from the global model.

Beside correlation to observations, another measure of REMO performance is the mean differ-

ence between REMO simulations and observations. The mean error is useful in calculating the

mean bias from a two-sided distribution and is calculated using the following formula:

err = (x− xobs) (4.1)

Fig. 4.4 shows the mean errors in REMO rainfall simulations for the five major islands

using three different lateral boundaries and of the original simulation at the GCM resolution.

For the ERA driven simulation, there are considerable improvements of correlation or reduc-

tion of errors except for some months over Java. Over Sulawesi, ERA15 has large errors in

April/May/June due to the missing anti-monsoonal rainfall pattern. With NRA, notable error

reduction exists over Sulawesi only. From Table 4.2, REMO-NRA fails to show improvements

of correlations over Sulawesi. But when using mean error analysis, an improvement becomes

apparent. For ECHAM4 there is no significant improvement over all five major islands. Interest-

ingly the error over Irian Island in the REMO-ECHAM result is similar to that of the ECHAM4

result or follows the lateral boundary. The other two REMO simulations over Irian, however,

do not exhibit similar features. In fact, except over Java, the mean errors over other islands by

REMO-ECHAM resemble those of ECHAM4 but are larger. Similar parameterizations at both

resolutions may be responsible for this feature. The mean errors over Java are the largest for the

different lateral boundary forcings. This island has a strong monsoon contrast between the dry
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Figure 4.4: Monthly mean errors of rainfall simulations (mm/day) for five major islands with

three different lateral boundary forcings from ERA (left) NRA (middle) and ECHAM4 (right)

at the GCM resolution (solid lines) and the REMO 0.5 ◦ resolution (dashed lines).
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and wet periods and REMO fails to simulate this.

4.3.2 The Three Sea Regions

The three sea regions (see Fig. 4.1) are West Sumatera (WSUM), the Molucca Sea (MOLS)

and the southern part of the South China Sea (SSCS). The WSUM region has above average

rainfall all year long. The MOLS has the anti monsoonal type climate and is much affected

by ENSO events. The SSCS has the semi-monsoonal character with a double rainfall peaks in

SON and MAM. It is difficult to verify the results over the ocean because there are no observed

ocean rainfall data with comparable resolution in this region and the precipitation climatology

tends to lack observations over the oceans and should be treated with caution. Here, we use the

secondary ocean data from GPCP. Before looking at the rainfall variability, we will discuss the

quality of the SST data used by REMO.

Table 4.3 summarizes the quality of the SST data sets from the three lateral boundary fields in

comparison to an independent GISST2.2 data set through the root mean square error (RMSE).

The RMSE is useful in calculating the absolute mean error regardless of the distribution type

and is defined as follow:

RMSE =

√

(x− xobs)2 (4.2)

The SST in SSCS has the least error in comparison with other regions, while MOLS has the

largest error, where the RMSE reaches more than 0.5 ◦C. Another quality measurement is the

monthly mean errors as shown in Fig. 4.5. Both reanalyses have large negative biases over

MOLS, but the smallest bias in the other two regions. From both RMS and mean errors, both

reanalyses have similar SST data quality since they may have been derived from the same

source. For example over MOLS, the correlation value between the two SST is high (0.993)

and the RMS error is very low (0.09 ◦C). Over SSCS, agreements among SST are high, except

for ECHAM in DJF.

The results of the three REMO simulations over sea are shown in Fig. 4.6. Like in the case of the

simulations over Sulawesi, the simulations over the Molucca Sea show a significant improve-

Table 4.3: REMO root mean square errors ( ◦C) of SST for the three sea regions (in comparison

to GISST2.2 SST).

Southern South China Sea Molucca Sea West Sumatera

REMO-ERA 0.153084 0.577285 0.330395

REMO-NRA 0.145185 0.554426 0.316757

REMO-ECHAM 0.277618 0.338743 0.342254
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Figure 4.5: Monthly mean SST errors ( ◦C) in the three sea regions.

ment for REMO-ERA, a small improvement for REMO-ECHAM and deterioration for REMO-

NRA when compared to the global driving fields, both land (Sulawesi) and sea (Molucca) cor-

relations decrease by 20% from original NRA to REMO-NRA. NRA has a coarser resolution

than the other two. NRA and ERA have very similar SST and both have similar negative bi-

ases in relation to the other SST data. However, REMO-NRA fails to show improvement over

Molucca. In addition the quality of the atmospheric representation, either the resolution or lack

of some parameter fields by NRA such as the liquid water content and upper air specific hu-

midity in higher levels, contributes to this discrepancy. Interestingly, REMO-ECHAM shows

a small improvement over this region, although a bias of 0.5 ◦C is observed between ERA and

ECHAM4.

With ERA15 as lateral boundary, REMO overestimates generally rainfall over the ocean. How-

ever, over the SSCS where the SST has the smallest difference to GISST2.3 SST, REMO-ERA

gives a realistic rainfall amount. Thus, in the least error prone region (SSCS), the agreement

is rather high and the time series are better correlated than for the other regions. However,

as shown in Table 4.4, these high correlations depend on the quality of the lateral boundaries.

Over SSCS the quality of the rainfall variabilities of the driving fields is also high. In the case

of ECHAM4, large errors in this region will cause large errors REMO simulations as well. The

situation over SSCS shows that realistic SST values lead to high quality rainfall simulation both

at GCM and REMO resolution, underlining the importance of correct SST forcing. The occur-

rence of local precipitation maxima over the sea (i.e., at the grid point scale) might be linked to a
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Figure 4.6: Variability of simulated and observed rainfall for the three sea regions.

feedback between local circulation (enhanced low level convergence) and release of latent heat

of condensation, producing local warming and subsequent enhanced convergence and vertical

motions. This feature has been previously discussed in Giorgi (1991).

Over WSUM, REMO performances resemble the quality of the corresponding lateral boundary

forcing. Moderate SST agreement and low observed rainfall quality may also be responsible

for the discrepancies. Due to the lack of rainfall data over the sea, monthly mean errors such as

in Fig. 4.4 for simulations over land cannot be analysed.

Table 4.4: Correlations between rainfall simulations in REMO and global models and observa-

tions for the three sea regions.

Sea region REMO Global

ERA NRA CHAM4 ERA NRA ECHAM4

West Sumatera 0.390 0.191 0.118 0.370 0.055 0.052

Molucca Sea 0.570 0.290 0.391 0.222 0.517 0.345

Southern South China Sea 0.680 0.641 0.283 0.748 0.638 0.320
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4.3.3 Improvement through Higher Resolution

Figures 4.7 and 4.8 present the improvement by REMO simulation over Sulawesi in a hierarchy

of model resolutions from T106 or 1.125 ◦ (bottom right) to 0.5 ◦ (bottom left) and to 1/6 ◦ (up-

per right) in comparison to the observed rainfall at resolution 0.5 ◦ (upper left). These examples

are taken from a normal year (a non-ENSO year) and from peaks of the wet season (January)

and the dry season (July). Sulawesi has two climate systems (bimodal system). They are the

regular monsoonal system in the south, part of central and north Sulawesi Island and the anti

monsoonal system in the eastern and northern part of central Sulawesi Island. The monsoonal

system has the annual rainfall maximum in DJF, while the anti monsoonal system reaches it in

JJA.

During the dry season, as shown in Fig. 4.7, observations show maximum rainfall in the middle

and eastern parts of Sulawesi. ERA15 does not show the corresponding maxima, but REMO

in both resolutions show the correct locations and magnitudes of the maxima. Similar results

are also indicated for the peak of the wet season in Fig. 4.8, when the maximum lies in south

Sulawesi. REMO-ERA improves correlation with observation compared to ERA15 over Su-

lawesi. The improved correlation indicates a more realistic model climate in REMO for this

area and reveals a formerly obscured local phenomenon.

Higher resolution (at 1/6 ◦) also gives more vigorous orographic rainfall over Sulawesi than for

coarser resolution. There is a general tendency of RCMs to overpredict precipitation amounts

over high topography (see McGregor 1997 for a review), presumably because of incorrect

handling of the gradients along steep sigma surfaces. Similar findings have been reported by

Menendez et al. (2001) and Nobre et al. (2001) over South America and McGregor and Walsh

(1994) over Australia.

The representation of the anti monsoonal climate over the Moluccan archipelago is not as good

as that for eastern Sulawesi because the Moluccan archipelago is close to the boundary the

REMO domain. If it would be extended further east at high resolution, we expect a better

representation of the anti monsoonal system. A remaining deficiency is the common problem

overestimated rainfall over the ocean at both REMO resolutions.

In summary the downscaling by REMO with three spatial resolutions shows a better rainfall

representation over the Molucca region and part of Sulawesi. The anti monsoonal system was

missing in the T106 analysis. Although, the boundary forcing does not contain it REMO could

produce this bimodal system at higher spatial resolution, indicating that the anti monsoonal

circulation over Molucca and east of central Sulawesi is a local phenomenon which can not be

resolved with a low resolution global model at T106.
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Figure 4.7: An example of the effect of resolution in a hierarchy of climate models for rain-

fall simulation in ERA15 reanalysis, REMO-ERA at 0.5 ◦ and REMO-1/6 in comparison to

observations at 0.5 ◦ resolution. The example is taken from July of a normal year 1983.
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Figure 4.8: As Fig. 4.7, but for January 1984.
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4.3.4 Sensitivity Studies

REMO produces overestimates rainfall over the ocean. Although the area averages are compa-

rable, peak values over the ocean are too high. In order to understand the possible background

of this overestimation, we adjusted some parameters, which eventually would reduce the precip-

itation over the ocean with minimal changes over land. In doing so, we changed the minimum

cloud thickness over land (ZL) and ocean (ZO), the minimum humidity level for the condensa-

tion to start (ZRTC) and of the large-scale cloud system (ZRTL), SST and the Charnock constant

(CCHAR). The sensitivity study was performed with REMO-ERA, which shows the best results

so far. The REMO-ERA with changed parameters was rerun for the first 4 years between 1979

- 1982 to allow all simulations to use the same starting point and compare the results to the

control run. Fig. 4.9 illustrates two examples from the sensitivity study over Kalimantan and

Southern South China Sea in comparison to REMO-ERA or the control run.

The minimum cloud thickness for the start of the precipitation process over land (ZL) and over

sea (ZO) are set to 1500 m in REMO, but in the original ECHAM4 parameterization they ranged

from 3000 to 5000 m. We changed them to 2000 m or 3000 m, or varied them between 3000

m and 5000 m and looked for effects upon rainfall over land and sea. The result shows no

significant influence on rainfall over the sea. Over land, however, a reduction of the average

rainfall by 1.28 mm/day over Kalimantan occurs when adopting a flexible threshold between

3000 and 5000 m.

The second approach was to apply a constant SST reduction by 1.0 ◦C. This reduction lowered

rainfall over land and sea. However the reduction over land was less than over sea and the latter

is unrealistically large (5 mm/day). This kind of sensitivity study shows the importance of SST

for climate modeling over the region. Furthermore, with only a little more than 21% of land

area and small islands all over the place, the mean climate of the region is oceanic or ocean

affected.

Another sensitivity test is to change the minimum relative humidity threshold for the conden-

sation to start in a grid volume. This parameter involves two precipitation processes, the con-

vective and large-scale precipitation. In the original formulation both parameters (ZRTC and

ZRTL) were set to 60%. Changing them to 80% causes significant changes over land and sea.

Interestingly, the rainfall over land increases somewhat, while the rainfall over sea decreases

significantly.

Evaporation is a key process for atmospheric water cycle and thus precipitation processes. The

Charnock constant is a measure for the rate of evaporation or the evaporation flux into the at-

mosphere from the ocean. In the original ECHAM4 parameterization, this parameter is set to

0.032. REMO also uses this value but only for a grid cell size above 0.5 ◦, while for finer resolu-

tion a value of 0.0123 is used. In this sensitivity study, the original ECHAM4 parameterization
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Figure 4.9: Two examples of the results from the sensitivity study over Kalimantan and the

Southern South China Sea.

is used. The result shows only a slight precipitation decrease between the sensitivity and the

control run. Like in the case of changing SST, the decrease of rainfall over the sea is a bit larger

than over land. This fact marks this constant as the next good candidate of the solution for the

problem of rainfall overestimation over sea.

Table 4.5 summarizes the seven sensitivity studies. From the above presented analysis, there

are three possible candidates for the solution of the problem of rain overestimation over the sea.

These are the reduction of SST, changed ZRTC and ZRTL and a changed Charnock constant.

Drastic reduction takes place when the REMO SST is reduced by 1.0 ◦C and ZRTC and ZRTL

are set to 80%. But the reduction takes place also over land, while we intend to have reductions

over sea only. Furthermore, when we compare the result with observations, this reduction does

Table 4.5: Mean difference (mm/day) between sensitivity studies and control run (REMO-

ERA).

Sensitivity type Land Sea

Java Kalimantan Sumatera Sulawesi Irian Wsum Mols SSCS

ZO=2000 0.003 0.034 -0.018 0.051 0.078 -0.092 0.037 0.178

ZO=3000 0.413 0.114 0.678 0.508 0.443 -1.241 -0.224 -0.569

ZL,ZO=3000 -0.471 -1.243 -0.757 -0.857 -0.617 -1.093 -0.659 -0.568

3000 < (ZL,ZO) < 5000 -0.460 -1.289 -0.781 -0.831 -0.583 -1.049 -0.415 -0.497

SST-=1.0 ◦C -1.782 -1.788 -1.634 -2.266 -0.789 -4.657 -4.866 -5.068

ZRTC,ZRTL=80% 2.569 4.135 5.675 2.655 3.888 -1.336 -3.307 -2.459

CCHAR=0.032 -0.046 -0.057 -0.014 -0.191 0.148 -0.351 -0.425 -0.673
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not always bring the rainfall amount close to observations. It may be a combination of sev-

eral possibilities, which have been discussed above, that are responsible for the discrepancies

of rainfall between REMO and observations. From the three sea regions, the least error prone

region (SSCS) has the least bias. In conclusion, the combination of prescribed SST and param-

eterization errors may be key contributors and a coupled ocean atmospheric model is needed

for further investigation.

4.4 Predictability of Rainfall Simulated by REMO

Lorenz (1969) found that each scale of motion possesses an intrinsic finite range of predictabil-

ity. A small error in the initial state of a nonlinear system will grow and will render a forecast

useless after some time, regardless of the model error. For this study we performed ensemble

simulations by changing initial land and atmospheric states to measure the internal variability

of the model. Ji and Vernekar (1997) applied a similar technique for a RCM, but for a shorter

term. The simulation was setup by varying the initial condition by 12 hours from 0 to 72 hr and

making a control run at 0 hr and six ensemble members. With this setup we change all lateral

boundaries at the initial condition and the exact length of the first month of simulation will be

slightly different among ensemble members. There are two ensemble simulations using bound-

ary forcings from ERA15 and ECHAM4 to represent reanalyses and GCM model simulations.

This predictability study refers to the predictability of the initial condition or the predictability

of the first kind. We will look how strong the initial condition affects the short and long-term

simulation.

From long term simulations with ERA15 and ECAHM4 lateral boundary forcings as shown

in Fig. 4.10, there are only small internal variabilities among control run and other ensemble

members. All ensemble members follow strongly the variability prescribed by the control run.

This characteristic appears in all seasons and regions (not shown). The variability of ensemble

members follows the control run right after the first month. Thus, after a while, there is no

effect left from changing the initial condition or, in other words, the boundary condition controls

strongly the variability of each ensemble member. In comparison to land, the variability over

sea is larger in both types of REMO experiments. The internal variability does not grow or

decay with time but establishes itself as an intrinsic finite range of REMO predictability.

4.4.1 Intrinsic Errors

A more cautious investigation employs monthly root mean square errors (RMSE) of the internal

variability. By looking at this, we exclude other external errors and examine solely the intrinsic
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Figure 4.10: Examples of the results from the long term predictability study over Kalimantan

and the Southern South China Sea from REMO-ERA and REMO-ECHAM. Each graph consists

of a control run and 6 ensemble member simulations. For the sake of clarity only the first 4 years

are shown.
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climatological error due to different initial conditions, since we maintained all model parameters

and lateral boundaries. Any errors will be due to the initial condition as a possible source of

errors in REMO simulations over the region. The intrinsic climatological error over the five

major islands and the three sea regions are shown in Figs. 4.11 and 4.12.

Interestingly, each island has a unique and a coherent annual pattern. Java has the largest er-

ror especially in REMO-ERA, whose RMSE reaches almost 3 mm/day in April. This RMSE

is significantly large considering the average value of REMO-ERA and REMO-NRA in April

of 4.87 and 9.20 mm/day respectively. Other islands have less than a third of Java’s error.

From both types of REMO experiments, there are considerably large errors during Northern

Hemisphere spring (March/April/May) than during other seasons. Indonesia experiences at this

time of the year the transition between the wet and the dry monsoon periods. On the other

hand, there is also a systematic pattern of the lowest error during the Northern Hemisphere

summer (June/July/August), when most of Indonesia experiences the peak of the dry period.

Furthermore, this lowest error period is the most coherent period. Thus we expect that sim-

ulations of rainfall over Indonesia have the highest predictability in this time of the year. In

other words, this season is the best period to examine other predictabilities beside internal pre-

dictability due to initial conditions. The other two seasons (December/January/February and

September/October/November) have errors in between the two seasons as discussed earlier.

Over sea, the variability of the intrinsic climatological error due to initial condition is less

coherent and has magnitudes higher than those over the lands. Moreover, there is no common

pattern as those over major island areas. The highest spring and lowest summer errors are

detected over the Molucca Sea. REMO simulations often produce overestimations of rainfall

over the sea. The internal climatological error is also responsible to such discrepancies. Thus,

from the result of this predictability study alone, higher error over the sea is expected from

REMO simulations over Indonesia.

Consistent and large intrinsic errors in spring for a large part of Indonesia contribute to lower

predictability skill in this season and may be related to the spring predictability barrier. The

spring predictability barrier refers to a lower skill generally observed for predictions that extend

through boreal spring (Blumenthal, 1991; Goswami and Shukla, 2000; Latif and Flügel, 1991;

Latif and Graham, 1992; Webster and Yang, 1992; Balmaseda et al., 1995; Davey et al., 1996;

Moore and Kleeman, 1996; Chen and van den Dool, 1997; Yu et al., 1997; Flügel and Chang,

1998; Latif et al., 1998; Weiss and Weiss, 1999; Goddard et al., 2000; Thompson and Battisti,

2001).

The predictability study suggests a monthly or seasonal variability of the intrinsic RMSE error

of REMO over Indonesia. It has been demonstrated previously (e.g. Errico and Baumhefner

1987; Vukicevic and Errico 1990; Paegle et al. 1997; Laprise et al. 2000) that the predictability

of regional climate models is distinct from that of global models. The RMSE among ensemble
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Figure 4.11: Monthly root mean square difference (mm/day) of ensemble members to control

run for five major islands as a measure of the internal predictability of six ensemble members

caused by the initial values. Note that Java has magnitudes three time larger than the other

islands.
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Figure 4.12: As Fig. 4.11, but for three sea regions.

members, unlike for global models, asymptotes to a value much smaller than the variance due

to natural variability. While these studies concentrated mainly on other parameters such as

geopotential, temperature or wind field, the present study examines the rainfall. In this study

the value of RMSE of rainfall among ensemble members does not asymptote to a single value,

but rather follows the intrinsic natural variability, which varies by region and season.

This predictability study shows that the lateral boundary plays a key role. However, the above

analysis also showed a possibility that a local phenomenon, such as in Molucca, could appear

in regional simulation that has no counterpart in the original simulation at T106. This local

phenomenon appears in all ensemble members (not shown) with a high predictability or low in-

ternal variability like in other areas. Thus REMO enhances the ”just in time” local phenomenon

independent of errors caused by different initial conditions. This characteristic is very important

and useful for some REMO applications. For example, the regional model simulation can be

used in a future climate scenario as a down scaling tool. It is not necessary to run the climate

simulation for a longer period. We may proceed directly into the intended period without hav-

ing to worry about the initial conditions. This is only true for local convective phenomena or in

a small land area such in maritime continent, otherwise we need to wait until the soil reaches

its equilibrium and restart the simulation using that equilibrium soil.

The lateral boundary condition, which is updated every 6 hours, is responsible for the high



CHAPTER 4. SIMULATION WITH THE MPI REGIONAL MODEL 78

predictability level. REMO cannot keep the memory of an initial condition after some consecu-

tive changes of the lateral boundaries, which eventually limits the degree of freedom of REMO.

There are ways to increase the degree of freedom in REMO simulations. For example, we could

supply SST from a different time period for each ensemble member. This kind of study would

refer to the second kind of predictability (boundary value problem). Another possibility is to

supply the ocean surface boundary condition from a stand alone ocean simulation and couple

that with REMO. Rather than changing the initial condition once, the ocean model could supply

different SST information every 6 hour and hence give more degrees of freedom to REMO.

The result indicates that REMO has a small internal variability, which indicates that the corre-

sponding simulations are strongly constrained by lateral boundary conditions. A RCM should

be sufficiently free to develop internal mesoscale processes in order to be useful for sensitivity

studies. In this study REMO has shown its ability to enhance regional features over Sulawesi

and the Molucca Sea. The strong boundary influence may also be due to the small domain size

used in this study. Jones et al. (1995) concluded that the regional climate model domain should

be sufficiently small that the synoptic circulation does not depart far from that of the driving

GCM. However, Podzun et al. (1995) found that the domain should also be sufficiently large

to allow development in the regional climate model of features having a finer scale than those

skillfully resolved by the GCM. Furthermore, Bhaskaran et al. (1996) found that the tropical

monsoon simulation with a RCM is relatively insensitive to model domain size, which contrasts

strongly with simulation results from Europe by Jones et al. (1995).

4.4.2 Internal and External Variances

Another measure of the predictability of an ensemble simulation is the internal and external

variances or variability. The predictability is determined by the summation of those variances.

In this study the internal variance is defined as

var(xi,< x >) = 〈(xi−< x >)2〉 (4.3)

and the external variance as

var(< x >) = (< x >−< x >)2 (4.4)

where xi is the i-th ensemble member, the ”< x >” operator denotes the ensemble average and

the ” x ” operator denotes the time average. The method employed here is comparable to the

Analysis of Variance (ANOVA) method. The internal variance measures the degree of freedom

of a domain and measures how high the quality with one simulation (without ensemble) will

be. In this case low internal variability indicates an expected good performance by just a single
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Figure 4.13: The internal and external variances of the ensemble REMO-ERA simulation.
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Figure 4.14: As Fig. 4.13, but for REMO-ECHAM.
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simulation. Low degree of freedom may also mean too strong boundary condition control,

while, the external variance measures the contribution of large scale phenomena surrounding

the domain. Hence the predictability is high when the external variance is low.

Figures 4.13 and 4.14 show the seasonal internal and external variances of ensemble simulations

from REMO-ERA and REMO-ECHAM, respectively. From both figures, the seasonal internal

variances are only about a quarter the external variances. Thus, variability among ensemble

members is mainly due to external climate phenomena. Low internal variability may also be

due to too strong lateral boundaries. The lateral boundary extends up to 8 grid cells as shown

in internal variances on both figures. Within the inner region, the model is capable to develop

variability independent on lateral boundaries. The inner region shows variances according to

climate activity, whereas higher variances exist in wetter regions or areas with higher precipi-

tation activity. Consequently, the internal variance has a seasonal dependency according to wet

and dry seasons, when JJA and SON have less variance than the other seasons. The latter condi-

tion is also true for the external condition, where higher variances are related to major seasonal

disturbances in the region, such as high precipitation in west of Sumatera in all seasons, tropical

storm tracks near Mindanao (not clear in REMO-ECHAM), tropical disturbances in northern

Australia in DJF and a high precipitation area over Java sea. Another persistent contrast exists

between variances over land and sea with variances over land or higher predictability over land

than over the sea. The persistence is highest west of Sumatera, which has all year long high

precipitation or nearly no seasonal dependence.

Although the measure of variance presented here is able to show sources of discrepancies among

ensemble members, this variance measurement is limited to REMO only. There is a need of

more ensemble quality measurements from other regional models operating in the area to de-

termine the real quality of REMO simulation. The only comparison made here is between two

different lateral boundaries; ERA15 and ECHAM, where ECHAM boundary gives lower vari-

ances than ERA15 does. Hence, the quality of a single simulation by REMO-ECHAM is closer

to its ensemble mean than for REMO-ERA. The present study shows that high predictability is

achievable over land in JJA followed by SON. The latter result is consistent with the findings in

previous subsection.

4.5 Concluding Remarks

We have described the performance of rainfall simulations over Indonesia with REMO driven

by three lateral boundary conditions coming from two reanalyses and an ECHAM4 simulation

at two different horizontal resolutions. We analyzed the results for the five major islands and

three selected sea regions. Also sensitivity and REMO predictability studies for different initial

condition have been performed. The analysis focuses on monthly, seasonal and interannual
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variability of rainfall simulations as well as the annual cycle.

The model, in general, is able to reproduce the spatial pattern of monthly and seasonal rainfall

prescribed by the lateral boundaries. It produces correct variability for ENSO years but fails to

show a good monsoon contrast. The simulations over land are better in this respect than over

sea. The high quality of REMO over land is due to resolved orography, while over the ocean

REMO suffers from surface fluxes problems and overestimates the rainfall. The model’s depen-

dence on various sub grid parameterizations is a very complex issue and is not fully understood

at present. Analyses of a sensitivity study to reduce too strong precipitation over sea are still

leaving some possibilities. Beside the lateral atmospheric boundary, SST is the major factor

determining the quality of simulations where the least error prone region (SSCS) has the least

bias.

The results suggest the important role of lateral boundary conditions. REMO-ERA, which has

the best lateral boundary fields supplied by ERA15, produces the closest simulation to obser-

vations except over Java. Despite the strong influence of the lateral boundary, REMO shows

realistic improvement of a local climate phenomenon over Molucca through higher correlation

(REMO-ERA and REMO-ECHAM) and mean errors (REMO-NRA).

Improvement with higher resolution is obvious from T106 to 0.5 ◦ but not to 1/6 ◦. There is no

need to go for higher resolution of 1/6 ◦, where there are more vigorous orographic rainfalls over

the Sulawesi Island. However, it has to be investigated later with higher quality rainfall data. It

may be that the parameterization we are using over this region is most suitable for the 0.5 ◦ res-

olution. Moreover, RCM parameterization schemes are normally tuned to the GCM resolution

(Nouger et al., 1998). For this island, it might be needed to use a non-hydrostatic model. Steep

orography as well as the temperature gradients associated with the strong orographic convection

can only be adequately simulated with non-hydrostatic models

The predictability study shows small internal variability among ensemble members. This means

that the model can be used in any place in time without worrying much about spin up. However

the intrinsic climatological errors as shown in the predictability analysis are worth to be con-

sidered. Those intrinsic errors have monthly, seasonal and regional dependences and the one

over Java is significantly large. The intrinsic error study suggests the presence of the spring

predictability barrier and a high level of predictability in summer.

Here are some suggestions for improvement of the current study. The REMO-ERA could be

extended to include the whole new ERA40 as the lateral boundary. REMO simulations with

1/6 ◦ resolution over other islands, simulations with the partial REMO or a complex grid cell

definition and simulations with a better annual cycle of vegetation are worth to try.



Chapter 5

Monsoonal Character of Indonesian

Waters Simulated by an Ocean Global

Circulation Model

Abstract

A regional model study on the monsoonal characters of Indonesian water using the Max Planck

Institute ocean global circulation model, MPI-OM1, has been done with two different sur-

face boundary forcings and two different resolutions. The lateral boundary conditions are

determined by the reanalyses from the European Centre for Medium-Range Weather Forecasts

(ERA15) and the National Centers for Environmental Prediction and National Center for At-

mospheric Research (NRA). The simulation with NRA was performed from the period 1948 to

1999 and with ERA from the period 1979 to 1993. However most of the analyses are done

for the period 1979-1993. Beside real time simulation, the result of a climatological run with

a forcing from the German Ocean Model Intercomparison Project (OMIP) is also presented.

This study uses a special conformal grid from a bipolar orthogonal spherical coordinate sys-

tem, which allows irregular positions of the poles. The resolution plays a more important role

than different surface boundary forcing in determining the result of the simulation. A higher

resolution model gives higher frequency variability and better variabilites than the coarser one.

The model could simulate the variability of ocean circulation quite well, but with the sea sur-

face temperature (SST) variabilities, the model shows warmer biases due to the static surface

boundary. The simulated variability of the total transport by the Indonesian throughflow during

the strongest El Niño 1997/1998 has a correlation value of 0.83 with the in-situ observations.

The SST variability, which is regulated by the ocean circulation, clarifies the monsoonal char-

acter of precipitation pattern in the three monsoonal regions. We found the mechanism of ocean

circulation that regulates SST variability in a way that the horizontal advection influences the

83
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heat energy content variability after 3 to 4 months and the heat energy influences the SST a

month later. The monsoonal signatures are clearly seen in all ocean parameters and ocean

transport exhibits the most coherent monsoonal character. The monsoonal depth varies among

different seas in the area. The study suggests a possible mechanism of the El Niño Southern

Oscillation (ENSO) impact on Indonesian rainfall through the ocean and an important role of

the monsoonal property of the ocean circulation in that mechanism.

5.1 Introduction

The term ”monsoon” refers to a seasonally reversing circulation with a period of one year. The

main driving force for the monsoon circulation is the contrast in thermal properties of land and

sea. Since land has a smaller heat conduction than the ocean, the absorption of solar radiation

increases the surface temperature over land much more rapidly than over the ocean (Ferranti,

1997). In Indonesia, the monsoonal activity is mainly related to the meridional movement of

the Inter Tropical Convergence Zone (ITCZ). Although the monsoon has such a strong influ-

ence also on the sea, studies on the monsoonal properties of Indonesian waters have been very

rare in comparison to similar atmospheric studies. Quadfasel and Cresswell (1992) found for

example that the changes of monsoonal wind and the variations of the freshwater flux from the

Indonesian archipelago are responsible for the annual cycle of the ocean flow. As the region is

covered mostly by ocean (79%) and less by land (21%), the study of the regional land climate

cannot disregard the ocean. In fact, most land climate of the region is ocean climate, where in-

tense air sea interaction occurs around major islands. For example, Susanto et al. (2001) found

a monsoon generated upwelling along the coasts of Java and Sumatera. Since the position of

the maritime continent as the action center of the Hadley and Walker cells and the Indonesian

throughflow, one has to study the local ocean atmospheric interaction. Moreover, as a previous

study with a regional climate model (Chapter 4) has found large variances in ocean climate and

an important role of the ocean Sea Surface Temperature (SST). This study is motivated by the

finding of three distinct monsoonal climate types in the archipelago: the southern monsoonal,

the northwestern semi-monsoonal and the Moluccan anti-monsoonal climate. There is a need

to establish the ocean aspects that also drive the climatology of all three regions.

In order to achieve that goal, we applied the Max Planck Institute ocean global circulation

model (OGCM), the MPI-OM1 (Marsland et al., 2003). MPI-OM is the latest development of

the Hamburg Ocean Primitive Equation (HOPE) model (Wolff et al., 1997). A major impro-

vement is the transition from a staggered E-grid to an orthogonal curvilinear Arakawa C-grid

(Arakawa and Lamb, 1977), which allows arbitrary placement of the poles in a bipolar orthog-

onal spherical coordinate system. HOPE previously has been used for global climate studies

(for example Drijfhout et al. 1996 and Rodgers et al. 2000) and regional studies (Marsland and
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Figure 5.1: The ocean topography of the study area.

Wolff , 1998, 2001). In this study MPI-OM will be used for a regional study with a special grid.

The chapter focuses on the monsoonal variability of the ocean circulation in the three regions

and surrounding seas. In addition, the variability of the Indonesian throughflow and the impact

of El Niño Southern Oscillation (ENSO) on the monsoon as well as the sensitivity of the model

results to spatial resolution will be investigated. The time scale is limited to monthly, seasonal

and interannnual variability from 1979 - 1993. The outline of this chapter is as follows. Section

2 discusses the data and model setup, section 3 the general results for ocean circulation and

section 4 specific circulations in each of the three regions simulated by the MPI-OM. Section 5

describes subsurface monsoonal signatures and section 6 the ENSO impact. Finally, section 7

summarizes major findings.

5.2 Data and Model

5.2.1 Data

This study uses surface forcing fields from two reanalyses: the ECMWF reanalysis (ERA15;

Gibson et al. 1997), which is available at the horizontal resolution of T106 (equivalent to 1.125 ◦
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in the tropics), from 1979 until 1993, and the more than 50 years NCEP reanalysis (NRA;

Kalnay et al. 1996), for the time period from 1948 to 1999 available at the horizontal resolution

of T62 or 2.5 ◦ in the tropics. The forcing data have been interpolated to the model geome-

try. For climatological runs, the German Ocean Model Inter-comparison Project (OMIP; Röske

2001) forcing was used. SST data from the GISST2 (Global Ice and Sea Surface Temperature)

dataset (Rayner et al., 1996) are used for comparison.

5.2.2 Model Descriptions

The model uses the ocean bottom topography from a 5 minute global ocean bathymetry, cor-

responding to about 9 km resolution at the equator. Fig. 5.1 shows the bathymetry around

the maritime continent, which lies between two continental shelves (Asia and Australian), two

large oceans and is surrounded by deep oceans basins. Since the focus of the study is monsoon

circulation, most attention will be given to the circulation variability of the upper 500 m, where

the monsoon has considerable influence. In this study, the contribution of river runoff is min-

imized by using a limited number of rivers, whereas only 52 major rivers are used (Dümenil

et al., 1993).

We use a special conformal grid where the north (south) pole is located in China (Australia),

which is herein named the BANDA-HOPE setup. This pole placement offers two major advan-

tages over regular latitude-longitude grids. Firstly, the placement of the poles over land removes

the numerical singularity associated with the convergence of meridians at the geographical north

pole. Secondly, the choice of nondiametric poles allows the construction of regionally high res-

olution in a global domain and thus avoids the problems associated with either open or closed

boundaries. However, it should be noted that this approach has the disadvantage of globally

constraining the model time step to one small enough to be appropriate for the highest resolu-

tion region. This limitation will be analyzed with different resolutions in the present study. Fig.

5.2 illustrates this conformal grid with a global and a regional view. The minimum cell size is

located near the poles. In table 5.1, selected information on the model setup is presented. The

higher resolution grid is characterized by a double horizontal resolution and 30 vertical levels

(as opposed to 20 levels in the coarse resolution) with increasing level thickness from surface

to bottom. MPI-OM is a hydrostatic ocean model, which uses z-coordinates for vertical dis-

cretisation. For a detailed description of MPI-OM, the readers are referred to Marsland et al.

(2003).

Several parameterisations of sub-gridscale processes have been incorporated into the model.

Firstly, a bottom boundary layer (BBL) slope convection scheme has been included that allows

for a better representation of the flow of statically unstable dense water masses over sills and

off shelves. Secondly, harmonic horizontal diffusion of the tracer fields has been replaced by
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Figure 5.2: The global view of the low resolution MPI-OM orthogonal curvilinear grid (above)

and the regional view of the high resolution grid system of the MPI-OM ocean model (below)

with 362×210 grid cells.
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Table 5.1: MPI-OM ocean model descriptions

Low Resolution High Resolution

Meridional grid points 105 210

Zonal grid points 182 362

Layers 20 30

Mid of layer level (m) 10,30,50,75,110,155,215,295,400, 6,17,27,37,47,57,69,83,100,123,150,

535,700,895,1125,1400,1750, 183,220,265,320,385,460,550,660,

2200,2750,3400,4200,5350 795,970,1220,1570,1995,2470,2970,

3470,4020,4670,5520

North Pole 112 ◦E 29 ◦N

South Pole 132 ◦E 22 ◦S

Time step 3200 s 1440 s

Input / Output 6 hourly / monthly

Cell size (Banda Sea) 0.391 ◦ (40km) 0.202 ◦ (20km)

Max. cell size 8.20 ◦ (800km) 3.88 ◦ (370km)

(west equatorial Atlantic)

Input forcing 2 m air temperature

(OMIP climatology, short wave radiation forcing

NCEP/NCAR and precipitation rate

ERA15 reanalyses) cloud cover

dew point temperature

zonal (u) momentum surface flux

meridional (v) momentum surface flux

10 m wind velocity

an isopycnal scheme (Griffies, 1998). Isopycnal diffusion is preferable since it accounts for

the observation that tracers are basically mixed along isopycnals. Thirdly, eddy-induced tracer

transport has been included by the implementation of a Gent and McWilliams (Gent et al.,

1995) style parameterisation. Fourthly, the so-called convective adjustment has been replaced

by a parameterisation using enhanced vertical diffusion. This allows for the introduction of a

time dependent oceanic response to static instability.

5.2.3 Experimental Setups

The model was initialized with the annual mean data from the gridded World Ocean Atlas 1998

(Levitus et al., 1998). Then the model was run for the first initial year, during which three-

dimensional Newtonian (linear) relaxation of the thermohaline fields (temperature and salinity)

was applied to all wet grid cells below the fourth model layer. In the later simulation years, the

model uses surface boundary forcings from two different reanalyses, NRA for a period from
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Table 5.2: Major Seas and Straits.

No. Area or section Start position End position Remarks

1. South China Sea 112.0E 8.0N 106.1E 1.8N

2. Karimata Strait 106.1E 1.8N 109.2E 5.0S between Sumatera and Kalimantan

3. Java Sea 109.2E 5.0S 116.1E 5.8S ocean depth 50m

4. Makasar Strait 116.1E 5.8S 120.2E 4.0N between Kalimantan and Sulawesi

5. Sulawesi Sea 120.2E 4.0N 131.0E 2.9N between Sulawesi and Mindanao

6. Halmahera Strait 131.0E 2.9N 129.1E 2.1S between Halmahera and Irian

7. Seram Strait 129.1E 2.1S 131.5E 4.7S between Seram and Irian

8. Banda Sea, Timor Sea 131.5E 4.7S 124.0E 14.S between Australia and Timor

1948 to 1999 and ERA for the ERA15 period from 1979 to 1993. MPI-OM receives at spec-

ified frequency (forcing time step) the global, predefined atmospheric fields, from which heat,

freshwater and momentum fluxes are calculated using bulk formulae. The first 31 years from the

MPI-OM-NRA run were skipped due to spin-up. MPI-OM-ERA was initiated using the restart

forcing from MPI-OM-NRA 1979 and was integrated for 15 years from 1979 - 1993. During

integration, we applied the surface boundary forcing every 6 hours and produced monthly aver-

age outputs. The same configuration is applied for the low and high resolutions. In total there

are 132 years of climate integration using different resolutions and surface boundary forcings.

Beside these real time simulations, this study includes a climatological run, which was set up

using the German OMIP climatology data set as the surface forcing and was rerun for at least

10 years, which was skipped later due to spin-up. The OMIP forcing was derived from the

ECMWF reanalysis 15 year averages. Contrary to six-hourly forcing in the real simulation, the

climatology run is integrated with daily resolution and atmospheric synoptic scale variability

was used. The climatology run uses in the low resolution grid only and it served mostly for

model tuning and sensitivity studies.

5.3 Ocean Circulation from MPI-OM Simulations

In the following subsections, we will examine the products of the MPI-OM simulations applying

two different surface boundary forcings and resolutions. The analyses will focus on ocean

surface circulation, the Indonesian throughflow and the thermohaline circulation of major seas.

There are eight major ocean sections in and around Indonesia that will be used in each vertical

profile analysis, where the inset figure in each contour map represents all 8 sections of Table

5.2 starting in the South China Sea.
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5.3.1 The Monsoonal Ocean Circulation

The result of the high resolution MPI-OM-NRA (Fig. 5.3 and 5.4) shows the anatomy of the

surface ocean current in the Indonesian region. The model simulation results in figures 5.3 and

5.4 agree well with a detailed description of the ocean circulation in Indonesian seas by Wyrtki

(1961). Only major ocean circulations are described here. Two important eddies in eastern

Indonesia are the Mindanao Eddy (127 ◦E, 8 ◦N) in December/January and the Halmahera Eddy

(130 ◦E, 3 ◦N) from July to November and a minor Sulawesi Sea eddy in December/January

(119 ◦E, 2.5 ◦N). The latter eddy has also been modeled by an OGCM from Masumoto et al.

(2001). Figure 5.3 illustrates the annual march of the surface flow around the eastern islands.

The flow is everywhere monsoonal, being mainly driven by the monsoonal surface wind, which

reverses direction in every half year.

The Indonesian throughflow is the major circulation feature around the eastern islands. Most

of the throughflow passes through the Makasar Strait originating in the north Pacific, as found

before (Godfrey et al., 1993; Godfrey, 1996). Some of the flow passes through Lombok Strait

(116 ◦E, 8.2 ◦S) and some makes a detour to the east and then flows through the Ombai Strait

between Flores and Timor Islands (124 ◦E, 9.5 ◦S) before reaching the Indian Ocean. The flow

through Makasar Strait from the North Pacific is most intense from April to October. The

reversal flow in December and January is very weak. Inoue and Welsh (1993) and Masumoto

and Yamagata (1993) proposed a strong role of the southeast trade winds along the southern

edge of Indonesia in lowering sea levels in August and thus leading to maximum throughflow

at this time. Furthermore, the Wyrtki (1973) jets impose a strong semiannual modulation on the

seasonal cycle, with minor sea level maxima in May and November. We notice that the high

resolution model in this study produces a coherent semi annual variability.

In North Molucca, there is an intrusion through the Halmahera Strait from the West Pacific and

the water masses flow first to north Molucca (the Halmahera Strait, the Lifamatola Strait, then

the Molucca Sea) before they are collected at the north end of the Makasar Strait. This surface

water comes from the south Pacific and circulates at the eastern edge of New Guinea (Irian)

to the north of Irian before entering the Halmahera Strait (Godfrey, 1996). Morey et al. (1999)

found that Halmahera prevents a flow from the South Pacific into the Sulawesi Sea and diverts

some South Pacific water southward through the Seram and Banda Seas. The monsoonal char-

acter of the flow within this strait is very important for the understanding of the anti-monsoonal

precipitation pattern of the north Molucca region. The peak of the water intrusion into the

north Molucca area coincides with the peak of the wet season of the anti-monsoonal region in

June/July/August. To the north of Irian, there is another important monsoonal surface flow from

and to the Warm Pool, because the Warm Pool shows direct impact of ENSO. The flow is in

direction toward Molucca from March to October and the other half of the year in the direction

toward the Warm Pool.
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Figure 5.3: Monthly average (1979-1993) of near surface flow (17 m depth) of the high resolu-

tion MPI-OM simulation of the eastern part of Indonesia.
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Figure 5.4: As Fig. 5.3, but for western Indonesia.



93 5.3. OCEAN CIRCULATION FROM MPI-OM SIMULATIONS

The annual march of the surface flow in the seas around western Indonesia is given in Fig. 5.4.

Intense flow occurs in the South China Sea from November to March or during the Northern

Hemisphere winter. This intense flow in the South China Sea brings a cold current surge. The

next section will show that the cold surge will reduce the SST by almost 3 ◦C in the northwestern

region. Another interesting flow occurs in the Indian Ocean west of Sumatera. There is no

reversal flow but the intensity of the flow shows seasonal periodicity. Thus the climate in west

Sumatera will be determined considerably by the condition in the Indian Ocean.

5.3.2 Monsoonal Character of the Indonesian Throughflow

The Indonesian throughflow provides a warm water connection between the tropical Pacific

and the Indian Ocean (WCRP, 1998). According to Wyrtki (1987) the air pressure difference

between the Pacific and the Indian Ocean is the main driving force for it. This flow passes the

Indonesian archipelago mostly through the Makasar Strait (Hirst and Godfrey, 1993; Godfrey

et al., 1993) and Molucca (Rodgers et al., 2000). Fig. 5.5 illustrates the variability of two

major pathways of the Indonesian throughflow in Makasar Strait (major path) and Halmahera

Strait (minor path) in model simulation using two different forcings and two resolutions. The

transport is calculated as the monthly mean vertical barotropic stream function at the southern

end of the Makasar Strait and the northern tip of the Halmahera Strait.

The monsoonal character of the throughflow within the Makasar Strait is well simulated. In

section 5, we will analyze how deep the monsoonal character of this throughflow is. The high

resolution model exhibits some higher frequency signal of the flow and the difference between

the high and low resolution product is obvious. The average maximum and minimum between

the two resolutions differ by about 5 Sv. The difference between the different forcings is not ob-

vious for the two resolutions, except after 1989, when the high resolution ERA forcing deviates

from the high resolution NRA and follows the variability of the low resolution.

The middle panel in figure 5.5 shows the comparison between the model results and obser-

vations by Gordon et al. (1999), who measured the vertically integrated profile of the flow at

2.87 ◦S, 118.45 ◦E. There is a clear improvement of the model results for higher resolution. The

correlation to the observation increases from 0.285 to 0.83. While the high resolution model

simulates the variability quite well, it does not pick up the very low transport between Septem-

ber 1997 and February 1998. Interestingly, the model is able to simulate the low transports in

the early phase of El Niño in April 1997. Such low variability, from the long simulation above,

is present every year and is not a specific property of an El Niño year. The monsoonal char-

acters of the flow in this period is not very clear but the observations show an extremely small

total flow from October to January, which is consistent with the long period simulation in this

strait (top panel). However, the minimum flow at the end of 1996 is not as clear as that of 1997.
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Figure 5.5: Flow through Makasar Strait (above) from 1979 - 1993, from November 1996 - June

1998 (middle) in comparison to recalculate monthly observed data from Gordon, et al. (1999)

and through Halmahera Strait (bottom), modelled at two resolutions. Positive sign denotes

southward flow. The correlation between NRA-hi and observed flow is 0.83.
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Many observational and model studies suggest that the Indonesian throughflow is modulated by

ENSO with larger (smaller) volume transport prevails during La Niña (El Niño) (Kindle et al.,

1989; Meyers, 1996; Bray et al., 1996; Fieux et al., 1996; Gordon and Fine, 1996; Potemra

et al., 1997; Gordon and McClean, 1999). The latter refer to the May condition 1997 during El

Niño and 1998 during La Niña and between December 1996 (La Niña) and December 1997 (El

Niño), when the ocean model could produce the same variability with less magnitude. In the

long simulation from 1979 - 1993 at high resolution with NRA forcing, we notice that in De-

cember 1982, 1987 and 1991 (El Niño) the transport is about 7 Sv, 5 Sv and 9 Sv, respectively,

while the only La Niña case of December 1988 shows 9.5 Sv. Thus the variability of the present

model agrees with the findings of the above mentioned authors.

The simulation of the minor pathway of the Indonesian throughflow is given in the bottom fig-

ure. Again, like the flow through Makasar Strait, the high resolution model exhibits higher

frequency and more vigorous variability, which does not exist in the lower resolution results.

The result of different forcings is more coherent for lower than at higher resolution. The mon-

soonal character of the flow is also obvious and the whole vertically integrated column shows

reversed flow, as the flow changes sign periodically. Thus, we expect a deeper monsoonal depth

in this strait than in Makasar Strait.

5.3.3 Thermohaline Condition from Indonesian Water

Fig. 5.6 illustrates the average vertical temperature profiles of eight sections in major Indone-

sian seas in January and July, the peak of the wet and the peak dry season. The monsoonal

changes are noticeable in the upper layer. In the Java Sea the temperature change is minimal

in comparison to the deeper sea in the east. In the eastern seas the annual temperature change

reaches more than 2.5 ◦C in the Seram Strait. The 20 ◦C thermocline is located at around 150

m depth in both seasons. In the Sulawesi Sea there is a thermal front (around 125 ◦E) in Jan-

uary, which is weaker in July. We will look at this phenomenon in the salinity profile and in

the section on subsurface monsoonal signatures. The southern South China Sea also exhibits

significant temperature changes of almost 3 ◦C at the northern edge of section 1. The 20 ◦C

thermocline is about 10 m shallower in January than in July there. The temperature change in

this region is opposite to the changes in the eastern part. If we analyze the monthly march of the

vertical temperature profile (not shown), there is a zonal propagation of temperature changes.

The salinity profile of the Indonesian waters at the peak of the wet season (January) and the dry

season (July) is shown in Fig. 5.7. There are sharp gradients of the pycnocline in both seasons

over the first 100 m especially in the southern South China Sea, but not in the shallow Karimata

Strait and the Java Sea. Note also that the pycnocline in both seasons changes in those layers.

In January vertical mixing exists in the Sulawesi Sea and is associated with the thermal front in
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Figure 5.6: Mean vertical temperature profile down to 550 m depth (contour intervals is 1 ◦C) in

January (above) and July (bottom) between 1979 and 1993 from MPI-OM-NRA at high resolu-

tion. The abscissa represents the 8 sections through the various ocean regions as defined in Table

5.2 and illustrated in the inset. For each section the start and end latitude (longitude) is given

at the bottom (top) abscissa scale. Note that equal section lengths in this figure corresponds to

different geographical distances.
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Figure 5.7: As Fig. 5.6, but for salinity. Contour interval is 0.05 psu.

the temperature profile. In the northern edge of the southern South China Sea, there is a deeper

pycnocline in July than January, which indicates less salinity in the surface layer due to the

presence of the ITCZ. However in most places salinity changes are smaller than 0.5 psu in both

seasons. Changes below 180 m depth are not significant in most sections.

5.4 The Three Monsoonal Climate Regions

From previous chapters, Indonesia can be divided into three main climate regions: the south

monsoonal (from south Sumatera to Timor Island, parts of Kalimantan, parts of Sulawesi and

parts of Irian), the northwest semi-monsoonal and the Molucca anti-monsoonal region. The

monsoonal region has a rainfall maximum in December/January/February (DJF) and a mini-
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mum in July/August/September (JAS). The semi-monsoonal region has two peaks, in OND and

MAM, while the anti-monsoonal has a peak in MJJ. In this section we will examine the ocean

variability that leads to the climate condition in all three regions as shown in Fig. 5.8.

5.4.1 The Monsoonal Region of South Indonesia

The annual temperature cycle in southern Indonesia from the GISST data has annual peaks in

December and April (above 29 ◦C) and a minimum in August (around 26.5 ◦C). That pattern

follows the meridional movement of the ITCZ, which leads to higher SST and higher precipita-

tion amount. From Bony et al. (1997a,b) and Lau et al. (1997) it is known that the SST range

between 28 ◦C and 29.6 ◦C is favorable for high precipitation amount and the range below is

related to the dry season from May to September. Thus, the wet monsoon takes place from

November to March. MPI-OM simulates the annual cycle quite well but with a warm bias all

year long. The largest bias occurs in December with almost 2 ◦C. The MPI-OM simulations

with NRA and ERA forcing in two resolutions are very consistent to each other. The climato-

logical run with the OMIP forcing, on the other hand, gives SST closer to observation in the dry

season and a somewhat less warm bias in the wet season. The OMIP simulation shows even a

slightly colder bias in the peak of the dry season. According to the empirical relation between

SST and rainfall by Bony et al. (1997a) and others, the warm bias could change the monsoonal

pattern of rainfall, since SST above 29.6 ◦C is no longer favorable for precipitation.

5.4.2 The Semi-monsoonal Region of Northwest Indonesia

The model simulates the annual cycle of SST in this area quite well with a warm bias above

1 ◦C. The largest bias is simulated with ERA forcing especially during May to November. The

OMIP simulation has a strong bias from October to December. The maximum SST is observed

in May and the minimum in December/January/February, which coincides with the incoming

cold surge from the South China Sea. The cold surge reduces the SST by 3 ◦C, which eventually

reduces the precipitation amount in the area. The semi-monsoonal region has two annual rainfall

peaks in October/November and April/May when the SST is within a favorable range. From

June to October, the region experiences another precipitation minimum, which is not as low as

during the dry season in southern Indonesia. In fact, the average rainfall in the ”dry” season of

this region is above the annual average of the southern monsoonal region (5 mm/day).
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Figure 5.8: Monthly average (1979 - 1993) SST for the three monsoonal regions, from obser-

vation (GISST) and model simulations.

5.4.3 The Anti-monsoonal Region of Molucca

In this region, the model simulates the variability well but with 2 ◦C warm bias. The model

produces a coherent pattern except for the low resolution NRA forcing from June to October.

The GISST annual cycles are represented with a narrower SST range in north Molucca. Fur-

thermore, Fig. 5.3 shows surface current intrusion from the Warm Pool that supports a warmer

SST in north Molucca during June/July/August. The intrusion reaches south to Seram Island or

circulates only in north Molucca, and small parts reach further south to the Flores Sea. Although

there is no certainty about how much the presence of this intrusion is responsible for high SST

values, it is held possible that without the intrusion SST would drop below 28 ◦C during the mid

of the year with lower rainfall. In this case the shape of the annual cycle would look like that of

the monsoonal region. In the next section, we will look at the depth of the monsoonal current

intrusion reaching northern Molucca.

Thus the anti monsoonal climate of Molucca is a result of:
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• the presence of an intrusion from the tropical Warm Pool in the mid of the year, which

brings high SST values and distinguishes the SST of the area from that just a few degrees

south of it,

• higher rainfall amount in MJJ due to an SST drop into the favorable range of precipitation

between 28 ◦C and 29.4 ◦C,

• high annual SST values that contribute to average high rainfall all year round.

5.4.4 How does Ocean Circulation Drives SST?

We argued that the ocean circulation regulates SST variability. One way to show this is by using

a simple water column and calculating its heat budget. Assuming a column of ocean water as

given in Fig. 5.9, the total energy inside the column is given by

ET =
∫ ∫ ∫

cTt(x,y,z)ρdxdydz, (5.1)

where T (x,y,z), c and ρ are the temperature profile, specific heat capacity of sea water (4.0×
103Jkg−1K−1) and density of sea water (1025kgm−3). The total monthly energy change must

equal the atmospheric fluxes and the net horizontal advection from the ocean current. The total

energy change within one month is given by

dET

dt
=

∫ ∫ ∫

cTt(x,y,z)ρdxdydz
dt

= Qsur f dxdy+cρ
(

∫ ∫

UT dydz+
∫ ∫

V T dxdz

)

(5.2)

where Qsur f , U and V are the residual atmospheric energy fluxes, zonal fluxes and meridional

fluxes. The latter two components are the horizontal advection components.

The heat budget of the anti-monsoonal region north Molucca (3 ◦S – 2 ◦N, 122 ◦E – 135 ◦E)

is given in Fig 5.10. In the top panel, there are three parameters: the atmospheric fluxes

(Qsur f dxdy), total heat change of the water column (total dT dV/dt) and the heat content of

the upper 12 layers or 200 m depth. The upper 200 m heat exchange accounts for, in average,

68% of the total heat exchange in the column. On the other hand the surface fluxes contribute,

on average, 17% to the heat exchange. In some cases, the surface fluxes dominate the heat

exchange. Hence, the contribution of the surface fluxes is on average small in comparison to

the horizontal advection.

The middle panel shows the variability of horizontal advection, i.e. the zonal inflow from the

Pacific region, the heat content three month later and the SST from GISST observation four

month later. Here, the zonal flow from the Pacific is considered, as it accounts for more than
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dTdV
dt

dQ= vel T dydz

Qsurf dx dy

dQ= vel T dydz

Figure 5.9: Energy budget exchange within a water column.

90% of total horizontal advection. The three month time lag between zonal inflow fluxes and

heat energy content is due to the accumulation process (integration) of a harmonic function.

The zonal flow is monsoonal with a period of a year. Thus the integral of a harmonic function

with one year period will be out of phase 90 ◦ or 3 month. The time lag between heat content

and the SST is due to the ocean surface response time. The correlation between the heat content

of the upper layers (3 months lag) and SST (4 months lag) is 0.394, between zonal flow and heat

content (3 months lag) is 0.207 and between zonal flow and SST (4 months lag) is 0.194. All

correlations are calculated from 15 year simulations. Possible sources of error are the imperfect

column boundary, which considers only the major zonal input from the Pacific and only the

upper 200 m and does not account for upwelling and atmospheric fluxes. From Fig. 5.10 (top

panel), there is a considerable contribution by atmospheric fluxes. In summary, the role of the

ocean circulation for SST variability is due to the build up of additional heat over 3 month in

the upper 200 m layer.

The bottom panel shows the same parameters for the semi-monsoonal region in the southern

South China Sea. Unlike for the case of the anti-monsoonal region, here the meridional flow

from the north is used instead. The results show a time lag of 4 months from the horizontal

advection to the heat content and another month to be in-phase with the SST variability. The

correlation between the heat content (4 months lag) and SST (5 months lag) is 0.711, between

zonal flow and heat content (4 months lag) 0.613 and between zonal flow and SST (5 months

lag) 0.842.

5.5 Subsurface Monsoonal Signatures

We will now investigate how deep the monsoonal influence ocean parameters in Indonesian

waters via a subsurface monsoonal index. The monsoonal index is a measure of how large the

ratio of the monsoonal component of the spectra is compared to total variance. The ratio has
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Figure 5.10: The ocean heat budget for the anti-monsoonal region. The upper panel shows

the Qsur f , total heat content change dT dV/dt and the heat budget of 12 layers (183 m). The

middle panel shows zonal heat advection within the upper 200 m (uT dydz), the heat content

of the upper 12 layers and the rescaled SST. Notice that in the bottom panel the heat content

(SST) is lagging by 3 months (4 months) to the zonal advection. The correlation between the

heat content(t-3) and SST(t-4) is 0.394, between zonal fluxes and heat content(t-3) 0.207 and

between zonal flow and SST(t-4) 0.194. The bottom part shows the middle panel parameters

for the semi-monsoonal region.
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a range between 0 and 1 and the larger the index, the more dominant the monsoon is. The

monsoon index M is calculated as

M =
a2

annual +b2
annual

w · var0
(5.3)

where a, b, w and var0 are the real and imaginary annual components of the Fourier transform,

the normalization factor and total variance, respectively. The Fourier transform is calculated as

follows:

f (t +1,x) =
1√
n

n−1

∑
j=0

i( j +1,x)e2π jt , (5.4)

f (t) =
n

∑
t=0

a j sin

(

2π jt
n

)

+ i
n

∑
t=0

b j cos

(

2π jt
n

)

, (5.5)

where the first and the second parts of Eq. 5.5 denote the real and imaginary components of

the transform, respectively. In our calculation, we consider only the annual component and the

normalization factor, w, is defined as 2π
√

n. Then, the variance is defined as

var0 =
∑N

i=1(xi− x)2

N
(5.6)

Figures 5.11, 5.12, 5.13 and 5.14 illustrate vertical profiles of the monsoonal indices in the

eight sections for zonal and meridional transports, salinity and temperature. The spectra are

calculated from a 15-year band from 1979 - 1993 on all levels of the high resolution MPI-OM-

NRA simulation. The monsoonal depth is defined here as the layer with a monsoonal index

> 0.2 and the transport is called monsoonal with reversing flow every 6 months.

5.5.1 Monsoonal Transports Profile

The monsoonal transport profile has a relative direction following the grid system. The terms

zonal and meridional, thus, do not exactly follow the east-west and north-south direction, but

follow each grid cell’s direction. The zonal transport profile of Fig. 5.11 shows intense mon-

soonal transport near the surface. In Karimata Strait, Java Sea and Seram Strait, the monsoonal

transport explains more than 90% of the variance. In Sulawesi Sea and Halmahera Strait, the

monsoonal signature reaches the bottom. In the Halmahera Sea the monsoon index of more

than 50% variance dominates the whole column, although the deeper the location, the smaller

the variance and the flow are. The Makasar Strait and western Sulawesi Sea have no deep mon-

soon signature. The deep flow in Makasar Strait and Sulawesi Sea is a continuous Indonesian
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Figure 5.11: Monsoon indices or the ratio of the monsoonal component to total variance of

the zonal transport for 1979-1993 in the MPI-OM-NRA model simulation at high resolution.

Labels and inset follow Fig. 5.6. Minimum threshold level is 0.2 and contour interval is 0.1.

The top figure shows the upper 550 m and the lower figure the whole ocean.



105 5.5. SUBSURFACE MONSOONAL SIGNATURES

Figure 5.12: As Fig. 5.9, but for the meridional transport.

throughflow. Interestingly, there is a monsoon index < 0.2 at the surface in the eastern and

western edge of the Sulawesi Sea.

The meridional transport profile in Fig. 5.12 exhibits a similar character as the zonal profile.

Most monsoonal transports exist near the surface and deeper monsoonal flow is found on the

eastern side of the Sulawesi Sea down to the bottom of Halmahera Strait. The empty zonal pro-

file at the surface in the eastern and western edge of the Sulawesi Sea has meridional monsoonal

transport. On the other hand, there is no meridional monsoonal flow in the middle of Sulawesi

Sea and the middle of Halmahera Strait. The complementary zonal and meridional transports

at the surface are associated with the west Sulawesi and Halmahera eddies, as discussed previ-

ously.

From figures 5.11 and 5.12, it is clear that the Java Sea is the most monsoonal region, fol-

lowed by Seram Strait, whose highest monsoonal index occurs around 30 to 60 m depth. The
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Figure 5.13: As Fig. 5.9, but for the salinity profile.

deep north Molucca water intrusion is found around 250 m with M > 0.5 in section 6 of the

vertical profile of Fig. 5.11. Morey et al. (1999) found that the presence of Halmahera Island

only changes the throughflow composition in the surface layer but not the throughflow in the

undercurrent. The monsoonal depth of the flow through within the Makasar Strait is found to

be 110 m. From the throughflow analysis (Fig. 5.5), the flow remains southward as indicated

by positive flows. Thus there is an intense persistent southward undercurrent (below 110 m)

through Makasar Strait.

5.5.2 Monsoonal Salinity Profile

Unlike the transport profiles of the previous two figures, the salinity profile in Fig. 5.13 shows

a much simpler pattern, in which the monsoonal salinity depth was found to be 100 m with
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Figure 5.14: As Fig. 5.9, but for the temperature profile.

the most intense layer at around 50 m. Interestingly, following the salinity profile of Fig. 5.7,

there is a vertical intrusion in the Sulawesi Sea and the Halmahera Strait down to 550 m. The

vertical salinity profile change in the Sulawesi Sea is consistent with the transport profile. Like

the transport profiles, there is a deep monsoonal activity to the bottom of Sulawesi Sea and

Halmahera Strait. Unlike the transport profile, this deep monsoonal signature is not connected

to the surface profile. Salinity profile is usually associated with the density profile and our result

is comparable to Fig. 4 from Gordon and Susanto (2001), who reported the mid-depth of the

pycnocline in the Banda Sea at 150 m, whereas the model simulation show a 120 m depth in

the northern edge of the Banda Sea.
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5.5.3 Monsoonal Temperature Profile

The monsoonal temperature profile in Fig. 5.14 show similar patterns as the salinity profiles.

Most monsoonal activity occurs in the upper 100 m and the most intense change is found at

70 m depth. Like for the salinity profile, there is a monsoonal pattern in the eastern edge of

Sulawesi Sea associated with the temperature front at 129 ◦E. Other deep monsoon structures

exist in the South China Sea, Banda Sea and down to the bottom of Halmahera Strait.

The monsoonal front in the Sulawesi Sea occurs from November to February (see. Fig 5.3, 5.6,

5.7, 5.13 and 5.14), when there is an intense flow from the western Sulawesi Sea. On the eastern

edge of Sulawesi Sea there is shallow water and a chain of small islands from northern Sulawesi

to Mindanao Island in the Philippines. When the surface water reaches this edge, this warm and

light (lower salinity) water mass sinks to the deep ocean (around 125 ◦E). This vertical water

intrusion does not occur on the other time of the year. The signature of the vertical flow in the

Sulawesi Sea is consistent from Figures 5.3, 5.7, 5.11 and 5.12). Masumoto et al. (2001) found

an intraseasonal eddy in the Sulawesi Sea (125 ◦E) leading to a similar problem in their study

with another OGCM. The vertical section of meridional velocity and temperature in January

along 3 ◦N shows similar vertical transport at 125 ◦E as we found here. The vertical transport in

their model reaches 110 m depth.

5.6 Monsoonal Influence on ENSO Impact

The Indonesian climate is a directly and strongly influenced by ENSO events (for example

Gutman et al. 2000). In this section, we will look at the ENSO impact as a function of the

monsoon phase by studying at the SST anomaly during composite ENSO events. For this

analysis the long term SST data of more than 30 years will be separated into normal, El Niño

and La Niña years. Then we calculate an ensemble average of each classification above. The

aim of this these composites is to give superimposed views of anomalies in each month. El

Niño (La Niña) years are defined for a SST anomaly in the NINO3 region (5 ◦S - 5 ◦N, 150 ◦W

- 90 ◦W) above (below) 1 ◦C that persists for one year. As a result, the ENSO years from 1961

- 1993 are as follows:

El Niño year: 1965, 1969, 1972, 1982, 1987, and 1991

La Niña year: 1964, 1970, 1973, 1975, and 1988

The SST for such composite ENSO events in the Molucca region, which is believed to be the

most affected region, is given in Fig. 5.15, both for observations (GISST) and model results.

MPI-OM simulates the SST deviation from the normal year well but with a warm bias of 1.5 ◦C,
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Figure 5.15: SST anomaly over Molucca from GISST (thick lines) and the low resolution MPI-

OM-NRA (thin lines) simulation during composite El Niño, La Niña and normal years.

which results from the boundary forcing. The different SST range for observation and models

has a consequence for the annual rainfall cycle. After Bony et al. (1997a) and others, such

higher SSTs lie in the upper unfavorable range and will reduce the precipitation. There is a

need to investigate this case with a coupled model.

In the anti-monsoonal region, the SST over Molucca changes during ENSO events but with

opposite sign for El Niño and La Niña. In both cases, the anomaly starts in April, reaches its

peak around August and September and decreases afterward until December. As a consequence,

an initially warmer SST will bring SST up to a favorable precipitation range and induce more

rainfall. While on the other hand the cooler SST will lower the SST even further and inhibit

rainfall. The deviation pattern from a normal year agrees with Gordon and Susanto (2001),

who investigated the Banda Sea (3.5 ◦S - 7.5 ◦S and 123.5 ◦E - 134.5 ◦E) for ENSO events

between 1982 and 2000 also by using GISST SST. They found that the ENSO impact is largest

in September and ceases in January of the following year. However, no attention was given to

the possible cause for the decease. When we apply the Banda Sea SST data for the different

period 1961-1993, the ENSO impact still deceases in December. This indicates that in different

decades there is a one-month shift of the end of the impact.

The ocean surface circulation in Fig. 5.3 revealed that the surface ocean current has a monsoonal

pattern, which is driven mainly by the monsoonal surface wind. This monsoonal surface pattern

regulates the SST over the region. From May until October, sea water from the Warm Pool

area (northeast Irian Island) to the archipelago cools (heats) the local SST during El Niño (La

Niña) events, which eventually reduces (increases) the rainfall amount. The latter flow does

not persist throughout the year. From November until February there is a reverse current from

the archipelago outward to the warm pool area. This mechanism helps diminish the ENSO

impact as stated above. The monsoonal or reversal surface current is also responsible for the

prompt responses the archipelago received in May or during the early stage of ENSO. The
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Figure 5.16: Ensemble Java rainfall anomaly in comparison to the NINO3 SST anomalies du-

ring El Niño (top) and La Niña (bottom) years from the start of ENSO event until the end of

next year. The ensemble Java rainfall is scaled to fit the corresponding SST anomaly scale.

zonal propagation of the ENSO impact is regulated by the ocean surface circulation in the

archipelago, which itself is driven by the monsoon. The ocean model clarifies that the surface

ocean circulation drives this mechanism. Hence, we found no ENSO impact in December,

January and February, the peak wet season of southern Indonesia. Some prolonged ENSO

events beyond April may give an impact on rainfall afterwards.

In order to strengthen that hypothesis, we look at the ensemble of all Java rainfall data from the

combined sources GHCN (Vose et al., 1992) and the Indonesian Bureau of Meteorology. With

regard to the ensemble Java rainfall anomaly (Fig. 5.16), the ENSO impact is similar to the

SST case. The anomaly starts in April, reaches its peak in August and September, and deceases

afterward. The impact on Java rainfall for La Niña is not exactly oposite to that of El Niño,

as the impact is found to diminish temporarily during the peak of the dry season around June.

Interestingly, in December either El Niño or La Niña events is still growing and most of them

reach their peaks around January-February, when there is no more ENSO impact in Indonesia.

Some events that persist beyond April may have considerable impact on the Indonesian rainfall



111 5.7. CONCLUDING REMARKS

afterward, as suggested by the ocean circulation. In summary, El Niño has no impact on the

peak of the wet season, while La Niña has no impact on the peak of the dry season.

5.7 Concluding Remarks

The study on the monsoonal properties of Indonesian waters with the Max Planck Institute

global ocean model MPI-OM used the results of model simulations from two different horizon-

tal and vertical resolutions and two different surface boundary forcings. We analyzed the three

monsoonal climate regions and eight sections of the Indonesian seas, with a focus on the upper

500 m of the ocean.

The MPI-OM model is able to simulate the Indonesian throughflow and SST variability quite

well with certain biases. An inappropriate representation of the bulk formula for air-sea heat and

water exchange in the region may cause this discrepancy. One way to prove the latter hypothesis

is by simulating the regional climate in a coupled ocean and atmosphere climate model. In the

coupled model, instead of calculating fluxes with the bulk formula, the fluxes are supplied from

the atmospheric model.

The simulation of the Indonesian throughflow has improved significantly for higher spatial res-

olution. The higher resolution simulations give some higher frequency variabilities, while the

coarse one seems to picks up the monsoonal property only. Resolution plays a more impor-

tant role than surface boundary forcing. In fact, MPI-OM produced the variability of the total

Indonesian throughflow transport during the strongest El Niño 1997/1998 with a correlation

value of 0.83 to the in-situ observation. Unfortunately due to limited resources, the Indone-

sian throughflow analysis is only available for the MPI-OM-NCEP simulations. For the SST

simulations, there is not much difference between the variability for both resolutions as well

as different boundary forcings. The warm bias is related to the static supply of the surface

boundary forcing. SST as the upper-most ocean property is directly influenced by atmospheric

forcing. One way to reduce the bias is by coupled ocean atmosphere simulations.

The near surface flow in Indonesian seas is influenced by the monsoon and reaches to a depth

of about 100 m. The depth varies in different seas and affects the transport and thermohaline

circulations. Ocean transport has the deeper monsoonal signatures than other quantities. The

most intense transport occurs at 50 m depth, not at the surface. The zonal flow characterizes

the monsoonal propagation in the atmosphere and the sea. The SST variability, for example,

propagates zonally and the wet season starts in the northwest at the end of September and

propagates to the east. The dry season comes from the southeast and propagates westward.

Most of the rainfall variability and the monsoonal character of the three regions can be explained

by SST variability and an empirical relation proposed by Bony et al. (1997a) and others. This
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empirical relation shows the importance of sea-air interaction in the region and the importance

of a correct SST pattern for climate modelling of the maritime continent. The SST variability is

largely regulated by the ocean circulations. Horizontal advection changes the heat content for 3

to 4 months when SST reaches its maximum or minimum.

In the last section, we discuss a possible mechanism of the ENSO impact on Indonesian rainfall,

which is driven mainly by the ocean circulation. The archipelago receives an ENSO impact

only over parts of the year. This limited impact is due to the monsoonal ocean circulation. The

zonally dominated flow suggests a zonal propagation of the impact and an important role of the

surface current intrusion in north Molucca. A detailed explanation of the ENSO mechanism

requires a comprehensive ocean atmosphere climate analysis from the region such as the real

propagation of rainfall anomaly (see Chapter 2), while the focus of this study was more on the

ocean variability.



Chapter 6

Modelling of Indonesian Rainfall with a

Coupled Regional Model

Abstract

Long term high resolution coupled climate model simulations using the Max Planck Institute

Regional Climate Model and the Max Planck Institute Ocean Model has been performed with

boundary forcings from two reanalyses, firstly from the European Centre for Medium-Range

Weather Forecasts and secondly from the joint reanalysis of the National Centers for Environ-

mental Prediction and the National Center for Atmospheric Research. The coupled model was

run without flux correction and at two different ocean resolutions. The results show improved

performance after coupling: A remarkable reduction of overestimated rainfall over the sea for

the atmospheric model and of warm SST biases for the ocean model. There is no significant

change in rainfall variability at higher ocean model resolution, but ocean circulation shows

less transport variability within Makasar Strait in comparison to observations.

6.1 Introduction

A problem in simulating the Indonesian rainfall is the appropriate land-sea representation. The

area is highly complex with large ocean coverage and chains of islands. Intense ocean atmo-

sphere interactions take place in this most convective region of the world at the ocean sur-

face. Due to large ocean areas, such processes will be important in modeling the climate of

the region. With a stand alone (uncoupled) atmospheric or ocean model, such processes can-

not be simulated adequately. The uncoupled atmospheric model uses the spatially and tem-

porally prescribed and interpolated Sea Surface Temperature (SST). An integrated or coupled

ocean/atmosphere model gives more realistic dynamics close to the ocean surface. The ocean

113
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atmospheric exchange takes place at higher frequency determined by the coupling setup. Re-

gional climate studies using a coupled ocean/atmosphere model for the maritime continent are

relatively new.

Our study is motivated by the unsatisfactory result of some rainfall patterns in the uncoupled

climate model for this region (Chapter 4 and 5). The uncoupled atmospheric model had a major

drawback in overestimated rainfall over the sea. The uncoupled ocean model, on the other

hand, had a problem with the bulk formulae for heat fluxes, which consequently lead to a warm

SST bias over the region. The coupled climate model hopefully reduces these problems. With a

coupled model, we give more degree of freedom to both models. In the uncoupled ocean model,

the forcing is prescribed from the atmospheric reanalyses and recalculated to provide surface

water and heat fluxes for the model using an empirical bulk formulae. Such an approach suffers

from a large effect in an archipelago, since the bulk formulae are applied globally and may not

be suitable for local and regional. This deficiency might be reduced in a coupled model, because

the Regional Climate Model (RCM) improves the coarse resolution of the reanalyses and thus

provides a high resolution atmosphere in the coupled region.

Our approach is to use a very high resolution regional atmospheric model coupled to an ocean

model with an adjusted special conformal grid that both have a comparable high resolution

in the region. A nested RCM could downscale GCM results to a regional scale. The Max

Planck Institute (MPI) RCM or REMO (Jacob, 2001; Jacob et al., 2001) is suitable for this

purpose, because REMO provides detailed forecasts of weather parameters close to the ground

and an improved simulation of clouds and rainfall compared to a GCM. On the other hand,

the Max Planck Institute Ocean Global Circulation Model (OGCM), the MPI-OM1 (Marsland

et al., 2003) can also be used for a regional climate study (Marsland and Wolff , 1998, 2001).

MPI-OM1 is the latest development of the Hamburg Ocean Primitive Equation (HOPE) ocean

model (Wolff et al., 1997). A major improvement is the transition from a staggered E-grid to an

orthogonal curvilinear Arakawa C-grid (Arakawa and Lamb, 1977) and arbitrary placement of

the poles from a bipolar orthogonal spherical coordinate system. This coupling method, to the

authors’ knowledge, is relatively new to the region.

The purposes of this chapter are to analyze the performance of a very high resolution coupled

climate model, to compare the result with the stand alone (uncoupled) mode and to see the

importance of different ocean model resolutions. The study focuses on rainfall and ocean cir-

culation from the monthly to the interannual time scale. Limitations are the domain size and

the period of analyses from 1979 to 1993. The outline of this paper is as follows. Section 2

presents the data and model setup, section 3 discusses the implication of coupling for the atmo-

sphere and section 4 the implication for the ocean. Finally, section 5 summarizes the highlights

of the findings.
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6.2 Data and Model Setup

6.2.1 Data

The data used in this study are monthly rainfall data collected by the Indonesian Meteorological

& Geophysical Agency (BMG) at 167 stations all over Indonesia, and monthly mean rainfall

data from the WMO-NOAA project on The Global Historical Climatology Network (GHCN;

Vose et al. 1992) from 1979 to 1993. In our area of interest (19 ◦S - 8 ◦N and 95 ◦E - 145 ◦E),

there are 545 rain gauges. These data are gridded to match the other datasets at T106 and 0.50

resolutions using the Cressman (1959) method. As the second observation data set, a combi-

nation of gauge observations with satellite estimates from the Global Precipitation Climatology

Project (GPCP; Huffman et al. 1997) at the 1 ◦ spatial resolution is used. The data has been

interpolated into the REMO grid.

This study uses surface ocean forcings from two reanalyses, one from ECMWF reanalysis

(ERA) or ERA15 (Gibson et al., 1997), which is available at the horizontal resolutions T106,

equivalent to 1.125 ◦ in the tropics, from 1979 until 1993, and NCEP reanalysis (NRA; Kalnay

et al. 1996), from the time period 1948 to 1999. The forcings have been interpolated to the

model geometry.

For climatological runs, the German Ocean Model Inter-comparison Project (OMIP; Röske

2001) forcing was used. This study also made a climatological run, which was setup using the

German OMIP climatology dataset as the surface forcing and was rerun for at least 10 years,

which was skipped later due to spin-up. The OMIP forcing was derived from the ECMWF

reanalysis 15 year averages.

6.2.2 Model Descriptions

Both REMO and MPI-OM are hydrostatic models working on the Arakawa-C grid for the hor-

izontal representation. REMO requires a lateral boundary forcing at the sea surface and in

each vertical layer at the boundary, while MPI-OM requires sea surface conditions from the

atmosphere.

The Regional Atmospheric Model (REMO)

The REgional atmosphere MOdel (REMO) is based on the ’Europa-Modell’ of the German

Weather service (Majewski, 1991). It can be alternatively used with the physical parameterisa-

tions of the Europa-Modell or with the parameterisations of the global climate model ECHAM-4

(Roeckner et al., 1996a), which have been implemented at the MPI. The dynamical core of the
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model as well as the discretisation in space and time are based on the Europa-Modell. However,

in REMO with ECHAM-4 physics not enthalpy and total water content but temperature, water

vapor and liquid water are prognostic variables. In the present study REMO with ECHAM-4

physics is applied. A more detailed description of the REMO can be found in Chapter 4.

The Ocean Model (MPI-OM)

The Max-Planck-Institute Ocean Model (MPI-OM, formerly C-HOPE) is the ocean/sea ice

component of the Max-Planck-Institute climate model ECHAM/MPI-OM. MPI-OM is a prim-

itive equation model (z-level, free surface) with the Boussinesq and incompressibility assump-

tions, formulated on an orthogonal curvilinear Arakawa C-grid. This study uses a special con-

formal grid where the north pole is located in China and the south pole in Australia. A more

detailed description of the MPI-OM is given in Chapter 5.

Coupling

REMO/MPI-OM coupling was carried out using the OASIS coupler developed by CERFACS

(Valcke et al., 2000). The coupling procedure is similar to the one used in the MPI climate

models ECHO-G (Legutke and Voss, 1999) and ECHAM-5/MPI-OM. In this study the main

task of the coupler is to synchronize time for coupling or data exchange, because both models

are running at different time steps.

The regional climate model (REMO) covers only a part of the MPI-OM area and divides the

global Ocean Global Circulation Model into two sub-domains: coupled and non-coupled. This

peculiarity provides a requirement to run MPI-OM both in coupled and stand-alone modes

simultaneously using additional atmospheric forcing defined in the non-coupled domain. The

coupled domain is the REMO domain covering the whole archipelago (19 ◦S – 8 ◦N, 91 ◦E –

141 ◦E).

In the coupled domain, the ocean model receives, at a specified frequency (coupled time step),

heat, freshwater and momentum fluxes which are calculated in REMO (Fremo) and passes back

the sea surface parameters to the atmospheric model. Outside the coupled domain, the ocean

model receives, at specified frequency (forcing time step), the global, predefined atmospheric

fields, which are recalculated in heat, freshwater and momentum fluxes (Fbulk) using a bulk

formulae. Note, that the coupled time step and the forcing time step can be different. The

fluxes, which are to be used as an ocean model forcing (F), are then the result of the following

mixing scheme:

F = I ·Fremo +(1− I)Fbulk (6.1)
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where I is defined as follow

I =

{

1, inside coupling/REMO region

0, outside coupling/REMO region
(6.2)

In a normal condition, REMO-MPI-OM coupling also includes ice parameters. Since the cou-

pled domain is located in a tropical region, the ice component is omitted. Thus the ocean only

passes the sea surface temperature to the atmosphere. Fig. 6.1 illustrates the coupling processes

between reanalyses, REMO and MPI-OM in coupled and uncoupled domains.

Interpolation from the atmospheric grid to the ocean’s grid and vice versa is achieved in the

ocean model using the so-called mosaic interpolation. Thus the OASIS coupler sees both the

models on the same computational grid, i.e. the REMO grid, because it represents also the

coupled domain. The interpolation scheme from MPI-OM to REMO is as follow

FM
i j =

∑lm FR
lm ·Ai jlm

∑lm Ai jlm
(6.3)

and from REMO to MPI-OM using the formula

FR
lm =

∑i j FM
i j ·Ai jlm

∑lm Ai jlm
(6.4)

where FM
i j , FR

lm are the fields defined on MPI-OM and REMO grid, respectively. Ai jlm is the

interpolation matrix.

Usually an ocean model has a much finer resolution than an atmosphere model. To take into

account small-scale variability, a subscale correction of the atmospheric heat fluxes is used. As

these fluxes are strongly dependent on the sea surface temperature this correction is assumed

to be proportional to the difference between the SST calculated in MPI-OM and the same SST

interpolated onto the atmospheric grid and backward. The proportionality constant which is ac-

tually equal to dQ/dT , where Q is a heat flux and T is a surface temperature, was set according

to Röske (2001) from 50 to 60 W/(m2K)

6.2.3 Model Setups

REMO setup

REMO was run in the climate mode at the resolution 0.5 ◦ or about 55 km horizontal resolution

and 20 hybrid vertical levels. The REMO domain is formulated in a finite difference grid with
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Uncoupled domain
REMO -> MPI-OM
MPI-OM -> REMO MPI-OM

Figure 6.1: A schematic view of the processes in the coupled and uncoupled domain for the

ocean/atmosphere coupling of the atmospheric regional climate model REMO and the global

ocean model MPI-OM, using a coupler (OASIS).

101 points in longitude, 55 points in latitude with a bottom left corner at 91 ◦E/19 ◦S or a

region between 15 ◦S - 8 ◦N and 91 ◦E - 141 ◦E. This grid system has 21% land coverage. The

model was forced with lateral boundaries from ERA15 and NRA. The lateral boundaries have

a temporal resolution of 6 hours and are interpolated into a 5 minutes time step. REMO obtains

the lower boundary conditions over the sea surface from MPI-OM through the OASIS coupler

at every coupling time step (6 hours) and, at the same time, passes the atmospheric momentum,

heat and water fluxes to the ocean model. In the uncoupled mode, REMO has its own prescribed

SST from the corresponding reanalyses. The REMO used in this study allows only one type of

land cover, either land, sea or ice.

A RCM has to be initialized and supplied with lower and lateral boundary values during the

whole simulation. Initialization is done for all prognostic variables in all model levels. In

addition, surface temperature, soil temperatures for five soil layers down to a depth of 10 m,

soil moisture, snow depth and temperature as well as the skin reservoir content (water stored by

the skin of the vegetation) must be supplied.

MPI-OM setup

The MPI-OM is a global model, which uses a bipolar orthogonal spherical coordinate system

with a special conformal grid where the north (south) pole is located in China (Australia). The

horizontal resolution gradually varies between a minimum of about 15 km near the poles and
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a maximum of 370 km in the western edge of equatorial Atlantic. The model has 30 vertical

levels with increasing level thickness from top to the bottom. This study used two resolutions

of MPI-OM as described in Table 5.1.

The MPI-OM is started from the stand alone mode and it is initialized by climatological temper-

ature and salinity data (Levitus et al., 1998). It is then integrated for 31 years from 1948-1978

using 6 hourly NCEP reanalysis data as forcing. The period of this integration is used as spin-

up. In the coupled mode, the model is started from the state obtained by the stand-alone runs

after the spin-up. The initial date is 01.01.1979 and it is integrated until 31.12.1993. In the un-

coupled mode the model continues the integration until 1999. Atmospheric forcing, calculated

from NCEP reanalysis data is applied every 6 hours. At that same time the ocean model gets

atmospheric fluxes calculated in REMO and passes sea surface temperature to REMO.

Coupling Experiments

The coupled REMO/MPI-OM experiments covered the period from 1979 to 1993. One simula-

tion was performed for each reanalysis and two resolutions of MPI-OM. In total, for two reanal-

yses and two resolutions there are 60 years of integration. During the whole experiment, instead

of the salinity relaxation procedure only the constant freshwater flux correction was used. No

heat and momentum flux corrections were applied during the entire coupling experiments.

The model output consists of two parts: the atmospheric and oceanic. REMO output is based

on the REMO’s rotated Arakawa C-grid with 20 vertical hybrid levels and has been stored

with 6 hours time interval. The ocean dataset, omitting the sea-ice parameter output, is written

on the MPI-OM orthogonal curvilinear Arakawa C-grid with 20 (low resolution) and 30 (high

resolution) vertical levels as monthly mean values.

6.3 Implication for the Atmosphere

This section presents results from the coupled model integrations and their comparisons to the

uncoupled REMO model described in Chapter 4. The stand alone model results will not be

covered in detail here. We will look at the variabilities for the five major islands and three sea

regions as illustrated in Fig. 4.2.

6.3.1 The five major islands

Fig. 6.2 shows variabilities of rainfall from the coupled REMO-MPI-OM simulations from

two reanalyses with two different ocean resolutions. There are no notable differences between

simulations with different ocean resolutions or, in other words, the lateral boundary and reanal-
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Figure 6.2: Variability of rainfall for the five major islands from the coupled REMO-MPI-OM

simulations and their comparison to observation (gauges).
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Table 6.1: Correlation between rainfall simulations and observations for reanalyses, uncoupled

REMO and two coupled REMO simulations over the five major islands.

NCEP Java Kalimantan Sumatera Sulawesi Irian

global reanalysis 0.691 0.761 0.639 0.680 0.443

uncoupled REMO 0.715 0.669 0.691 0.578 0.357

coupled low ocean 0.769 0.734 0.715 0.598 0.385

coupled high ocean 0.780 0.736 0.723 0.576 0.393

ERA Java Kalimantan Sumatera Sulawesi Irian

global reanalysis 0.815 0.780 0.764 0.451 0.399

uncoupled REMO 0.798 0.780 0.708 0.645 0.434

coupled low ocean 0.823 0.762 0.691 0.657 0.439

coupled high ocean 0.820 0.749 0.682 0.631 0.463

yses play stronger role here. From that figure, Java seems to have the best performance, where

REMO does not produce under- or overestimations as large as on the other islands. There,

REMO simulations tend to underestimate and the largest underestimation occurs in Kalimantan

and in Irian with the NRA forcing.

The summary of the correlations between original reanalyses or REMO simulations and rainfall

observation is given in Table 6.1. For the case of the NCEP analysis in Java, there is about 19%

improvement from the original reanalysis to the coupled simulation and about 9% in Sumatera.

For other islands, REMO simulations could not produce correlation as high as the original

reanalysis. However among the REMO simulations, there is a small improvement by coupled

REMO with high resolution ocean model. For the case of ERA reanalysis, improvements occur

in Java, Irian and the largest in Sulawesi of about 18%. Among REMO simulations coupling

does not always produce a better result. In fact, the improvement by coupling in comparison

to the uncoupled model is in general, rather small. For both reanalyses, the best performance

is in Java, which has a homogenous climate region (the monsoonal region), while other islands

experience a combination between different monsoonal systems. Kalimantan has the second

best performance followed by Sumatera and Sulawesi. Irian has the lowest performance in

both reanalyses, which is mainly due to boundary zone problem. This island is located in the

REMO boundary zone, where the coarse resolution lateral boundary has still some influence.

In general, Table 6.1 shows that the quality of the reanalysis largely determines the quality of

the REMO result.
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Figure 6.3: Variability of rainfall for the three sea areas from the coupled REMO-MPI-OM

simulations and their comparison to observation (gauges).

6.3.2 The three sea regions

The variabilities of REMO simulations for the three sea areas are given in Fig. 6.3. In compari-

son to Fig. 4.6 there is less overestimation in all three regions. In chapter 4, REMO-ERA gives

much too high estimations over the sea, which turns out to be the major problem of REMO

simulations in this region. Like in the case of simulations over land, coherence between sim-

ilar reanalysis for two different ocean model resolutions is high. In other words, the type of

reanalysis plays a greater role than the resolution. Over the Molucca Sea, the coherence among

all REMO simulations is high, except for some cases with the ERA forcing coupled with the

high resolution ocean model. In the Molucca Sea, most REMO simulations overestimate rain-

fall, while, on the other hand, in the South China Sea, most REMO simulations underestimate.

Regardless of these small drawbacks, the too large overestimations over the three sea regions in

the uncoupled REMO (Fig. 4.6) have been reduced considerably for the coupled REMO. The

simulation in the South China Sea seems to be the best among the three sea regions, followed

by the Molucca Sea.

The summary of correlation between reanalysis or model simulations and observation is given

in Table 6.2. In most cases, there are some improvements in coupled REMO simulations, espe-
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Figure 6.4: Comparison of three rainfall simulations and observation, from land-based rain

gauges for July 1983. The coupled mode stands for REMO/MPI-OM with high resolution of

the ocean model MPI-OM.

cially over the Molucca Sea from the original ERA reanalysis for about 46%. Among REMO

simulations, most have improved from uncoupled to coupled model except for West Sumatera.

In fact this region has the lowest correlation in comparison to other regions in different reanaly-

ses. Low correlation in West Sumatera is also due to low quality of observation in the area. The

observation data comprises only inland station data and the ocean data have been interpolated.

6.3.3 Precipitation Reduction over the Sea

In Chapter 4, the overestimation of rainfall over the sea is one of the difficult problems faced

by REMO. Some sensitivity studies have been performed in order to understand the problem,

but none has passed the criterion of lowering the precipitation amount over the sea, while main-

taining the accumulated inland precipitation amount. The inland precipitation by REMO has

performed well in comparison to the observation. One promising solution from these sensitivity
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Figure 6.5: As Fig. 6.4, but for January of 1984.

studies is the reduction of SST by 1 ◦C. The result was a high reduction of precipitation over

sea and a small reduction over land. With the coupled model, SST is no longer prescribed but

derived from the coupled calculations.

Figures 6.4 and 6.5 illustrate two examples of the coupling effect over the sea by REMO in

comparison to the original reanalysis and to the observations. The examples are taken from a

non-ENSO year for boreal summer (Fig. 6.4) and boreal winter (Fig. 6.5). The two figures

indicate over overestimation of precipitation over the seas by the uncoupled REMO simula-

tions. The over estimations have been reduced in the coupled mode. The boreal winter case

illustrates the better example with a strong reduction of overestimations from the uncoupled to

the coupled mode. Although correlations between coupled and uncoupled are similar, there is

an improvement because of a smaller overestimation of rainfall over the sea.
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Table 6.2: Correlation between global reanalyses, uncoupled REMO and two coupled REMO

and observations over the three sea areas.

NCEP WSUM MALS SSCS

global reanalysis 0.055 0.517 0.638

Uncoupled 0.198 0.290 0.640

coupled low ocean 0.275 0.468 0.498

coupled high ocean 0.259 0.497 0.688

ERA WSUM MALS SSCS

global reanalysis 0.370 0.222 0.748

Uncoupled 0.390 0.570 0.680

coupled low ocean 0.380 0.639 0.551

coupled high ocean 0.384 0.685 0.723

6.4 Implication for the Ocean

This section presents results from coupled model integrations and their comparisons to the un-

coupled MPI-OM model described in Chapter 5. Thus, the stand alone model result will not be

described in detail here. We will look at the variabilities of throughflow, SST and thermohaline

circulations following what has been described in Chapter 5.

6.4.1 Variability of Throughflow

The coupled model simulations of the variability of two major throughflows (the Makasar and

the Halmahera Straits) are given in Fig. 6.6. There is a contrast between the results of uncoupled

and coupled models, especially within the Halmahera Strait. The coupled mode throughflow

in the Halmahera Strait, in comparison to the uncoupled model, shows more variability and

more southward transport. In comparison to the low resolution coupled model (not shown),

the high resolution model produces more vigorous flow and more high frequency variability in

both straits. In comparison to the observed Makasar strait throughflow (Gordon et al., 1999) in

the middle panel, the coupling has damped the variability from September 1997 until February

1998 more than the high resolution uncoupled model. There is more southward transport over

that period. This result is unexpected, because in the long simulation of the throughflow in the

top panel of Fig. 6.6, the coupled model calculates stronger variability. Thus the uncoupled

mode produces a better simulation than the coupled one.
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Figure 6.6: Makasar and Halmahera Straits throughflow as simulated by the coupled REMO-

MPI-OM and a comparison to observations for Makasar Strait.

6.4.2 SST Variability

The SST variability of the three sea regions from Fig. 6.7 is close to observation (GISST). The

coupled model simulates variability better than the uncoupled ocean model, which had an al-

most 2 ◦C warm bias all over the place. The results of the coupled ocean are also better than the

climatological run with the OMIP forcing at the low resolution uncoupled model. The OMIP

forcing simulation has the least biases among the uncoupled model. In most cases, there are

large agreements between coupled model results of the same forcing at different resolutions.

Between two different forcings, ERA forced simulations produce better SSTs. The significant

improvement by the coupled model shows the solution of the warmer biases in the uncoupled

model due to bulk formulae. However, the uncoupled model follows the SST variabilities quite
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Figure 6.7: SST variability from REMO simulations and comparison to observations as well as

simulations within OMIP for the three sea areas.

well but not in the correct magnitude. Inside the limited coupled region, the sea surface atmo-

spheric fluxes are calculated using the dynamic input from the REMO model instead of using

the bulk formulae. Besides, the atmospheric regional model works at a higher resolution than

the original reanalysis, thus providing better atmospheric fluxes to the ocean.

6.4.3 Mean thermohaline condition

Fig. 6.8 shows the mean difference of the vertical temperature profile in the upper ocean be-

tween the coupled and the uncoupled model. Most differences are confirmed to the upper 200

m. In comparison to the uncoupled mode, there is a 2 ◦C lower surface temperature all over the

place and 1 ◦C higher temperature at around 100 m depth in January in the eastern seas and in

July in the South China Sea and the Karimata Strait. The lower surface temperature is associ-

ated with the warm bias probably originating from the bulk formulae in the uncoupled model.
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Figure 6.8: Differences of the mean vertical temperature profile in January (above) and July

(bottom) for the years 1979-1993 between coupled and uncoupled mode of MPI-OM-NRA in

high resolution. Contour interval is 0.5 ◦C. The inset shows the geographic location of the

section following Table 5.2. Labels show depth in m (ordinate), latitude (bottom abscissa) and

longitude (top abscissa).
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Figure 6.9: As Fig. 8, but for salinity. Contour interval is 0.05 psu.

In the southern edge of the Banda Sea at around 150 m, there is a 4 ◦C lower temperature in

July and 1 ◦C lower temperature in January. In January in Seram Strait, there is 1.5 ◦C higher

temperature.

The mean salinity difference between the coupled and uncoupled model is given in Fig 6.9.

Most differences take place in the upper 100 m and rather in January than in July. Large differ-

ences occur in the shallow water regions of the Karimata Strait and the Java Sea. However, the

absolute difference between coupled and uncoupled run is small for both months with a max-

imum difference of 0.25 psu. In January, there is a fresher (less saline) water layer near 70 m

depth in Sulawesi Sea and the Halmahera Strait. In January the water is fresher in the coupled

model for most of the upper 100 m layer.
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6.5 Concluding Remarks

Simulations of the Indonesian climate using a special coupled model setup with a Regional

Climate Model, REMO, and an Ocean Global Circulation Model (MPI-OM) with boundary

forcings from two reanalyses have been performed. We analyzed the results with the com-

parison to the uncoupled ocean and atmosphere models. The analysis focuses on the rainfall

variability for the atmospheric part and SST and ocean circulation for the oceanic part.

There are only small differences in rainfall variability for two different ocean resolutions and

the difference is mainly due to the reanalysis. However in the ocean, different resolutions play

a greater role than the atmospheric forcing type. The results also show that the improvement

for inland rainfall is very small, but for rainfall over the ocean it is remarkable. Much of the

improvements over the sea can be attributed to the reduction of rainfalls overestimation. Thus,

large improvement in the atmosphere is due to an introduction of a dynamic change of SST

from the uncoupled to the coupled model.

The analyses of the ocean model simulations show the importance of a correct bulk formulae.

In the coupled mode, the model simulates the SST variability well. One possible parameter that

plays a significant role in the bulk formulae is the cloud cover, which is badly represented in the

reanalyses and the global climate model (Jakob, 2000). Although the coupling occurs only for

a limited domain, the SST variability and ocean circulation has changed drastically compared

to the uncoupled mode. With regard to the stratification, the coupling changes the temperature

and salinity profiles in the upper 200 m and 100 m, respectively.

In summary the coupling has positive implications for the atmosphere and the ocean. There is

less overestimation of rainfall over the sea and a more realistic representation of SST. However,

coupling reduces the variability of the throughflow. Both reductions of the rainfall over the

sea and the variability of the throughflow show that the coupling damps the atmospheric and

ocean circulation. In comparison to previous results from the uncoupled climate model, the

rainfall simulation over this region has been simulated best with the high resolution coupled

model. This study uses only one spatial resolution in the atmosphere model. It is desirable to

extend the work with different atmospheric resolution. The present simulations and analyses

are confined to the ERA15 period. It is also desirable to extend the work with the new ERA40

(Simmons and Gibson, 2000) and the whole NRA dataset.



Chapter 7

Summary and Concluding Remarks

In this chapter the main results are summarized and the possible extension of future works is

discussed.

This thesis introduces three distinct climate regions, the south monsoonal, the northwest semi-

monsoonal and the Molucca anti-monsoonal regions. The three regions are characterized by

different responses to monsoon and ENSO. The south monsoonal region is the common type, is

driven by the ITCZ and covers the largest area. An example of this climate type is the rainfall

over Java. The rainfall variability over this island is used as a measure of the model skill to the

monsoonal region. The model skills in this region are high from the global to the regional scale

due to the model’s capability to simulate large scale climate systems such as the ITCZ. In other

regions, rainfall variability has more local influences. The SST analyses in Chapter 2, 4 and 5

confirm that the annual pattern of SST in this region agrees with the ITCZ movement, while

in Chapter 5, the thermohaline condition in January and July over Java Sea confirms the large

scale character of the ITCZ embedded in this region.

With regard to the semi-monsoonal region, Chapter 2 shows no empirical local SST rainfall

relationship. In Chapter 4 the SST in this region is the least error prone and REMO has the

best results over the sea in this region in comparison to other seas. In Chapter 5, the ocean

circulation has stronger lagging correlation to SST than in Molucca. Hence, REMO simulates

the rainfall in this region well and the ocean model simulates an ocean circulation consistent

with SST, but the SST to rainfall relationship fails in this region, suggesting that it is rather due

to atmospheric factors. The cause of the disturbances has not yet been understood.

The anti-monsoonal region is missing in the global model but appears in the results of REMO

simulations. Later in Chapter 5, the REMO coupled with an ocean model simulates the region

even better. The simulation of the region shows two step-wise improvements: Better repre-

sentation of topography through the 0.50 regional model and a better SST dynamics from the
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simulated air-sea interaction. The lagging mechanism confirms the empirical relation between

the local SST and rainfall in Chapter 2 and 3 and SST variability in Chapter 5.

From analyses of several models with different resolutions and forcings we conclude that the

rainfall climate of this region is predictable for monthly and seasonal scales but only for a

limited and specific period in specific regions. The best expected seasonal skill exists in JJA

followed by SON. The least skill is found in MAM, which may be related to the spring pre-

dictability barrier. The skills of the models are improved during strong ENSO years as shown

in Chapter 3 and by coherent REMO simulations in Chapter 4. In fact, the interannual sig-

nal of the average rainfall of the anti-monsoonal region can be used as an ENSO indicator. In

Chapter 3, we find that even the ECHAM4 GCM simulates the rainfall in the monsoonal and

anti-monsoonal region well during El Niño years and during JJA and SON, while it fails in other

periods.

The problem with the spring barrier was indicated in the remote SST response of the three

regions (Chapter 2), the comparison of global model rainfall results and reanalyses with obser-

vations in Chapter 3, the ENSO SST impact on rainfall in the same chapter and in the REMO

predictability study of Chapter 4. Interestingly, even with the high resolution model the barrier

persists or, in other words, does not have a resolution dependence. The predictability barrier is

an intrinsic character of Indonesian rainfall and a challenge to climate modelling in the region

because it limits model applications. Another important property of this barrier is that it exists

also in ENSO sensitive regions. Unfortunately the predictability analyses have been made only

for the atmosphere. The ocean aspect of this spring barrier has not been explored.

This thesis discusses the ENSO impact on Indonesian rainfall variability in Chapter 2, 3 and 5.

There are similarities of the ocean and atmosphere responses to ENSO as revealed from rainfall

and SST composites for El Niño, La Niña and normal years. Four circulation characteristics

interplay to create an ENSO impact: the wet monsoon, the dry monsoon, ENSO itself and

ocean circulation. The monsoon is the major player followed by the ocean circulation. The latter

brings an SST change into the archipelago. The ocean circulation in this region is monsoonal

and is driven mainly by the surface wind stress. The monsoonal ocean circulation limits the

ENSO impact to the region only in the dry monsoon period. Significant rainfall responses to

NINO3 SST anomalies only occur from July to November (Chapter 3). Rainfall is reduced

during El Niño and increased during La Niña. During the dry season rainfall amount is reduced

and during the wet season increased. Hence, the dry season and El Niño are in phase as well

as La Niña and the wet season. As the dry season and La Niña are out of phase, there is less

impact during La Niña and, as a matter of fact, La Niña has no impact at all at the peak of the

dry season. Also the wet season and El Niño are out of phase, thus there is no impact of El Niño

during the peak of the wet season on Indonesian rainfall. Moreover, the strength of the monsoon

drives the ocean circulation as shown in chapter 5. La Niña is in phase with the wet season,

but the ocean circulation does no longer support the mechanism. In conclusion, the monsoonal
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ocean circulation is the main factor determining ENSO impact on rainfall in Indonesia.

The discussion on an ENSO impact mechanism highlights the stability of the monsoon through

the ocean circulation. It follows that beside ENSO, important rainfall variability from monthly

to interannualy is a stable monsoon system. The stability of the monsoon in this region has been

discussed in many places. In Chapter 2 the monsoonal stability is measured with the regional

spectra. The monsoonal character of ocean in Chapter 5 shows the upper ocean monsoonal

characters, which in some places explain more than 90% of total variance. What has not been

explored by this study are the regional monsoonal indices and the historical trend of the stability

of the monsoon. Both are important for the climate change study.

The thesis also explores the influence of model resolution on rainfall simulations. The Regional

Atmospheric Model and the Global Ocean Model are able to produce realistic results. There is

improvement in the global model when increasing resolution from T42 to T106. A remarkable

improvement for rainfall in the Molucca or the anti-monsoonal region occurs for the 0.50 REMO

simulation driven by reanalyses. In many REMO simulations resolution has more influence than

the lateral boundary forcing type. Except for the Molucca Sea and its surrounding, the quality

of the REMO simulations is tied to the quality of the boundary forcing. The stand alone REMO

simulation suffers from overestimations over the sea and a warm bias of SST, probably due to

inadequate bulk formulae. The coupled model fixes both problems because of various reasons

and in fact the coupled model produces the best inland and sea rainfall variability of all REMO

simulations.

When applying a climate model in this region, special care should be given to the ocean sur-

face. In Chapter 2, we found significant teleconnections to remote SST anomalies especially

in SON. In Chapter 4, REMO experiments show much larger variances over the sea than over

land. Better SSTs due to higher resolution (Chapter 4) and higher dynamic of ocean circulation

(Chapter 6) result in a better rainfall simulation in the Molucca region.

The present study explored the potentials and limits of multi-level resolution of climate mod-

els. With increasing computer power, climate modelling has reached widespread applications.

Using the climate models, we could see underlying and unforeseen processes in a more com-

prehensive way. This study showed that the state-of-the-art climate models are applicable to the

region even for the least predictable model parameter, rainfall.

However, the study leaves some unanswered questions and thus points to possible extensions,

such as the comparison with other models. For example, the results of the REMO predictability

study in Chapter 4 are only valid for the REMO physics. In order to have a complete picture

of the internal rainfall variability of the region, there is a need to extend the predictability study

to regional coupled model ensemble simulations. The present study considers only rainfall

variability, whereas the whole model data open up chances to explore and analyze other climate
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parameters. Our analysis was restricted to the variability from monthly to seasonal, due to the

availability of only averaged rainfall data. Higher frequency variability analysis would be the

next challenge. Furthermore, the regional model in this study is the non partial model. The

non partial REMO allows only one type of surface cover on each grid cell (land, water or ice).

There is the possibility to run it in the in the partial version, which allows better soil processes

and coastal representation. The latter will provide a better small island representation of the

Maritime Continent.
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Appendix A

Glossary

AGCM Atmospheric General Circulation Model

AMIP Atmospheric Model Inter-Comparison Project

ANOVA Analysis of Variances Method

AR Auto Regressive Function

BBL Bottom Boundary Layer

BMG Badan Meteorologi dan Geofisika, Indonesian Meterology and Geophysics Agency

CCHAR The Charnock Constant

DCM The Double Correlation Method

DJF December/January/February

ECHAM4 ECMWF/Hamburg Atmospheric Model version 4

ECMWF European Centre for Medium-range Weather Forecast

EM/DM European Model/Deutsche Model

ENSO El Niño Southern Oscillation

EOF Empirical Orthogonal Function

ERA15 15-year ECMWF Re-Analysis

GCM Global Circulation Model

GHCN Global Historical Climatology Network

GISST Global Ice and Sea Surface Temperature

GPCP Global Precipitation Climatology Project

HOPE Hamburg Ocean Primitive Equation ocean model

ITCZ Inter-Tropical Convergence Zone

ITF Indonesian Throughflow

JAS July/August/September

JFM January/February/March

JJ June/July
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JJA June/July/August

MAM March/April/May

MJJ May/June/July

MJJAS May/June/July/August/September

MOLS Molucca Sea

MPI Max Planck Institute for Meteorology

MPI-OM Max Planck Institute Ocean Model

MSL Mean Sea Level

NCEP National Centers for Environmental Prediction

NCEP-NCAR NCEP- National Center for Atmospheric Research

NDJ November /December/January

NDJF November /December/January/February

NDJFM November /December/January/February/March

NINO3 The NINO3 area (5 ◦S,5 ◦N,150 ◦W-90 ◦W)

NRA NCEP/NCAR Re-Analysis

OGCM Ocean General Circulation Model

OMIP Ocean Model Inter-Comparison Project

ON October/November

ONDJ October/November/December/January

PC Principal Component of EOF

RCM Regional Climate Model

REMO the MPI RCM

RMSE Root Mean Square Error

SOI Southern Oscillation Index

SON September/October/November

SPCZ Southern Pacific Convergence Zone

SSCS Southern South China Sea

SST Sea Surface Temperature

T106 global model resolution, equivalent to 1.125 ◦at the equator

T30 global model resolution, equivalent to 3.8 ◦at the equator

T42 global model resolution, equivalent to 2.8125 ◦at the equator

WCRP World Climate Research Programme

WMO-NOAA World Meteorology Organization-National Oceanic Atmospheric Administration

WSUM West Sumatera

ZL minimal cloud thickness to precipitate over land

ZO minimal cloud thickness to precipitate over ocean

ZRTC minimum humidity level to condensation of a convective cloud

ZRTL minimum humidity level to condensation of a non-convective cloud



Appendix B

Statistical tools

B.1 The Empirical Orthogonal Function (EOF) Analysis

The Principal Component Analysis (PCA) became popular for analysis of atmospheric data

after a paper by Lorenz (1956) who called the technique Empirical Orthogonal Function (EOF)

analysis. The purpose of the EOF is to reduce a data set containing a large number of variables

to a data set with fewer new variables, which can represent a large fraction of the variability of

the original data. The technique defines a new coordinate system in which to view the data. This

coordinate system is oriented such that each axis is aligned along the direction of the maximum

joint variability of the data.

Let consider a geophysical field f (x, t) defined simultaneously at M positions denoted as x with

N observations at times t, An M×N rectangular matrix, F, with M rows (or M series at each

station) and N columns (maps). The matrix element fmn represents the observation made at

station m at time.

The goal is to find an orthogonal basis in the vector space {e1,e2,e3, ...eM} such that each vector

em best represents the original (M X 1) column vector fn with n=1, ... N. This is equivalent

to find a set of M vectors, em, whose orientation is such that the sum of the squares of the

projections of all the N observation vector fn on to each em is maximized sequentially. We

assume that the vectors of the set {e} are mutually orthonormal so that by definition of the

inner product:

em · e j = δm, j (B.1)

where δm, j is the Kronecker function. The set of vector {e}, which defines this special co-

ordinate system, are called the ”empirical” Orthogonal functions (EOFs). As we will see the

definition of EOFs depends upon the co-variance matrix of the original data set. It follows that
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the coordinate system defined by this technique will be different for different data sets. This is

the reasonwhy Lorenz called them ”Empirical” in contrast to other theoretical functions such as

Fourier harmonics.

The expression to maximize is:

1
N

N

∑
n=1

[ fn · em]2 (B.2)

for m=1, 2, ... M subject to the conditions of Eq. B.1

Written in matrix form Eq. B.2 becomes:

eT
mRem (B.3)

where R is the (MXM) covariance matrix defined by :

R =
1
N

FFT (B.4)

The maximizing of Eq. B.2 subject to condition of Eq. B.1 leads to an eigenvalue problem.

Rem = λmem (B.5)

(R−λI)em = 0 (B.6)

where em is the eigenvector and λm is its corresponding eigenvalue of the matrix R, I is the unit

matrix of order M. The matrix L = λI is a diagonal matrix with the eigenvalues λm as diagonal

elements. The Eq. B.6 leads to an homogeneous system of M linear equations of M unknown

which has no trivial solutions if the determinant of the coefficients of the matrix R−λI is equal

to zero:

|R−λI|= 0 (B.7)

The M solutions λ1, ...λM are real and positive, because R is symmetric and positive definite.

Since R is symmetric, its trace is invariant under a basis transformation and thus equal to the sum

of the eigenvalues, implying that each eigenvalue λm explains a fraction of the total explained

variance.

M

∑
m=1

rmm =
M

∑
m=1

λm (B.8)
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For each value λm (m=1, ... M) Eq. B.7 leads to a vector solution em which is the eigenvector

associated with λm. The eigenvalues are arranged in decreasing order of magnitude so that

λ1 ≥ λ2 ≥ ... ≥ λm. Thus, the first mode e1 associated with λ1 explains the largest fraction of

the total variance of the data.

The set of the M independent and mutually orthogonal eigenvectors, each scaled to have length

1, constitutes the orthonormal basis {e1,e2,e3, ...eM} in the M-vector space. The coordinate

system which axis are defined by this special orthonormal basis provides the optimum repre-

sentation of the set of the observation data vectors, fn Any observation vector fn can be expressed

as a linear combination of the M eigenvectors en:

fn =
M

∑
m=1

cmnem (B.9)

where the coefficients cmn (principal components) are the projections of fn on en (m=1, ... M)

so that

cmn = eT
mfn (B.10)

Because the N observations refer to different times, the element of a row vector

[cm1,cm2, ...,cmN] give the values of the coefficients associated with a given eigenvector em.

It is important to note that the row vectors cm are also mutually orthogonal.

Equations B.9 and B.10 are formally similar to the corresponding expressions in the fourier

analysis, where the em are like sine and cosine functions and the cmn are equivalent to the

coefficients of a Fourier expansion.

The present description is based on Pexioto and Oort (1991). For an exhaustive description of

PCA, oriented specifically towards geophysical data, see Preseindorfer (1988).

B.2 The Rotated EOF Analysis

This section describes a class of basis vector ”rotation” procedures that is widely used in climate

research. The procedures are usually applied to EOFs in the hope that the resulting ”rotated

EOFs” can be more easily interpreted than the EOFs themselves. The rotated EOF transforms

the EOF into a non-orthogonal linear basis. Also, ”rotation” can be performed on any linear

basis, not just EOFs. The following description is based on von Storch and Zwiers (1999).

Rotation consists of the transformation of a set of input vectors E = {e1,e2,e3, ...eK} into Q =
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{q1,q2,q3, ...qK} by means of an invertible K×K matrix R = (ri j):

Q = PE (B.11)

or, for each vector qi:

qi =
K

∑
j=1

ri je j (B.12)

The matrix R is chosen from a class of matrices, such as orthonormal matrices, subject to the

constraint that a functional V (Q) is minimized. Under some conditions, operation of Eq B.11

can be viewed as a rotation of the ”input vectors”. Since these are often the first K EOFs, the

resulting vector qi are called ”rotated EOFs”. When matrix R is orthonormal, the operation is

said to be an ”orthonormal rotation”; otherwise it is said to be ”oblique.”

Several arguments are raised in favour of the rotated EOFs:

• The technique produces compact patterns that can be used for ”regionalization”, that is,

to divide an area in a limited number of homogeneous sub-areas.

• Rotated EOFs are less sensitive to the distribution of observing locations than conven-

tional EOFs

• Rotated EOFs are often statistically more stable than conventional EOFs. That is, the

sampling variance of rotated EOFs is often less than that of the input vectors.
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Determination of the Liquid Water
Content

The explanation below is based on Semmler (2002). Small-scale condensation processes cannot

be solved in REMO explicitly. Therefore a critical humidity is introduced, above which the sub-

grid scale condensation is possible. REMO takes this value from the global model ECHAM4

where above approximately 500 hPa the value is 60%. Below this pressure level the value

increases exponentially to the lowest model layer to approximately 98%:

r0(p) = r0,top +(r0,sur f − r0,top)e
[1−(ps/p)4] (C.1)

where p, ps, r0,top = 0,6 and r0,sur f =0.99 are the air pressure, the surface pressure, the critical

relative humidity in the upper atmosphere and at the surface, respectively.

Since REMO uses the horizontal resolutions 1/6 ◦ or 0.5 ◦, which are much higher than the

ECHAM4 resolutions at 1.125 ◦ or 2.8125 ◦, the use of the sub-grid scale condensation seems

to be reasonable. A weather phenomenon with a horizontal scale of approximately 200 km

can explicitly be simulated by REMO, while it must be parameterized in ECHAM4. In one of

REMO sensitivity studies of Chapter 4, the r0,top has been changed to 0.8 for convective (ZRTC)

and large-scale (ZRTL) cloud systems. Therefore a critical relative humidity 80% (r0,top = 0.8

in Eq. C.1) will increase the critical values above 500 hPa and below this level downward will

increase exponentially to approximately 98%. Both profiles of the critical relative humidity are

given in Fig. C.1.
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Figure C.1: Vertical profile of the critical relative humidity with r0,top = 0.6 (solid line) and
r0,top = 0.8 (dashed line).



Appendix D

Atmospheric surface fluxes forcing for the
ocean model

Simulation with the MPI-OM model requires the specification of heat, freshwater and momen-

tum fluxes at the air/sea interfaces. In this study use is made of a climatological forcing dataset

with six-hourly temporal resolution and atmospheric synoptic scale variability. The following

describes the formulation of the atmospheric surface fluxes calculation for ocean forcing or the

bulk formulae (Eq. D.6 and D.7). The following description is based on Marsland et al. (2003).

Introducing Qsr f to denote either the open water heat flux ( Qw) or the heat flux over sea ice

(Qi). the surface heat balance is given by

Qsr f = Qse
sr f +Qla

sr f +Qlw
sr f +Qsw

sr f (D.1)

where Qse
sr f , Qla

sr f , Qlw
sr f , Qsw

sr f are parameterisations of the sensible, latent, longwave and short-

wave heat fluxes, respectively.

Following Oberhuber (1993) the turbulent fluxes are parameterised as

Qse
sr f = ρacaCHV10m(Ta−Tsr f ) (D.2)

Qla
sr f = ρaLsr fCLV10m(qa−qsr f ) (D.3)

Constants ρa, ca and Lsr f denote the air density, the air specific heat capacity and the latent

heat of vaporisation or sublimation as appropriate. The 10 m wind speed V10m and 2 m air

temperature Ta are taken as prescribed forcing. Variable coefficients of sensible CH and latent

CL heat transfer are formulated according to Large and Pond (1982). The surface temperature
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Tsr f represents either the ocean model upper layer temperature or the sea ice/snow layer skin

temperature as define in the following

Qcond = ki
(Tf reeze−Tsr f )

h̃i
(D.4)

where the conductive heat flux Qcond within the sea ice/snow layer is assumed to be directly

proportional to the temperature gradient across the sea ice/snow layer and inversely proportional

to the thickness of that layer (i.e. the so-called zero-layer formulation of Semtner (1976)).

The specific humidity q is a function of water vapor pressure e (unit of Pascal) and air pressure

p (currently approximated by a constant 1000 hPa in MPI-OM).

q = (0.623e)/(p−0.378e) (D.5)

At the 2m level (qa) the water vapor pressure is a function of dew point temperature, while at

the surface (qsr f ) the saturation vapor pressure is a function of the water or ice/snow surface

temperature. In both cases the vapor pressure (e) are calculated according to the formulae of

Buck (1981).

The radiant fluxes are parameterised as

Qlw
sr f = εσT 4

a (0.39−0.05
√

e/100)(1−χn2)+4εσT 3
a (Tsr f −Ta) (D.6)

Qsw
sr f = (1−αsr f )Q

incsw (D.7)

The parameterisation of net longwave radiation is based on that of Berliand and Berliand

(1952), with the fractional cloud cover n is taken as prescribed forcing. The surface thermal

emmisivity and Stefan-Boltzmann constant are denoted by ε and σ, respectively. The saturation

vapor pressures e depend on water or sea ice/snow conditions and are also calculated according

to the formulae of Buck (1981). The cloudiness factor χ is a modified form of that proposed by

Budyko (1974) and is a function of latitude φ.

χ = 0.5+0.4(min(|φ|,60◦))/90◦ (D.8)

The incident shortwave radiation Qincsw is provided as part of the forcing data and implicitly

modified by cloud cover in the reanalysis model. The surface reflectivity αsr f is either that

appropriate for open water or takes one of four possible values determined by both the absence

or presence of snow and by whether the surface temperature of the sea ice or snow is below 0◦C

(freezing) or equal to 0◦C (melting). Over open water Qsw
w is allowed to penetrate beyond the

upper model layer with an exponential decay profile.
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Jackson, U. Karstens, C. Köpken, R. Lindau, R. Podzun, B. Roeckel, F. Rubel, B. H. Sass,

R. N. B. Smith, and X. Yang, 2001: A comprehensive model inter-comparison study investi-

gation the water budget during the BALTEX-PIDCAP period. Meteorology and Atmospheric

Physics, 77, 19–43.

Jakob, C., 2000: The representation of cloud cover in atmospheric general circulation mod-

els., Ph.D. thesis, Ludwig-Maximilians- Universitat, Munchen, [Available from the European

Centre for Medium-range Weather Forecasts, Reading, UK.], 190 pp.

Janowiak, J., A. Gruber, C. R. Kondragunta, R. E. Livezey, and G. J. Huffman, 1998: A com-

parison of the NCEP NCAR reanalysis rainfall and the GPCP rain gauge-satellite combined

dataset with observational error considerations. Journal of Climate, 11, 2960–2979.

Jha, B., T. N. Khrisnamurti, and Z. Christides, 2000: A Note on horizontal resolution depen-

dence for monsoon rainfall simulations. Meteorology and Atmospheric Physics, 74, 11–17.

Ji, Y., and A. D. Vernekar, 1997: Simulation of the Asian summer monsoons of 1987 and 1988

with a regional model nested in a global GCM. Journal of Climate, 10, 1965–1979.

Jones, R. G., J. M. Murphy, and M. Noguer, 1995: Simulation of climate change over Europe

using a nested regional climate model. I: Assesment of control climate, including sensitivity

to location of lateral boundaries. Quarterly Journal of Royal Meteorological Society, 121,

1413–1449.

Kaiser, H. F., 1958: The Varimax criterion for analytic rotations in factor analysis. Psychome-

trika, 23, 187–200.

Kalnay, E., M. Kanamitsu, R. Kistler, W. Collins, D. Deaven, L. Gandin, M. Iredell, S. Saha,

G. White, J. Woollen, Y. Zhu, M. Chelliah, W. Ebisuza, W. Higgins, J. Janowiak, K. C.

Mo, C. Ropelewski, J. Wang, A. Leetmaa, R.Reynolds, R. Jenne, and D. Joseph, 1996: The



REFERENCES 152

NCEP/NCAR 40-year reanalysis project. Bulletin of the American Meteorological Society,

77, 437 – 471.

Kesler, E., 1969: On the distribution and continuity of water substance in atmospheric circula-

tions., Meteor. Monogr. 32, 84 pp.

Kindle, J. C., H. E. Hurlburt, and E. J. Metzger, 1989: On the seasonal and interannual vari-

ability of the Pacific-Indian Ocean throughflow. (Eds.), Picaut, J., R. Lukas, and T. Delcroix,

Noumea, New Caledonia, 355-366 pp.

Kirono, D. G. C., N. J. Tapper, and J. L. McBride, 1999: Documenting Indonesian rainfall in

the 1997/1998 El Niño event. Physical Geography, 20, 422–435.

Klemp, J. B., and D. R. Durran, 1983: An upper boundary condition permitting internal gravity

wave radiation in numerical mesoscale models. Monthly Weather Review, 111, 430–444.

Lal, M., U. Cubasch, J. Perlwitz, and J. Waszkewitz, 1997: Simulation of the Indian monsoon

climatology in ECHAM3 climate model: sensitivity to horizontal resolution. International

Journal of Climatology, 17, 847–858.

Landman, W., and S. J. Mason, 1999: Operational prediction of South African rainfall using

canonical correlation analysis. International Journal of Climatology, 19, 1073–1090.

Laprise, R., M. R. Varma, B. Denis, D. Caya, and I. Zawadzki, 2000: Predictability of a nested

limited area model. Monthly Weather Review, 128, 4149–4154.

Large, W. G., and S. Pond, 1982: Sensible and latent heat flux measurements over the ocean.

Journal of Physical Oceanography, 12, 464–482.
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