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Abstract

Most numerical climate models use the plane parallel homogeneous (PPH) approximation

when computing the interactions of radiation and clouds. The latter actually means

that clouds are seen as boxes stretching over the complete vertical extension of a model

layer and horizontally cover an area according to their cloud fraction. Ice and liquid water

content within the cloud are constant. This is of course in contrast to real clouds revealing

structures on scales much smaller than the typical grid size of a climate model. It can

be shown that neglecting this sub-grid scale variability leads to a systematic error, such

that the reflectivity (transmissivity) of clouds is overestimated (underestimated). This is

called PPH-bias.

Two different correction approaches are tested in this study: The effective thickness

approach (ETA) and the statistical approach of weighted two-stream approximation. In

the former, empirical reduction factors χ < 1 are determined such that the effective optical

thickness of clouds becomes τeff = χτ , where τ is the mean cloud optical thickness in a

single level of a model grid cell. When the sub-grid scale statistics of the distributions

of cloud liquid and ice water and therefrom of optical thickness are known, expressed by

the probability distribution function p(τ), the refelectivities and transmissivities may be

computed by weighting the standard two-stream formulas with p. When this approach

is to be applied to multiple layers, one has to account for the correlation of the PDFs in

adjacent layers.

In order to test the correction approaches, spatially highly resolved data from two large

eddy simulations are used: A nocturnal stratocumulus and a shallow trade wind cumulus.

By taking the independent column approximation (ICA) as reference and comparing the

ICA fluxes to the PPH analogues, the PPH-bias can clearly be identified. It is relatively

small for the stratus cloud (∼ 5%), while it is tremendous for the trade wind cumulus (up

to 100%). The ETA shows good agreement with the ICA calculation with χ = 0.9 for the

stratus cloud and χ = 0.4 for the trade wind cumulus. Clearly, the reduction factor is

no unique constant, but rather crucially depends on the cloud type and thus variability.

For the statistical approach, Gamma distributions are fitted to the cloud data and the
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Gamma-weighted two-stream approximation is applied. In both cloud cases, the GWTSA

including a correlation correction remarkably underestimates the reflectivity. This is in

contrast to other studies and is likely to be due to misfits of the distributions in the

small model domains. The effect of correlation is of similar order as purely weighting the

two-stream functions with the PDF.

Finally, the two correction approaches are also implemented into the ECHAM5 climate

model. The ETA is realized in various fashions: using a single reduction factor χ = 0.7 for

all clouds or only for liquid clouds, while ice clouds remain unchanged, applying χconv = 0.4

to convective clouds and χ = 0.9 to stratiform clouds and disinguishing between ice clouds

(χice = 0.9) and liquid clouds (0.4 ≤ χliq ≤ 1., depending on liquid water path), where

thick clouds are assumed to be more variable and thus a smaller reduction factor has to

be used. The latter is the standard scheme of the ECHAM5 model. A statistical approach

is realized as a Beta-weighted two-stream approximation (BWTSA), making use of the

Beta-shaped distribution of total water mixing ratio as it is supplied by the cloud cover

scheme. The effect of correlation is not accounted for. Comparing the various schemes,

one can identify the huge impact of ice clouds, when a small reduction factor as χ = 0.7

is applied to them. Their influence is remarkably reduced by using χ = 0.9, as it has been

deduced empirically. The albedo correction patterns of the BWTSA and the ECHAM5

standard ETA are very similar, but the BWTSA corrections are only half that of this ETA

variant. Including the correlation effect into the BWTSA will increase the corresponding

corrections, but is unlikely to reach the values of the ETA. Due to the lack of suitable

observational data, the albedo corrections cannot be validated yet. It should be noted

that the BWTSA does not introduce any empirical parameterizations like the distinction

between ice and liquid clouds in the ETA, but treats clouds consistently with the cloud

cover scheme.
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Chapter 1
Introduction

Solar radiation reaching the earth is the major energy source for the climate system. Part

of it gets reflected back to space, the remainder is absorbed within the atmosphere or at

the surface. At the same time the earth emits thermal radiation according to its blackbody

temperature, thus balancing the global energy budget. The net energy gain is temporally

and spatially highly variable with large input in the tropics and losses in the polar regions.

General circulation redistributes the energy. Figure 1.1 gives an overview of the global

mean values of the various energy fluxes involved. Clouds play a dominant role, both for

the hydrological cycle (and the connected fluxes of latent heat) and by modulating the

radiative transfer: In the solar spectral range by reflecting and absorbing the incoming

light, and in the thermal range by changing the emission temperature according to the

cloud’s emissivity and temperature (see e.g. Ramanathan et al., 1989; Hartmann, 2002;

Wielicki et al., 2002). The importance of the cloud-radiative interaction and the need for

improving our knowledge of these processes have been underlined by the Intergovernmental

Panel on Climate Change in its previous report: “The main uncertainties in climate model

simulations arise from the difficulties in adequately representing clouds and their radiative

properties. . . ” (Houghton et al., 1996).

Currently most climate models predict the cloud water content and the fractional cloud

cover for each grid cell. For a typical model resolution these cells span some 100×100 km2

in the horizontal, while the vertical extent is of the order of a few 100 m (Roeckner et al.,

1996; McFarlane et al., 1992). The interaction of radiation with clouds is computed by

treating the clouds as homogeneous boxes, that vertically extend over the height of the

grid cell, and horizontally cover a fractional area of the cell. The cloud condensate is

distributed uniformly within this box. This is called the plane parallel homogenous (PPH)

approximation. Cloud albedo is a convex function of optical thickness, which in turn

depends on cloud water amount (cf. Figure 1.2). Thus, given a constant increment in

optical thickness, the change in albedo is larger for thin clouds than for thick clouds

(Pincus et al., 1999). This means a model grid cell exhibiting any internal horizontal
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Figure 1.1: Observed annual global energy budget. (Adapted from Kiehl and Trenberth

(1997))

variability within its cloudy part will always be less reflective than a uniform grid cell of

the same average optical thickness. This follows from Jensen’s inequality (Jensen, 1906).

The systematic overestimation of the cloud albedo by models using the PPH assumption

is called PPH-bias. It is sketched in Figure 1.2 for the simple example of two realizations

of a cloud with mean optical thickness τ : The solid lines mark the albedo one obtains

for a uniform cloud with τ ≡ τ , whereas the dashed lines correspond to a cloud that

has τ = τ1 and τ = τ2 for the two halfs. Both yield the same mean optical thickness

value τ = (τ1 + τ2)/2. The average albedo value R = (R(τ1) + R(τ2))/2 is smaller than

the reflectivity for the uniform cloud R(τ). Generally, all physical parameterizations (like

many cloud microphysical processes) that depend non-linearly on a property exhibiting

sub-grid scale variability are prone to such systematic biases (Pincus and Klein, 2000).

The albedo problem has already been recognized by Harshvardhan and Randall (1985),

and Stephens (1985), and has been investigated theoretically (Stephens, 1988b,a), describ-

ing the so called “albedo paradox” (Wiscombe et al., 1984). Stated simply, the albedo

t t
1

t
2

R1

R( )t

R2

R
}PPH-bias

Figure 1.2: Cloud reflectivity as

a function of cloud optical thick-

ness. The solid and dashed lines

show the derivation of reflectivity

for a uniform and an inhomoge-

neous cloud, respectively.
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paradox refers to the observation that optical depths computed from seemingly reason-

able liquid water profiles turn out to be larger than those, deduced from the observed global

albedo and cloud fraction — the simulated albedo is too high. From satellite measure-

ments (e.g. Oreopoulos and Davies, 1998a,b) and cloud model data (e.g. Cahalan et al.,

1994; Davis et al., 1990) the PPH-bias has been quantified to result in a relative error of

up to ∼ 15%.

The radiative balance determines the global mean temperature. Proper simulation of

the planetary albedo and thermal emission is therefore crucial for climate models, and

is achieved by tuning the cloud parameterizations such that the radiative fluxes at the

top of the atmosphere (TOA) are in agreement with satellite data. This implies that

any error in the radiative transfer computation is artificially balanced by introducing

compensating errors in other model components. Remote sensing faces the same problem:

Errors in modeling the cloud-radiation interactions result in erroneously derived cloud

properties. The PPH-bias leads to an underestimated liquid water path (Chambers et al.,

2001). Various studies have been conducted in order to quantify and correct for the

deviations due to cloud variability (Chambers et al., 1997; von Bremen, 2001).

For climate models two main correction approaches have evolved:

• Defining an effective optical thickness, which is smaller than the true mean opti-

cal thickness in a given model grid box and thus balances the overestimation of

reflectivity (Cahalan et al., 1994).

• Determining the probability distribution function of optical thickness from satel-

lite data (Oreopoulos and Davies, 1998b) or cloud resolving model data (Tompkins,

2002) and using this information for computing the reflectivity (Barker, 1996; Barker et al.,

1996).

This study evaluates these two methods:

1. The applicability of both methods is tested for cloud data from a cloud resolving

model and parameter settings are derived to be used in a climate model.

2. Several realizations of the two correction approaches are implemented into the cli-

mate model ECHAM5 and are compared to each other and to the PPH computa-

tions. For the first time sub-grid scale statistical information about cloud variability,

prognosed by the cloud parameterization package, is used consistently in the radia-

tion scheme.

Chapter 2 gives an introduction to the radiative transfer problem and introduces the

approximations used in climate modeling, emphasizing the scheme implemented in the

ECHAM5 model. The approaches for correcting the PPH-bias are derived in Chapter 3.

In Chapter 4 the results for the cloud resolving model data are described. They are

used to develop various parameterizations for the climate model. These are presented in

Chapter 5.



Chapter 2
Shortwave Radiative Transfer

Computation

Understanding the transfer of radiation through the atmosphere (both for cloudy and clear

sky conditions) is of great importance for modeling the climate. Also, remote sensing of

atmospheric profiles as well as of celestial objects relies crucially on understanding the

processes of scattering, absorption and, in the case of thermal radiation, emission. A

huge variety of different approaches to deal with the radiative transfer problem exist, be-

cause of the different needs in efficiency and accuracy (see e.g. Liou, 1980; Lenoble, 1985;

Goody and Yung, 1989). In this chapter some theoretical background will be provided by

introducing the transfer problem and its general solution. We will then focus on a widely

used approximation, the so called two-stream approximation, which is also implemented

in the radiation scheme of the ECHAM5 climate model. Finally some methods for in-

vestigating the radiative properties of high spatial resolution cloud data are explained,

stressing the various assumptions made and their limits.

2.1 Theoretical Background

There are two contributions to the extinction of solar radiation on its way through the

atmosphere: scattering and absorption. Here we will formulate the basic equations of

the transfer problem and sketch approximations for the scattering part (two-stream and

Eddington approximation) and the absorption part (distribution of photon path length and

absorber amount). The two processes are strongly interconnected, since for the shortwave

part of the spectrum, scattering and absorption occur simultaneously. For example, the

particles in a smoke plume absorb part of the incident radiation, but they also enhance

scattering and thereby lengthen the mean path a photon travels through the plume, which

in turn results in increased absorption.
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ŝ
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Figure 2.1: Sketch for defini-

tion of radiance.

First, a few basic radiative properties will be defined (see e.g. Goody and Yung, 1989)

together with the symbols that will be used throughout this work.

Radiance: Let P be a point and das be a piece of area perpendicular to the direction ŝ

around P (cf. Figure 2.1). The bundle of rays originating from das, and contained

within the solid angle dΩs in the direction of ŝ , transport in a time dt and in a

frequency range [ν, ν + dν], the energy

Eν = Lν(P, ŝ) das dΩs dν dt, (2.1)

where Lν(P, ŝ) is the specific intensity of radiation or radiance, i.e. the flux of energy

in a given direction per unit time per unit frequency range per unit solid angle per

unit area perpendicular to the given direction ŝ. The intensity I is the integral over

a piece of solid angle

Iν(P, ŝ) =

∫

Ω
Lν dΩs. (2.2)

Flux: The flux in direction d̂ at point P is defined as the total energy flowing across a

unit area perpendicular to d̂ per unit frequency interval,

Fν,d̂(P ) =

∫

Ωs

Lν(P, ŝ) cos(d̂, ŝ) dΩs. (2.3)

(Mass) extinction coefficient: The attenuation of a ray traveling a distance ds through

a homogeneous medium of density ρ and spectral extinction coefficient kν is given

by

dLν = −Lνkνρ ds. (2.4)

Extinction is caused by the two processes scattering and absorption, with kν = ksν +

kaν , where ksν and kaν are the scattering and absorption coefficients, respectively.

The absorption coefficient depends on temperature and pressure, according to the

modifications of the molecular vibration and rotation frequencies. In the following,

we will omit the index ν.

Extinction cross section: The extinction cross section or molecular extinction coeffi-

cient is defined as

σ = kρm, (2.5)
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q

Figure 2.2: Definition of the

zenith angle θ.

with ρm the molecular density. It has the units of area and it conveys a valuable

picture of the extinction process in terms of the collision cross section between a pho-

ton and a single absorbing molecule. Analogously, cross sections for the individual

extinction processes scattering (σs) and absorption (σa) may be defined.

Single scattering albedo: The ratio of the scattering cross section σs to the extinction

(scattering plus absorption) cross section σ is called single scattering albedo

ω̃ =
σs

σs + σa
. (2.6)

It describes the fraction of the total extinction caused by scattering. Hence, ω̃ = 1

means conservative scattering, where nothing is absorbed and the energy remains

completely in the radiation field.

Optical thickness: For a layer of density ρ the optical thickness between two points 1

and 2 is defined as

τ(1, 2) =

∫ 2

1
kρ ds (2.7)

Most often τ stands for the optical thickness along a specific path, namely along the

z–direction, thus,

τ =

∫ zTOA

z
k(z′)ρ(z′) dz′. (2.8)

Since k is a function of pressure and temperature, which in turn vary with height,

it can be expressed as a function of z. The above definition is also called normal

optical depth. The latter may serve as the vertical coordinate instead of z.

Solar zenith angle: The angle θ of a ray relative to the zenith direction is called zenith

angle (see Figure 2.2). Important for the transfer computations is the cosine of the

zenith angle, which is abbreviated by

µ = cos θ. (2.9)

The cosine of the solar zenith angle of the incident solar radiation is denoted by µ0.

The term solar zenith angle is often used for both, the angle itself and its cosine.

Figure 2.3: Scattering geometry: Incident beam with di-

rection (µ′, φ′) gets scattered into the new direction (µ, φ).

Θ is the scattering angle between the incoming and outgoing

beam.

Q

( ', ')m j

( , )m j
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Scattering phase function: Scattering of radiation by a particle may be described by

the scattering phase function P (µ, φ; µ′, φ′), which gives the fraction of radiation

coming from direction (µ′, φ′) being scattered into the direction (µ, φ), as sketched

in Figure 2.3. It fulfills the norm

1

4π

∫ 2π

0

∫ 1

−1
P (µ, φ; µ′, φ′) dµ′ dφ′ = 1. (2.10)

The direction of the fluxes are given with their zenith and azimuth angles (µ, φ).

Downward directions are indicated by negative µ.

2.1.1 Radiative Transfer Equation

According to the definitions made above, for downward radiation µ < 0 and dτ > 0

(cf. (2.8)) and correspondingly µ > 0 and dτ < 0 for upward radiation. Here we use the

normal optical thickness as the vertical coordinate, taking advantage of (2.8). The general

radiative transfer equation in its differential form may then be written as

µ
dL(τ, µ, φ)

dτ
= L(τ, µ, φ) − J(τ, µ, φ), (2.11)

where L is the radiance and J the source function. The latter has three contributions

J = Jem + Jabs + Jscatt , namely emission (> 0), absorption (< 0) and scattering (both

signs possible). Due to the low surface temperature of the earth compared to that of the

sun and considering Wien’s law we can neglect the thermal emission of radiation by the

earth and atmosphere for the solar spectrum.

We will now first examine the most important part of J , the scattering. The latter may

be divided into two components, which stem from multiple scattering of diffuse radiation

and the single scattering of the direct solar beam, respectively, such that Jscatt = Jdiff +

Jdir . In the diffuse part we collect radiation from all directions (µ′, φ′) coming not directly

from the sun, which are scattered into the direction (µ, φ)

Jdiff (τ, µ, φ) =
ω̃

4π

∫ 2π

0

∫ 1

−1
L(τ, µ′, φ′)P (µ, φ; µ′, φ′) dµ′ dφ′. (2.12)

For a given optical density τ the radiation coming directly from the sun is reduced to

F� exp(−τ/µ0), when F� is the solar flux at the TOA. We compute the fraction that is

scattered into the (µ, φ)–direction as

Jdir (τ, µ, φ) =
ω̃

4π
F�P (µ, φ,−µ0, φ0)e

−τ/µ0 . (2.13)

Substituting (2.12) and (2.13) into (2.11) we get the radiative transfer equation for solar

radiation

µ
dL(τ, µ, φ)

dτ
= L(τ, µ, φ) − ω̃

4π

∫ 2π

0

∫ 1

−1
L(τ, µ′, φ′)P (µ, φ; µ′, φ′) dµ′ dφ′

− ω̃

4π
F�P (µ, φ;−µ0, φ0)e

−τ/µ0 . (2.14)
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The phase function P (µ, φ; µ′, φ′) strongly depends on the size and shape of the scat-

tering particle. We may express it as a function of the scattering angle Θ (i.e., the

angle between (µ, φ) and (µ′, φ′), see Figure 2.3) by a series of Legendre polynomials Pl

(Bronstein and Semendjajew, 1991)

P (cos Θ) =
N
∑

l=0

ω̃lPl(cos Θ), (2.15)

or as a function of the angles of incoming and outgoing radiation using the associated

Legendre polynomials P m
l

P (µ, φ; µ′, φ′) =
N
∑

m=0

N
∑

l=m

ω̃m
l Pm

l (µ)Pm
l (µ′) cos

(

m(φ′ − φ)
)

. (2.16)

The sum over l with m = 0 gives the fraction which is independent of the azimuth angle φ.

2.1.2 Two-Stream Approximations

Climate and numerical weather prediction models need fast and accurate radiative transfer

algorithms, which of course means that a compromise between speed and precision has to

be found. Nearly all models use one or the other variant of a two-stream approximation,

which we will derive in the following section. The Delta-Eddington approach will be

emphasized, since this is implemented in the ECHAM model. All schemes neglect the

azimuthal dependency of the phase function, since only the fluxes integrated over all

azimuthal directions are of interest. A comprehensive comparison of the various schemes

is given by King and Harshvardhan (1986).

Two-Stream Approximation

In order to find an exact solution of the radiative transfer equation (2.14) we can discretize

the latter into a set of first order differential equations. This method is called the discrete

ordinate method. We get

µi
dL(τ, µi)

dτ
= L(τ, µi) −

ω̃

2

n
∑

j=−n

L(τ, µj)P (µi, µj)aj −
ω̃

4π
F�P (µi, µ0)e

−τ/µ0 ,

i = −n, . . . , n (2.17)

We can choose the interpolation nodes µi such that µ−i = µi and a−j = aj (
∑

j aj = 2),

where aj are the weighting factors. Furthermore we can use the phase function in its form

(2.16), regarding only the azimuth independent part, and define the coefficients

ci,j =
ω̃

2
ajP (µi, µj) =

ω̃

2
aj

N
∑

l=0

ω̃lPl(µi)Pl(µj), j = −n, . . . , n,

c−0 =
ω̃

4π
P (µi, µ0)

(2.18)
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Substituting (2.16) and (2.18) into (2.17) we get the simplified expression

µi
dL(τ, µi)

dτ
= L(τ, µj) −

n
∑

j=−n

ci,jL(τ, µi) − c−0L(τ,−µ0), (2.19)

where L(τ,−µ0) stands for the downward direct radiation at τ .

The set of differential equations (2.17) is an exact representation of (2.11) for n → ∞.

A crude approximation is to set n = 1, i.e. we will only use two interpolation nodes,

which we set according to the Gaussian quadrature to ±µ1 = ±1/
√

3. Furthermore

we expand the phase function in (2.16) only to the first order. As a result we get two

coupled differential equations of first order for the upward and downward directed fluxes

F ↑ := L1 = L(τ, µ1) and F ↓ := L−1 = L(τ,−µ1), respectively. Therefore this method is

called two-stream approximation. The equations to solve are

µ1
dF ↑

dτ
= F ↑ − ω̃(1 + g)

2
F ↑ − ω̃(1 − g)

2
F ↓ − ω̃(1 − 3gµ1µ0)

4π
F�e−τ/µ0 (2.20a)

−µ1
dF ↓

dτ
= F ↓ − ω̃(1 + g)

2
F ↓ − ω̃(1 − g)

2
F ↑ − ω̃(1 + 3gµ1µ0)

4π
F�e−τ/µ0 (2.20b)

Here we have introduced the asymmetry factor g, which is defined as the first moment of

the scattering phase function

g =
ω̃1

3
=

1

2

∫ 1

−1
P (cos Θ) cos Θ d cos Θ, (2.21)

with scattering angle Θ. The terms in (2.20) with coefficients (1 − g)/2 and (1 + g)/2

may be interpreted as the backward and forward scattered part of the multiply scattered

radiation. The asymmetry factor itself expresses the fraction of the forward scattered

radiation in a single scattering event. For isotropic scattering, like Rayleigh scattering,

g = 0, whereas for scattering functions with a dominating peak in the forward direction g

approaches 1. Mie scattering typically yields asymmetry factors around 0.86.

Eddington Approximation

Very similar to the just derived two-stream approximation is the Eddington approximation.

Returning to the original radiative transfer function (2.11), we expand both radiance L

and scattering phase function P (µ, µ′) into series of Legendre polynomials

L(τ, µ) =
N
∑

l=0

Ll(τ)Pl(µ), (2.22)

P (µ, µ′) =

N
∑

l=0

ω̃lPl(µ)Pl(µ
′). (2.23)
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With (2.22) and (2.23) we may write the transfer equation as a set of N + 1 first order

coupled differential equations. This is also called spherical harmonic method. The Ed-

dington approximation is to simply cut the series at N = 1. The expansions (2.22) and

(2.23) become to

P (µ, µ′) = 1 + 3gµµ′, (2.24)

and

L(τ, µ) = L0(τ) + L1(τ)µ, (2.25)

respectively. We get the two coupled differential equations for the first expansion coeffi-

cients L0 and L1

dL1

dτ
= 3(1 − ω̃)L0 −

3ω̃

4π
F�e−τ/µ0 , (2.26a)

dL0

dτ
= (1 − ω̃g)L1 +

3ω̃

4π
gµ0F�e−τ/µ0 . (2.26b)

The solution can be done by standard methods with integration constants, which are

determined by the boundary conditions. The upward and downward directed fluxes can

then be written as

F ↑/↓(τ) = 2π

∫ ±1

0
(L0 + µL1)µ dµ = π

(

L0 ±
2

3
L1

)

. (2.27)

General Two-Stream Formulation

As we have seen in the derivation of (2.20) and (2.26) there are a number of similarities

between the two-stream and the Eddington approximation. Actually, both can be unified

to a general two-stream approximation (see e.g. Meador and Weaver, 1980). Its derivation

starts by formulating differential equations for the up- and downward directed fluxes F ↑/↓.

It is then assumed that the diffuse scattering can be described as a linear combination of

up- and downward directed fluxes:

dF ↑(τ)

dτ
= γ1F

↑(τ) − γ2F
↓(τ) − γ3ω̃F�e−τ/µ0 (2.28a)

dF ↓(τ)

dτ
= γ2F

↑(τ) − γ1F
↓(τ) + (1 − γ3)ω̃F�e−τ/µ0 . (2.28b)

If we now compare the latter equations with (2.20) and (2.26)–(2.27) we can derive

the coefficients γi for these two approximations, which are summarized in Table 2.1.

We can solve the differential equations of the general two-stream approximation (2.28)

for a plane parallel layer with the boundary condition F ↑(τ) = 0 and F ↓(0) = 0, i.e.

radiation enters the layer from above and there is no source at the ground (for an un-

derlying layer with non zero reflectivity R−, which is the general case, the boundary

condition would have been F ↑(τ) = R−F ↓(τ)) (Meador and Weaver, 1980). The reflec-

tivity R = F ↑(0)/(πF�µ0) and transmissivity T = exp[−τ/µ0]+F ↓(τ)/(πF�µ0) can then
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approximation γ1 γ2 γ3

two-stream
2 − ω̃(1 + g)

2µ1

ω̃(1 − g)

2µ1

1 − 3gµ1µ0

2

Eddington
7 − ω̃(4 + 3g)

4
−1 − ω̃(4 − 3g)

4

2 − 3gµ0

4

Table 2.1: Coefficients for the two-stream and Eddington approximation in the formu-

lation of the general two-stream approximation in (2.28).

be written as (Barker, 1996)

R =
ω̃

a

r+ekτ − r−e−kτ − re−τ/µ0

ekτ − βe−kτ
(2.29a)

T = e−τ/µ0

(

1 − ω̃

a

t+ekτ − t−ekτ − t−e−kτ − teτ/µ0

ekτ − βe−kτ

)

, (2.29b)

using

r± = (1 ∓ kµ0)(γ1γ3 + γ2(1 − γ3) ± kγ3 (2.30a)

r = 2k[γ3 + (γ1γ3 + γ2(1 − γ3))µ0 (2.30b)

t± = (1 ± kµ0)(γ1γ4 + γ2γ3 ± k(1 − γ3)) (2.30c)

t = 2k[(1 − γ3) + (γ1(1 − γ3) + γ2γ3)µ0] (2.30d)

a = [1 − (kµ0)
2](k + γ1) (2.30e)

k =
√

γ2
1 − γ2

2 (2.30f)

β = −k − γ1

k + γ1
(2.30g)

2.1.3 Similarity Principle

The expansion of the phase function into a series of Legendre polynomials up to the

first degree is exact only for isotropic functions. In the case of Mie scattering by cloud

droplets or aerosol particles, P , has a large delta-shaped peak in the forward direction.

We can separate this peak, which contains a fraction f of the energy, and describe only

the remaining part via a Legendre series. We define the scaled asymmetry factor g∗ as

g∗ =
g − f

1 − f
. (2.31)
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The azimuth independent phase function then becomes

P (µ, µ′) = 2fδ(µ − µ′) + (1 − f)(1 + 3g′µµ′) (2.32)

and we may write the radiative transfer equation for diffuse radiation (see (2.14))

µ
dL(τ, µ)

dτ
= L(τ, µ)(1 − ω̃f) − ω̃(1 − f)

2

∫ 1

−1
(1 + 3g′µµ′)L(τ, µ′) dµ′. (2.33)

By defining the scaled properties

τ∗ = (1 − ω̃f)τ, (2.34)

ω̃∗ =
(1 − f)ω̃

1 − ω̃f
, (2.35)

P ∗(µ, µ′) = 1 + 3g∗µµ′ (2.36)

we can formulate (2.33) analogously to the original equation (2.14)

µ
dL(τ∗, µ)

dτ∗
= L(τ∗, µ) − ω̃

2

∫ 1

−1
L(τ∗, µ′)P ∗(µ, µ′) dµ′. (2.37)

The scaling in (2.31) and (2.34)–(2.36) is called similarity principle.

2.1.4 Absorption

Till now we have only dealt with the case of conservative scattering, i.e. we have calculated

the part Jscatt of the source function in (2.11). In this section we will sketch an approach

to compute the absorption part, Jabs .

Path Length Distribution

As already stated above, in the shortwave spectrum absorption and scattering occur si-

multaneously. The method of distribution of photon path length nevertheless determines

the two quantities separately. We therefore first compute the fluxes of a conservative at-

mosphere Fc. Then we work out the probability distribution function of the optical path

length, p(Λ), which the photons have traveled. The optical path in a homogeneous layer

is

Λ = ksl, (2.38)

where ks is the scattering coefficient and l the geometrical path length. The transmission

through a layer of absorbing atmosphere with absorption coefficient ka is

t = exp(−kal) = exp

(

−ka
Λ

ks

)

(2.39)

Together with Fc and p(Λ) we can thus write the flux F transmitted through an absorbing

atmosphere as

F = Fc

∫ ∞

0
p(Λ) exp

(

−ka
Λ

ks

)

dΛ. (2.40)
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In order to be able to use (2.40) we have to know Fc and p(Λ). While we can determine

the former by some standard method like the ones derived in the previous section, the

latter is more complicated. However, there are a number of approaches for doing this. We

will use the inverse Laplace transformation.

The fraction Y = F/Fc written as a function of y = ka/ks is, following (2.40),

Y (y) =
F

Fc
=

∫ ∞

0
p(Λ) exp(−yΛ) dΛ = L[p(Λ)], (2.41)

where L is the Laplace transform. Thus, once we know Y (y), we also know

p(Λ) = L−1[Y (y)] (2.42)

from the inverse Laplace transformation. Numerically (2.42) can be solved by discretizing

Y (y) at 2N points, i.e. to perform 2N monochromatic computations with fixed absorp-

tion coefficient ka and deduce from them the fraction Yi. The details can be seen in

Bakan and Quenzel (1976) or Fouquart (1974).

Distribution of Absorber Amount

When we set Λ = ksl in (2.38) we implicitly assume that the atmosphere is homogeneous

with respect to absorption. For a real atmosphere pressure, p, and temperature, T , vary

with height and so does the absorption coefficient. Goody (1964) developed the scaling

approximation to account for this vertical stratification by defining a scaled absorber

amount u∗ such that the optical path can be written as τ = ka(pr, Tr)u
∗ with the reference

pressure pr and the reference temperature Tr. He finds

u∗ =

∫

u

(

p

pr

)n(Tr

T

)m

du, (2.43)

where u is the original absorber mass. The constants n and m depend on the absorber

type and the spectral range. Analogously to the previous section, we may introduce

the frequency distribution p(u∗), describing the probability for a ray to traverse a scaled

absorber amount u∗, and get (cf. (2.40))

F = Fc

∫ ∞

0
p(u∗) exp(−kau

∗) du∗. (2.44)

The same procedure as for the distribution of photon paths can be applied in order to

determine p(u∗). The problem can be simplified by using the dependency of the absorption

A on the absorber amount in the limits of weak and strong absorption,

A ∝







u∗ =
∫∞

0 p(u∗)u∗du∗, for weak absorption
√

u∗ =
∫∞

0 p(u∗)
√

u∗du∗, for strong absorption.
(2.45)
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We will use an effective absorber amount ue between
√

u∗ and u∗. From the result of the

Laplace transformation it follows that u∗ = −(d(ln F (ka))/dka)ka=0. Hence, we define

ue = − lnF (k1) − ln F (k2)

k1 − k2
, (2.46)

where k1 and k2 are typical absorption coefficients in the current spectral band for low and

high absorptive spectral regions. This means the transmission function over the whole solar

spectrum, tsol , may be approximated by the exponential series (also called the exponential

sum fitting method)

tsol (u) = a1 exp(−k1(pr, Tr)ue) + a2 exp(−k2(pr, Tr)ue). (2.47)

F (k) in (2.46) denotes up- or downward fluxes computed for the given absorption coeffi-

cient k.

If there is a cloudy layer with high reflectivity, a large fraction of the incoming radiation

will not reach the layers below the cloud. The concentration of water vapor and other

absorbing quantities increases in lower altitudes. Therefore the probability functions for

radiation traversing the cloudy layer and getting reflected at a lower layer or the surface, pi,

is different from that of the directly reflected, p1. To be precise we would have to introduce

a probability distribution function for each reflection height. But, since the probability

distribution has already become very broad after the first cloudy layer, it suffices to divide

the fluxes into directly reflected, F1, and those (eventually multiply) reflected in lower

layers, F2. Thus, we get for the upward fluxes

F ↑ ≈ F ↑
1 t(ue1) + F ↑

2 t(ue2), (2.48)

where ue1 and ue2 are the effective absorber amounts encountered by the radiation corre-

sponding to F1 and F2, and t is the transmissivity.

2.2 Fouquart Scheme

The ECHAM5 model uses the solar radiation scheme developed by Fouquart and Bonnel

(1980) for the computation of the shortwave radiative transfer in the version, which is

implemented in the ECMWF model (Morcrette, 1989a,b, 1991; Gregory et al., 1998).

It uses a Delta-Eddington approximation for the cloudy layers. The optical properties

of ice and liquid water clouds are parameterized according to Rockel et al. (1991) and

Francis et al. (1994). For partly cloudy layers maximum-random overlap is assumed

(Geleyn and Hollingsworth, 1979; Morcrette and Jakob, 2000). Apart from cloud and

gaseous absorption five climatological and 11 transported aerosols are accounted for, using

the methods of scaled absorber amount and photon path length distribution. From spec-

trally highly resolved line-by-line computations, absorption coefficient for spectral bands,
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ECHAM4

band 1 2

wavelength range in µm 0.25–0.68 0.68–4.00

ECHAM5

band 1 2 3 4

wavelength range in µm 0.25–0.69 0.69–1.19 1.19–2.38 2.38–4.00

Table 2.2: Spectral bands of the ECHAM4 and ECHAM5 shortwave radiative transfer

schemes.

covering many individual absorption lines, have been developed. This crude simplifica-

tion is necessary in order to reduce the computational efforts. The wavelength ranges of

the four bands are given in Table 2.2. In the older version the solar spectrum was only

divided into two bands, which are also listed in Table 2.2. The simulations in Chapter 4

are performed with this older version. The main effect of the update to four bands is an

improved absorption (see e.g. Wild et al., 1997). All properties are computed separately

for each spectral band and added up to yield the total flux.

The following is a brief description of the computational scheme:

1. Cloud optical properties

(a) The optical properties of clouds are computed for each spectral interval (Roeckner,

1995). First the effective radii of liquid and ice cloud particles have to be de-

termined. For liquid water we use (Johnson, 1993)

rel =

(

3ml

4πρH2ON

)1/3

, (2.49)

with ml the liquid water content N and the droplet density, which is prescribed

as a function of altitude and surface type (ground or ocean). The effective

radius is of the order of magnitude of 10 µm.

The effective ice crystal size is parameterized according to McFarlane et al.

(1992) as

rei = c0(c1

3
∑

i=0

δi(log(mi))
i)κ, (2.50)

with mi the ice water content. The constants are given in Roeckner et al.

(1996). Typical values for rei are around 100 µm.

The optical depth, single scattering albedo and asymmetry factor are computed

for all spectral intervals. First the contribution of the liquid and the ice fraction

are calculated separately and then combined to yield the final shortwave cloud



16 Shortwave Radiative Transfer Computation

optical properties. The optical depth is computed according to

τ = a0reXWP, (2.51)

where the constant a0 depends on both, spectral interval and species (ice or

liquid water). re stands for the effective radius of ice particles or cloud droplets

and XWP for ice or liquid water path, respectively. For single scattering albedo

and asymmetry factor the following parameterizations are used

ω̃ =
3
∑

i=0

bi(log re)
i (2.52)

g =
4
∑

i=0

ci(log re)
i (2.53)

The coefficients are listed in Roeckner et al. (1996).

For a partly cloudy layer j the effective cloudiness Aeff
c,j is computed using the

maximum-random overlap assumption (j = 0 means surface)

Aeff
c,j =











1 −
(

1 − Ac,j

)

(

1−Ac,j

1−Aeff
c,j+1

)

if Ac,j > Aeff
c,j+1,

1 −
(

1 − Acj

)

else.

(2.54)

Ac,j is the cloud fraction of the j-th layer. The radiative transfer computations

are then done separately for clear sky and cloudy sky fraction in each layer.

In the ECHAM5 version not only each layer, but additionally even the total

column is divided into a completely cloud free and a cloudy part. For the cloudy

part the scheme developed above is applied with a new cloud fraction relative

to the cloudy part of the column Atot
c

Ãeff
c =

Aeff
c

Atot
c

. (2.55)

The corresponding fluxes are summed weighted by their area fraction.

(b) The scaled absorber amounts (cf. (2.46)) for water vapor and uniformly mixed

gases (CO2) are computed.

2. Pure scattering (ka = 0)

(a) The optical depth for Rayleigh scattering is calculated for a layer of thickness

∆p (in pressure coordinates) as a series

τR

∆p
=

6
∑

i=0

crayi µi. (2.56)

Since Rayleigh scattering is conservative and isotropic the single scattering

albedo ω̃R ≡ 1 and asymmetry factor gR ≡ 0.
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(b) The continuum scattering (i.e., only uniformly mixed gases and particles are

taken into account, but not clouds) is calculated. Therefore the optical prop-

erties of the aerosols (five climatologically prescribed and 11 transported) are

summed up together with Rayleigh scattering according to

τ+
cs = τR + τa(1 − ω̃ag

2
a) (2.57)

ω̃+
cs =

τR

τR + τa
+

(

1 − τR

τR + τa

)

ω̃a(1 − g2
a)

1 − ω̃ag2
a

(2.58)

τ+
cs =

ga

1 + ga

(

1 − τR

τR + τa

)

. (2.59)

Thus, we get the complete clear sky optical properties.

(c) The effective solar zenith angle µeff accounts for decreasing direct and increas-

ing diffuse radiation

1

µeff

=
1 − Aeff

c

µ0
+ rAeff

c , (2.60)

where r = 1.66 is the diffusivity factor. Its inverse can be interpreted as the av-

eraged cosine of the solar zenith angle over all directions, since diffuse radiation

is assumed to be isotropic.

(d) Reflectivities and transmissivities for the individual layers are computed fol-

lowing the thin layer approach of Coakley Jr and Chylek (1975), for the two

different boundary conditions: reflecting and non-reflecting lower layer.

(e) For the clouds first the delta-modified parameters are computed as given by

(2.31), (2.34) and (2.35).

(f) Reflectivities and transmissivities for reflecting and non-reflecting underlying

layer are computed following the Delta-Eddington approximation, i.e. the Ed-

dington approach including the similarity principle. It is implemented following

the scheme of Joseph et al. (1976).

(g) The combined transfer properties of cloudy and clear sky parts are calculated.

This is done by simply weighting the reflectivities and transmissivities from the

clear sky and cloudy sky computation according to the effective cloudiness

R̃j = Ãeff
c Rcd

j + (1 − Ãeff
c )Rcs

j (2.61a)

T̃j = Ãeff
c T cd

j + (1 − Ãeff
c )T cs

j (2.61b)

(h) Using the latter the pseudo fluxes F̂ c
j = F c

j /F� in the cloudy part and F̂ f
j =

F f
j /F� in the clear-sky part can be computed, i.e. the fluxes relative to the

incoming flux at the TOA. This is done by computing the downward fluxes

from top to bottom, such that the downward directed pseudo flux in the j-th

layer is F̂ c
j =

∏j−1
i=1 T̃i or F̂ f

j =
∏i−1

i=1 T cs
i , respectively. The upward pseudo

fluxes are worked out from bottom to top, adding up the reflections from each

layer, taking into account the transmissivities for the layers above.
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3. Absorbing atmosphere

(a) For bands with λ > 0.68 µm the same calculations as in the purely scattering

case are done, but with an increased optical thickness due to absorption of

either water vapor or carbon dioxide.

(b) From the pseudo fluxes for the conservative case and the ones including an

absorber, the effective absorber amount is determined following (2.46).

4. Absorption

(a) The pseudo-fluxes F̂ c
j and F̂ f

j (the latter is computed for the completely cloud

free column) are multiplied by the transmission functions corresponding to the

effective absorber amount.

(b) The absorption by ozone is accounted for by simply multiplying the fluxes by

the transmission functions of the accumulated absorber amounts. That means

the interaction between scattering and absorption is neglected. This is possible,

because ozone is at such high altitudes that there is only little scattering due

to the small air density and aerosol loading. For the first band, water vapor

absorption is also accounted for in the same manner.

5. Finally the fluxes in the cloudy and total cloud free column are added according to

F̂j = Atot
c F̂ c

j + (1 − Ac)
tot F̂ f

j (2.62)

2.3 Radiation Schemes for Spatially Highly Resolved Data

The two-stream approximation is currently used in general circulation models (GCM),

because it offers a good compromise between precision and computational cost. However,

in order to investigate the radiation fields of highly resolved satellite observations or cloud

model simulations, higher accuracy is needed. The reference method for a fully three

dimensional radiation computation has become the Monte Carlo simulation technique,

which is briefly described. With respect to GCMs or satellite retrieval algorithms, the

independent column approximation is a straightforward enhancement of the 1D code.

This approximation is also applied in this study. In the second section its principle and

limitations are discussed. Finally, some other methods are briefly mentioned.

2.3.1 Monte Carlo

The general idea of the Monte Carlo method is to simulate the paths of individual pho-

tons. When this is done for a sufficiently large number of photons, averaging over all the

photons reaching a certain area from a selected direction gives the corresponding intensity.

Comprehensive descriptions can be found in (Mayer, 1999) or (Scheirer, 2000, 2001).
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Photons impinge at the TOA and travel from one scattering event to the next. The

distance between two consecutive scattering events is determined by the scattering co-

efficient, from which the optical depth and, via Lambert-Beer’s law, the probability for

scattering is computed. The scattering phase function gives the probability distribution

for the scattering direction. Random number generators are applied in order to translate

these probability functions into actual path lengths and directions for an individual pho-

ton. The average over many photons resembles the distributions in a statistical manner.

Absorption is treated similarly by summing up the probability for each photon to be ab-

sorbed along its way before it leaves the model domain either at the top or by reaching

the ground. Cyclic boundary conditions are often applied, so loss through the sides is not

possible.

There are no physical approximations in this scheme as long as the number of photons

is large enough to ensure statistical significance (typically some 106 photons are used

(Scheirer, 2001)). Nevertheless there are of course approximations implicitly introduced

by the phase functions and scattering and absorption coefficients. They have to be deduced

from cloud or atmospheric data and assumptions (e.g., about the shape and orientation

of ice crystals) have to be made (see e.g. Macke et al., 1996).

In many studies the Monte Carlo technique is used as reference in order to identify ef-

fects of cloud inhomogeneities (Los and Duynkerke, 2000; Titov et al., 1997; Levkov et al.,

1998; Barker and Fu, 1999; Coley and Jonas, 1997; Fu et al., 2000b; Cahalan et al., 1994;

Cahalan et al., 1994; Marshak et al., 1998; O’Hirok and Gautier, 1997, 1998; Várnai, 2000;

Scheirer and Macke, 2002) or cloud geometry (Podgorny et al., 1998; Liou and Rao, 1996;

Barker et al., 1998, 1999), because in the limit of an infinite number of photons the fluxes

should approach the real values, given a correct description of the optical properties.

2.3.2 Independent Column Approximation

Satellite measurements have gained more and more importance in the field of geophysics

and meteorology, because they can supply continuous data of global coverage. Neverthe-

less, in contrast to direct local observation, the only measurable quantity is radiance at

various wavelengths. From this the physical property of interest has to be deduced. In

the case of cloud optical thickness this means basically to invert the methods described in

Section 2.1, where we solved the equation of radiative transfer for reflectivity, transmis-

sivity and absorptivity for known cloud optical properties. The measured reflectivity (in

most cases only in the zenith direction µ = 0) can then be inverted with (2.29a) to yield τ .

Some additional assumptions about the vertical structure of the atmosphere and the cloud

particle size distribution have to made in order to determine the single scattering albedo

and asymmetry factor. The two-stream approximation we developed in Section 2.1.2 is

very useful, because on the one hand, we obtain the desired quantity, namely upward

directed radiation, and on the other hand, it is computationally fast, so that the huge
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Figure 2.4: Hierarchical levels of accuracy of radiative transfer algorithms

(Chambers et al., 1997): Full 3D information, 2D layers and individual columns.

data amounts of highly resolved satellite images can be processed with reasonable effort.

It is therefore straightforward to apply the two-stream approximation to each reflectiv-

ity value of a single pixel in order to deduce the corresponding optical thickness (or any

other property of interest) and thus transform the reflectivity image into a map of optical

depth. Since no interactions between any two pixel values are accounted for, i.e. they are

assumed to be independent, this approach is called the independent pixel approximation

(IPA). In short it simply assumes that each observation (satellite pixel or surface instru-

ment observation point) can be treated as if it were, in fact, a horizontally homogeneous

cloud, thereby ignoring the horizontal photon transport between pixels, but capturing the

nonlinear relationship between cloud optical depth and cloud albedo for the whole scene

(Chambers et al., 1997).

Returning to the initial problem of determining the radiation fluxes through a cloud,

we can use the same idea underlying the IPA for spatially highly resolved cloud data e.g.

from a cloud resolving model: First, the fluxes for each vertical column are computed

separately using standard two-stream techniques, and then they are averaged over the

scene of interest. Since one no longer deals with the pixels of an image, but with the

columns of data this approach has been named the independent column approximation

(ICA) (Oreopoulos and Barker, 1999). Both, IPA and ICA, are used interchangeably in

the literature. In this work we will follow Oreopoulos and Barker (1999) and use IPA

for satellite retrieval and ICA for determining fluxes from cloud data. The ICA can be

positioned within hierarchical levels of accuracy as shown in Figure 2.4 (Chambers et al.,

1997): The full information about the radiation field can only be revealed by accounting

for the complete 3D structure. In 2D models, no interactions between neighboring layers

are allowed. RADAR or LIDAR measurements produce such 2D data sets. The ICA

further reduces the number of interactions by separating individual columns. Finally, in

the PPH approximation information about the vertical structure and horizontal variability

are additionally lost.

As stated above one major shortcoming of the ICA compared to a full three dimensional

method like the Monte Carlo calculation is that photons are assumed to remain in the

same column during all scattering processes. Simple geometric considerations reveal that
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this cannot be generally true. When the sun stands low most photons will not stay in

the same column that they entered at the TOA. This error is the more pronounced the

smaller the columns and the smaller µ0. Várnai and Davies (1996) introduced the tilted

IPA (TIPA), where they take intersects parallel to the direction of incident sun instead of

vertical columns, thus reducing this error.

One can relax the assumption made above (either by applying the TIPA or using

large enough columns or high sun elevations) as follows. The ICA assumes that the net

horizontal photon transport is zero, i.e. there are as many photons leaving a column as

entering it through its sides. For individual columns this assumption of zero net horizontal

transport has been shown to be completely wrong. Titov and Kasjanov (1996) found that

the net horizontal flux entering a single column can be of comparable magnitude as the

absorbed flux. This means that an additional term H enters the energy budget equation

for a single column, stating A + R + T = 1 + H. The horizontal fluxes H are a source

or sink term. Marshak et al. (1995) have shown that the field of optical thickness that

one would deduce from satellite data using the IPA is less variable than the one found

with in situ aircraft measurements. On the other hand, the reflectivity computed from

cloud data via the ICA is more inhomogeneous than the one typically observed from the

TOA. They attribute this to the neglect of horizontal fluxes, which smooth the radiation

field above the cloud. This radiative smoothing effect may be accounted for by allowing

the neighboring pixels to influence the computation of the current pixel in the so called

non-local IPA (NIPA) (Marshak et al., 1995; Marshak et al., 1996).

Nevertheless both effects are of minor importance, when the scene average is under

investigation. For non-absorbing wavelengths horizontal fluxes average to zero, while there

may be small residuals of either sign, when absorption is accounted for (Scheirer and Macke,

2002). A large number of studies deals with this topic. For overcast marine boundary

clouds, comparisons between Monte Carlo and ICA computed fluxes show good agree-

ment for averaging over scales smaller than about 5–6 km. The cloud data have been

obtained from fractal cloud models (Cahalan et al., 1994; Titov and Kasjanov, 1996),

RADAR (Zuidema and Evans, 1998) or LANDSAT images (Chambers et al., 1997). Sim-

ilar results have been found for stratocumulus clouds with gaps (Marshak et al., 1997),

broken clouds and trade cumulus (Chambers et al., 1997). In the latter study, only in

the case of very inhomogeneous clouds, derived from LANDSAT data, the error of the

IPA compared to a fully three dimensional computation, were of similar magnitude to

the difference between PPH and IPA. For a cloud in the transition state from stratus to

cumulus Fu et al. (2000b) have found averaging over 5 km to be sufficient, whereas for

high rising tropical cumulus even 78 km are not enough. Only taking the mean over the

complete scene, of 500 km range, reduces the influence of horizontal fluxes, such that they

can be neglected. If the cloud sides are important as in the case of side illumination of

high cumulus towers by a sun of low elevation, the ICA underestimates the cloud influence.

Generally, for boundary layer clouds, scene averages over ≈ 5 km seem to be adequate,
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whereas highly inhomogeneous tropical clouds can only be treated with the ICA when the

domain is larger than some 100 km.

To conclude, the ICA has been shown to be a good tool for investigating the influence

of horizontal variation of cloud properties from an energetic point of view. This means

the average fluxes over a domain, which must have a minimum size depending on the

inhomogeneity of the cloud, are correct, whereas the values for individual pixels may

deviate substantially from the true fluxes due to horizontal fluxes. The applicability for

satellite retrieval is thus considerably limited.

2.3.3 Other Methods

For completeness, two other methods used for studying the radiative transfer through

clouds are briefly mentioned.

Spherical Harmonic Discrete Ordinate Method (SHDOM) This method has been

developed by Evans (1998) and is often applied as a reference, in place or support

of Monte Carlo results (Schulz, 1998; Duda and Spinhirne, 1997; Chambers, 1997;

Chambers et al., 1997; Chambers et al., 2001). Its principle combines the elements

of the Spherical Harmonic method (Zdunkowski and Korb, 1974) and the Discrete

Ordinate method (Stamnes and Swanson, 1981). The three dimensional radiation

field is computed directly from the three dimensional, inhomogeneous atmospheric

input field, without introducing further assumptions.

Four-Stream Approximation In Section 2.1.2, the two-stream approximation was de-

rived by simply approximating the integral over the phase function by its value at

the first Gaussian quadrature points, i.e. figuratively choosing two streams. Taking

into account the second Gaussian quadrature points yields the four-stream approxi-

mation. Higher order expansions are of course also possible (Kinne, 1996) and offer

the possibility to achieve a better resolved radiation field, whereas from an energeti-

cally point of view they are not necessarily more precise (see e.g. Goody and Yung,

1989). Four-stream algorithms have also been applied for investigating the effect of

inhomogeneous clouds on the radiative transfer (Fu et al., 2000b; Li and Fu, 2000).



Chapter 3
Correction Approaches

Physical parameterizations for climate models should be bias-free and as precise as pos-

sible, but at the same time they have to be computationally fast. Radiative transfer

computations are therefore performed by some kind of two-stream approximation in most

models. They include the plane parallel homogenous cloud approximation, which was

shown to lead to a systematic error in Chapter 1. The idea to try to modify the highly

optimized two-stream codes in order to correct for the effect due to the inhomogeneity

of clouds suggests itself. Furthermore, many of the methods discussed in Section 2.3 are

not adequate for large-scale models, because their input information is not supplied by

the model. Currently, most climate models are not able to deal with any subgrid-scale

information of clouds except fractional cloud cover, so it has to be empirically diagnosed,

as is done in the effective thickness approach presented in Section 3.1. However, if the

climate model supplies higher order moments of the cloud distribution, the latter can be

exploited in the radiation computation, as is done in the statistical schemes sketched in

Section 3.2.

3.1 Effective Thickness Approach

In Chapter 1 it was mentioned that the PPH-bias of the albedo is always positive, as can

be directly concluded from Jensen’s inequality, and so the true reflectivity of an inhomo-

geneous layer is lower than the one computed using the PPH approximation. In order to

bring GCM fluxes at the TOA in accordance with satellite measurements the cloud and

convection parameterizations have to be tuned such that an adequate amount of cloud con-

densate is generated. However, it is less than found in nature. Harshvardhan and Randall

(1985) proposed, not to use the optical thickness as computed from the cloud properties

directly, but a reduced value instead. They introduced a reduction factor χ such that the
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reflectivity R of a cloudy layer with optical depth τ is

R(τ) = RPP (χτ), (3.1)

where RPP is the reflectivity one obtains from the PPH computation without any cor-

rection for cloud variability. From global average values of albedo and cloud liquid water

they estimated χ ≈ 1/3. In a numerical study with fractal cloud model data Davis et al.

(1990) defined a packaging factor similar to (3.1) and found values on the order of mag-

nitude of 0.1. These empirical approaches have been put onto a more physical basis by

Cahalan et al. (1994). In the following section the concept of an effective thickness ap-

proach (ETA) similar to the one by Harshvardhan and Randall (1985) will be re-examined.

Visible optical thickness τ of a cloudy layer is a function of the liquid water path W ,

τ =
3

2
ρl

W

reff

, (3.2)

with ρl the density of water and reff the effective droplet radius. The latter is not constant,

but for stratocumulus clouds it can be set to a typical value of reff = 10 µm in good

agreement with measurements (see e.g. Houze, 1993; Minnis et al., 1992).

Cahalan et al. (1994) claim that the cloud structure simulated by a bounded cascade

model, a fractal cloud model, depicts the true variability in stratocumulus clouds. From

the model characteristics the following relation between the mean of the logarithm of the

liquid water path over the whole cloud model area, log(W ), and the logarithm of the mean,

log(W ), can be deduced as

log(W ) = log(ζ(f)W ), (3.3)

where f is the variance parameter, the only free parameter of the cloud model, which has

to be ascertained empirically and held constant during a model run. Combining (3.2) and

(3.3) yields the corresponding equality for optical thickness

log(τ) = log(ζτ). (3.4)

If we now consider reflectivity, R, as a function of log(τ), we may perform a Taylor

expansion for any column i in the cloud domain with optical thickness τi about the value

of R(log(ζτ)), such that

Ri(log(τi)) ≈ R(log(ζτ)) + (log(τ) − log(ζτ))R′(ζτ) +
1

2
(log(τ) − log(ζτ))2R′′(ζτ) + · · · .

(3.5)

The reflectivity of the whole cloud scene, R, is obtained by averaging over all columns

i to get

R =
1

n

n
∑

i=1

Ri = R(log(ζτ)) +
1

2
var(log(τ))R′′(ζτ) + · · · , (3.6)

where var(log(τ)) is the variance of log(τ). The second term on the right hand side

of (3.5) cancels out because of (3.4). When we work out the domain reflectivity as in
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Figure 3.1: Reflectivity R of a layer as a

function of its optical thickness τ or equiv-

alently its liquid water path W on a loga-

rithmic scale using (3.7). For intermediate

optical thicknesses the curve is nearly lin-

ear, which is exploited in (3.8).

(3.6) we implicitly assume the independent column approximation to hold true (see also

Section 2.3.2), since we assume the reflection of each column to be independent of its

neighbors. Re-sorting the index i does not influence the average R. In order to estimate

the relevance of the R′′ contribution in (3.6), we plot the reflectivity versus log(τ) in

Figure 3.1. Here we use the highly simplified reflection function

R(τ) =
γτ

1 + γτ
, (3.7)

with γ ≈ 0.1 (King and Harshvardhan, 1986). For intermediate optical thicknesses in the

range of 1.5 to 15 the curve is nearly linear, which means that R′′ is small. Therefore, we

can neglect this term in the Taylor series (3.6) and obtain

R = R(ζτ). (3.8)

Expanding R(log(τ)) instead of R(τ) directly thus has the advantage that the first

order term cancels out and the second order term may be neglected for intermediate

optical thicknesses. For small (large) values of τ the reflectivity according to (3.8) is too

low (high). The cloud resolving model, from which (3.3) has been deduced, has originally

been designed to simulate stratocumulus clouds, which have typically optical thicknesses

in the range, where (3.8) is a good approximation.

When we compare (3.8) and (3.1) we can obviously establish a link to the reduction

factor of Harshvardhan and Randall (1985) and set ζ = χ. The pre-factor ζ which results

from the properties of the cloud model and the reflection function is basically the reduc-

tion factor of Harshvardhan and Randall (1985), but here it is defined for a single cloud

realization instead of representing a global parameter.

We can rewrite (3.8) a little further by introducing the effective optical thickness τeff

τeff = χτ. (3.9)

Using the notation of (3.1) we can write the basic statement of the effective thickness

approach as

R(τ) = RPP (τeff ), (3.10)
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i.e., the reflectivity of a cloudy layer with inhomogeneous horizontal optical thickness

can be calculated by using the reflection function for a plane parallel homogeneous layer

with the effective optical thickness instead of the actual. Jensen’s inequality for the convex

reflection function thus has been rewritten to an equality using the reduction factor χ < 1.

If one wants to apply (3.10) in a GCM’s radiation code, the actual value of χ has to

be known. Cahalan et al. (1994) derive it from the bounded cascade model, where ζ, and

therefore χ, is a function of the variance parameter f . From measurements he deduces

f = 0.5 for marine stratocumulus clouds, which results in ζ = χ = 0.7. This means that

for this cloud type the mean optical thickness has to be reduced by 0.7 when using the

standard PPH radiation schemes. However, one cannot expect this factor to have the

same value for all conditions.

1. The linear approximation of R(log(τ)) that have lead to (3.8) is only good for inter-

mediate optical thicknesses. For stratocumulus clouds this is a reasonable assump-

tion (Minnis et al., 1992), while for optically thick convective cumulus towers or thin

cirrus clouds one leaves the linear range. However, this can be compensated by using

smaller and higher reduction factors, respectively (see Figure 3.1).

2. For cloud types other than marine stratocumulus the variance parameter of the

fractal model is different. Highly turbulent convective cloud result in larger f and

therefore smaller χ. The inverse is true for more homogeneous clouds than the

ones present during the FIRE measurement campaign. Consequently, a separate

reduction factor each cloud type needs to be determined.

The need for different reduction factors is also shown by Szczap et al. (2000a,c), who

extend the ETA to the equivalent homogeneous cloud approximation (EHCA). They use a

fractal cloud model and apply a Monte Carlo radiation scheme in order to determine the

radiative fluxes. By comparing the PPH fluxes with the 3D Monte Carlo simulation they

deduce effective optical thickness values for reflectivity and transmissivity separately. For

large enough cloud areas they find that the two effective optical thicknesses are the same.

Furthermore, they extract an empirical fit function for the dependence of the effective

thickness, τeff , on the mean optical thickness and the relative cloud inhomogeneity σ/τ .

For τ = 13 they find τeff /τ = 0.7, but for smaller τ this ratio is higher by up to 20%,

for larger τ lower by up to 10%. In an accompanying paper Szczap et al. (2000b) further

enhance the EHCA and define an effective single scattering albedo for absorbing clouds.

The latter is smaller than the mean value. They again derive empirical relationships

between the effective values of τ and ω̃ and their means and standard deviations.

If the GCM provides not only the mean liquid and ice water path, but also the logarith-

mic mean, (3.3) could be used to determine χ. Otherwise, one could use fixed reduction

factors for various typical weather situations. The main disadvantage of this approach

is that interactions between external forcings like aerosol loading cannot be directly ac-

counted for (Barker, 2000). However, until some measure of the sub-grid variability is
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calculated by the GCM, this is the most practical method. Some studies for determining

the appropriate reduction factor to use in GCMs will be presented in Section 5.4, along

with different approaches for implementing them into the ECHAM5 GCM.

3.2 Statistical Schemes

The effective thickness approach we introduced in the previous section has some limita-

tions. It only holds for a rather narrow range of optical depths and solar zenith angles, as

we have seen earlier and is discussed in more detail by Cahalan et al. (1994) and Barker

(1996). Furthermore, adjusting the optical thickness such that the reflectance is computed

correctly could have undesirable effects on the estimate of cloud absorptance (Barker,

1996), since changes in optical thickness influence all radiative properties. In the following

section we will develop another approach based on the following two assumptions:

1. The ICA is applicable. This was also assumed in the derivation of the ETA. We will

especially make use of the consequence that the columns of the cloudy scene may be

re-sorted without changing the result of the radiation computation, since they are

all independent.

2. The frequency distribution of optical depth can be described by an analytical func-

tion. From satellite measurements various functions have been proposed, like Gamma-

(Barker et al., 1996) , Beta- or log-normal-distribution (Oreopoulos and Davies, 1998b).

We will concentrate on the Gamma and a variant of the Beta-distribution.

The general idea is to re-formulate the basic ICA approach presented in Section 2.3.2,

R =
1

N

N
∑

i=1

RPP (τi),

by substituting the sum by an integral over the probability distribution function (PDF),

p(τ), of optical thickness, which has norm of 1,

∫ ∞

0
p(τ) dτ = 1. (3.11)

When p is known, reflectivity and transmissivity can be written as (Stephens, 1988b)

R =

∫ ∞

0
p(τ)RPP (τ) dτ (3.12a)

T =

∫ ∞

0
p(τ)TPP (τ) dτ. (3.12b)

In contrast to the ETA, there is no inherent limitation on the range over which this

approach is valid, as long as p is an adequate description of the probability distribution.

Different shapes for p have been proposed like Gamma-, Beta- or log-normal-distributions.
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They are all empirical fits to either cloud observations or high resolution model output.

The shape of the distribution cannot be deduced from basic cloud microphysical mecha-

nisms. The actual choice mostly is made for practical reasons, like simple mathematics.

The Gamma-distribution allows for an analytical expression in (3.12) and therefore has

been chosen by Barker (1996). Tompkins (2002) favors the Beta-distribution, because

both positive and negative skewed distributions can be realized, and the distribution is

bounded above and below, avoiding unphysical negative or infinite values for water mixing

ratio.

Generally, when the PDF is deduced from satellite data, as is done in most stud-

ies (Barker et al., 1996; Oreopoulos and Davies, 1998b), it only accounts for horizontal

variations of the vertically integrated cloud water. In climate models, the atmosphere is

divided into vertical layers with layer depths depending on the altitude (Roeckner et al.,

1996), so that a cloud could be sliced into two (or more) contiguous layers. Usually, two-

stream approximations account for this by assuming a vertical structure of the cloudy and

clear sky fractions of each layer such that cloudy parts in adjacent layers are assumed

to have maximum overlap, whereas cloudy layers separated by one or more clear sky re-

gions are randomly overlapped. This is important, since the direct flux impinging on a

layer residing under a cloudy layer are reduced. In total a shaded cloud has less radia-

tive effect than an unshaded cloud. Similarly, if we look at a cloud with a known PDF,

p(τ), which is sliced into two layers (cf. Figure 3.2), using only the effective reflection and

transmission values (3.12) in each layer, is equivalent to homogeneous illumination. The

real situation is depicted on the right side of Figure 3.2, where the impinging radiation

in the second layer depends on the optical thickness of the overlying layer. The incoming

radiation is less (more) than average for columns with thick (thin) top layers. Slicing

the cloud into N layers with N → ∞ yields the PPH approximation (Stephens, 1988b;

Oreopoulos and Barker, 1999). This error becomes more pronounced if the thickness of

the atmosphere model layers is decreased. In the next section, we will deduce a correction

for this multilayer problem.

3.2.1 Gamma Weighted Two-Stream Approximation

In a series of two papers, Barker (1996) and Barker et al. (1996) are successful in fitting

the distributions of optical thickness derived from LANDSAT measurements by Gamma-

distributions,

p(τ) =
1

Γ(ν)

(ν

τ

)ν
τν−1e−ντ/τ , (3.13)

where Γ is the Gamma function (Bronstein and Semendjajew, 1991) and ν is the shape

parameter, which is defined as

ν =

(

τ

σ

)2

, (3.14)
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with σ the standard deviation of the distribution. Thus, ν is the inverse of the rela-

tive variance. Low values of ν mean high variability, and conversely, large ν indicates

a homogeneous distribution. This follows an idea presented by Stephens et al. (1991),

where radiative transfer through non-homogenous media is described using the PDF of

the optical properties τ and ω̃.

In a later study, Oreopoulos and Davies (1998b) also find that the Gamma-distribution

could be used to represent the PDF of a large variety of cloud scenes. In contrast to

Barker et al. (1996), they do not use the method of moments to determine ν from the

satellite data (i.e. to compute τ and σ and therefrom ν via (3.14)), but instead they

applied the maximum likelihood estimate (MLE),

d ln Γ(ν)

dν
+ ln τ − ln ν − ln τ = 0, (3.15)

which can be approximated by (Wilks, 1995)

ν ≈
1 +

√

1 + 4(ln τ − ln τ)/3

4(ln τ − ln(τ)
. (3.16)

The latter approximation is especially advantageous for strongly skewed distributions with

columns of high optical thickness, because the thick parts contribute less than in the

method of moments.

Barker (1996) combines (3.13) and (3.12) with the reflectivities and transmissivities

RPP and TPP from Meador and Weaver (1980) (see also Section 2.1.2, (2.29)–(2.30)). The

Gamma-distribution has the advantage that (3.12) can be integrated analytically, yielding

TΓ =

(

ν

ν + τµ0

)ν

− φν
1

ω̃

a
[t+F(β, ν, φ4) − t−F(β, ν, φ6)] (3.17a)

RΓ = φν
1

ω̃

a
[r+F(β, ν, φ1) − r−F(β, ν, φ2) − rF(β, ν, φ3)], (3.17b)

where

F(β, ν, φ) =
∞
∑

0

βn

(φ + n)ν
; [|β| ≤ 1, β 6= 1, ν > 0] (3.18a)

φ1 =
ν

2kτ
; φ4 = φ1 +

1

2kµ0

φ2 = φ1 + 1; φ5 = φ4 + 1

φ3 = φ4 +
1

2
; φ6 = φ1 +

1

2

(3.18b)

The corresponding transmittance and reflectance properties for an isotropic diffuse-beam

source are

tΓ = φν
1

2k

(k + γ1)
F(β, ν, φ6) (3.19a)
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and

rΓ = φν
1

γ2

(k + γ1)
[F(β, ν, φ1) −F(β, ν, φ2)], (3.19b)

respectively. In the case of conservative scattering, i.e. ω̃ = 1 (and hence β = 1), there is

a removable singularity in the expressions for transmittance and reflectance of the direct

(3.17) and diffuse beams (3.19). The corresponding formulas are (Barker, 1996)

TΓ =

(

ν

γ1τ

)ν [

(γ1µ0 + γ4)G
(

1 − ν,
ν

γ1τ

)

− (γ1µ0 − γ3)G
(

1 − ν,
νµ0 + τ

γ1µ0τ

)]

(3.20a)

RΓ = 1 − TΓ (3.20b)

for the direct beam and

tΓ =

(

ν

γ1τ

)ν

G
(

1 − ν,
ν

γ1τ

)

(3.21a)

rΓ = 1 − tΓ (3.21b)

for the diffuse source. The function G is defined as

G(1 − ν, x) = exΓ(1 − ν, x). (3.22)

Any standard two-stream scheme, as described in Section 2.1.2, can be used by substituting

the parameters γi, according to Table 2.1. The influence of any horizontal variations of

optical depth within a single cloudy layer are accounted for by the transmission and albedo

functions defined above. Since they have been obtained by weighting the general two-

stream functions by the Gamma-distribution function this approach is called the Gamma

Weighted Two-Stream Approximation (GWTSA).

Strictly speaking, the Gamma-distribution only describes the optical depth distribution

of clouds. Thus, if one wants to include clear sky properties, like Rayleigh scattering and

aerosol effects, one can compute their contribution as τclr and obtains the total optical

thickness as

τ = τclr + τcld, (3.23)

where τcld is given by the original PDF. Since the clear sky part is assumed to be horizon-

tally homogeneous, we have to use a distinct shape parameter for the distribution of the

total optical thickness, which can be approximated by

ν =

(

τ cld + τclr

σ

)2

= νcld

(

τ cld + τclr

τ cld

)

. (3.24)

The integral in (3.12) has to be evaluated from τclr instead of from 0. This has only a

minor effect on the result and makes an analytic solution impossible, so 0 is used.

As was already mentioned before, there is a problem when applying a statistical scheme

like the GWTSA to multiple layers. In this case, the standard two-stream scheme treats
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Figure 3.2: Radiative transfer through a multilayer cloud with horizontal inhomogeneity.

The left sketch shows the case, where no correlation correction is applied, while on the

right side the true situation is depicted, where thick elements reduce the transmitted light

impinging on the underlying layer.

the optical depth distributions of the layers as being independent, which is generally not

the case. Oreopoulos and Barker (1999) therefore develop a correction, assuming that the

optical thickness distributions of a cloud in all layers can be described by the same shape

parameter ν and the particular means τi. By further assuming that the distributions are

perfectly correlated (see Figure 3.2), they find that for direct transmitted radiation the

same formalism as described above can be used, but using an effective optical thickness,

τ∗
i , as given by

τ∗
i =

ντ i

ν +
∑i−1

k=0 τk

≤ τ i. (3.25)

The GWTSA results using τ i approach the PPH solution as N → ∞, while slicing does

not change the result, when τ i is substituted by the effective thickness τ ∗
i . In the case

of diffuse radiation Oreopoulos and Barker (1999) develop an approximate solution, such

that again only the optical thickness has to be rescaled. They find

τ∗
i =

ντ i

ν + D(µ0)
∑i−1

k=0 τk/µ0

, (3.26)

with

D(µ0) = 0.063µ0(2 − µ0). (3.27)

When implementing the GWTSA into a GCM, (3.26) can be applied for both direct and

diffuse transmittance with only little influence on the result. The summation in (3.26)

ranges from the cloud bottom to the cloud top layer. If cloudy layers are separated by

clear sky, the GWTSA starts again from uncorrected τ with the particular shape parameter

νi, which is assumed to be constant throughout the contiguous cloudy layers.

The correction (3.26) is valid only for overcast skies. For partly cloudy layers, in which

total radiative transfer is computed following (2.61), Oreopoulos and Barker (1999) give
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the general corrected optical thickness

τ∗
i =







Ac,i−1τ∗∗

i +(Ac,i−Ac,i−1)τ i)
Ac,i

, for Ac,i−1 ≤ Ac,i

τ∗∗
i , for Ac,i−1 > Ac,i

(3.28a)

with

τ∗∗
i =

νiτ i

νi + D(µ0)
∑i−1

k=ktop
Akτk/µ0

. (3.28b)

The parameter Ak has been introduced since it “[. . . ] was found to improve results relative

to Ak = 1 for a wide variety of experiments. In a crude way, this mimics the effects of

maximum/random cloud overlap [. . . ]” (Oreopoulos and Barker, 1999). They found the

empirical relation

Ak =







(1 − Ac,k−1)
−1, for Ac,k ≤ 0.5

A−1
c,k, for Ac,k > 0.5.

(3.29)

We set this tuning parameter to 1, since the Fouquart scheme uses an effective cloudiness

(see (2.54)), which already accounts for the overlap.

The underlying assumption for the derivation of the correction in (3.28) is that a

single cloud is perfectly correlated throughout its vertical extent. This is not generally

true, but the correlation is likely to decrease with larger vertical distance between two

layers. The correction is therefore an upper limit, the “true” value for τ ∗∗ will be larger

than stated in (3.28). Till now, only limited observational data are available for describing

the vertical structure of clouds — a problem, which is important for finding the correct

overlap assumptions also (Collins, 2001). Radar measurements by Hogan and Illingworth

(2001), the use of longterm rawinsonde datasets (Wang et al., 2000) or the upcoming

space borne measurements on the CLOUDSAT satellite (Stephens et al., 2000) might be

a good starting point for developing more sophisticated parameterization for cloud vertical

structure. Lacking these observational data, perfect correlation nevertheless is a physically

profound assumption, comparable to maximum overlap for adjacent layers.

The GWTSA has been shown to work quite successfully with cloud resolving model and

satellite data (Barker et al., 1996; Oreopoulos and Davies, 1998b; Oreopoulos and Barker,

1999; Barker and Fu, 1999; Barker and Fu, 2000). It has also been implemented in a dis-

crete ordinate two-stream scheme (Kato et al., 2001). Using a similar approach, Fu et al.

(2000a) developed a radiation model for infrared radiation, which he called the Gamma

Weighted Radiative Transfer scheme (GWRT).

3.2.2 Beta Weighted Two-Stream Approximation

The same concept developed above for the GWTSA can be used for a different choice of

PDF. The Beta Weighted Two-Stream Approximation (BWTSA) employs a Beta-shaped

PDF instead the Gamma-distribution. Thus, it can be linked consistently to the cloud
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scheme of the ECHAM5 model, where the PDF of the total water mixing ratio in each grid

cell is expressed by means of a Beta-distribution (Tompkins, 2002). First the statistical

cloud cover scheme, providing the distribution for the radiation computation, is briefly

described. Then the implementation of the BWTSA in the ECHAM5 model is sketched.

Statistical Cloud Cover Scheme

Clouds are the most important modulator of the incoming and outgoing radiation and

therefore have attracted a lot of modeling efforts. In the early stages of the development

of GCMs, clouds were treated, as most other model variables, with only a single average

number per grid cell, i.e., the cell was either overcast or cloud free. Looking at the typ-

ical grid spaces of those models of several 100 km, this assumption is obviously far from

being realistic. Since the radiative properties of clear and cloudy sky differ substantially,

parameterizations have been developed in order to diagnose or prognose the area fraction

in each cell that is covered by clouds. All relevant computations are then performed in-

dependently in both parts and the fluxes are averaged according to the fractional areas.

By introducing fractional cloud cover one implicitly assumes that some of the model vari-

ables are inhomogeneous within a single grid cell, because otherwise clouds always form

in the whole layer. A simple approach to account for this variability is to set the relative

humidity threshold, where clouds start to form, to less than 100% and define a functional

dependency of the cloud fraction based on the difference between mean grid humidity and

the threshold (Sundqvist, 1978; Lohmann and Roeckner, 1996). Setting a fixed threshold

is basically equivalent to defining a typical variability of water mixing ratio.

Alternatively one can explicitly describe the cloud water variability by specifying a

probability distribution function, p, of the total water mixing ratio, qt = qv + ql + qi, for

each layer, with the mixing ratios of water vapor, qv, cloud liquid water, ql, and cloud

ice, qi. Knowledge of p(q) together with the saturation mixing ratio, qs, enables the

computation of condensate, qc, and vapor mixing rates, qv, and cloud cover, Ac,

qt =

∫ ∞

0
p(q)q dq (3.30)

qv =

∫ qs

0
p(q)q dq +

∫ ∞

qs

p(q)qs dq (3.31)

qc =

∫ ∞

qs

p(q)(q − qs) dq (3.32)

Ac =

∫ ∞

qs

p(q) dq. (3.33)

From a variety of possible shapes for p(qt) Tompkins (2002) chooses the Beta-distribution

(e.g. Johnson and Kotz, 1970; Essenwanger, 1967)

p(q) =
1

B(ũ, ṽ)

(qt − qa)
ũ−1(qb − qt)

ṽ−1

(qb − qa)ũ+ṽ−1
for qa ≤ qt ≤ qb, p = 0 otherwise, (3.34)
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Figure 3.3: Some examples of Beta distributions with different choices of the shape

parameters ũ and ṽ. For ũ < ṽ the distributions are positively, for ũ > ṽ negatively

skewed and symmetrical for ũ = ṽ. (Not shown are the U-shaped distributions, which are

generated for negative shape parameters, since they are not used in the scheme.)

where B(ũ, ṽ) represents the beta function

B(ũ, ṽ) =
Γ(ũ)Γ(ṽ)

Γ(ũ + ṽ)
. (3.35)

Its standard deviation is

σ =
qb − qa

ũ + ṽ

√

ũṽ

ũ + ṽ + 1
. (3.36)

Some examples of the beta distribution for various combinations of the shape defining

parameters are shown in Figure 3.3. These examples may elucidate the reasons for choosing

this distribution for the PDF of qt:

• The distribution is bounded above and below. Other distributions like the lognormal-

or Gamma-distribution are open, which means that there are infinite or negative

values of qt. Although the corresponding probability is usually negligible, such values

are nevertheless unphysical.

• The skewness may by positive or negative, depending on the shape parameters ũ

and ṽ: The distribution is symmetrical for ũ = ṽ, positively skewed for ũ < ṽ, and

negatively skewed for ũ > ṽ. Such a property is necessary, since both shapes have

been observed and have been modeled in cloud resolving model simulations.

• Despite being quite flexible the Beta distribution is defined by only four parameters.

Furthermore, these parameters are easily implemented into the cloud cover scheme.

This will be sketched below.
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Substituting (3.34) into (3.30)–(3.33) yields

qt = (qb − qa)
ũ

ũ + ṽ
+ qa (3.37)

qv = (qb − qa)
ũ

ũ + ṽ
I(qs−qa)/(qb−qa)(ũ + 1, ṽ) + (qa − qs)I(qs−qa)/(qb−qa)(ũ, ṽ) + qs (3.38)

qc = (qb − qa)
ũ

ũ + ṽ
[1 − I(qs−qa)/(qb−qa)(ũ + 1, ṽ)] + (qa − qs)[1 − I(qs−qa)/(qb−qa)(ũ, ṽ)]

(3.39)

Ac = 1 − I(qs−qa)/(qb−qa)(ũ, ṽ), (3.40)

where Ix is the incomplete Beta-function ratio, given by

Ix(ũ, ṽ) =
1

B(ũ, ṽ)

∫ x

0
qũ−1(1 − q)ṽ−1 dq. (3.41)

An intuitive choice for a set of variables, which uniquely define the Beta-distribution,

are the two limits and the two shape parameters. However, for the formulation of the

cloud scheme Tompkins (2002) chooses the more convenient set qt, qc, ũ and ṽ, since the

mixing ratios are more easily linked to the GCM. On the other hand, this set of variables

is only independent for broken cloudiness. For Ac = 1 the total mixing ratio is qt = qs +qc

and therefore a function of qc, whereas for Ac = 0 there is no condensate, qc = 0. In these

cases, an additional variable (qb−qa) is prognosed by the model. This variable is analyzed

from qt and qc otherwise. It is therefore called a quasi-prognostic variable.

One shape parameter, ũ, is set to a constant value, which is arbitrarily chosen to

be ũ = ũ0 ≡ 2. Since currently only positively skewed shapes are used in order to

make the formulation feasible, ṽ ≥ ũ0. Future enhancements of the scheme may relax

this limitation. Finally, the second shape parameter ṽ is determined prognosticly. Four

physical mechanisms are taken into account:

Turbulence acts on both, distribution width (of course only in the cases of clear or

overcast skies) and shape parameter. Mixing leads to homogenization of the variable

fields of mixing ratios. It is parameterized as a Newtonian relaxation term

∂ṽ

∂t
= (ṽ0 − ṽ)

(

1

tv
+

1

th

)

, (3.42)

where ṽ0 = ũ0 is the initial value for ṽ, and tv and th are time constants connected

with vertical and horizontal mixing, respectively. They are computed from the

turbulent velocity scale and the wind shear. While the vertical part is only relevant

in the planetary boundary layer, th is important higher up and is typically of the

order of ten days. A similar formulation is also given for the width of the PDF,

(qb − qa), including some additional source terms.

Convection leads to detrainment of high mixing ratios of cloud condensate, which results

in a significantly increased skewness of the PDF. This is accounted for in the scheme
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by linking the shape parameter directly to the detrainment via

∂ṽ

∂t
=

K

ρqs

∂

∂z
(M cuqcu

c ), (3.43)

where K is a dimensionless constant, M cu the updraft mass flux and qcu
c the mean

cloud water in the convective updrafts. Again convection also influences the quasi-

prognostic width (qb − qa) by increasing qb while qa stays constant.

Large-scale condensation can change the condensate mixing ratio, which has to be

taken into account in determining the PDF by an implicit update of the model

variables.

Microphysics may also change the condensate amount through pathways between the

various water categories, which are represented in the GCM cloud scheme. Similarly

to the large scale condensation, this is treated as an implicit update of the condensate

mixing ratio, resulting in a change ∆ṽmicro.

Summarizing the above, we can write the prognostic tendency equation for ṽ as

∆ṽ

∆t
=

K

ρqs

∂

∂z
(M cuqcu

c ) +
ṽmicro

∆t
+ (ṽ0 − ṽ)

(

1

tv
+

1

th

)

. (3.44)

For further details and information about the performance of the scheme in the ECHAM5

general circulation model see (Tompkins, 2002).

Implementation into the Radiation Scheme

Following the principal idea of the statistical schemes stated in (3.12), the standard two-

stream scheme of the ECHAM5 model is integrated, using weighting factors according to

the probability function, which is supplied by the cloud cover scheme. The flow diagram

is sketched in Figure 3.4. The PDF for the total water mixing ratios is defined by the four

parameters: lower limit qa, upper limit qb and the shape parameters ũ and ṽ. From this

PDF and the saturation mixing ratio, qs, the PDF for the cloud condensate for cloudy

layers is computed. It is the tail of the Beta-distribution (for partial cloud cover) or the

complete Beta-distribution (for overcast skies), with the same shape parameters as the

total water mixing ratio PDF, but with the new limits

qc,a = max(qa − qs, 0) (3.45a)

and

qc,b = qb − qs. (3.45b)

The condensate is divided into the two aggregate states, liquid and ice, according to the

corresponding fractions of the mixing ratio mean values. With the fraction of ice,

fice =
qice

qice + qliq

, (3.46)
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Figure 3.4: Flow diagram of the BWTSA approach: From the distribution of total water

mixing ratios the condensate part is determined. Using the standard parameterization

this can be transformed to a distribution of optical thicknesses which is finally passed to

the statistical radiation scheme.

the PDFs for both are described by the shape parameters ũ and ṽ and the limits fice qc,a

and fice qc,b for ice, and (1 − fice)qc,a and (1 − fice)qc,b for liquid cloud water.

The integrals in (3.12) are calculated by Gaussian quadrature at five points, i.e., the

shortwave code is called five times, passing different amounts of cloud liquid water and ice.

The corresponding fluxes are then summed up after weighting according to the Gaussian

algorithm. Besides numerical fluctuations, no additional approximations are introduced.

In the case of thin clouds, however, the limited precision of the numerical integration

may lead to an inconsistency in the Fouquart scheme when absorption is computed. As

described in Section 2.2, the fluxes for a conservative atmosphere and then for a fixed

absorption coefficient are determined. These two fluxes are subtracted in order to obtain

the effective absorber amount. Numerical errors for small absorption may thus lead to

negative absorption. These rare circumstances are corrected by setting the difference to

zero if negative values occur. The overall fluxes are not affected substantially by this

correction as one can easily test by performing the integration with more quadrature

points, and thus higher precision. Five points were chosen as a compromise between

precision and computational effort.



Chapter 4
Cloud Resolving Model Data Experiments

Cloud resolving models are the only way to systematically investigate the 3D properties of

clouds. Satellites can only measure vertically integrated condensate amounts and the field

of view of ground based devices like LIDAR and RADAR, which can resolve the vertical

structure, is limited. Measurements during flight campaigns can gain valuable data sets

for the development of parameterizations or model evaluations or to define boundary

conditions for simulations, but it is not possible to obtain a snapshot of the full 3D

structure of a cloud field.

In order to quantify the PPH-bias radiation computations using the ICA approach are

compared to the corresponding PPH values. For the above mentioned reasons data from

cloud simulations are chosen. After identifying the bias, the two correction approaches,

ETA and GWTSA (see Chapter 3) are scrutinized. The latter is chosen as an example

for a statistical scheme in favor of the BWTSA, because the Gamma-distribution yields

better fits for the small domain size of the cloud simulations. While the Beta distribution

was shown to be adequate for areas comparable to the GCM resolution, (Tompkins, 2002)

it could not fit the cloud model data properly. Furthermore, a correlation correction is

not available for the BWTSA, yet.

4.1 Cloud Data

Two simulations using a cloud resolving model developed at the Max-Planck-Institut für

Meteorologie in Hamburg are employed in the following study: a nocturnal marine stra-

tocumulus (ASTEX) and a trade wind cumuli (ATEX) simulation. First the cloud re-

solving model will be briefly introduced, followed by a short description of the model

initializations and domains for the two cases.
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4.1.1 Cloud Resolving Model

The Cloud Resolving Model (CRM) is based on the idea of Large Eddy Simulation (LES).

LES means that all spatial scales, which represent the dominant large-scale motions, are

explicitly resolved, while the effects of smaller scale turbulence on the averaged flow is

parameterized. Therefore the dominant cloud structures are resolved. An extensive de-

scription of the LES model can be found in Chlond (1992, 1994) and Müller and Chlond

(1996). Here only a brief summary, following Chlond and Wolkau (2000), is given.

For the prognostic equations of the wind velocity, the liquid water potential tempera-

ture and total water content the Boussinesq-approximation is applied. They are described

on a Cartesian coordinate system, which is translated with the geostrophic wind to follow

a trajectory of air in a Lagrangian manner. Infrared radiative cooling in cloudy conditions

and the influence of large scale vertical motions is accounted for, while the sub-grid scale

forcing is parameterized via the sub-grid scale turbulent energy closure. Microphysical

processes such as condensation, evaporation, coagulation and sedimentation are modeled

by bulk parameterization schemes.

4.1.2 Marine Stratocumulus (ASTEX)

The case study is based on a situation encountered during the Atlantic Stratocumu-

lus Transition Experiment (ASTEX). Flight RF06 took place to investigate a nighttime

stratocumulus. From the data collected during this flight initial and boundary condi-

tions for a 4-hour model simulation of the boundary layer have been derived as part

of the European Cloud-Resolving Modelling (EUCREM) model intercomparison project.

The details of the ASTEX experiment and especially the flight RF06 can be found in

de Roode and Duynkerke (1997) and Duynkerke et al. (1999), respectively.

The flight path followed a stratocumulus cloud over the North Atlantic (37◦ N, 24◦ W)

in its transition state. From an initially horizontally homogeneous cloud layer it developed

into a decoupled boundary layer with cumulus penetrating the stratocumulus deck from

below. The initial conditions for the simulation were derived as simplified vertical profiles

of the two horizontal wind components, the liquid water potential temperature, and the

total water content. These initial profiles were assumed to be horizontally homogeneous,

except for the temperature field. In order to trigger convective instability, the initial

temperature field was randomly perturbed. Figure 4.1 gives an impression of the evolving

cloud field.

In their sensitivity study Chlond and Wolkau (2000) utilize different sub-grid scale

parameterization schemes. The data used for the radiation computation in this work are

labeled REFERENCE in their article. The first 30 min are neglected as LES model spin-

up time. For the REFERENCE-case the model domain was 28.8 × 3.2 × 1.5 km3 with a

horizontal resolution of ∆x = ∆y = 50 m and a vertical level height of ∆z = 25 m. The

time interval for model output was set to 3 min.
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Figure 4.1: Snapshots of the ASTEX cloud simulation for 1 h (top panel) and 4 h (bottom panel) model time. Shown are volume surface

plots (cut at x = 10 km), colored by the liquid water path (left), the liquid water path (center) and vertical profiles of the mean liquid water

content (right)



4.1 Cloud Data 41

00:00:00 01:00:00 02:00:00 03:00:00 04:00:00
model time

50

100

150

200

250

W
 / 

g 
m

-2

Figure 4.2: Evolution of the liquid water path of the ASTEX cloud simulation. The

first 30min are model spin-up and are therefore not used in the radiation computations.

One can clearly see a drying out of the cloud, caused by entrainment of dry air.

The boundary-layer top rises from 705 m to 785 m, while the liquid water path decreases

during the course of the model integration (see Figure 4.1.2). Nevertheless the cloud forms

a solid deck with cloud cover Ac ≡ 1 throughout the whole simulation.

4.1.3 Trade Wind Cumuli (ATEX)

Another intercomparison study, set up by the Global Water and Energy Experiment

(GEWEX) Cloud System Studies Working Group 1 (GCSS-WG1), was dedicated to the

low-level trade wind regime (Stevens et al., 2001). Initial and boundary conditions for

an 8 h-simulation were constructed from the data collected during the Atlantic Trade

Wind Experiment (ATEX), which took place in February 1969 (e.g. Brümmer et al., 1974).

Three ships drifted in the Atlantic northeast trade wind region (near 12◦ N, 35◦ W) for

nearly three weeks and measured atmospheric properties by deck-level observations, ra-

diosondes and RADAR as well as supplemental buoys. The initial conditions for the model

simulations were deduced from the first part of the experiment. Horizontally homogeneous

fields of temperature and humidity were prescribed, according to the radiosonde sound-

ings. Their equability was again disturbed by introducing pseudorandom fluctuations in

the initialization of the temperature and this time also liquid water field without altering

the domain averages. The initial winds and their geostrophic values were drawn from re-

analysis. After a model spin-up, forcings associated with hypothetical large-scale processes

and advective tendencies due to subsidence were imposed.

Figure 4.3 shows the general structure of the simulated cloud field (compare to Fig-
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Figure 4.3: Snapshots of the ATEX cloud simulation for 2 h (top panel) and 7 h 30min (bottom panel) model time. Shown are volume

surface plots, colored by the liquid water path (left), the liquid water path (center) and vertical profiles of the mean liquid water content

(right)
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Figure 4.4: Evolution of total cloud cover and liquid water path of the ATEX cloud

simulation. The first 2 h are model spin-up and are therefore not shown here. They

are not used in the radiation computations, either. The data between 5 h 30 min and 6 h

model time are corrupted as are the data for the last 30 min.

ure 4.1). The model domain for this integration is 6.4×6.4×3.0 km3, where the horizontal

grid spacing is ∆x = ∆y = 100 m and the vertical ∆z = 20 m. Output is written every

5 min. The first two hours of model integration are discarded as model spin-up time. To

get an impression of the time evolution Figure 4.4 shows the mean liquid water path and

total fractional cloud cover.

4.2 Radiation Computations

In order to determine the optical properties of the cloud data described above, the short-

wave radiation scheme of the ECHAM4 climate model has been extracted and rewritten as

a standalone model for ICA and PPH computations. The details will be given in the next

section, followed by the effects of the correction methods, which have been introduced in

Chapter 3: Effective Thickness Approach and Gamma Weighted Two-Stream Approxima-

tion (uncorrected and corrected for correlation). All radiation model simulations shown

below are performed assuming no aerosol loading and a standard concentration of carbon

dioxide of 5.4 · 10−4 kg/kg. Therefore clouds are the only scattering objects (apart from
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Rayleigh scattering), which simplifies interpretation. If one wants to compare the modeled

fluxes to measurements, of course also aerosols would have to be accounted for. The droplet

number density is parameterized for maritime surface (see also Roeckner et al. (1996)) and

the ground albedo is set to zero. There are no surface effects. The ocean albedo is low, so

since both cloud simulations are for maritime cloud systems these parameter settings are

consistent with the boundary conditions of the LES model.

4.2.1 Determination of the PPH-Bias

In the general introduction to this work in Chapter 1 we have seen that the non-linearity

of reflectivity and transmissivity as functions of optical thickness leads to systematic devi-

ations of the means for a field of cloudy pixels from corresponding values computed from

the field’s mean state. This straightforward implication of Jensen’s inequality (Jensen,

1906) is proven empirically in the following section. The ICA computation serves as the

reference method and comparison of the ICA-results to the corresponding PPH-values

reveals the PPH-bias.

The ICA can be implemented quite easily: The data from the cloud resolving model, as

described in the previous section, are read column by column. The cloud fraction for each

pixel i is Ai
c = 0, when the liquid water mixing ratio is under a threshold value ql < qthresh

l ,

and Ai
c = 1, if ql > qthresh

l . For the following analysis this threshold has been set to

qthresh
l = 10−3 g/kg in accordance with Petch and Edwards (1999). The effective radius reff

and the optical properties τ , ω̃ and g are computed as discussed in Section 2.2. Since reff

is a function of the liquid water mixing ratio (see (2.49)) this means in particular that not

only the liquid water content, but also the effective radius is horizontally inhomogeneous

and both influence the variability of the optical thickness, single scattering albedo and

asymmetry factor. A standard two-stream radiation computation is then performed for

each column, as described in Section 2.1.2. Finally the fluxes for the individual columns

are added up and divided by the number of columns to obtain the scene averages.

The plane parallel counterpart is constructed by reading in the data of each model

layer and work out the algebraic mean of the atmospheric state variables. The cloud

fraction is determined similarly as for the ICA experiment: All pixels with liquid water

mixing ratio ql > qthresh
l are counted as cloudy. The cloud fraction in level i then simply

is Ai
c = ni

cd/ntot, where ni
cd is the number of cloudy pixels in level i and ntot is the

total number of pixels per level. For partial cloudiness the maximum-random overlap

assumption is applied. A single two-stream radiation computation, identically to the one

performed for an individual column in the ICA, is carried out, immediately supplying the

PPH fluxes.

The results for the ATEX and ASTEX clouds are presented in Figure 4.5 as functions

of the solar zenith angle, represented by its cosine µ0. Therefore the complete time series

of the cloud experiment have been used, conducting separate ICA and PPH computations
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Figure 4.5: Reflectivity, transmissivity and absorptivity of the ASTEX (left) and ATEX

(right) cloud simulations as functions of the cosine of the solar zenith angle. Standard

PPH approximation and reference ICA calculation are plotted in thick solid and dashed-

dotted, respectively. The curves computed by the ETA are shown in thin lines for various

scaling factors χ.
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for each time-step and averaging the fluxes afterwards. In both cases the reflectivity and

absorptivity computed with the PPH approximation are always larger than the corre-

sponding ICA value, while the transmissivity is smaller. This is exactly as expected from

the general considerations in Chapter 1. Comparing the results for the trade wind cumuli

of the ATEX simulation with the ones for the stratocumulus in ASTEX the PPH-bias

is substantially larger in the inhomogeneous ATEX case than in the rather flat ASTEX

cloud: The relative error defined as (RPPH −RICA)/RICA comes close to 100% for ATEX,

while it is only around 5% in the ASTEX case. This could be expected qualitatively from

the variability of the liquid water path in Figure 4.3, where the ASTEX cloud looks very

much like a plane parallel homogenous slab of cloud, while the ATEX clouds are highly

variable in shape and thickness with a much broader range of LWP-values.

In the description of the ICA method in Section 2.3.2 it was already mentioned that it is

not adequate for oblique incidence. Therefore the values for low µ0 in Figure 4.5 should be

treated cautiously. In the following the discussion will concentrate on the results obtained

at an intermediate solar zenith angle of 45◦ if not stated otherwise. This serves as an

approximation of the mean results. If the explicit solar zenith angle dependency is needed,

additional experiments are necessary. For our purpose of deriving a correction method for a

GCM, the mean energetic correction is especially relevant. Furthermore, the ICA method

is not applicable for low sun angles, so a different reference method such as Monte Carlo is

required. The R, T and A values for ICA and PPH calculations are shown for each time-

step in Figure 4.6. On the abscissa the mean optical thickness of the cloudy columns in

that particular time-step is given. The relative PPH-bias remains approximately constant

for all optical thicknesses. This is different from Figure 4.5, which may seem surprising

at first sight: The cosine µ0 enters the radiative transfer equation when computing the

geometrical path length l from the layer thickness z as l = z/µ0. Reducing µ0 therefore

is synonymous with increasing z. However, there is a major difference: The incident

solar zenith angle is only applicable for direct radiation, whereas for the diffuse part, i.e.

radiation which has undergone at least one scattering event, an effective cosine of µdiff is

used (2.60).

An interesting feature is that the absorption as simulated by the ICA is smaller than

its PPH counterpart. This stems from Jensen’s inequality, since absorptivity is a non-

linear function of optical thickness, and is also caused by the changes in the effective

radius, which in turn affect the single scattering albedo and thus absorption. In recent

years a discussion of the so called ‘anomalous absorption’ or also ‘enhanced absorption’

(Stephens and Tsay, 1990) has become very active again, triggered by the publication of

Cess et al. (1995). They found that the absorption within clouds is substantially larger

than simulated by current radiation schemes and postulated a “missing physics”. A lot

of debate has evolved discussing the existence and possible explanations of this differ-

ence. While some find similar results (Ramanathan et al., 1995; Pilewskie and Valero,

1995), others do not see any enhancement at all in their observations (Francis et al.,
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Figure 4.6: Reflectivity, transmissivity and absorptivity of the ASTEX (left) and ATEX

(right) cloud simulations as functions of the mean optical thickness of the cloudy pixels.

Standard PPH approximation and reference ICA calculation are plotted along with the

best fit ETA with χ = 0.9 (ASTEX) and χ = 0.4 (ATEX).
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1996, 1997) or interpret it as an aerosol effect (Li, 1997; Li et al., 1998) or a clear sky

phenomenon (Arking et al., 1996; Arking, 1996; Li et al., 1998). Furthermore the mea-

surement techniques and evaluation methods are suspected to generate an artificial ab-

sorption (Imre et al., 1996; Barker and Li, 1997). Repeatedly, 3D effects have been sug-

gested as a possible explanation: Current radiation models underestimate the photon path

length, because cloud variability is neglected (Byrne et al., 1996; Marshak et al., 1998;

Kondratyev et al., 1998) or complex interaction of gaseous absorption, cloud droplet ab-

sorption, and the solar zenith angle are not correctly accounted for (O’Hirok and Gautier,

1998). These effects can however not be revealed by the experiments described in this

section, since information about cloud geometry and real three-dimensional photon trans-

port would be necessary. All correction approaches we will introduce below cannot be

expected to account for such model errors, since they are developed with the ICA results

as reference. Furthermore changes in absorption are relatively small. Accounting for any

anomalous absorption feature would have to be done by another approach, e.g. scaling the

single scattering albedo (Cairns et al., 2000).

4.2.2 Effective Thickness Approach

After we have identified the PPH-bias for the highly resolved cloud model data we will try

to apply various correction approaches as they have been described in Chapter 3. To start

with the simplest we try to find the appropriate reduction factor in the effective thickness

approach, discussed in Section 3.1.

First we will test whether the universal reduction factor χ = 0.7, as it has been derived

by Cahalan et al. (1994), is applicable. The radiation code used for the PPH calculation

has been modified such that the optical properties of the PPH averaged atmosphere are

computed in the same manner as before. But instead of the original optical thickness,

τ , the reduced, χτ , is passed to the Delta-Eddington module. Asymmetry factor, g, and

single scattering albedo, ω̃, remain unchanged. For the ASTEX and ATEX model data the

results are depicted in Figure 4.5 as long dashed curves. If we compare those to the PPH

computations a reduction in reflectivity and absorption and an increase in transmissivity

can clearly be seen. It is the immediate result of thinning the clouds by reducing τ .

But there is an important difference between a cloud with smaller liquid water amount

and scaling the optical thickness: The former would also have smaller droplet radii and

therefore higher single scattering albedo, which additionally would influence the radiative

properties, while the scaling only reduces optical thickness. Since the parameterizations

for the effective radius (2.49) are empirical and furthermore reflect a physical, measurable

property of the cloud, we only alter one attribute in order to make interpretation of the

results easier.

By comparing the ICA and the ETA curves in Figure 4.5 it is obvious that the reduction

factor of 0.7 is not adequate for either cloud: While the reflectivity is still too high in the
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simulation full res. levels of single cloud layer interp.[m]

ATEX 20 m 20, 40, 500, 2980, 3000

ASTEX 25 m 25, 50, 500, 1475, 1500

Table 4.1: Level heights of the interpolated data sets with only a single cloud layer. The

original resolution is given for comparison. The bottom and top levels remain unchanged

in order to avoid inconsistencies at the boundaries.

ATEX case it has become too small in the ASTEX case and analogously for absorption

and transmission (absorption too high in ATEX and too low in ASTEX, transmission too

low in ATEX and too high in ASTEX). This is not surprising when we remember the

limitations of the effective thickness approach as stated in Section 3.1: The ATEX cloud

simulation is much more variable than the marine stratocumulus, which was investigated

by Cahalan et al. (1994) when deriving the reduction factor χ = 0.7. Therefore the factor

for this cloud should be smaller. The converse is true for the very homogeneous nocturnal

stratocumulus of the ASTEX case. More variability could be expected for a daytime

simulation with solar radiation acting as an additional forcing for convective events as was

the case in the measurements used by Cahalan et al. (1994). Hence, a reduction factor

larger than 0.7 is reasonable. We will try to find the optimal reduction factors for these

two cloud simulations.

The vertical resolution of current GCMs is much coarser than the one of the CRM

simulations. In order to avoid this inconsistency the cloud data are interpolated to a new

set of vertical levels such that the clouds reside completely in a single level. The new level

heights are given in Table 4.1. The level thickness now is comparable to that of large scale

models. Furthermore, the basic studies in Chapter 3 used single layer cloud data, either

from a model or satellite, so the interpolated version is closer to their conditions.

For the ATEX cloud this interpolation does not change the radiation values for PPH

and ICA as can be seen from Figure 4.8. The prefix “F” stands for “full” resolution of

the LES model and “S” for single cloud layer. (For an overview of the experiments see

Table 4.2.) In the ASTEX case, however, there are differences of up to 2% in reflectivity

and up to 4% in transmissivity between the radiation computed for the original data set

and the interpolated version. Contrary to the ATEX case for this stratocumulus cloud it

is important to get the top boundary as precise as possible. Since fixed level heights were

chosen, but the inversion level is sinking during the simulation (see data description in the

previous section), the vertical extent of the interpolated cloud is much larger. Nevertheless

the relation between ICA and PPH remains the same.

By the vertical interpolation any information about the vertical structure within the

clouds are lost, which may be a reason for differences in the radiative fluxes. We will

try to separate vertical and horizontal variability effects in the full resolution data set by

homogenizing the clouds. This is sketched in Figure 4.9. For each layer i the mean liquid
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Figure 4.7: Reflectivity, transmissivity and absorptivity of the ASTEX cloud simulation

using different techniques. All values are computed for an incident zenith angle of 45◦

and are averages over all time-steps. The labels are explained in Table 4.2.
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Figure 4.8: Reflectivity, transmissivity and absorptivity of the ATEX cloud simulation

using different techniques. All values are computed for an incident zenith angle of 45◦

and are averages over all time-steps. The labels are explained in Table 4.2.
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label description

F-ICA ICA computation; full vertical resolution

F-PPH PPH computation; full vertical resolution

F-ETA.9 ETA computation; reduction factor χ = 0.9; full vertical resolution

F-ETA.4 ETA computation; reduction factor χ = 0.4; full vertical resolution

F-GWU GWTSA computation; no correlation correction; full vertical resolution

F-GWC GWTSA computation; correlation correction applied; full vertical reso-

lution

F-HOM ICA computation; levels homogenized; full vertical resolution

S-ICA ICA computation; interpolation to single cloud layer

S-PPH PPH computation; interpolation to single cloud layer

S-ETA.9 ETA computation; reduction factor χ = 0.9; interpolation to single cloud

layer

S-ETA.4 ETA computation; reduction factor χ = 0.4; interpolation to single cloud

layer

S-GWU GWTSA computation; no correlation correction; interpolation to single

cloud layer

Table 4.2: Overview of the radiation computations performed with the CRM datasets.

ICA HOM PPH

Figure 4.9: Sketch of homogenized cloud data (HOM) compared to the original data

(ICA) and the plane parallel homogeneous equivalent (PPH). All cloudy pixels of the

original dataset are in the HOM version defined with the mean value of liquid water

mixing ratio of the corresponding layer.
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water contents inside clouds ql,i is computed. All cloudy pixels are then defined with this

mean liquid water content, while all other atmospheric parameters remain unchanged.

ICA computations may be performed for this rewritten dataset, where no horizontal vari-

ability within the cloudy part in any single layer is present while the vertical structure is

preserved. The results are shown in Figure 4.7 and Figure 4.8 with label “HOM”. In the

ASTEX case the HOM computations are identical with the PPH, which means that the

difference to the ICA stems completely from horizontal inhomogeneities. This could be

expected, since the cloud cover of the ASTEX stratocumulus is either 1 or 0, therefore the

cloud overlap assumption has no effect. The reverse is true for the ATEX cloud. From the

cloud cover profiles in Figure 4.10 one can expect an influence of the assumptions about

overlap and indeed the HOM results are quite different from the PPH computations. The

maximum-random overlap seems to produce an overall cloud shape which is close to the

vertically interpolated version — the differences between F-PPH and S-PPH are negligible

— while the HOM method introduces more horizontal variability, when we look at the

total liquid water path over the whole vertical extension of the cloud. Petch and Edwards

(1999) and Petch et al. (1999) reported different results. They found that HOM reflec-

tivities are larger than the ones for PPH calculation, when maximum-random overlap is

applied. But their LES model domain extended up to 20 km with a vertical resolution of

300 m, so their levels represented distinct clouds and cloud types (like low lying shallow

convection clouds, overlayed by thin cirrus). For the high resolution data of the current

study the interpretation is not so straight forward, since the level boundaries cut through

small turbulence elements, mixing the influence of vertical structure and horizontal inho-

mogeneity.

In order to determine the cloud specific reduction factors we try to use directly the

relation between the mean logarithm of liquid water path, the mean of the logarithm and

the reduction factor from (3.3), which can be rewritten as

χ =
exp
(

log W
)

W
. (4.1)

For the ASTEX stratocumulus cloud this yields reduction factors between χi = 0.93 and

χi = 1.0 for the individual time-steps with a mean of χ = 0.94. If we take all time-steps
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as representation of a bigger cloud field with different stages of a stratocumulus cloud

at the same time, resulting in a virtual domain size of 28 × 195 km2, we get χ = 0.90,

which is smaller than that for the individual time-steps since the overall variability is

larger. Whatever value we choose, it is substantially higher than the 0.7 used before

in accordance with Cahalan et al. (1994). Figure 4.5 (left panel) shows the reflectance,

transmittance and absorptance of an ETA experiment with χ = 0.9 as thin solid line. It is

in quite good agreement for high µ0. For lower cosine, i.e. low standing sun, the question

is, whether the ETA fails or the ICA is no longer valid, so that the upper µ0-range is

more informative. Furthermore, it is most important from an energetic point of view,

because the absolute energy correction is largest for high standing sun (µ0 ∼ 1). Monte

Carlo simulations or other methods as discussed in Section 2.3 would have to be applied to

investigate the deviation at small µ0. For a solar zenith angle of 45◦ the agreement is good

for all optical thicknesses as can be seen in Figure 4.6 and the overview graph Figure 4.7

(left panel), where again both vertical resolutions are shown. For the single cloud layer

version the reduction factor of χ = 0.9 still seems to be too small, whereas for the full

resolution it agrees quite well with the ICA computation, but the optical thickness is still

slightly underestimated, thus, 0.9 < χ < 1.0.

For the ATEX case (4.1) cannot be applied directly: Because the log(W ) at W = 0

is not defined, we have to set a threshold for the lowest liquid water path regarded as

cloudy. Using the threshold value for liquid water content from the ICA computations

qthresh
l = 10−3 g/kg results in a threshold for liquid water path of W thresh = 22 ·10−3 g/m2

and thus finally leads to a reduction factor of χ = 0.16, computed as the mean over all

time-steps. Since W thresh is not physically based, it is interesting to ensure that χ does

not depend on the choice of this threshold value. Figure 4.11 shows the reduction factor

(again mean over all time-steps). The reduction factor computed by (4.1) is far from being

independent of W thresh. For W thresh < 10−4 g m−2 the curve saturates at χ = 0.15. The

corresponding reflectivity can be seen in Figure 4.12. It is much too low, i.e. the reduction

factor of 0.15 is too small. For broken clouds the relation (4.1), which was developed for

overcast stratocumulus cloud decks, cannot be applied.

Despite this deficiency we still may try to apply the general idea of the ETA also to the
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ATEX data. Since straightforward computation of χ via (4.1) fails, we will try to derive a

reduction factor empirically by performing ETA computations using reduction factors from

χ = 0.1 to χ = 0.9 (∆χ = 0.1) and comparing the results to the ICA value. In Figure 4.12

the reflectivities for solar zenith angles of 0◦, 45◦ and 60◦ are plotted as functions of the

reduction factor along with the reference reflectivities from the ICA computations. For

θ = 45◦ we may deduce χ ≈ 0.4, but the range of χ extends from ≈ 0.3 at θ = 60◦

to ≈ 0.6 for θ = 0◦. Thus, χ = 0.4 can only be regarded as an average value, which is

reasonable for energetic considerations, but unsuitable for the comparison of model results

to measurements. It is beyond the scope of this study to derive a zenith angle dependent

parameterization for χ, because the latter certainly is influenced by the 3D cloud structure,

so a larger set of cloud simulations is required and methods like Monte Carlo are more

adequate for this kind of investigation. The radiative properties corresponding to the

ETA computation with this reduction factor are plotted in Figure 4.5. Figure 4.8 shows

the values for both the full and single cloud layer vertical resolution. For the deviations,

especially for small cosines of zenith angle, the same arguments as for the ASTEX case

apply. So the ETA appears to be a reasonable correction also for the broken clouds of the

ATEX simulation using a reduction factor of χ ≈ 0.4. Similar results have been obtained

by Kogan et al. (1995). They found a reduction factor of χ = 0.5 for an LES simulated

cumulus cloud field.

The absorption is of course smaller in the ETA computation than it is in the PPH case,

because the clouds are virtually thinned out. It is even smaller than, but comparable to

the ICA case. Returning to the discussion of anomalous absorption mentioned above, the

ETA would make the situation even worse. Other correction methods need to be engaged

if both the albedo bias and enhanced absorption should be accounted for, like modifying

both, optical thickness and single scattering albedo (Cairns et al., 2000).

In summary, the effective thickness approach could be shown to be an adequate cor-

rection method for albedo and transmissivity. The reduction factor strongly depends on

cloud type and has to be determined for each cloud separately: For the homogeneous noc-

turnal stratocumulus cloud deck of the ASTEX case χ = 0.9 gives good results, whereas

for the broken trade wind cumulus clouds in the ATEX simulation optical thickness may

be corrected with a value of χ = 0.4. Merely using an unique constant of χ = 0.7 therefore

is clearly a crude simplification, which is of course the only possibility if no additional

information about the cloud is available. In Section 5.4 various attempts to deduce some

cloud characteristics form large scale variables like convection type or cloud thickness are

presented.

4.2.3 Gamma Weighted Two-Stream Approximation

The reduction factor of the ETA depends on cloud type, as we have seen in the previous

section. Cahalan et al. (1994) express this as a function of the fractal parameter of the
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Figure 4.12: Reflectivity of the ATEX cloud data, averaged over all time-steps, as

functions of the scaling factor χ for three solar zenith angles. The values of the reference

ICA computations are marked by horizontal lines. From the intersection of the ICA line

with the corresponding ETA curve the best fit scaling factors can be extracted.

bounded cascade cloud model. This means that the correction depends on some mea-

sure of variability, here the parameter f in (3.3). In the Gamma Weighted Two-Stream

Approximation this additional information is introduced via the distribution width ν as

defined in (3.14). It can be extracted directly from the cloud data. Therefore the mean

liquid water path W and the variance var(W ) of one time-step of cloud data are diag-

nosed and ν = W
2
/var(W ) is calculated from these first two moments of the distribution.

This procedure is called the Method of Moments (MOM). For the two time-steps used

to introduce the data in Figure 4.1 the distributions and the fitted Gamma-distributions

derived by the MOM are shown in Figure 4.13 and Figure 4.14 for the ASTEX and ATEX

cases, respectively. Also noted are the corresponding values of ν. The distributions fit

the general shape of the data, but show deviations especially for strongly peaked distri-

butions. A striking difference between the two cloud simulations is that in the ASTEX

case ν ≥ 30, which results in a nearly Gaussian shape, while for the ATEX clouds ν < 1,

corresponding to a strongly skewed distribution. For the latter the clear sky pixels have

not been regarded. They would appear as a δ-like peak at W = 0 g/m2. Remembering the

definition of ν in (3.14), small ν means high variability, whereas for ν → ∞ the distribution

approaches δ-shape.

The value of ν computed by the MOM is passed to the GWTSA scheme. The re-

flectivities and transmissivities in the Fouquart scheme are no longer computed according

to (2.29)–(2.30), the standard Eddington-approximation discussed in Section 2.1.2, but
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Figure 4.13: For the snapshots at model times 1 h (left) and 4 h (right) of the ASTEX

simulation, which are shown in Figure 4.1, Gamma-distributions have been fitted to the

probability distribution of the total liquid water path. The diamonds are extracted from

the model data, the solid line is the Gamma-distribution fitted by the method of moments,

using the width parameter ν as stated in each panel.

are substituted by (3.17)–(3.19), the corresponding formulas of the GWTSA. The results

are again shown in Figure 4.7 and Figure 4.8 labeled “S-GWU”. For both, ASTEX and

ATEX, the GWTSA clearly reduces reflectivity and enhances transmissivity.

For the ASTEX cloud the GWTSA is nearly identical to the PPH for normal incidence

and falls off below the ICA for low sun elevation. This may in part be attributed to the

limited applicability of the ICA for small values of µ0 and eventual deviations of the two-

stream formulas used for the Delta-Eddington approach and the GWTSA. Nevertheless

the GWTSA gives reasonable results for the homogeneous cloud, which is quite close to

its PPH averaged counterpart.

In the highly variable ATEX case the correction introduced by the GWTSA is much

higher. The reflectivity is even smaller than that of the reference ICA calculation. This

implies that the fitted distribution is more inhomogeneous than the original cloud data,

despite the reasonable fits shown in Figure 4.14, since there is no additional physical ap-

proximation introduced when going from ICA to GWTSA: Both assume that individual

columns are independent, which means they can be resorted arbitrarily, e.g. according to

their liquid water path. This is exactly what is done when plotting a histogram like in

Figure 4.14. Deviations of the fit function are then immediately reflected in differences of

the optical properties. Oreopoulos and Davies (1998b) discuss the problem of finding the

best fit for a given cloud field and they use the Maximum Likelihood Estimate instead of

the Method of Moments, which gives better results for the satellite data they investigated.

On the other hand, Barker et al. (1999) find the distributions fitted by the Method of

Moments to excellently agree with a different set of satellite retrievals. In the light of an

eventual use of the GWTSA in a GCM it seems to be more appropriate to rely on the

Method of Moments, since a climate model will not be able to model the details of a cloud
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Figure 4.14: For the snapshots at model times 2 h (top) and 7 h (bottom) of the ATEX

simulation, which are shown in Figure 4.3, Gamma-distributions have been fitted to the

probability distribution of the total liquid water path. The diamonds are extracted from

the model data, the solid line is the Gamma-distribution fitted by the method of moments,

using the width parameter ν as stated in each panel.

field (as is done in a cloud resolving model), to which a distribution may be fitted, but can

provide additional state variables, representing the higher order moments of the cloud wa-

ter content within a grid cell. Therefore the question is, whether the Gamma-distribution

is an adequate description for the probability distribution function of all cloud types. For

the highly resolved cloud data of the ATEX simulation this is true only in parts: The

fits look reasonable, nevertheless the deviations cause considerable errors in the radia-

tion computation. Especially inconsistencies in the non-linear range of R(τ) lead to large

discrepancies. This is in contrast to (Barker et al., 1996) and (Oreopoulos and Davies,

1998b), who find good agreement for the distribution of cloud optical thickness retrieved

from satellite images.

In Section 3.2.1 an additional correction for multilayer clouds was described, which has

been applied to the full resolution data set. The pure GWTSA gives similar results for

both vertical resolutions, which can be seen by comparing the bars labeled “F-GWU” and

“S-GWU” in Figure 4.7 and Figure 4.8. In the latter again the offset between the full res-

olution and single cloud layer version is present. This means that the Gamma-distribution

also seems to be a good fit for individual cloud layers. For some arbitrary levels this is

depicted in Figure 4.15 and Figure 4.16. It is interesting that for the ATEX case the

variability parameter ν is smaller in the single cloud layer version (i.e. higher variability),

which results in lower reflectivity. This is exactly what Oreopoulos and Barker (1999)

have shown analytically. We may now implement the correction for the correlation of the

water distributions in adjacent layers given by (3.28) with the parameter Ak ≡ 1 and not

as defined in (3.29), because this tuning is not necessary due to the implementation of

the cloud overlap assumption in the Fouquart scheme. The results are also plotted in Fig-

ure 4.7 and Figure 4.8 and are labeled “F-GWC”. The correction is even larger than in the
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Figure 4.15: PDF of liquid water path for individual cloudy layers of the full resolution of

the ASTEX simulation along with the fitted Gamma-distributions (2 h simulation time).

The level heights and shape parameters are given for each plot.

GWU simulation, because the optical thickness of the lower layers is reduced, depending

on the weakening of the incident radiation by the overlying layers according to (3.28). For

the ASTEX case the effect is tremendous: The difference introduced by the correlation

correction is several times larger than the initial GWTSA correction and drastically under-

estimates reflectivity and at the same time overestimated transmissivity. For the ATEX

cloud, where the pure correction due to the Gamma-distribution was already quite sub-

stantial, the additional reduction in reflectivity (and the enhancement in transmissivity,

respectively) caused by the scaled optical thickness is relatively smaller, but still relevant.

It is even too strong in comparison to the S-GWU value. This result is important for all

statistical schemes in a multilayer model, because the problem connected with correlation

of optical thickness arises in all the schemes. The assumptions made in Section 3.2.1

which lead to (3.28), seem to be not completely adequate: First, the distribution width is

not constant through all vertical levels as can clearly be seen from the ν-values given in

Figure 4.15 and Figure 4.16. Second, the assumption of perfect correlation, as depicted

in Figure 3.2 can be expected to be wrong as the clouds become vertically extended. Till

now only a few studies have dealt with the vertical structure of clouds, since satellite based

measurement techniques are not able to resolve the clouds vertically. Ground based instru-
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Figure 4.16: PDF of liquid water path for individual cloudy layers of the full resolution

of the ATEX simulation along with the fitted Gamma-distributions (1 h simulation time).

The level heights and shape parameters are given for each plot.

ments like RADAR and LIDAR therefore have to be used, which have long time series, but

on the other hand only have very limited fields of view. Nevertheless, from data like those

presented by Hogan and Illingworth (2001) one might try to find a parameterization for

the correlation issue. They show that even the cloud overlap problem, which is important

on a much coarser scale, is badly represented by the maximum-random overlap assump-

tion for growing distances of the cloudy layers. The correlation of the probability density

functions can be expected to be smaller at longer distances. CRM data with larger do-

mains and especially measurements of the cloud vertical structure are necessary to tackle

this problem. Maybe the new discussion about cloud overlap assumption, which evolved

recently in the literature, using new observational data (Wang et al., 2000; Stephens et al.,

2000), testing the radiation fluxes one obtains by applying different overlap assumptions

against observations (Petch and Edwards, 1999; Bergman and Hendon, 1998; Chou et al.,

1998) or investigating the sensitivity of GCMs (Morcrette and Jakob, 2000; Collins, 2001),

will help to solve the closely related correlation problem.

In summary, the GWTSA experiments using the highly resolved data from the cloud

resolving model simulations showed that the statistical method in principle corrects the

fluxes of the one dimensional radiation computation in the right direction. Its quantitative
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performance, however, crucially depends on the correct shape of the probability distribu-

tion function. The results presented in this section did not substantiate the findings of

Oreopoulos and Barker (1999), who used satellite data, in so far as the GWTSA computed

reflectivity is too low when compared to the ICA (the uncorrected GWTSA-u was still

too high in Oreopoulos and Barker (1999)) and the GWTSA-c simulations, which include

an additional correction for the vertical correlation of probability functions in a multiple

layers model, even further reduce reflectivity (and at the same time enhance transmis-

sivity). It is interesting to note that the correction for correlation can have a significant

contribution to the total correction of the PPH radiation fluxes, but on the other hand

it therefore is important to find an adequate parameterization of this effect. Since the

BWTSA is based on the same principle these results may directly be transfered.

4.3 Conclusions

If any information about the cloud variability like the standard deviation is known, sta-

tistical schemes like the GWTSA or the BWTSA, which we will further discuss in the

following chapter, enable a consistent treatment of sub-grid scale inhomogeneity. The

albedo modification of course depends on the choice of distribution. For individual cloud

scenes, especially with small domain sizes, the distribution may deviate substantially from

the observed or modeled one. Nevertheless, for a GCM with grid box sizes comparable

to the satellite’s field of view, the variability is described well enough in order to pro-

vide radiation correction of the right order of magnitude (Oreopoulos and Barker, 1999).

The effect of correlated distributions in a multi-layer model are substantial. A treatment

similar to that for the cloud overlap problem needs to be developed.

In the effective thickness approach reduction factors can be derived for each cloud

scene such that the ETA fluxes agree very well with the reference computations. However,

no unique value can be given, but the latter depends crucially on the internal variability

of the cloud. A typical constant setting of χ = 0.7 is appropriate only when no additional

information about the cloud structure can be deduced. For some climate models this

therefore serves as first order correction of the PPH-bias. Additional information about

cloud inhomogeneity has to be supplied to the ETA scheme in order to adjust the reduc-

tion factor. This is synonymous to the statistical approaches. In principle, the GWTSA

corrections can be expressed by an equivalent reduction factor. As long as only very coarse

division of cloud characteristics is possible, e.g. convective vs. stratiform, the ETA is favor-

able, because it is easier to implement. Since parameterization of the distribution shape

would then also be very crude, statistical schemes would merely reflect the uncertainty of

determining the PDF.



Chapter 5
Climate Model Experiments

General circulation models (GCM) are one of the most important tools in climate research,

since they offer the possibility to study the mechanisms of the climate system by conduct-

ing experiments with well defined boundary conditions. In contrast to numerical weather

prediction models, climate models therefore have not only to well reproduce the current

weather and climate, but have to rely as far as possible on fundamental physical pro-

cesses. Otherwise conclusions drawn from model experiments for testing hypotheses are

possibly artefacts of the chosen parameterization. The same is true for climate predictions

with a changing mean climate, where parameterizations, which have been developed for

present day climate, might collapse. The systematic error introduced by using the PPH

approximation is usually balanced by introducing other compensating effects. This is done

by tuning the convection and cloud schemes such that they produce the right amount of

cloud water and fractional cloud cover in order to get the radiative fluxes, computed by the

model, in agreement with satellite measurements (Barker et al., 2002). It is questionable

whether such ad hoc corrections produce the correct results also in a changed climate,

which is even more important in the light of the upcoming debate about cloud feedbacks,

which might counteract the greenhouse effect (Lindzen et al., 2001).

Several correction approaches as discussed in Chapter 3 have been implemented into the

ECHAM5 climate model in order to estimate their influence on the shortwave radiation

fluxes. They are described in the following chapter after a short introduction of the

ECHAM5 model. The experiments can be divided into two groups: First, the effective

thickness approach can be used with different choices of reduction factors. Second, the

results of the Beta Weighted Two-Stream Approximation are presented followed by some

sensitivity studies.
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5.1 Brief Model Description

The Atmospheric General Circulation Model (AGCM) ECHAM (Roeckner et al., 1992)

has been developed at the Max-Planck-Institut für Meteorologie in Hamburg. It evolved

from the model of the European Centre for Medium Range Weather Forecasting, Reading,

and is currently released in its fifth version. Compared to the ECMWF model there

are considerable differences in its parameterization for soil processes, local runoff, simple

prognostic sea ice temperature, boundary layer physics, prognostic cloud liquid water and

ice and cloud cover. The dynamical framework and basic equations are documented in

DKRZ (1993) for the ECHAM3 version, additional information and performance of the

ECHAM4 release have been reported by Roeckner et al. (1996), and similar reports for the

ECHAM5 model, which is used in this work, are in preparation (Roeckner et al., 2003).

The prognostic dynamical variables, vorticity, divergence, temperature and logarithm

of surface pressure, are represented as expansions in spherical harmonics with triangular

truncation. In the vertical, hybrid σ-p levels are used extending from the surface to 10 hPa.

The finest resolution is used for the planetary boundary layer. The lowest model level is

placed at 30 m above the surface, which roughly corresponds to the height of the surface

layer. The remainder of the boundary layer is resolved by four additional levels reaching

up to about 1.5 km height. The time integration uses a leap-frog scheme with a weak time

filter. The time-step depends on the truncation of the spectral expansion. Since radiative

transfer calculation is computationally expensive, this is performed once every 2 h and the

solar heating rates are extrapolated in between these times. This implies that changes in

the atmospheric conditions are only accounted for on this coarser temporal resolution.

Advection of the positive definite variables such as water vapor, cloud liquid water

and ice, distribution moments of the cloud cover scheme (see Section 3.2.2) and optional

tracers are treated by a flux-form semi-Lagrangian scheme (Lin and Rood, 1996).

Most land surface data are input as climatologies comprising of parameters such as

orography, background albedo, roughness length, vegetation type and leaf area index

(Hagemann, 2002). Soil water holding capacity, heat capacity and thermal conductiv-

ity are also prescribed.

Horizontal diffusion is scale-selective due to the use of a higher order scheme with

a sponge zone in the lower stratosphere. Vertical turbulent exchange is parameterized

by a 1.5 order turbulence closure with coefficients dependent on turbulent kinetic energy

(Brinkop and Roeckner, 1995) for which turbulent transport, dissipation, wind shear and

buoyancy flux are considered, but advection is neglected. Cloud-turbulence interactions

comprise of vertical exchange of turbulent kinetic energy generated through radiative

cooling at cloud top, turbulent flux of cloud water at cloud top, and the impact of cloud

water on buoyancy flux. Monin-Obukhov similarity theory yields the turbulent surface

fluxes. Gravity wave drag is parameterized after Lott and Miller (1997).

The Tiedtke (1989) mass flux scheme is the basis for the cumulus convection, but
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subject to modifications following Nordeng (1994). Buoyancy determines organized en-

trainment, whereas organized detrainment occurs at the tops of clouds, which are treated

as an ensemble. Convective available potential energy (CAPE) is used for the closure

assumptions in deep cumulus. Stratiform clouds depend on microphysical processes in-

volved in precipitation formation as well as phase changes and settling of ice crystals

(Lohmann and Roeckner, 1996). Cloud cover is computed by a prognostic statistical

scheme (Tompkins, 2002).

Radiation is treated as in the ECMWF numerical weather prediction model with minor

changes, which will be discussed later. Two-stream approximations are used in the infrared

(Mlawer et al., 1997) and solar part (Fouquart and Bonnel, 1980) of the spectrum. The

latter is described in more detail in Section 2.2. The physical package is capable of a treat-

ment of ozone as well as methane, nitrous oxide and several CFCs. The parameterization

of the cloud optical properties is also presented in Section 2.2.

5.2 Experiment Setup

Except for the sensitivity studies in Section 5.5.2 all experiments are performed with the

ECHAM5 model in T42 (≈ 2.8◦) resolution with 19 vertical layers and an integration time-

step of 1440 s. The standard radiation scheme for which the model is tuned, is an Effective

Thickness Approximation with a varying reduction factor. It is described in more detail in

Section 5.4.3. The fluxes calculated by this scheme are passed to the dynamical part of the

model, while alternative schemes are computed non-interactively along with it and their

corresponding fluxes are stored as additional output. The radiation computations of the

original, driving scheme and the new parameterizations are performed for the same time-

step, so all atmospheric input parameters are identical. Therefore there are no feedbacks

between these radiation schemes and the model dynamics, like e.g. changes in cloudiness,

but they only produce diagnostic output. Differences in the albedo values are only due

to the changed treatment of cloud inhomogeneities in the shortwave radiation code. If

one wants to perform experiments allowing for full feedback of radiation onto the model

one would have to tune the model for every radiation parameterization individually and

separate the influence of the altered tuning from that of the revised radiation computation.

The model is integrated for two years in order to reach a balanced state. These data

are not used for the analysis. Another five years are then simulated for generating the

climatologies presented in the subsequent sections.

5.3 Cloud and Radiation Climatologies

Cloud-radiation interactions are influenced by various model variables. The most impor-

tant ones are of course those describing the clouds itself, i.e. liquid and ice water path and
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Figure 5.1: Seasonal averages of simulated total cloud cover.

cloud fraction. In the following section the climatology of these properties is presented as

seasonal averages over the five years of model simulation described above; the correspond-

ing values for the sensitivity experiments are given in Section 5.5.2. Furthermore, the solar

radiation fluxes will be characterized by the albedo and net flux at the top of atmosphere,

while the influence of clouds on radiation is shown by means of cloud radiative forcing

concept (defined later).

Figure 5.1 shows the seasonal averages of total cloud cover. One can clearly identify

some striking structures (Barrett, 1974): A belt of enhanced cloudiness aligned generally

along 0◦–10◦ N, which is related to the equatorial trough. Clearer skies stretch across

the tropical oceans strongly oriented from east to west. They can be associated with the

Hadley cell subsidence regions, as are the very clear skies over the tropical and subtropi-

cal continental land masses. Those areas of nearly zero clouds lucidly identify the desert

regions. The tongues of heavy cloud cover extending equatorward through low latitudes

off the west coasts of the continents are mostly comprised of cloud sheets beneath the

low-level inversions of the stratocumulus regime. Cloud cover in these regions is system-

atically underestimated by current climate models, including ECHAM5, although simula-

tions have been improved by use of the statistical cloud scheme of Tompkins (2002). In the

mid-latitudes, similarly strong cloudiness is associated mainly with belts of extra-tropical
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Figure 5.2: Seasonal averages of simulated liquid water path (LWP).

depressions, while the relatively clearer skies across parts of the northern continental inte-

riors, particularly in the local summer seasons, are due to the drier conditions than those

prevailing across the oceans.

Column integrated cloud liquid water or liquid water path (LWP) is illustrated in

Figure 5.2. Strong tropical convection, especially over the continental land masses in

the Inter Tropical Convergence Zone (ITCZ), are responsible for the maxima close to the

equator, while in the extra-tropics the increased cloud liquid water marks regions of strong

cyclonic activity. Belts of reduced liquid water path can be seen in the subtropics, which

are associated with drying in the sinking branch of the Hadley circulation (Lohmann,

1996).

In the tropics the ice water path (IWP) exhibits similar behavior (see Figure 5.3). The

freezing level there is located at high altitudes so ice clouds only can form, when humidity

is transported high enough by strong convective events, which were already identified by

the maxima of the liquid water path. Over the Pacific warm pool a pronounced maximum

prevails throughout the whole year. Extra-tropical maxima however are prominent in the

winter hemisphere, while in local summer secondary maxima appear. In contrast to the

liquid clouds, not only the supply with humidity is important, which is especially gov-

erned by surface temperature, but also the altitude of the freezing level plays a dominant
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Figure 5.3: Seasonal averages of simulated ice water path (IWP).

role. The seasonal and annual global means of cloud cover, liquid and ice water path are

compiled in Table 5.1.

The planetary albedo is strongly influenced by the distributions of cloud water and

ice and the surface albedo, especially in the clear sky regions. The seasonal averages are

shown in Figure 5.4. In large parts they are similar to the patterns of the cloud cover

(see Figure 5.1), since clouds are the most important modulator. For northern Africa

the albedo values are high despite a low cloud cover throughout the year, caused by the

high surface reflectivity of the Saharan sand; green vegetation lowers the surface albedo

substantially. Similarly the ice covered polar regions reveal high reflectivity due to surface

DJF MAM JJA SON ANN

cloud fraction 0.63 0.63 0.63 0.62 0.62

LWP / g m−2 65 66 83 68 70

IWP / g m−2 24 24 23 24 24

Table 5.1: Cloud climatology in ECHAM5: Seasonal and annual global mean values of

cloud cover, liquid (LWP) and ice (IWP) water path.
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Figure 5.4: Seasonal averages of simulated planetary albedo.

reflectance independently of the cloudiness. In addition to cloud cover cloud thickness,

i.e. the amount of condensate they carry, also influences the albedo. Over the northern

part of South America for example it is modulated by the varying liquid water content,

when cloud cover is nearly constant over the year. The seasonal and annual mean values

are listed in Table 5.2.

The energy fluxes absorbed in the atmosphere or at the surface are important for the

dynamics of the climate system. One can derive these fluxes from the albedo values by

simply multiplying with the incoming fluxes at the TOA. Figure 5.5 illustrates the annual

mean net shortwave radiation at the TOA. The net shortwave radiation is the difference

between incoming and outgoing radiation, getting absorbed in the system,

F net = F ↓ − F ↑. (5.1)

In the long term annual and global mean it is balanced by the thermal radiation emitted

by the earth. The effect of clouds on the energy budget can be more clearly depicted by

the concept of cloud radiative forcing (CRF) (Ramanathan, 1987)

CRF = |F ↑
clr| − |F ↑

tot|, (5.2)

where F ↑
tot is the upward directed flux and F ↑

clr is the upward flux for a hypothetical
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DJF MAM JJA SON ANN

albedo / % 33 32 33 32 32

F net
TOA/W m−2 236 231 223 233 231

F ↑
TOA/W m−2 115 108 108 110 110

CRF / W m−2 58 53 58 55 56

Table 5.2: Radiation Climatology in ECHAM5: Seasonal and annual global mean values

of albedo, net flux (TOA), upward flux (TOA) and cloud radiative forcing.

atmosphere, which is identical with the true one, except that clouds are removed. The

CRF is the radiative energy which is absorbed by the earth-atmosphere system due to

the presence of clouds. Generally, clouds increase the reflectivity and thus the upward

directed radiation at the TOA. The SW CRF therefore is negative and cools the earth.

In contrast, the clouds reduce the emitted radiation in the thermal spectral region, so

the LW CRF is positive, thus warming the earth. The annual mean distribution of the

SW CRF is displayed in Figure 5.6, its seasonal and annual mean values are also listed in

Table 5.2.

5.4 Effective Thickness Approach

The ECHAM5 standard radiation scheme uses a variant of the ETA, developed by Roeckner et al.

(2003). In the following section various other ETA realizations are tested. The reference is

always the diagnostics, where radiation has been computed using the PPH approximation

with no further corrections. As described in Section 5.1 this has been implemented as an

additional diagnostic along with the other ETA schemes, so the same cloud properties are

used for all radiation algorithms. A brief overview is given in Table 5.3.

5.4.1 Fixed Reduction Factor

The simplest implementation of the ETA follows Cahalan et al. (1994): All cloud prop-

erties (single scattering albedo, asymmetry factor and optical depth) are calculated from

the grid mean cloud properties. For the radiation a smaller value of the optical thickness

τeff = 0.7τ is used everywhere. The results obtained by this scheme are labeled “CS”

(Cahalan-Scaling). Seasonal mean values of the albedo differences between NO and CS

are plotted in Figure 5.7. Since CS simply reduces the optical thickness and therefore

the reflectivity of clouds, the differences are positive, the earth becomes darker. For the

seasonal and annual global means refer to Table 5.4.

The albedo corrections follow in parts the patterns of cloud fraction in Figure 5.1,

because only the radiative transfer through clouds has been altered, while the clear-sky
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Figure 5.5: Annual average of simu-

lated net shortwave flux at the TOA.
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Figure 5.6: Annual average of simu-

lated SW CRF.

label reduction factor

NO χ ≡ 1, i.e. PPH, no correction

CS χ ≡ 0.7

BS χliq = 0.7 for liquid water clouds

χice = 1.0 for ice clouds

TS χconv = 0.4 for convective clouds

χstrat = 0.9 for stratiform clouds

RS χliq(W ) = 1 − 0.06 W̃ 1/3 with W̃ = min(W, 1000 g/m2) for water clouds

χice = 0.9 for ice clouds

Table 5.3: Overview of ETA implementations.

DJF MAM JJA SON ANN

NO-RS 1.8 1.6 1.9 1.7 1.8

NO-CS 2.2 2.1 2.2 2.1 2.2

NO-BS 1.2 1.0 1.2 1.1 1.1

NO-TS 4.6 4.3 4.4 4.5 4.4

NO-BW 0.9 0.9 0.9 0.9 0.9

Table 5.4: Seasonal and annual global means of albedo differences for various radiation

schemes in %.
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Figure 5.7: Seasonal averages of albedo differences NO − CS.

fluxes are not modified (e.g. over North Africa, Australia and the Antarctic regions).

Secondly, as optical thickness is decreased linearly by CS, the albedo changes most, where

the absolute reduction of optical thickness is largest and the relation between reflectivity

and optical thickness is steep

∆R ≈ ∂R

∂τ
∆τ. (5.3)

Setting ∆τ = (χ − 1)τ and using the simplified expression (3.7) yields

∆R =
(χ − 1)γτ

(1 + γτ)2
, (5.4)

with a maximum for ∆R at τ ≈ 10 for γ ≈ 0.1. This means that the absolute albedo

correction is highest for thin stratus or thick cirrus clouds, which have optical thickness

values of around 10. The latter is the reason for the similarities of the patterns of albedo

correction in Figure 5.7 and ice water path in Figure 5.3. Especially the maxima in the

warm pool region and its eastward shift between JJA and DJF can clearly be seen in both

figures. The effects of the higher ice water content in the winter hemisphere is partially

hidden behind an increased cloud fraction in the summer hemisphere.

In order to identify the effect of ice clouds a sensitivity experiment (with two years

integration time) is set up: The ETA is only applied to the liquid part of the clouds,
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Figure 5.8: Seasonal averages of albedo differences NO − BS.

while the optical thickness of the ice fraction remains unchanged: χliq = 0.7, χice = 1.0.

Figure 5.8 shows the albedo change compared to NO for this scheme labeled “BS” (Bäuml-

scaling). The large changes in the warm pool and in the regions of high ice amount in

the winter hemispheres are strongly reduced, while the stratocumulus regimes now are the

dominant feature. One thus has to be careful when applying the ETA to cirrus clouds,

where sensitivity to the ETA is especially high.

5.4.2 Reduction Factor Depending on Cloud Type

From the experiments with the cloud resolving model data in Chapter 4 we have already

seen that using a single reduction factor χ is only a first order approximation. Most cli-

mate models do not prognose the variability of clouds, but distinguish between stratiform

and convective cloudiness. Convective clouds are more variable than stratiform ones and

therefore a smaller reduction factor (i.e. larger correction) has to be applied for them.

This refinement has been proposed and implemented into the ECMWF model by Tiedtke

(1996). The prognostic cloud scheme of this model distinguishes between convective and

stratiform cloudiness (Tiedtke, 1993). For both cloud contributions distinct reduction

factors are defined: χconv = 0.5 for convective clouds, following Kogan et al. (1995) and
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Figure 5.9: Annual mean fraction of convective conditions in ECHAM5.

χstrat = 0.7 after Cahalan et al. (1994).

The ECHAM5 model uses a different cloud scheme, but nevertheless the convection

scheme recognizes four different convection types: no convection (i.e. stratiform clouds or

clear-sky), shallow, mid-level and deep convection. We use this information and apply a

reduction factor of χstrat = 0.9, when no convection is diagnosed, and χconv = 0.4 else.

The values for χ are directly taken from the CRM results of Chapter 4. This approach is

labeled “TS” (Tiedtke-scaling). Figure 5.9 shows the annual mean fraction of convective

conditions, i.e. the number of time-steps, when shallow, mid-level or deep convection was

present, divided by the total number of integration steps; there are only slight seasonal

variations. While in the tropical and subtropical oceanic regions convective conditions

prevail, they are reduced towards the poles. Remarkable are the relatively low values

in the stratus regimes off the west coasts of the continents. Also, over dessert regions

convective cloud formation breaks down due to lacking supply of water vapor from the

surface.

The albedo correction for stratiform clouds for the TS scheme is smaller than for the

CS that we have discussed before, since a reduction factor of 0.9 instead of 0.7 is used.

In the stratus regimes off the continental west coasts this can be clearly identified in

Figure 5.10, which shows the seasonal mean albedo correction, similar to Figure 5.7. For

differences ∆α > 7% a new color has been added. All other regions experience higher

corrections because of the smaller reduction factor of 0.4. Especially the ice clouds in the

warm pool cause large albedo corrections of over 7%. It is important to note that the

convection type is only defined for the whole column and thus also is used for the cirrus
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Figure 5.10: Seasonal averages of albedo differences NO − TS.

clouds. The seasonal and annual mean values are again listed in Table 5.4.

5.4.3 Reduction Factor Depending on Liquid and Ice Water Path

The standard radiation parameterization of the ECHAM5 model also uses an ETA variant,

here labeled “RS”, which combines some of the ideas developed above (Roeckner et al.,

2003). In general, deep convective clouds, bearing a large amount of liquid water, are

more turbulent than the thinner shallow convective or stratiform clouds. The reduction

factor for thick clouds therefore has to be smaller than for thin clouds, because they are

more inhomogeneous. Secondly, we have seen in the derivation of the ETA in Section 3.1

label NO CS TS BS RS BW

F abs/Wm−2 77.7 77.0 76.4 76.9 76.9 77.2

SW CRF /Wm−2 62 55 47 58 56 59

Table 5.5: Annual mean of globally averaged atmospheric absorption and cloud radiative

forcing for various ETA variants and the BWTSA scheme.
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water clouds, χliq, as a function of liquid

water path, W , as implemented in the RS

scheme according to (5.5), (5.6).

that the approximation is good only for optical thicknesses between approximately 1.5

and 15; for smaller optical thickness a larger reduction factor has to be chosen, while for

larger thickness a smaller χ is adequate. Both effects are accounted for by expressing the

reduction factor χliq for liquid water clouds as a function of liquid water path W and thus

optical thickness as

χliq =







1 − c0W
c1 for W < Wmax

1 − c0W
c1
max else.

(5.5)

The constants c0, c1 and Wmax are tuning parameters which are set to

c0 = 0.06

c1 =
1

3

Wmax = 1000 g/m2

(5.6)

so that χliq varies between 1 for thin clouds and 0.4 for thick clouds in accordance with the

CRM results. The same reduction factor is also used for the longwave radiation transfer

computation, following Rossow et al. (2002). The shape of the function is empirically

chosen in order to optimize the longwave and shortwave fluxes compared to satellite data

simultaneously (Roeckner et al., 2003). For the given parameter settings the function is

plotted in Figure 5.11.

Ice clouds are treated separately. Buschmann (2001) investigated the radiation fluxes

through cirrus cloud fields, derived from aircraft measurements, by Monte Carlo tech-

niques. She found a PPH-bias between the three-dimensional computation and the PPH

analogue, which could be removed by using an effective optical thickness for the PPH

computation. From these effective optical thicknesses and their corresponding true mean

values for the various cloud sets one can easily derive a reduction factor χ = τeff /τ . The

latter varies between the extreme values of 0.6 and 1.0, and is typically around 0.9. This

value is implemented in the ECHAM5 albedo correction as a constant reduction factor for

ice clouds,

χice = 0.9. (5.7)
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Figure 5.12: Seasonal averages of albedo differences NO − RS.

The albedo changes NO−RS in Figure 5.12 have a similar structure as in the BS case,

in as much as the regions with high ice cloud amount are not emphasized. For the liquid

clouds however the corrections are of course higher due to the reduction factor reaching

values as low as 0.4 compared to the 0.7 in the BS implementation. Especially the thick

clouds in the convective regions, which can be identified in Figure 5.9 and more directly

from high LWP values in Figure 5.2, are emphasized in comparison to BS, but are closer

to the patterns in TS. Nevertheless, the corrections there are higher, since the extreme

value χ = 0.4 is used throughout the convective regions, while now it is only applied as

an extreme for the thickest clouds.

As for the CRM experiments the influence of the ETA on absorption will be briefly

discussed. For all of the ETA variants introduced above the changes in atmospheric ab-

sorption are listed in Table 5.5. The effective reduction of cloud optical thickness results in

a slightly lower absorption by less than 1 Wm−2. We can compare this to the uncertainty

of the radiation simulation, discussed in the debate about excess absorption. Measure-

ments suggest absorption being up to 10 Wm−2 higher than simulated. The ETA enlarges

this difference, but is clearly of minor importance.
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Figure 5.13: Seasonal averages of albedo differences NO − BW.

5.5 Beta Weighted Two Stream Approximation

In contrast to the ETA approach the statistical BWTSA scheme does not need to param-

eterize the variability of clouds in terms of convection type, condensate phase or liquid

water path, because it obtains this information directly from the cloud scheme. The model

thus becomes more consistent and less subjected to tuning. Nevertheless, the cloud scheme

itself contains a couple of tuning parameters. In the following section, first the results of

the BWTSA scheme in the standard resolution T42 will be introduced. Then various

sensitivity experiments are discussed, evaluating the influence of increasing the resolution

and modifying the tuning parameters of the cloud scheme.

5.5.1 Standard Configuration

Parallel to the ETA variants radiative fluxes are also computed by the BWTSA code

and written as an additional diagnostic output, while the fluxes driving the dynamics of

the simulation are still calculated by the ECHAM5 standard scheme (RS). The changes

in albedo for this “BW”-parameterization against the NO case are depicted Figure 5.13.

It should be emphasized that the contour levels are halved compared to the analogous
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plots in the ETA section. The global mean values of albedo and flux changes are smaller

than in all ETA variants (see Table 5.4) and are only roughly half of the RS changes.

Nevertheless the general structure is similar to the RS scheme: The amplitude follows in

large parts the cloud cover in Figure 5.1. Especially the seasonal variations of the stratus

decks off the continental west coasts can clearly be identified by larger corrections, as is

the increased cloudiness in the cyclone paths in local summer. In contrast to the CS study

the regions with high ice water path are not emphasized. This is a remarkable similarity

to the BS and RS simulation, where the optical thickness of ice clouds is corrected not at

all or only little with χice = 0.9, respectively. In the BW experiment cirrus clouds are not

treated specially, but also only exploit the variability as prognosed by the cloud scheme.

Apparently, this seems to be consistent with the ETA parameterization RS, which was

based on various CRM and measurement results. But there is of course a major advantage

of the statistical scheme compared to the ETA: The cloud inhomogeneity is not coupled to

some grid mean cloud property like liquid water path. Local deviations from such average

relationships, used for the ETA parameterization, are therefore resolved in the BWTSA.

Variations in the aerosol loading could, for example, influence the cloud microphysics

and finally the variability of clouds (Barker, 2000). Orography or dynamical features like

gravity waves could also be thought of. Obviously, they only affect the radiative transfer

if they are accounted for in the statistical cloud scheme prognosing the PDF. Secondly,

statistical schemes like the BWTSA do not suffer from a limited range of applicability as

it is the case in the ETA, which is strictly valid only in the linear regime of R(log τ) (see

Figure 3.1). No empirical thresholds or switches like the ice/liquid cloud distinction or

the functional dependency of χ on W therefore have to be introduced.

Both the BWTSA and the ETA schemes cannot be directly evaluated with satellite

measurements, since any error in the underlying cloud parameterizations immediately

changes the radiative fluxes. Therefore it is difficult to decide which correction has the

proper amplitude. From the analysis of high resolution satellite images the necessary

correction for the stratus regions have been carefully estimated and correspond to an

reduction factor of roughly 0.7 in the ETA (Oreopoulos and Davies, 1998a,b); the BWTSA

corrections are smaller. On the other hand, the satellite pictures only represent a small

area. The CRM experiments in Chapter 4 showed that reduction factors as high as 0.9

may also be found in stratus decks. Therefore the RS values are not suitable as a reference

to test other schemes. Nevertheless, the smaller albedo corrections of BW are consistent

with the results from Section 4.2.3, where the effects of the correlation assumption for

multilayer clouds was qualitatively studied. Assuming perfect correlation in the vertically

highly resolved CRM data lead to approximately doubled albedo correction. Correlation

can be expected to be less important for the comparably thick levels of the GCM and when

relaxing the perfect correlation assumption. On the other hand, since the current BWTSA

implementation does not account for any correlation effects, the albedo corrections are

underestimated, but are unlikely to reach the RS values. This means that either the RS
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label Ac LWP

g m−2

IWP

g m−2

∆α

%

∆F net
TOA

Wm−2

description

BW 0.62 70 24 0.92 3.1 standard BWTSA

HR 0.62 71 29 0.80 2.7 high resolution

DS 0.60 62 24 0.87 3.0 doubling skewness

CK 0.62 69 24 0.90 3.1 changing convection parameter K

FT 0.58 77 24 1.00 3.4 fixed relaxation time

Table 5.6: BWTSA sensitivity studies. All values are global annual means. Differences

are compared to NO.

overestimates the PPH-bias or the probability distributions prognosed by the cloud scheme

are too homogeneous and BW underestimates the bias. Currently, there are no satellite

measurements available to test these hypotheses. Rossow et al. (2002) started to produce

climatologies of cloud variability from ISCCP data sets, which they express as a correction

factor ε, which can be rewritten as ε = 1 − χ. In contrast to the reduction factors in the

ETA, this ε describes the albedo correction for the whole atmospheric column, including

clear sky regions and vertical inhomogeneities. The former is resolved explicitly by the

model, while the latter is parameterized in parts by the maximum-random cloud overlap

assumption, so the correction found by Rossow et al. (2002) are higher than those of the

ECHAM5 scheme. In fact, they find albedo biases up to 10% (seasonal mean) in contrast

to the 5% and 3% for RS and BW, respectively.

5.5.2 Sensitivity Studies

In contrast to the ETA approaches discussed earlier, the BWTSA correction directly

depends on prognostic variables of the ECHAM5 cloud scheme, describing the probability

distribution of the total water mixing ratio. Since the cloud scheme was developed and

tuned in order to diagnose the cloud fraction correctly, it is necessary to test how sensitive

the derived radiation correction reacts on changes of model resolution and the cloud scheme

tuning parameters. A high resolution experiment (T106) is made in the same way as the

previous simulation, i.e. the model dynamics is forced by the standard radiation scheme,

while the corresponding BW and NO fluxes are computed only diagnostically. When

testing the sensitivity due to changes in the cloud scheme tuning parameters, on the other

hand, also the cloud cover and thus the model dynamics is affected. These results are

therefore not quantitatively comparable to the previous studies. For an overview of the

sensitivity studies refer to Table 5.6.
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Figure 5.14: Annual average of albedo differences NO(T106) − HR.

Increased Horizontal Resolution

Sub-grid scale properties like cloud fraction and mixing ratio PDF are less important

for smaller grid spacing of the climate model. The albedo correction for the ECHAM5

simulation with a spectral resolution of T106 (≈ 1.1◦, integration time-step 720 s), i.e.,

grid-spacing is only one third of the previous T42 experiments, are consistently smaller:

The global annual flux difference compared to the uncorrected scheme ∆F net
TOA is 2.7 Wm−2,

while it is 3.1 Wm−2 for T42 (see Table 5.6). Cloud fraction, liquid and ice water content

are comparable. The patterns of the albedo change in Figure 5.14 are similar to that of

the lower resolution simulation. Here only the annual mean is shown; the seasonal cycle

is similar to the T42 results in Figure 5.13.

Doubling skewness parameter

Two parameters determine the shape of the Beta-distribution. While one is held constant

the second, skewness, is prognosed by the cloud scheme. In the DS experiment the value

of the shape parameter ṽ is doubled by simply changing the initial value ṽ0 = 2 to ṽ0 = 4

and multiplying all tendency equations for ṽ by a factor of 2. The distributions thus are

more skewed, the tail towards high mixing ratios becomes longer and thus, variability

rises. At the same time cloud fraction of course is affected: For two distributions with the

same condensate amount but different skewness, the more skewed one produces smaller

cloud fraction, because there is a relatively larger fraction within the cloudy part with

high mixing ratios (long tail of the distribution), which has to be compensated by a
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reduced cloud cover. For DS the globally averaged cloud fraction decreases by 0.02 to

Ac = 0.60. Simultaneously the liquid water path is reduced due to feedback processes

between cloud fraction and cloud microphysics. Therefore, two counteracting processes

influence the albedo correction: Larger skewness increases variability, which means the

reflectivity becomes smaller in the BWTSA computation. On the other hand, clouds

become less important in favor of clear sky parts due to the decreased cloud fraction. On

global average the annual mean flux correction for the DS case is ∆F net
TOA = 3.0 Wm−2

compared to 3.1 Wm−2 in the original BW simulation.

Changing K

Convection, expressed by the mass flux, explicitly changes the skewness in the cloud scheme

following (3.43). A dimensionless constant K was introduced. In the standard ECHAM5

parameterization it is set to K = 10 based on model tuning. In the CK experiment,

K = 20 is used. This means convective detrainment leads to larger skewness of the total

water mixing ratio PDF. The net effect of this change is relatively small (see Table 5.6):

Cloud fraction, liquid and ice water paths remain the same and also the flux changes at

TOA are identical to BW.

Changing relaxation time

While convection increases the skewness, turbulence homogenizes the distribution, which

is formulated as a Newtonian relaxation in (3.42). The relaxation times th and tv are

of the order of 10 d and a few hours, respectively, and are functions of wind shear and

turbulent kinetic energy. For the FT experiment t−1
v + t−1

h in (3.42) is set constantly to

1/20 d. The skewed distributions, caused e.g. by convective events, relax two times slower

to their symmetric initial state than in the original scheme. The increased skewness is

clearly seen in the decreased cloud fraction of Ac = 0.58 compared to the original 0.62

for the same reasons as discussed in the DS experiment. Although clouds thus become

less important for the planetary albedo the flux correction due to the BWTSA is even

higher by 0.3 Wm−2 than for BW, cf. Table 5.6. The increased variability over-weighs the

reduced cloud cover. The balance between source and sinks of skewness therefore has to

be tuned carefully.

5.6 Comparison to Satellite Measurements

The comparisons between the ETA or statistical correction approaches for the cloud inho-

mogeneity bias with an uncorrected analogue reveal global shortwave net flux differences

at the TOA of ∼ 5 Wm−2. All schemes are consistently implemented into the same GCM,

so the differences are solely caused by accounting for the cloud variability. The general
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patterns of total albedo and cloud radiative forcing, however, especially depend on cloud

cover and mean condensate mixing ratio. While the former is well known from satellite

observations, the latter still only may be guessed. Cloud parameterizations therefore have

to be tuned against radiation observations in order to yield realistic fluxes at the TOA

in the solar and thermal spectra. Due to model deficiencies, like simplified parameteriza-

tions or limited horizontal or vertical resolution, or lack of adequate observational data

or precision, as we will discuss for the Earth Radiation Budget Experiment (ERBE) data

(Barkstrom, 1984), this tuning is not perfect for all properties. In the following section we

will compare the radiation climatology from the ERBE project with the ECHAM5 fluxes

for different correction parameterizations.

5.6.1 ERBE Data Set

First we will briefly describe the data of the Earth Radiation Budget Experiment (ERBE)

following Chen and Roeckner (1996).

The ERBE observation provide monthly data on a 2.5◦ by 2.5◦ grid, which are inter-

polated to the T42 resolution of the ECHAM5 model. We will use planetary albedo, clear

sky albedo, outgoing longwave radiation (OLR) and clear sky OLR. A detailed descrip-

tion of the data processing and products is given by Barkstrom (1984). The estimated

uncertainty in the monthly averaged fluxes is ∼ 10 Wm−2. There is a bias between short-

wave and longwave fluxes: The annual global mean OLR is 6 Wm−2 smaller than the

net shortwave radiation, i.e., the energy budget according to ERBE is not balanced, the

earth would heat substantially (Hartmann, 1993). The ISCCP data set, where different

observations were used, also shows an unbalanced state, but with the OLR being larger

than the net shortwave radiation (Rossow and Zhang, 1995). Kiehl and Trenberth (1997)

assumed the OLR data to be more confident than the albedo measurements and created

an interpolated dataset such that the longwave and shortwave energy fluxes are balanced.

The corresponding values are listed in Table 5.7.

There are a few regions, where clear sky fluxes are not available in the ERBE dataset.

Because of the permanent occurrence of cloud these areas did not meet the cloud-free crite-

ria in the data processing. It should also be noted that there are difficulties in estimating

clear sky fluxes over regions covered with sea ice and snow due to the cloud detection

problem. Thus, the clear sky data are less reliable poleward of 60◦ north and south.

5.6.2 Comparison ERBE versus ECHAM5

Before comparing the actual values and geographical patterns of the model fluxes and the

ERBE measurements, the tuning strategy applied for the ECHAM5 model (Roeckner et al.,

2003) is briefly discussed. For an atmospheric GCM, especially when coupled to an ocean

model, it is important to simulate a balanced annual global mean radiation budget at the

TOA. Tuning the model to perfect agreement with the ERBE solar and thermal fluxes
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α Fnet OLR SW CRF

% Wm−2 Wm−2 Wm−2

ERBE 29.8 240 234 -48

ISCCP 32.6 230 234 -54

Kiehl and Trenberth (1997) 31.2 235 235

RS 32.4 230 229 -56

BW 33.3 227 -59

NO 34.2 224 -62

Table 5.7: Global annual averages of planetary albedo, net SW flux at TOA and SW

CRF of ERBE (Hartmann, 1993), ISCCP (Rossow and Zhang, 1995) data and according

to Kiehl and Trenberth (1997) and ECHAM5 simulation using RS, BW and NO radiation

parameterization.

is not possible, because a net flux of 6 Wm−2 would remain (Hartmann, 1993). In ac-

cordance with Kiehl and Trenberth (1997) it was decided to trust more in the longwave

observations and tune the model such that the LW CRF is similar to the ERBE data,

while deviations in the SW CRF are allowed for in order to achieve a balanced radiation

budget. The planetary albedo of the tuned ECHAM5 therefore is higher than that of

ERBE — αECHAM5 = 32.4 vs. αERBE = 29.8 — yielding a balanced radiative budget with

a net gain of < 1 Wm−2.

In the following we will compare the fluxes (global means and geographical patterns) of

various ECHAM5 radiation schemes with the ERBE data similarly to Chen and Roeckner

(1996), who evaluated the predecessor version ECHAM4 against the ERBE data.

The global annual mean values for the ECHAM5 standard (RS) and the diagnostically

computed BWTSA (BW) and uncorrected PPH schemes (NO) are also listed in Table 5.7.

The difference between the uncorrected scheme NO and the standard RS is of the same

order of magnitude as the difference of RS compared to ERBE, the BWTSA variant is

in between theses two. Figure 5.15 shows the meridional distribution of the zonal mean

albedo values. In January the model overestimates albedo only slightly in the tropics

and more strongly in the subtropics, while it underestimates the albedo in the southern

hemisphere mid-latitudes. In the northern hemisphere the correspondence is comparably

good. Agreement for July is only found in the northern hemisphere higher latitudes. At

all other latitudes the albedo is overestimated, especially in the northern mid-latitudes.

The geographic distributions of the albedo are shown in Figure 5.18. In January the

model overestimates the albedo in regions of deep convection in the tropics. The cloud

regimes off the west coasts of California and South America are underrepresented. In

July, the albedo is too high along the ITCZ and in the southern oceans. These deviations
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Figure 5.15: Zonally averaged planetary albedo from ERBE (open circles), and var-

ious ECHAM5 parameterizations: RS (black circles), BW (red squares) and NO (blue

triangles).

are mostly caused by discrepancies between the prognosed and observed cloud cover (see

Tompkins, 2002).

As to be expected from the respective distributions of planetary albedo, the zonally

averaged SW CRF in Figure 5.16 is overestimated almost everywhere. Note that the

SW CRF is only plotted equatorwards of 60◦, because for higher latitudes the ERBE data

have large uncertainties. The differences between the various schemes are smaller than

their differences to the ERBE values. The geographical distribution of the SW CRF is dis-

played in Figure 5.19. The pattern of large SW CRF associated with the ITCZ, the South

Pacific Convergence Zone (SPCZ) and the convection centers over equatorial Africa and

Central-South America as well as the large SW CRF over the summer hemisphere oceanic

regions are captured by the model. However, in the tropics it is generally overestimated.

Chen and Roeckner (1996) interpret the overestimation in the tropical regions as an effect

of neglected cloud variability in the ECHAM4 model, since cloud cover and liquid water

path are reasonable, when compared to satellite data or other estimates. They are still

present in the new model using the RS correction, so these maxima seem more to be a

matter of erroneous cloud characteristics than an inhomogeneity effect. As a second con-

firmation of their conclusion, Chen and Roeckner (1996) plot the LW CRF vs. SW CRF

for the tropical Pacific and Indian Ocean. They find nearly balanced radiative budget in

the ERBE data, as depicted in Figure 5.17 (left side), while in the ECHAM4 model the

SW CRF is larger than the LW CRF. On the right hand side of Figure 5.17 we see the

corresponding plot for the ECHAM5 RS simulation, where cloud inhomogeneities have

been accounted for in both, the LW and the SW part. Again the SW CRF is larger than
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Figure 5.16: Zonally averaged SW CRF from ERBE (open circles), and various

ECHAM5 parameterizations: RS (black circles), BW (red squares) and NO (blue tri-

angles).

the LW CRF, but to a lesser extent than in the ECHAM4 version. This reduction may in

part be due to the PPH-bias correction. The remaining differences are probably caused

by dissimilarities in the vertical cloud distributions between ERBE and ECHAM5 as, for

example, a larger population of low and mid-level clouds in ECHAM5 with relatively small

amounts of LW CRF (Hartmann, 1993; Kiehl, 1994), but may not be attributed to cloud

variability.
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Figure 5.17: January shortwave cloud radiative forcing versus longwave cloud radiative

forcing for the tropical Pacific and Indian Ocean region (20◦S–20◦N, 50◦E–90◦W) from

ERBE (left) and ECHAM5 RS (right).
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Figure 5.18: Albedo from ERBE (top), ECHAM5 RS (middle) and ECHAM5 NO

(bottom) parameterization for January (left) and July (right).
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Figure 5.19: SW CRF from ERBE (top), ECHAM5 RS (middle) and ECHAM5 NO

(bottom) parameterization for January (left) and July (right).



Chapter 6
Conclusions and Outlook

In this study the PPH-bias was investigated, i.e. the systematic error which is introduced

by assuming clouds as plane parallel and homogenous layers in the radiative transfer

computations. This work concentrated on the solar spectrum, for which albedo is over-

estimated, while transmittance is underestimated by the PPH approximation; systematic

errors can also be expected for the longwave part (Fu et al., 2000a).

In the first part of this work the PPH-bias for two cloud simulations was calculated. For

a homogenous nocturnal stratocumulus cloud, deviations of the PPH approximation from

the reference computation, using the Independent Column Approximation, are relatively

small (< 5% relative overestimation of albedo). Whereas, for a broken trade cumulus field

this bias is substantial (up to 100% relative albedo error).

Two different approaches for correcting the PPH-bias were applied to the model clouds:

Effective Thickness Approach (ETA) In this approach an effective optical thickness

is used for the radiative computation, reducing the true thickness by a factor χ. For

overcast conditions the reduction factor may be deduced from the cloud variability.

The latter is expressed as the mean logarithm of optical thickness. A value of

χ = 0.9 was calculated for the stratus clouds. However, this approach is not possible

for broken clouds, where the thin cloud edges govern the mean logarithm. Instead, a

reduction factor of χ = 0.4 was deduced empirically for the trade wind cumuli. The

second order effect of the solar zenith angle dependency of the reduction factor was

not explicitly resolved, but an average angle of 45◦ was used.

Statistical Approach From the first and second moments of the distribution of cloud

condensate a PDF can be constructed. In this approach the radiative fluxes are

computed by weighting the two-stream results with this PDF. Different shapes have

been proposed to describe the distribution, like Gamma- or Beta-distribution. For

the cloud model data, the Gamma-distribution was chosen here, since it fits the

data in the model’s small domain better than the Beta distribution and enables
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the use of the elaborate Gamma Weighted Two-Stream Approximation (GWTSA).

In contrast to the findings from satellite measurements, the GWTSA fluxes did not

resemble the ICA reference values precisely, but underestimated albedo, especially for

cumulus clouds. This may have been due to misfits of the PDF to the original data.

Nevertheless, the correction was of the right order of magnitude. Larger domain

sizes are likely to reduce these misfits. Furthermore, the effect of correcting for

correlation among the PDFs in adjacent layers was studied. In the highly vertically

resolved model data the correction, when perfect correlation was assumed, further

reduced albedo by nearly the same amount as the difference between the PPH and

the uncorrected GWTSA. For climate models, with their relatively thick layers, this

effect can be expected to be smaller. Relaxing the assumption of perfect correlation

would further reduce the influence of the correlation correction.

The ETA offers an approach which is easy to implement into existing two-stream

radiation schemes, as they are used in most climate models. If no information about

sub-grid scale cloud variability can be derived, a constant reduction factor may be set,

yielding the right correction on global scale, while locally the albedo is overestimated for

inhomogeneous convective clouds and underestimated for homogenous stratus decks or

cirrus. If apart from the mean cloud condensate amount also higher moments of the sub-

grid scale distribution are prognosed by the climate model, a statistical approach like the

GWTSA offers the possibility to treat inhomogeneities consistently within the model. No

further tuning, like empirically deriving reduction factors, is necessary.

In the second part of this work various bias corrections were implemented into the

ECHAM5 model: One statistical scheme, the Beta Weighted Two-Stream Approximation,

and four variants of the Effective Thickness Approach. A single model simulation was

performed with the original ECHAM5 code, using an ETA scheme, to force the model.

The other schemes were run simultaneously, but produced only diagnostic output. Thus,

the fluxes from all schemes were computed on the same model time-steps, all with the

same input parameters from the General Circulation Model (GCM).

The ETA implementation using only a single, unique reduction factor of χ = 0.7

showed seasonally averaged albedo corrections over 4% locally. The most striking were

some patterns over the Pacific warm pool, which were almost identical to those of high ice

amounts. Similar spatial and temporal distributions of albedo corrections were obtained

for an ETA scheme, where different reduction factors were applied for clouds in GCM

grid columns, where convection was active (χconv = 0.4) or only stratiform clouds were

present (χstrat = 0.9). In an accompanying experiment, the ETA with χ = 0.7 was only

applied to liquid water clouds, while ice clouds were left unchanged. The patterns with

maximum albedo correction disappeared and could thus clearly be connected with ice

clouds. Roeckner et al. (2003) accounted for these effects in the ETA as it is realized in

the ECHAM5 standard model: liquid water clouds are scaled between 0.4 for thick and

1.0 for thin clouds, while for ice clouds χ = 0.9 is used in accordance with Buschmann
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(2001). Compared to the uncorrected PPH scheme, the albedo is globally reduced by 1.8%

corresponding to 6 Wm−2 in the reflected flux.

The ECHAM5 model offers the opportunity to implement a statistical scheme consis-

tently, since the cloud scheme prognoses the sub-grid scale variability as a Beta-distribution.

Similar to the GWTSA, a Beta Weighted Two-Stream Approximation (BWTSA), weight-

ing the two-stream radiative properties according to the Beta-shaped PDF, was added to

the ECHAM5 model as part of this work. Compared to the uncorrected PPH scheme, the

albedo reduces globally by 0.9%, corresponding to 3.1 Wm−2 less radiation reflected back

to space. The albedo modification due to the BWTSA is highest in the stratocumulus

regimes off the continental west coasts, reaching over 2% in the seasonal mean. While

the general patterns are similar to the ECHAM5 standard ETA implementation, the am-

plitude is only roughly half. It has to be noted that cirrus clouds were not treated any

special way, as in the standard ECHAM5 code. The albedo modification results solely

from the weighting according to the Beta-distribution as prognosed by the cloud scheme.

Accounting for the correlation effect would increase the albedo change, as was shown in

the experiments using the cloud resolving model data.

In the comparison of the albedo and cloud radiative forcing from the miscellaneous

radiation schemes to satellite measurements from the ERBE data set, it was shown that

the deviation of the modeled fluxes from the measurements were larger than those be-

tween the different model schemes, with the PPH-bias corrected schemes being closer to

the observation. This indicates that the uncertainty of the cloud microphysical parame-

terizations is dominating the radiative fluxes, while the PPH-bias is a second order effect.

It also emphasizes the need for accurate and consistent radiation calculations: Lacking a

precise global climatology of liquid and ice water amounts, cloud schemes are tuned such

that the global radiative budget is balanced. Errors in the radiative fluxes can result from

erroneous cloud parameterizations, but also from deficiencies in the parameterization of

the cloud-radiation interactions. Removing an uncertainty in the radiation parameteriza-

tion, like the PPH-bias, limits the possible sources for the flux discrepancies. Statistical

schemes, which are consistently implemented in a model, reduce the number of tuning pa-

rameters (in contrast to the ETA scheme) and thus help to adjust the remaining constants

in the cloud parameterizations.

For this study, a rather straightforward realization of the BWTSA was used, where no

further approximations were added in order to unambiguously show the effect of accounting

for the sub-grid scale variability of clouds consistently in the cloud scheme and radiation

model. In future versions some computational optimizations and physical refinements

could be included:

• Currently the weighted two-stream functions are numerically integrated by Gaussian

quadrature. The shortwave radiation code has to be called several times, requiring

additional computing time. The GWTSA on the other hand can be solved analyti-

cally with only a minor increase in compute cost. One could fit a Gamma-distribution
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to the tail of the Beta-distribution that describes the condensate amount, and use

that in the GWTSA algorithm. However, this would introduce some inconsistency

through changing the distribution shape, and therefore one would first need to show

that the general structure of the bias correction is preserved.

• The correlation correction becomes more important the higher the vertical reso-

lution. Perfect correlation, as described in Section 3.2.1, might serve as a first

approximation, but a more elaborate parameterization has to be worked out from

cloud model simulations and observations, similar to the problem of cloud overlap

(Hogan and Illingworth, 2001).

• Cloud variability is not only important for the solar part of the spectrum, although

most studies have only dealt with this, but also for thermal radiation. A consistent

treatment for both spectral intervals therefore is desirable. Currently the ECHAM5

standard radiation scheme applies the same reduction factors to the shortwave and

longwave radiation computations, which is supported by findings of Rossow et al.

(2002). However experiments like those presented in Chapter 4 need also to be

performed for longwave radiation. Statistical schemes for thermal radiation already

exist for the Gamma-distribution (Fu et al., 2000a), which could be adjusted to work

with the Beta-distribution prognosed by the ECHAM5 cloud scheme.

• Satellite climatologies of cloud variability are needed on a global scale, in order to

evaluate the model results. Rossow et al. (2002) started to create such data sets,

but currently both horizontal and vertical inhomogeneity cannot be separated. So

for the models to be compared to this data, the satellite measurements need to

be simulated for the model atmosphere, including the prognosed cloud overlap and

horizontal inhomogeneity. Satellites resolving the cloud vertical structure, like the

planned CLOUDSAT mission (Stephens et al., 2000), could improve the validation

substantially.
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ten vermittels meiner chaotischen Denkprozesse schließlich den als Dissertation betitelten

Prozess.

Da sei zuerst mein Betreuer Erich Roeckner genannt, der Licht (genauer: solare Strah-

lung) in das Dunkel meiner Promotionsgedanken brachte und mir große Freiheiten beim
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Chlond und das Bedeckungsgradschema von Adrian Tompkins? Antwort: Einleitung, Theo-

rie und Danksagung. Beiden meinen aufrichtigen Dank für die Unterstützung und die
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Bei technischen Problemen mit ECHAM standen mir viele alte Hasen (es sind eben

nicht nur die Insekten, die das Chaos entscheidend beeinflussen können) mit Rat und
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Zum Schluss einen großen Dank an meine Eltern für deren Unterstützung und Zuwen-
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