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ABSTRACT

A parameterization for the horizontal subgrid-scale variability of water vapor and cloud condensate is intro-
duced, which is used to diagnose cloud fraction in the spirit of statistically based cloud cover parameterizations.
High-resolution cloud-resolving model data from tropical deep convective scenarios were used to justify the
choice of probability density function (PDF). The PDF selected has the advantage of being bounded above and
below, avoiding the complications of negative or infinite water mixing ratios, and can give both negatively and
positively skewed functions as well as symmetric Gaussian-like bell-shaped curves, without discrete transitions,
and is mathematically straightforward to implement.

A development from previous statistical parameterizations is that the new scheme is prognostic, with processes
such as deep convection, turbulence, and microphysics directly affecting the distribution of higher-order moments
of variance and skewness. The scheme is able to represent the growth and decay of cirrus cloud decks and also
the creation of cloud in clear sky or breakup of an overcast cloud deck by boundary layer turbulence. After
introducing the mathematical framework, results using the parameterization in a climate model are shown to
illustrate its behavior. The parameterization is shown to reduce cloud cover biases almost globally, with a marked
improvement in the stratocumulus regions in the eastern Pacific and Atlantic Oceans.

1. Introduction

Since clouds have a significant influence on the global
hydrological and thermodynamic budgets, the inclusion
of cloud processes in global climate and forecast models
is an important task. This is complicated by the fact that
clouds are not resolved at the current resolutions used
by general circulation models (GCMs), and therefore
must be parameterized.

The art of cloud parameterization appears to have
evolved steadily in complexity since early models fixed
cloud properties to observed values. Current schemes
often use prognostic equations for predicting various
cloud and precipitation variables, such as cloud ice, rain,
or snow, and include parameterizations of a large num-
ber of microphysical pathways between these categories
(e.g., Lohmann and Roeckner 1996; Fowler et al. 1996;
Ghan et al. 1997). Many schemes are of comparable
complexity to those used in cloud-resolving model
(CRM) studies (e.g., Lin et al. 1983; Brown and Swann
1997). However, since CRMs claim, by definition, to
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resolve cloud-scale motions, they usually adopt a simple
assumption concerning the fractional cloud cover in
each grid cell, assuming total cover if any significant
amount of cloud condensate is present. Although some
GCM cloud schemes also use a similar approach, (Ose
1993; Fowler et al. 1996), this ‘‘binary’’ assumption of
total or zero cloud cover is clearly not adequate with
the horizontal resolution used by global-scale models.

The ‘‘all-or-nothing’’ parameterization of cloud cover
used by CRMs essentially assumes that no subgrid-scale
variability of water variables exists. Fractional cloudi-
ness is the result of subgrid-scale variability, and a group
of schemes commonly in use attempt to represent this
by relating cloud cover to relative humidity (RH) (e.g.,
Sellers 1976; Gates and Schlesinger 1977; Schneider et
al. 1978; Sundqvist 1978; Slingo 1980; Sundqvist et al.
1989; Walcek 1994; Lohmann and Roeckner 1996;
DelGenio et al. 1996), with cloud cover increasing
monotonically from zero at some critical RH according
to a specified function. It is straightforward to see that
the critical RH at which cloud forms is therefore a mea-
sure of the subgrid-scale variability that is assumed to
exist. Some schemes also take other factors such as
vertical velocity into account (e.g., Slingo 1987).

A second group of schemes are sometimes referred
to as ‘‘statistical schemes.’’ These schemes, stemming
from the work of Sommeria and Deardorff (1977), Mel-
lor (1977), and Bougeault (1981), assign a probability
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density function (PDF) to the total water mixing ratio
(rt)1 equal to the sum of the water vapor, cloud water,
and cloud ice mixing ratios. If the statistical moments
of the distribution of rt are known, then the cloud frac-
tion can be diagnosed by simply integrating the super-
saturated part of the PDF. The difficult task of these
schemes is the specification of an appropriate (and math-
ematically tractable) PDF for rt, and the determination
of its moments such as the variance. Various distribu-
tions have been attempted, many of which are sym-
metrical. Smith (1990) uses a symmetric triangular PDF,
diagnosing the variance based on a critical RH function
at which cloud is determined to form, later modified by
Cusack et al. (1999). This PDF has been subsequently
adopted by Rotstayn (1997) and Nishizawa (2000).
LeTreut and Li (1991) use a uniform distribution, setting
the distribution’s variance to an arbitrarily defined con-
stant. A Gaussian-like symmetrical polynomial function
was used by Lohmann et al. (1999) with variance de-
termined from the subgrid-scale turbulence scheme fol-
lowing Ricard and Royer (1993), who investigated
Gaussian, exponential, and skewed PDF forms.
Bechtold et al. (1992) based their scheme on the Gauss-
ian distribution, which was modified in Bechtold et al.
(1995) to a PDF linearly interpolated between Gaussian
and exponential distributions. Lewellen and Yoh (1993)
detail a parameterization that uses a binormal distri-
bution that can be skewed as well as symmetrical and
is bimodal, although a number of simplifying assump-
tions were necessary in order to make the scheme trac-
table.

It is important to stress that there is not a clear dis-
tinction between the so-called RH schemes and statis-
tical schemes. If a time-invariant variance is used in a
statistical scheme, it can be reduced to an RH-type for-
mulation. The RH scheme of Sundqvist (1978) can be
derived by assuming a uniform distribution for total
water, for instance, and Smith (1990) gives the equiv-
alent RH formulation for the triangular distribution used
in that scheme. Parameterizations such as Xu and Rand-
all (1996a), who relate cloud fraction to RH and cloud
condensate, can be viewed as manifestations of a sta-
tistical scheme where the actual PDF of total water is
itself not known, but the time-mean statistics of its in-
tegral are.

If the variance (and/or higher-order moments) are al-
lowed to vary in a statistical scheme, these schemes can
provide a more realistic link between clouds and other
physical processes. For example, an undisturbed plan-
etary boundary layer (PBL) may become partly cloudy
when turbulence occurs, due to the increase of the sub-
grid-scale variability. An additional advantage that sta-
tistical schemes have is that, since the PDF of water
vapor and cloud is known, the information can also be

1 Usually temperature variability, which affects the local saturation
vapor pressure, is also taken into account, but we refer here to rt for
simplicity.

used in other model components, increasing the self-
consistency of the model. For example, the information
concerning the subgrid variability of clouds can be used
for a more accurate calculation of radiative fluxes. Ca-
halan et al. (1994), Barker et al. (1999), Pincus et al.
(1999), Pomroy and Illingworth (2000), and Fu et al.
(2000) have showed, in various observational and mod-
eling studies, how representing the variability of water
and cloud is crucial for accurate calculation of radiative
fluxes for a large variety of cloud situations, and Barker
(1996), Oreopoulos and Barker (1999), and Cairns et
al. (2000) have attempted to include parameterizations
for these effects in GCM radiative calculations. Tiedtke
(1996), for example, showed that taking into account
cloud inhomogeneities led to more realistic shortwave
radiative fluxes. Since the information concerning cloud
variability is not generally available in most current
GCMs, effectively hidden in such parameters as the crit-
ical RH for cloud formation, radiative parameterizations
make their own independent estimate, often unaffected
by the dynamical situation. It would be much more de-
sirable to use a consistent estimate of variability in the
calculation of cloud fraction and radiative fluxes, thus
reducing the total number of model ‘‘tunable’’ param-
eters. Knowing the inhomogeneity of clouds also per-
mits a more accurate derivation of microphysical pro-
cesses such as precipitation formation, which are highly
nonlinear, resulting in potentially substantial biases if
the grid mean value is used (Pincus and Klein 2000;
Rotstayn 2000; Larson et al. 2001b).

From the brief review of statistical schemes it is ap-
parent that a widely varying selection of PDFs have
been used. One reason for this is that it is difficult to
obtain generalized and accurate information from ob-
servations concerning variability down to small scales,
as noted by Lohmann et al. (1999), forcing the decision
concerning the function form to be somewhat ad hoc.
Previous observational studies have included measure-
ments by aircraft (Ek and Mahrt 1991; Wood and Field
2000; Davis et al. 1996; Larson et al. 2001a), tethered
balloon (Price 2001), and satellite instrumentation (Wie-
licki and Parker 1994; Barker et al. 1996). However,
each of these data sources suffers from various draw-
backs. For example, aircraft or tethered balloon data
usually only provide a one-dimensional (1D) path
through a cloud field, possibly leading to undersampling
problems. Measured bi- or multimodel distributions
could be absent or less prominent if 2D horizontal slices
containing an ensemble of clouds could be simulta-
neously analyzed. On the other hand currently available
satellite data have difficulties vertically resolving water
vapor and/or cloud structure. It is therefore apparent that
CRMs (where the term is used in a broad sense and
includes large eddy simulations) can offer a comple-
mentary tool to observations, enabling analysis of fully
3D-simulated cloud fields. Bougeault (1982) pioneered
this use of a CRM, using the simulations of Sommeria
(1976). Other authors to use models in this way include
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Lewellen and Yoh (1993), Xu and Krueger (1991), and
Xu and Randall (1996a), for example. The first aim of
this paper therefore, is to use a 3D CRM, on domains
on the order of a climate model grid box but also with
relatively high horizontal resolution, to assess whether
a generalized function form exists that can describe the
total water variability. For this initial study, a tropical
scenario is used, since it is assumed that situations where
deep convection is introducing large localized pertur-
bations in the water vapor field will be the most difficult
to represent.

The second aspect that is uncertain with statistical
schemes is the determination of the distribution mo-
ments. For example, Lohmann et al. (1999) follow Ri-
card and Royer (1993) by using the turbulent activity
to determine the distribution variance, setting a constant
minimum variance that usually operated above the tur-
bulent PBL. However, the variance of water substance
will also be affected by other physical processes not
taken into account: gravity wave activity, subgrid-scale
horizontal eddy mixing, and probably most importantly,
deep convective activity. Unlike PBL turbulence, some
of these processes act on timescales much longer than
a GCM time step (e.g., convectively generated cirrus
anvil dissipation), implying that a prognostic scheme is
more appropriate. Tiedtke (1993) and Mannoji (1995)
have previously developed schemes that treat cloud cov-
er itself directly as a prognostic parameter. As discussed
by Wang and Wang (1999), such a scheme can be de-
veloped consistently with the statistical approach by
converting time changes of distribution properties into
source or sink terms for cloud cover. Indeed, some of
the prognostic terms for cloud cover in the Tiedtke
(1993) scheme, such as the creation of cloud by adia-
batic or diabatic cooling, are derived directly using as-
sumptions concerning the subgrid-scale distribution of
total water. However, this is accomplished on a term-
by-term basis, and without the framework of a statis-
tically based scheme can lead to inconsistent cloud cover
predictions with regard to the cloud condensate and wa-
ter vapor quantities.

The scheme introduced in this paper attempts to in-
corporate processes such as deep convection into a prog-
nostic implementation of a statistical scheme. Afterbrief-
ly introducing the statistical cloud scheme framework
in section 2, section 3 analyzes the CRM data to identify
a suitable PDF form to use. Section 4 describes the
framework for the new prognostic scheme, while the
following section describes how convection and other
processes affect the higher-order PDF moments of var-
iance and skewness. Results from the implementation
of the scheme in a GCM are given in section 6.

2. Statistical cloud schemes

The basis of statistical cloud schemes is summarized;
Bougeault (1981), Smith (1990), Xu and Randall
(1996b), and Lohmann et al. (1999) provide greater de-

tail. Since water vapor perturbations can be correlated
with temperature perturbations, which alter the local
saturation vapor pressure, it has been useful to form a
variable s, defined as

s 5 a (r9 2 a T9),l t l l (1)

where is the fluctuation of the total water mixing ratior9t
rt equal to the sum of the vapor (ry ), cloud ice (ri), and
liquid cloud water (rl) mixing ratios, and is the liquidT9l
water temperature fluctuation. The fluctuations are de-
fined about the mean thermodynamic state l, and theT
constants are defined as al 5 (]rs/]T)( l) and al 5 [1T
1 (L/cp)al]21, where rs is the saturation vapor mixing
ratio, L is the latent heat of vaporization, and cp is the
specific heat of dry air. Physically, s describes the dis-
tance between the thermodynamic state to the linearized
saturation vapor mixing ratio curve. Defining ss 5 al(rs

2 t) the cloud condensate mass rc (5rl 1 ri) is givenr
by rc 5 s 2 ss, providing s . ss. Assuming that any
supersaturation efficiently condenses to cloud, a com-
mon assumption in current GCM cloud schemes, it is
possible to express the cloud fraction c as

`

c 5 G(s) ds, (2)E
ss

where G(s) is the PDF of s. The assumption that su-
persaturation does not occur is a good approximation
for warm clouds, but observations show that large su-
persaturations with respect to ice can often exist
(Heymsfield and Miloshevich 1995; Heymsfield et al.
1998a,b). Relaxing this assumption for the ice phase
will be the subject of future research.

The variance of s, and therefore the associated liquid
water and cloud cover, depends on the correlation be-
tween Tl and rt perturbations in addition to their re-
spective magnitudes:

2 2 2 2s (s) 5 a (r9 1 a T9 2 2a r9T9). (3)l t l l l t l

This aspect was disregarded by many previous statistical
schemes, which were formulated in terms of s, but sim-
ply set the variance to a fixed or arbitrary value. In such
schemes it is not known whether cloud is a result of
temperature perturbations, water perturbations, or a
combination of the two. Some parameterizations, such
as Ricard and Royer (1993) have calculated temperature
perturbations separately that result from turbulence.
However, here the aim is to develop a scheme where
the distribution moments are directly influenced by sev-
eral cloud-generating processes prognostically. Repre-
senting the higher-order moments of temperature in ad-
dition to moisture (and their correlation) greatly in-
creases the level of complexity and computational ex-
pense of such a scheme. Temperature fluctuations are
likely to be smaller in magnitude than total water fluc-
tuations, especially in the Tropics where gravity waves
remove lateral fluctuations of virtual temperature on fast
timescales (Bretherton and Smolarkiewicz 1989). Re-
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cent observational data from Price and Wood (2001,
submitted to Quart J. Roy. Meteor. Soc.) also seems to
confirm that temperature fluctuations are less important
than humidity fluctuations, even in the lower tropo-
sphere in midlatitudes. Therefore, this first attempt at a
prognostic statistical scheme tackles the zero-order
problem of representing the fluctuations of cloud and
water vapor. The subgrid-scale variability of tempera-
ture is neglected, as in LeTreut and Li (1991), and rs is
assumed to be constant throughout a grid cell.

The definition of cloud cover in (2) simplifies to
`

c 5 G(r ) dr , (4)E t t

rs

with the cloud condensate given by
`

r 5 (r 2 r )G(r ) dr . (5)c E t s t t

rs

It is the goal of this paper to determine a suitable
functional form for G(rt) and the way in which the
unresolved processes such as turbulence and deep con-
vection affect its variance and skewness, thereby de-
termining the cloud cover.

3. Cloud statistics

a. Model data

In this section, an attempt is made to find a general
and simple functional form that can describe the vari-
ability of rt in cloud resolving model simulations. A
brief description of the CRM and the simulation scenario
used to produce the data is given in the appendix.

The statistics of rt in the CRM are examined for in-
dividual model field ‘‘snapshots,’’ rather than mean dis-
tributions as in Xu and Randall (1996b), since the aim
is to be able to prognostically model the temporally
evolving PDF, and not just its mean distribution. Figure
1 shows the PDF of rt for various model levels through-
out the troposphere, at the last time step of the exper-
iment. Examination of the PDFs every half hour
throughout the experiment proved them to be very sim-
ilar in characteristics, since the computational domain
was sufficient in size to continuously contain an ensem-
ble of clouds, and the initial conditions were a realistic
field of clouds in a state of quasi-equilibrium. The data
at the 65 536 grid points are divided into 200 bins of
equal width. At all heights the distribution is approxi-
mately ‘‘bell’’ shaped, and appears to be approximately
unimodal, although there is some hint of bimodality at
some upper-tropospheric levels. Note that the use of a
sufficiently large horizontal 3D domain in conjunction
with high resolution implies that convection is contin-
uously present, with convective cores (defined by an
absolute magnitude vertical velocity exceeding 1 m s21)
occupying a small proportion of the domain, typically
a fraction of a percent. A result of this is that the dis-

tribution of rt at only the nonconvective grid points is
virtually indistinguishable from that using the entire do-
main.

Considering the functions previously used in statis-
tical schemes, it is obvious that the uniform distribution,
for example, is a poor candidate for the rt distribution.
Additionally, the distribution is seen to be positively
skewed throughout most of the troposphere to varying
degrees, but with the PBL exhibiting negative skewness.
The positive skewness is the result of convective activity
that provides isolated sources of high rt values. In the
same way, the negative skewness in the PBL is the direct
result of convectively generated downdrafts. Exami-
nation of all the other time periods reveal these same
distribution features.

The first task is to identify a general functional form
that can model these distribution characteristics. Al-
though it is difficult to theoretically derive a PDF form,
since the rt distribution is the result of a large number
of interacting processes, therefore forcing the use of
empirical methods, it is possible to use physically based
arguments to justify certain functional forms. For ex-
ample, in the absence of other processes, large-scale
dynamical mixing would tend to reduce both the vari-
ance and the asymmetry the distribution. Therefore, the
gamma and lognormal distributions would be difficult
to use since they are always positively skewed and only
tend to a symmetrical distribution as one of their defin-
ing parameters approaches infinity.

Another problem that distributions such as the log-
normal, gamma, Gaussian, and exponential suffer from
is that they are all unbounded functions. Thus, if these
functional forms are used, the maximum cloud conden-
sate mixing ratio approaches infinity, and part of the
grid cell is always covered by cloud. Precautionary mea-
sures, such as the use of a truncated function, can be
taken, but this increases the number of parameters re-
quired to describe the distribution, and again introduces
undesirable discreteness. Moreover, functions such as
the Gaussian function or the polynomial used by Loh-
mann et al. (1999) are also negatively unbounded, im-
plying that part of the grid cell has negative water mass.
The choice of function must also involve a fair degree
of pragmatism, since in addition to providing a good fit
to the available data, it must also be sufficiently simple
and of few enough degrees of freedom to be of use in
a parameterization scheme. For example, Larson et al.
(2001a) were able to provide good fits to their aircraft
data using a five-parameter double Gaussian function,
but it is unclear how these parameters would be deter-
mined in a GCM cloud scheme.

Considering the distribution characteristics noted
above, one possible candidate is the beta distribution
(Johnson and Kotz 1970; Essenwanger 1976), where the
PDF G(t) is defined as

p21 q211 (t 2 a) (b 2 t)
G(t) 5 (a # t # b) (6)

p1q21B(p, q) (b 2 a)
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FIG. 1. PDFs of rt taken at nine various model levels at the end of the simulation period. The vertical line represents s, the mean of rsr
calculated at each grid point.

with p . 0, q . 0. The symbol B represents the beta
function, and can be defined in terms of the gamma
function G as follows:

G(p)G(q)
B(p, q) 5 . (7)

G(p 1 q)

The distribution is bounded by b and a and is ex-
tremely flexible, taking on J, U, or bell shapes (Johnson
and Kotz 1970), although we will restrict ourselves to

the p . 1, q . 1 bell-shaped regime. Figure 2 gives
some example beta curves between arbitrary limits. The
skewness (§) of the distribution is related to the differ-
ence between the two shape parameters p and q,

2(q 2 p) p 1 q 1 1
§ 5 , (8)!p 1 q 1 2 pq

and thus if p 5 q the distribution is symmetrical, but
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FIG. 2. Examples of the beta distribution for various combinations
of the shape-defining parameters p and q.

also both positively and negatively skewed distributions
are possible. As p and q tend to infinity the curve ap-
proaches the Normal distribution. The standard devia-
tion of the distribution is given by

b 2 a pq
s 5 (9)!p 1 q p 1 q 1 1

and thus is directly related to the distribution width b
2 a as expected.

In addition to being bounded and also easily giving
both skewed and symmetrical functions, the beta dis-
tribution has the additional advantage that it is a func-
tion of only four parameters and as will be shown later,
is also mathematically straightforward to incorporate
into the statistical scheme framework. In order to com-
pare the beta function to the cloud model data, a meth-
od is required to calculate the ‘‘best-fit’’ curve. Three
procedures are used here and in each, the minimum
and maximum values of rt from the CRM data are used
directly to define the PDF bounds, a and b. As the beta
function is defined by four parameters, two additional
items of information are required to define the shape
parameters p and q. For the first fitting method, we use
the mean and variance of rt . The resulting PDF will
divide rt correctly only between cloud and water vapor
if the beta distribution renders a perfect fit to the data.
A second fitting method is to use c (when present),r
instead of the variance, which enforces the correct di-
vision of total water into cloud and vapor. The third
method uses cloud cover instead of variance to find

the beta distribution that gives the correct cloud cover
given t .r

Examining the distributions at the nine levels (Fig.
3), it appears that at each height, a reasonable fit using
the Beta distribution can be obtained. The distributions
are plotted on a logarithmic scale to allow easier com-
parison at the distribution extremes, which also more
clearly reveals evidence of secondary distribution peaks
in the convective detrainment region. It should be re-
membered that the fit is made at one, illustrative point
in time here, and the secondary distribution peak is not
a time-invariant feature. Analysis of other times indi-
cates that the distribution is often unimodal (not shown).
In the PBL, the variance-fitting method produces a close
match to the observed PDF. At levels where cloud is
present the quality of fit varies. At 2 km, the beta dis-
tribution has too much power at the distribution ex-
tremes, and again at 5 km the presence of a secondary
peak in the data causes the beta distribution to be too
wide. In the convective detrainment zone above 11 km
the observed distribution has more power at the large
cloud-mixing ratio tail, resulting in the beta fits under-
estimating the number of grid points with these high
cloud mixing ratios. However, the beta distribution re-
produces the bulk of the distribution reasonably well.

Although specific examples can be found where some
of the alternative distributions, such as the gamma or
the log-normal distributions, offer better fits than the
beta distribution, there are also cases where the opposite
is true, and none are able to offer a general improvement
on the beta distribution. Also, examination of other
CRM data found sensitivity in the details of the ob-
served distributions, such as the flatness of the distri-
bution tails to changing the microphysical parameteri-
zation, as one would reasonably expect. However, the
beta distribution was able to render the generalized char-
acteristics of the statistical distribution in each case.

b. Observational data

One of the possible limitations of the beta distribution
is that it is unimodal. A brief review of the observational
literature is therefore conducted in order to assess how
generally appropriate the beta distribution is for de-
scribing rt variability, with particular regard paid to the
frequency of occurrence of unimodal distributions.

Ek and Mahrt (1991) examined PBL relative humidity
variability in a limited number of flight legs, and as-
sumed a unimodal Gaussian fit for their distribution.
Recently, Wood and Field (2000) studied flight data
from both warm and cold clouds and reported unimodal
distributions of rt, but also observing more complex
distributions, giving some weakly and strongly bimodal
examples. Davis et al. (1996) reported uni- or bimodal
skewed distributions in liquid water content from flight
data in marine stratocumulus clouds. Larson et al.
(2001a) have also examined flight data for PBL clouds
and found that mainly unimodal or bimodal distributions
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FIG. 3. As for Fig. 1 but plotted on a logarithmic scale, and with three best-fit beta distribution curves superimposed. In addition to the
observed distribution limits, the dotted line uses the mean and variance of rt, the dot–dashed line uses the mean and rc, and the dashed line
fit uses the mean and the cloud fraction (see text for details). Only the variance fit is shown in the PBL where rc 5 0.

occurred. They reported that PDFs that included positive
or negative skewness were able to give an improved fit
for the data.

Price (2001) used tethered balloon data of PBL hu-
midity collected during a 3-yr period, finding that rough-
ly half of the data could be classified as symmetrical or
skewed unimodal. A further 25% of the data could be
regarded as multimodal. Encouragingly, Price (2001)
tested the suitability of a number of common symmetric

and skewed distribution forms, and found that the beta
distribution produced the best fit.

Although many of the above studies reported a sig-
nificant frequency of occurrence of distributions classed
as bi- or multimodal, these distributions often possessed
a single principal distribution peak, as in the example
given by Price (2001), and thus the beta distribution
could still offer a reasonable approximation to these
cases. This also applies to the flight data examples
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shown in Heymsfield and McFarquhar (1996) taken in
ice clouds. Additionally, as stated in the introduction,
the bimodal and multimodal distributions may be ex-
aggerated in both flight and balloon data. Satellite data
on the other hand can give a more global view at rel-
atively high spatial resolutions. Two such studies have
been reported by Wielicki and Parker (1994) and Barker
et al. (1996), who used Landsat data at a resolution of
28.5 m to examine liquid water path in a large variety
of cloud cover situations. They reported unimodal dis-
tributions in nearly or totally overcast scenes, and ex-
ponential-type distributions in scenes of low cloud frac-
tion, as expected since in these cases only the tail of
the rt distribution is detected. A truncated gamma dis-
tribution was found to give a good approximation to the
data, although it is apparent that the beta distribution
could offer an improved fit for some of the observed
cases with reduced power at the thickest cloud depths.
Interestingly, neither study reported an example of a
multimodal distribution.

In summary, it appears that in the observational data
available, gathered over a wide variety of cloud con-
ditions (although rarely in ice clouds), approximate un-
imodality was fairly widespread, and that a flexible
skewed function such as the beta distribution can offer
a reasonable approximation to the observed variability
of total water. That said, future developments to include
the use of a bimodal function such as that of Lewellen
and Yoh (1993) may lead to improvements.

4. Cloud scheme framework

The cloud scheme assumes that the PDF describing
the distribution of the total water mixing ratio rt can
always be described by a beta distribution, as given by
Eq. (6). Thus t (where the overbar represents the grid-r
point mean value) is given by

b p21 q211 r (r 2 a) (b 2 r )t t tr 5 dr , (10)t E tp1q21B(p, q) (b 2 a)a

where a and b represent the minimum and maximum
values of rt, respectively. It is usual to apply the co-
ordinate transformation y 5 (rt 2 a)/(b 2 a), giving

11
p21 q21r 5 [y(b 2 a) 1 a]y (1 2 y) dy. (11)t EB(p, q) 0

Using (7) and (11) in conjunction with the gamma
function relationship G(p 1 1) 5 pG(p), the usual ex-
pression for the mean of a beta distribution is attained:

p
r 5 (b 2 a) 1 a. (12)t p 1 q

It is straightforward to similarly gain expressions for
the water vapor and cloud condensate:

p
r 5 (b 2 a) I (p 1 1, q)y (r 2a)/(b2a)sp 1 q

1 (a 2 r )I (p, q) 1 r , (13)s (r 2a)/(b2a) ss

p
r 5 (b 2 a) [1 2 I (p 1 1, q)]c (r 2a)/(b2a)sp 1 q

1 (a 2 r )[1 2 I (p, q)], (14)s (r 2a)/(b2a)s

which can be combined to give (12). The incomplete
beta function ratio Ix is defined as

x1
p21 q21I (p, q) 5 t (1 2 t) dt, (15)x EB(p, q) 0

subject to the limits I0(p, q) 5 0 and I1(p, q) 5 1.
Exactly four parameters are required to uniquely de-

fine the beta distribution. For example, one can use the
distribution limits a and b, and the shape parameters p
and q. Alternatively one could specify the first four
moments of the distribution. The approach we will take
is to introduce prognostic equations for the shape pa-
rameters p and q so that they are known at each time
step. Thus two further parameters are required and for
these it is possible to use t and c, which are alreadyr r
prognosed in the model. Thus p, q, t, and c uniquelyr r
define the beta distribution, and all of the distribution’s
other properties, such as the minimum and maximum
values, a and b, and the variance and skewness can be
subsequently diagnosed. This is illustrated schemati-
cally in Fig. 4. The top panel shows a variety of beta
distribution PDFs, all of which have the same shape
(i.e., identical p and q) and all of which have the same
mean value, equal to t. Although there are an infiniter
number of such curves with these properties, only one
unique PDF will give the correct values for y and c.r r

The two light PDFs illustrate the limits necessary to
retain a physically reasonable solution in partially
cloudy regimes. One curve illustrates the narrowest pos-
sible PDF, for which the cloud fraction and condensate
mass is zero. The second case is for the widest possible
PDF, for which the distribution minimum equals zero
(i.e., a wider PDF would imply negative water amounts
in some parts of the grid cell). As the PDF is progres-
sively widened from the narrowest extreme upward, the
corresponding cloud-mixing ratio increases monotoni-
cally from zero to its maximum value (for which a 5
0). This is illustrated in the lower panel of the figure.
To determine the exact PDF that gives c (the darkr
curve), (12) is substituted into (13) to give an iterable
function for a, thus:

(r 2 a)I (p 1 1, q) 1 (a 2 r )I (p, q)t r s r9 9s s

1 r 2 r 5 0, (16)s y

where 5 p(rs 2 a)( t 2 a)21(p 1 q)21.r9 rs

Since this function is monotonic it can be quickly and
robustly solved by any simple iteration method (see ap-
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FIG. 4. Schematic of how the scheme functions. (top) Given the
shape parameters p and q, the form of the PDF is known. Additionally,
the mean of the PDF is equal to t. Only one distribution width (andr
therefore one value of the distribution minimum a), will divide rt

correctly between cloud condensate and vapor. This is found by it-
eration. The two curves representing the physical bounds of the it-
eration are shown by the lightly shaded PDFs. For the case illustrated
with t , rs, these correspond to a $ 0 and rc $ 0. (bottom) Howr
the diagnosed cloud condensate mass mixing ratio increases mono-
tonically as a decreases from its maximum (where b 5 0) to zero.
See text for discussion.

pendix). Once a is known, b is simple to diagnose from
Eq. (12).

As described so far, the scheme requires the intro-
duction of two additional prognostic equations to govern
the evolution of p and q. However, this system as it
stands is not closed in two specific situations; clear sky
conditions ( c 5 0) or 100% overcast sky ( y 5 rs). Inr r
both these cases only three independent items of infor-
mation are available (p, q, and t), leaving one degreer
of freedom to define. One solution to this problem would
be to carry a and b as prognostic equations instead of
the water variables y and c, which would be subse-r r
quently diagnosed each time step. In this way the beta
distribution would always be defined. However, one
possible drawback with this method is that numerical
errors in, for example, the advection of the distribution
parameters, a, b, p, and q, could translate into relatively
larger errors in c and y , since the latter are integralr r
quantities of the former. Moreover, on a practical level,

changing the status of the water variables from prog-
nostic to diagnostic would increase the complexity of
implementation in most current GCMs.

One could also argue that, since the cloud cover is
well defined in these two specific situations (i.e., 0 or
1), the fact that the distribution of rt itself is not known
is immaterial. However, we maintain that it is still im-
portant to model the status and evolution of the rt dis-
tribution in these cases, since, first the information is
useful for a nonbiased calculation of microphysical pro-
cesses in overcast conditions and also of radiative fluxes,
and second, the distribution’s evolution during periods
of clear or overcast skies will determine exactly when
the atmosphere will revert to a partially cloudy state.
Therefore, the solution we apply is to carry an additional
quasi-prognostic equation for the distribution width b
2 a. The terminology quasi-prognostic is adopted since
the predicted value is directly used only in clear sky or
overcast conditions, otherwise it is always slaved to the
value diagnosed by the iteration process described
above. This solution therefore avoids the aforemen-
tioned numerical problems and is simple to implement,
but also involves a degree of redundancy.

With the addition of this equation, the system is now
closed at all times. The remaining task is to specify how
physical processes such as deep convection or turbu-
lence affect the evolution of p, q, and b 2 a. For no-
tational ease in the following discussion, we use the
terms ‘‘variance’’ and ‘‘skewness’’ interchangeably for
the quantities b 2 a and q 2 p, respectively, which are
actually carried by the model.

5. Determining the distribution moments

a. Turbulence

Subgrid-scale vertical turbulent motions are assumed
to be dynamically isotropic (in contrast to deep con-
vective overturning where limited-area convective
drafts are balanced by large-scale subsidence), and
therefore have no production effect on the skewness
budget. Since the scheme currently neglects the impact
of convective downdrafts, the skewness in the turbulent
PBL will be limited and have limited vertical gradients.
Therefore, we also neglect the vertical transport of
skewness by vertical turbulence. However, previous
studies have shown that PBL distribution can also ex-
hibit significant skewness (e.g., Bougeault 1982), and
therefore future development of the scheme may also
incorporate the effect of nonprecipitating convection on
the skewness budget, possibly using a mass flux ap-
proach as in Lappen and Randall (2001).

Neglecting the horizontal terms, the equation for the
change of variance due to subgrid-scale velocity fluc-
tuations is (Deardorff 1974a; Stull 1988):

2 2]r9 ]r ](w9r9 )t t t5 22w9r9 2 2 e . (17)2t r9t]t ]z ]z
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The first term on the right represents the production
of variance in the presence of a vertical moisture gra-
dient, the second term represents transport of moisture
variance by subgrid eddies, and the last term is the
dissipation term. Subgrid-scale fluxes include those due
to shallow and deep convection in addition to turbu-
lence, but in this section we concern ourselves only with
the contribution of turbulence. No separate closure is
required for the turbulence moisture flux since thisw9r9t
is directly available from the vertical turbulence scheme
of the GCM.

We follow Stull (1988) to parameterize the variance
flux as

2]r9t2w9r9 5 LÏe , (18)t ]z

where e is the turbulent kinetic energy, also available
from the model’s vertical turbulence scheme, and L is
a mixing length-scale, which is defined as L 5 lSr,
where Sr is a stability function and l is defined according
to Blackadar (1962) as

kz
l 5 . (19)

1 1 kz/l

Here k is von Kármán’s constant, and l is the asymptotic
mixing length, set to 150 m in the PBL. Roeckner et
al. (1996) provides details of stability function formu-
lation Sr.

Since the model carries the distribution width, b 2
a, rather than the variance in its closure, the production
term must be converted using Eq. (9). The turbulent
production does not affect the distribution shape param-
eters, thus it can be simply written:

](b 2 a) h ]r ](b 2 a)t5 2 w9r9 2 LÏet]t (b 2 a) ]z ]z

2 e , (20)b2a

where h 5 (p 1 q)2(p 1 q 1 1)(pq)21.
We now consider the dissipation term, which we will

derive directly in terms of the distribution width (b 2
a) and is defined as a Newtonian relaxation as is usual
(e.g., Deardorff 1974a; Stull 1988; Garratt 1992):

1 1
e 5 (b 2 a) 1 . (21)b2a 1 2t ty h

The timescale has been split into components. The
first, ty , represents the dissipation due to 3D turbulence,
in the PBL and in the neighborhood of deep convection
cores for example, while the second component repre-
sents the dissipation by larger-scale 2D horizontal eddies
caused by horizontal wind shear instability, which will
be present even if strong stable temperature stratification
suppresses vertical motions.

The timescale of the 3D turbulent dissipation ty is
defined in terms of the turbulent velocity scale andÏe
the turbulent length scale (Garratt 1992)

kl
t 5 , (22)y Ïe

where k is a constant, for which Garratt (1992, p. 253,
Table 8.2) suggests a value of 7.44. This timescale is
typically fast, and in the PBL the primary balance is
between turbulent production and dissipation (e.g.,
Deardorff 1974b).

Above the PBL, the turbulent eddy scale is no longer
relevant for describing the horizontal scale of , andr9t
therefore (22) is applied only below the diagnosed PBL
top. For shallow cumulus it is possible that cloud depth
could be used, following Lenderink and Siebesma
(2000), but this would also not be appropriate for deep
convective regimes where the horizontal scales of the
subsidence regions surrounding convective cores are
much larger than the depth of the cores themselves.
Therefore above the PBL, it is assumed that the variance
in total water occurs over length scales comparable to
the horizontal grid size of the GCM, Dx. It is possible
that by taking the convection type (i.e., shallow or deep)
and mesoscale organization in account, improvements
could be made on this assumption. Since the grid-mean
turbulent velocity scales are usually very limited above
the PBL, the mixing due to large-scale horizontal eddies
will be dominant. To parameterize these we use the
standard Smagorinsky approach (Smagorinsky 1963)
and define

](b 2 a) 1 ] (b 2 a)
5 2 rn , (23)[ ]]t r ]x Dx

where it has been assumed that the subgrid-scale hor-
izontal rt gradient can be approximated by (b 2
a) , and where n is the viscosity, defined in terms of21D x

the horizontal wind shear in the normal way:

2 2
]u ]y

2n 5 (C D ) 1 , (24)s x 1 2 1 2! ]x ]y

where Cs is a constant that we set to 0.23 (for discussion,
see Mason and Callen 1986; Mason and Brown 1999).
It should be emphasized that this horizontal eddy flux
of moisture is completely subgrid-scale and should not
be confused with the horizontal mixing of prognostic
quantities between adjacent model grid points already
represented in the horizontal diffusion schemes of large-
scale models.

Assuming that horizontal subgrid-scale variations in
density can be neglected, this gives a horizontal mixing
timescale of

2 2
]u ]y

21 2t 5 C 1 . (25)h s 1 2 1 2! ]x ]y

For a wind shear of 2 3 1025 s21, this gives a mixing
timescale of roughly 10 days, broadly in accordance
with Pierrehumbert and Yang (1993) and Emanuel and
Pierrehumbert (1996) for high wavenumbers.
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Since this mixing will also reduce the skewness of
the distribution, tending with time toward a symmetric
one, the same timescale relaxation is applied to q:

]q 1 1
5 (q 2 q) 1 , (26)0 1 2]t t ty h

where q0 defines the shape of the final distribution.
The influence of the turbulence on the cloud and va-

por quantities must also be explicitly taken into account.
A calculation of D c and D y due to turbulence is ob-r r
tained by stepping the quantities b 2 a and q forward
by one time step Dt (using an implicit solution as de-
scribed in the appendix), using Eqs. (20) and (26) only,
in conjunction with D t 5 0. The rate of change of ther
water quantities is thus:

]r Dry y5 (27)
]t Dt

]r r Drl l c5 (28)
]t (r 1 r )Dtl i

]r r Dri i c5 . (29)
]t (r 1 r )Dtl i

b. Convection

Convective towers directly detrain cloud condensate
to form upper-level cirrus anvil cloud and extensive
stratiform cloud coverage. Cumulus parameterization
schemes already represent the transport of the mean
quantities of water vapor and cloud, but it is clear that
the deep convective process also increases the variance
of the water vapor by introducing localized perturba-
tions (Liao and Rind 1997). Moreover, it was seen in
the analysis of the CRM data that since clouds detrain
high mixing ratios of cloud condensate, they also in-
troduce a significant positive skewness into the distri-
bution of cloud. In the same way, the presence of con-
vective scale downdrafts that inject dry air into the
boundary layer resulted in a negative skewness of the
distribution. However, since the influence of downdrafts
is largely restricted to the PBL, the decision was made
to initially neglect their influence. Only positively
skewed or symmetrical distributions are therefore rep-
resented and this therefore allows the shape parameter
p to be held constant, reducing the number of additional
prognostic equations by one. It is straightforward to
relax this restriction and introduce a further prognostic
equation for p in the future.

The simplest approach is to relate the increase in
skewness to the detrainment of cloud condensate, read-
ily available from most current cumulus parameteriza-
tions, giving

]q K ]
cu cu5 (M r ), (30)c]t rr ]zs

where K is a dimensionless constant, M cu is the updraft
mass flux, and is the mean cloud water in the con-curc

vective updrafts. Here the implicit assumption is made
that k c.cur rc

In cases of overcast sky, the effect of deep convective
detrainment on the distribution width, b 2 a, should
also be taken into account. Since the increase in variance
is associated with increased skewness, the change in the
distribution minimum is much smaller than the change
is the maximum, that is, | Da | K | Db | . Figure 5 il-
lustrates this for the CRM data, which shows that the
variability in a exceeds only that of b in the PBL due
to the action of downdrafts, which are currently ne-
glected in this scheme. The simplification is therefore
made that | Da | 5 0, which using (12) in conjunction
with the new value of q due to convective processes, q
1 Dqconv, calculated from (30), gives:

](b 2 a)

]t
21(r 2 a)(p 1 q 1 Dq )p 2 (b 2 a)t conv5 , (31)

Dt

where Dt is the model time step. This simple treatment
of the effect of the convection could be replaced by a
more comprehensive mass flux approach following Len-
derink and Siebesma (2000) or Lappen and Randall
(2001).

c. Large-scale condensation

In addition to convective and turbulent processes,
cloud can also be created/destroyed by cooling/warming
and by net convergence/divergence of total water. This
has to be consistent with the PDF adopted for rt. In
order to simplify this, the change in total water due to
large-scale advection and other processes Drt is added
uniformly to the total water distribution. This implies
that the cloud mixing ratio after one time step, ( c)t1Dt,r
can be calculated by a simple translation of the PDF, as
the shape factors p and q are not changed. If Drs rep-
resents the change in the saturation vapor mixing ratio
due to the temperature change, then ( c) t1Dt is derivedr
directly from (14) as

(r ) 5 (r 2 a)[1 2 I (p 1 1, q)]c t1Dt t f

1 (a 1 Dr 2 r 2 Dr )[1 2 I (p, q)], (32)t s s f

where f 5 (rs 1 Drs 2 a 2 D t)(b 2 a)21.r

d. Microphysics

Further processes that should be considered are the
microphysical pathways between the various water cat-
egories that are represented in the GCM cloud scheme.
If a cloud is heavily precipitating, for example, the loss
of the cloud water will reduce both the distribution
skewness and variance. The task of representing this is
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FIG. 5. Time series of minimum a (dashed line), mean (dotted), and maximum b (solid) of rt distribution at various
heights for the CRM data.

simplified for the distribution variance because in par-
tially cloudy conditions the variance is a diagnostic
quantity. The microphysical processes will therefore in-
directly alter the distribution width through their action
on c and y .r r

In contrast to the variance equation, the skewness of
the distribution must be explicitly considered. To ac-
curately determine the skewness change, Eq. (13) and
(14) would need to be solved for the forward-stepped
values c 1 D and y 1 D , where D andmicro micro micror r r r rc y c

D represent the change over one timestep due tomicror y

microphysical processes. However, this would require
iteration to solve, involving the nonlinear shape function
q, therefore increasing the numerical expense of the
scheme. It is however possible to make an approxi-
mation by considering the distribution maximum b. If
microphysical processes remove all cloud within one
time step, then the change in the distribution maximum
is simply Db 5 s 2 b. A linearized relationship isr
therefore assumed with

microDr cmicroDb 5 (b 2 r ). (33)sr c

As for the convection source of variance, Eq. (31),
the assumption is again made that for microphysical
processes | Da | K | Db | , which in conjunction with
(33) allows the change in skewness to be expressed via
(12) as

microDr cb 1 (b 2 r ) ps[ ]rc
microDq 5 2 (p 1 q). (34)

r 2 at

e. Tunable constants

The scheme as it stands thus has two tunable con-
stants: K, which specifies how quickly detraining con-
vection increases the skewness of the distribution, and
q0, which defines the shape of the symmetric distribu-
tion eventually adopted in the absence of convection.

As discussed earlier, the distribution will tend to a
symmetrical one, due to horizontal mixing, and there-
fore our choice for q0 will also be imposed on the shape
parameter p, which is held constant in the first version
of the scheme. We select q0 5 p 5 2, which is close
to the lower limit of 1, which defines the bell-shaped
beta distribution regime in order to give a distribution
that meets the zero line sharply without extensive tails.
An example of the p 5 q 5 2 beta distribution was
given in Fig. 2. Based on model tuning, K is set to 10.

f. Summary

To summarize, a prognostic equation is added to the
GCM to represent the evolution of the beta distribution
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FIG. 6. Schematic of how cloud development is represented in new
scheme. (left) An idealized state of the model grid cell; shading
indicates cloud thickness. (right) The associated PDF of rt represented
in the scheme, with the saturated value rs marked as the vertical line.

shape factor q, which can be related to the skewness of
the total water distribution:

microDq K ] Dq
cu cu5 (M r ) 1cDt rr ]z Dts

1 1
1 (q 2 q) 1 . (35)0 1 2t ty h

The other shape factor p is constant in this implemen-
tation. Water vapor, ice and liquid cloud mass mixing
ratio are predicted as previously. Knowing p and q, in
addition to the water vapor and cloud condensate mass,
defines the beta distribution PDF, allowing cloud cover
to be diagnosed using C 5 1 2 (p, q).I(r 2a)/(b2a)s

For clear sky or overcast conditions (C 5 0 or 1) it
is necessary to have one additional quantity to define
the PDF. Therefore an additional equation for the dis-
tribution width (related to the variance of total water)
is added:

D(b 2 a)

Dt
21(r 2 a)(p 1 q 1 Dq )p 2 (b 2 a)t conv5

Dt

h ]r ](b 2 a)t2 w9r9 2 LÏet(b 2 a) ]z ]z

1 1
2 (b 2 a) 1 . (36)1 2t ty h

In partially cloudy conditions the distribution width
is diagnosed and the prognostic quantity is slaved to
this diagnosed value. Both parameters are advected by
the large-scale flow. Equations (27), (28), (29), and (32)
are also added to the water prognostic equations, with
the relevant heat added to the thermodynamical budget.

The function of the scheme is summarized schemat-
ically in (6) and (7) which depict, in an idealized way,
the state of the model grid cell, along with the associated
PDF of rt. Figure 6 shows the situation of convection
detraining at a model layer. At first the grid cell contains
no cloud (a), and the PDF is narrow, almost symmetrical
and lies completely in the region to the left of rs. Con-
vection then detrains cloud mass at this model gridcell
(b), locally moistening, while at the same time the com-
pensating subsidence reduces the relative humidity gen-
erally (Randall and Huffman 1980). In addition, the new
scheme also increases the positive skewness of the PDF
in response. Thus the scheme can predict that a rela-
tively small part of the domain is covered by cloud,
some of which has large condensate mass values due
to the long distribution tail. If the convection then ceas-
es, horizontal mixing (and precipitation processes) will
reduce the mean cloud condensate, and the skewness
will also reduce (c). Evaporation of cloud will increase
the relative humidity. Thus the distribution becomes

more symmetrical, and the cloud fraction can increase.
This, in effect, is representing the transition from a lim-
ited area, optically thick, anvil cloud shortly after deep
convective development, to a situation of thinner cirrus
covering a larger proportion of the grid cell. Finally,
since t , rs, even if precipitation loss ceases, horizontalr
mixing will reduce the distribution width further and
the cloud dissipates (d).

In the above example, the relative timescales of the
cirrus growth and dissipation will, of course, depend on
the relative incipient values of vapor and cloud. For
instance, if the mean total water rt exceeds the saturation
mixing ratio initially, the cloud will not dissipate and
the grid point will tend to overcast conditions (ignoring
losses due to precipitation formation for the sake of
argument). This is portrayed in Fig. 7, where the inital
conditions are overcast, and the entire PDF lies in the
cloudy region (a); hence the relative humidity (RH) is
exactly 100%. If convection occurs in this grid cell it
is possible that the drying associated with the subsi-
dence will cause the RH to fall below 100% in some
parts of the grid cell. Meanwhile the cloud condensate
and skewness will increase as previously. Hence the
PDF will have the appearance depicted in (b), where
part of the domain becomes clear from cloud, while the
other part will contain very thick cloud. As the con-
vective cloud mixes with the surrounding air (PDF nar-
rowing and becoming more symmetrical), it is likely
that overcast conditions will return (c).
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FIG. 7. As for Fig. 6 but for the case where t . rs.r

6. Implementation in a large-scale model

The parameterization has been implemented into the
latest version of the ECHAM GCM (Roeckner et al.
1992, 1996) called ECHAM5, briefly described in the
appendix. The aim of this section is to illustrate the
function of the parameterization in the GCM. More ex-
tensive validation will be performed in a future publi-
cation.

a. One-month experiment

A short 4-week integration of the 3D GCM using T42
resolution and 19 vertical levels was conducted to allow
the examination of high temporal resolution statistics at
individual grid points and detailed snapshots of global
fields.

To illustrate the general function of the scheme, Fig.
8 shows a snapshot of the cloud cover, along with the
skewness of the total water at model level 6 (approxi-
mately 160 hPa) taken on the final day of the integration.
The panels clearly show how skewness values are high-
est in regions of deep convection detrainment, often
exceeding unity. Away from the Tropics, the skewness
is almost zero at this height, with a symmetrical distri-
bution. As expected, the variance (not shown) increases
toward the Tropics as the temperature and humidity in-
creases, but the field also reveals high variance values
associated with convective activity. The signature of
deep convection is apparent in the skewness and vari-
ance fields long after the associated cloud has dissipated.

The second snapshot focuses on the Pacific Ocean
(Fig. 9), and reveals that at 950 hPa the skewness is

instead highest away from the Tropics, in the midlatitude
and subtropical regions that are subject to shallow con-
vection. The distribution width is very closely correlated
to the variance, and marked by localized peaks in trop-
ical areas in which turbulence activity is higher.

Time series are analyzed from two grid points for
different cloud regimes to better illustrate the scheme’s
behavior. The grid points are taken from the western
Pacific to illustrate the behavior in a deep convective
regime, and just off the west coast of South America
for a stratocumulus regime. The exact location of the
grid points is shown in Fig. 10.

1) WESTERN PACIFIC

A time–height plot of cloud cover is shown for the
simulation in Fig. 11, which reveals a prevalence of
high cloud throughout the period produced by deep con-
vection detraining at heights between 300 and 100 hPa.
Boundary layer cloud is occasionally produced by shal-
low convection. To gain a clearer view on how the
scheme is actually functioning, Fig. 12 shows the evo-
lution of cloud cover, the maximum and minimum value
for rt, rs, ice cloud ri, relative humidity (RH), and the
skewness and standard deviation of rt derived from the
beta distribution parameters. The data is taken at level
7 of the model, corresponding to a pressure of 190 hPa,
in the middle of the height range of deep convective
detrainment. The large increase in variance when cloud
is formed is apparent, which remains for a considerable
time while t . rs, since mixing acts to increase cloudr
cover in these cases. The skewness is considerable at
this level, reaching levels of 0.8, although this is lower
than the values reported by Xu and Randall (1996a),
and remains so throughout this period. The RH under-
goes substantial variations, ranging from 20% to satu-
ration. This contrast between convectively active and
break periods has also been documented in observations
(e.g., Brown and Zhang 1997).

The average profiles for the days 10–25 of the ex-
periment are given in Fig. 13. The cloud cover produced
by the scheme of Xu and Randall (1996a) is also shown
for comparison, which we refer to here as the XR
scheme for brevity. It is seen that the mean cloud frac-
tion is almost identical throughout the troposphere, ex-
cept in the upper part of the detrainment zone between
approximately 300 and 100 hPa, where the present
scheme gives a cloud fraction 10% higher than that of
XR. The reason for this is probably the lower skewness
that the present scheme attains, compared to the CRM
data upon which the XR scheme was based. With a
smaller skewness more cloud points are required to ob-
tain the grid-mean cloud mass c. This could be a resultr
of the fact that the skewness of the beta distribution has
an upper bound, which is perhaps insufficient for the
deep convective detrainment zone. It should be strongly
emphasized, however, that this comparison where the
XR scheme is used passively, tests only the suitability
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FIG. 8. (top) Global cloud cover and (bottom) skewness at model level 6 (160 hPa) at day 28 of the 4-week
experiment.

of the PDF. It illustrates that the beta distribution would
provide a good fit to the majority of the data of Xu and
Randall (1996a). Although the cloud fraction predicted
by the two schemes is very similar, it does not imply
that using the diagnostic XR formulation would achieve
the same simulation in the GCM. This is because the
latter scheme does not include the influence of processes
such as turbulence or convection on the distribution
moments, such as in the present scheme and thus its use
actively would produce a completely different evolution
of the model fields.

The other panels of the plot reveal that the scheme
functions as one would expect, with decreasing variance
with height marked by peaks at the convective detrain-
ment zones, RH maxima at the top of the well-mixed
layer and the deep convective detrainment zone, the

latter of which also coincides with the skewness max-
imum, and a reasonable distribution of the ice and liquid
water mean mixing ratios, with a second liquid water
peak corresponding to the level at which limited low-
level cloud occurs.

2) STRATOCUMULUS REGIME

In the second example from the GCM we briefly ex-
amine a grid point to the west of the South American
coast, in a region that typically experiences stratocu-
mulus cloud. A low-level cloud layer is indeed formed
at this location (not shown) although it is poorly re-
solved with the climate model’s standard vertical res-
olution.

Examining the evolution of cloud cover and the rt
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FIG. 9. (top) Distribution width (b 2 a) and (bottom) skewness at model level 16 (950 hPa) at day 28 of the 4-
week experiment for the Pacific basin.

distribution minimum and maximum compared to rs for
an 8-day section through the cloud at model level 17
(970 hPa) reveals the way turbulence can act to create
or destroy cloud in the new scheme (Fig. 14). At day
12, the distribution minimum exceeds the saturation
mixing ratio and the cloud cover is correspondingly
100%. About 18 h later, turbulent activity acts to in-
crease the distribution width considerably, breaking up
the overcast cloud layer, with the cloud cover falling
briefly below 40%. The turbulent dissipation of variance
quickly acts to reduce the distribution width, and since

t . rs at this time, this increases the cloud fractionr

back toward overcast conditions in the following few
hours. This occurs repeatedly over the following few
days. At day 17 the model at this grid point dries con-
siderably, and clear sky conditions prevail. Now the
situation is reversed, and the occurrence of increased
turbulent activity with an associated distribution width
increase on day 17.7 causes the distribution maximum
to exceed rs, creating cloud with short lifetimes. Thus
the creation of small-scale cloud at the top of boundary
layer turbulent eddies is also seen to be well represented
in the new scheme, despite the coarse vertical resolution
used.
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FIG. 10. Global map showing land–sea mask for climate model and the location of the two grid points analyzed in
the western Pacific warm pool (1) and off the west coast of South America (2).

FIG. 11. A 25-day time–height section of cloud fractional cover at the western Pacific grid point. Cloud-fraction contour values are 0.2,
0.4, 0.6, 0.8, and 1.0.
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FIG. 12. (upper left) Time series of cloud cover, (upper right) the minimum and maximum values of total water (rt) (a and b, respectively)
and the saturation mixing ratio (rs), (middle left) ice cloud ri, (middle right) relative humidity (RH), (lower left) skewness, and (lower right)
standard deviation of rt. The data are from level 7 of the model at the western Pacific grid point, corresponding to a pressure of 190 hPa.

In the earlier review of observational literature, it was
stated that Wielicki and Parker (1994) found liquid wa-
ter paths to be exponentially distributed without a dis-
tribution peak in low cloud cover conditions while in
high cloud cover cases the distribution was more Gauss-
ian-like, usually with a distinct peak. The new param-
eterization reproduces this behavior (not shown) for ob-
vious reasons. When cloud cover is high the total water
distribution lies mostly to the right of the saturation
point, and a peak in liquid water path is produced. For
small cloud fractions only the distribution tail is ob-
served in terms of liquid water path observations.

b. Climate experiments

Two 20-yr climate simulations were performed at T42
resolution initialized on 1 January 1979. One experi-
ment uses the new prognostic cloud scheme described
in this paper, and the second instead parameterizes cloud
cover with the previous diagnostic relative humidity
scheme of Lohmann and Roeckner (1996).

The mean total cloud cover from these experiments

is compared to the International Satellite Cloud Cli-
matology Project (ISCCP) total cloud cover data be-
tween 1983 and 1990 (Rossow and Schiffer 1991; Fig.
15). It is apparent that both schemes capture the cli-
matological distribution of cloud cover reasonably well,
but also that both suffer from similar biases. There is
an overestimation of cloud in the tropical and subtrop-
ical Pacific, and also over equatorial land regions, es-
pecially Africa and the Americas. These errors are close-
ly linked with the activity of deep convection, with con-
vection apparently persistently overactive in a narrow
belt over the intertropical convergence zone, for ex-
ample.

Generally, the model has a tendency to have positive
biases in regions of high cloud cover, and negative bi-
ases in regions of low cloud cover. One possible reason
the contrast could be too large is an overrepresentation
of cloud–radiative feedback, which has been postulated
as important in intensifying tropical dynamical circu-
lations such as the Hadley and Walker Cells (Raymond
2000) and was found to strongly organize convection
on small scales in CRM experiments (Tompkins and
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FIG. 13. As for Fig. 12 but showing the mean for days 10–25. The cloud cover calculated using the scheme of Xu and Randall (1996a) is
superimposed, and the mean liquid mass mixing ratio is also shown in addition to cloud ice.

Craig 1998). Bergman and Hendon (2000) estimate that
cloud–radiative feedback contributes 20% to low-level
dynamical circulations. An additional glaring bias in the
simulations is the lack of cloud in the stratocumulus
regions in the eastern Pacific and Atlantic Oceans.

Comparing the two schemes (lower-right panel), it is
found that the prognostic scheme results in an almost
global improvement in the cloud simulation, with the
possible exception of the polar regions, for which the
observational data is less reliable. The cloud contrast is
systematically reduced, with reduced biases over the
subtropical oceans, and to a limited extent over tropical
Africa. The most noticeable improvement to the cloud
simulation lies in the stratocumulus regions off the west
coasts of all major continents, which show cloud cover
increases of up to 25%, although these cloud regimes
are still underrepresented. The direct link with the phys-
ical components of the model, such as the turbulence
scheme, permits such localized improvements to the
simulation, as conjectured in the introduction.

A good match is also reproduced when the model
liquid water path (LWP) and long-wave cloud forcing

are compared to the Special Sensor Microwave/Imager
(SSM/I data; mean for 1987–91; Greenwald et al. 1993;
Fig. 16) and the Earth Radiation Budget Experiment
(ERBE) data (1985–88) (Ramanathan et al. 1989; Fig.
17), respectively. In both cases the difference between
the new prognostic scheme described here and the pre-
vious diagnostic scheme is marginal, although a no-
ticeable improvement is seen for the LWP. It should be
stressed that these comparisons are not regarded as a
rigorous validation of the cloud scheme, although they
do give confidence that the GCM including the new
scheme reproduces certain cloud statistics reasonably
well for the present climate.

7. Conclusions

A new prognostic scheme has been developed for
large scale models that represents the subgrid-scale var-
iability of water vapor and cloud, and is used to diagnose
cloud cover in the spirit of previous statistical schemes.
The advantage of statistical schemes is that, as long as
a reasonable PDF form is used, the predicted cloud cov-
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FIG. 14. (top) Time series of cloud cover. (bottom) The minimum and maximum value for rt, (a and b, respectively) and the saturation
mixing ratio (rs). The data are from level 17 of the model at the eastern Pacific grid point, corresponding to a pressure of approximately
970 hPa.

er is always consistent with the relative amounts of wa-
ter vapor and cloud condensate in the model.

The scheme has several original aspects. First, a PDF
has been used to describe the variability of total water
that has the properties of being bounded and can flexibly
produce both positively and negatively skewed distri-
butions in addition to Gaussian-like symmetric distri-
butions. The PDF was able to reproduce the rt distri-
bution from high-resolution CRM tropical deep con-
vection experiments reasonably well, with the exception
that the small areas of large cloud condensate were
sometimes underestimated. A brief review of the ob-
servational literature appeared to show that the beta
function could be reasonably applied in the majority of
observed cases, in a variety of atmospheric conditions.

Another new aspect of this scheme is that it introduces
the higher-order moments of skewness and variance as
separate prognostic variables, so that the distribution of
the total water rt evolves in time. Specifically, the phys-
ical processes affect the distribution of rt as follows:

• Detrainment from deep convective updrafts increases

the positive skewness of the total water distribution
and also the distribution width.

• Vertical turbulence increases the width of the distri-
bution in the presence of a vertical rt gradient, trans-
ports variance, and dissipates variance and skewness
in the PBL on an turbulent eddy-related timescale.

• Microphysical processes reduce the skewness of the
distribution and implicitly the distribution width.

• Horizontal subgrid-scale turbulence caused by hori-
zontal wind shear instability decreases the distribution
skewness and variance, albeit on a much slower time-
scale than the PBL dissipation by vertical turbulence.

The new scheme has been successfully implemented
into the Max Planck Institute global climate model,
ECHAM5, and produces realistic distributions of
clouds. The scheme improved various aspects of the
climate simulation, most noticeably producing a marked
improvement in the representation of stratocumulus re-
gimes.

One further advantage of a prognostic statistically
based scheme is that it can be easily expanded to include
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FIG. 15. (upper left) Mean total cloud cover from a 20-year T42 climate run using the new prognostic scheme, (middle left) previous RH
diagnostic scheme, and (lower left) mean ISCCP total cloud cover (1983–90). (right column) The difference between the respective simulations
and observations (note gray shade scale).

other physical processes, and also that the information
concerning the higher-order moments can be used by
other model parameterizations such as the microphysics
and radiation schemes, for example. This can lead to
increased consistency between model components and
reduces the overall number of model ‘‘tunable’’ param-
eters.

Specifically, the following aspects will be investi-
gated for future inclusion:

• The effect of gravity wave activity in increasing sub-
grid-scale variance.

• The effect of convective downdrafts on increasing
lower-tropospheric negative skewness and variance.

• The consistent inclusion of subgrid-scale temperature
variability.

• The relaxation of the zero supersaturation assumption
for the ice phase.

• Taking into account the information related to water
vapor and cloud variability in the calculation of ra-
diative fluxes.

• Using information concerning subgrid-scale variabil-

ity of temperature and water in the PBL for the con-
vection parameterization scheme. Thus, a grid cell
with a lower mean equivalent potential temperature
( ) than its neighbors could still initiate convectionue

in preference if its distribution was broader, due, per-
haps, to previous convective activity.

• Taking the variability of cloud into account for mi-
crophysical processes such as precipitation generation.

Finally, we note that while improving certain aspects
of cloud simulation, and offering good scope for future
improvement, the present scheme does nothing to tackle
other cloud modeling issues that are equally important,
such as overlap assumptions (e.g., Jakob and Klein
1999; Morcrette and Jakob 2000) and vertical subgrid-
scale variability. In fact, such issues become more com-
plex if horizontal variability is taken into account.
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FIG. 16. Zonal mean liquid water path in GCM climate runs using new prognostic and previous diagnostic cloud
scheme, compared to SSM/I retrieval (1987–91 mean).

FIG. 17. Zonal mean longwave cloud radiative forcing in GCM climate runs using new prognostic and previous
diagnostic cloud scheme compared to ERBE-derived value (1985–88 mean).
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APPENDIX

Description of Numerical Models

a. Cloud-resolving model

The CRM used is the Met Office large eddy simu-
lation model, described in detail in Shutts and Gray
(1994) and Tompkins and Craig (1998). The CRM in-
cludes a microphysical scheme that integrates prognos-
tic equations for rain, snow, cloud water, cloud ice, and
graupel mixing ratios, and also the ice crystal concen-
tration number (Brown and Swann 1997). The cloud
fields used in the analysis are taken from the numerical
experiment of Tompkins (2001a), which used a 89.6 by
89.6 km three-dimensional domain, approximately 21
km deep. Thus this domain size is on the order of a
high-resolution GCM grid box. The horizontal resolu-
tion employed in the CRM experiment was 350 m, while
50 vertical levels were used to resolve the microphysical
processes (Tompkins and Emanuel 2000), with a reso-
lution stretching from 100 m at the surface to 500 m in
the upper troposphere. The experiment lasted 24 h, start-
ing from a realistic and dynamically active cloud field,
with a constant imposed radiative cooling of 2 K day21

providing the forcing for convection. No large-scale
convergence, vertical wind shear, or rotation was im-
posed.

In addition to this dataset, the distributions of rt were
also examined using the coarser resolution (2 km), large-
domain (over 1000 km in length) dataset from Tompkins
(2001b), in which several configurations involving ver-
tical wind shear and large-scale sea surface temperature
gradients were utilized, although the results are not re-
produced in this article for reasons of brevity. It was
found that these simulations also produced similar un-
imodal distributions, sometimes with minor cloudy sec-
ondary peaks, for which the beta distribution generally
offered a good fit. The case with a strong vertical wind
shear (cf. Tompkins 2001b) resulted in the poorest fit
using the beta distribution.

b. General circulation model

The cloud scheme was implemented into the latest
version of the Climate GCM of the Max Planck Institute
for Meteorology, called ECHAM5. Previous versions of
it have been successfully applied to wide variety of
climate related topics (e.g., Chen and Roeckner 1997;
Lohmann and Feichter 1997; Manzini et al. 1997; Bach-
er et al. 1998; Moron et al. 1998). The main model
physics is described in detail by Roeckner et al. (1992)
and Roeckner et al. (1996). The standard model uses a
bulk mass-flux convective parameterization scheme

based on Tiedtke (1989), containing separate represen-
tations of shallow and deep convection, modified ac-
cording to Nordeng (1994) to make deep convective
cloud-base mass flux a function of the convective avail-
able potential energy. Surface fluxes of heat and mois-
ture are calculated using Monin–Obukhov similarity
theory.

Additions to the new ECHAM5 code include a cloud
microphysics scheme including a prognostic treatment
of separate cloud ice and liquid cloud variables (Loh-
mann and Roeckner 1996), and the implementation of
the Spitfire advection scheme (Rasch and Lawrence
1998) and a modified radiation parameterization (Mlaw-
er et al. 1997). For the implementation experiments con-
ducted in this paper, the standard 19-level vertical grid
is used to be consistent with previous ECHAM inves-
tigations, but Tompkins and Emanuel (2000) have
shown this to be inadequate to resolve all the micro-
physical processes, and thus future testing will be con-
ducted at higher vertical resolutions.

c. Notes on implementation

Concerning the implementation of the new scheme,
a new routine was added that was called at the beginning
of each time step to diagnose cloud cover. At grid points
where rc 5 0 or ry $ rs, the cloud cover is set to zero
or one, respectively, and the distribution minimum and
maximum are calculated directly from t, q, and b 2r
a. For the other partially cloudy grid points, iteration is
used to calculate a from Eq. (16), from which b and
hence the width b 2 a are simple to derive. Ridder’s
method was chosen (Press et al. 1992) to perform the
iteration since the method is efficient, numerically very
robust, and requires only the distribution limits to be
known, and not the function’s derivative. For compu-
tational efficiency, a lookup table was introduced for Ix

with simple linear interpolation applied between table
entries. The iteration is bounded by the constraints 0 ,
a , MIN( t, rs) and b . rs.r

Since some of the processes (e.g., microphysics) af-
fect the distribution variance implicitly rather than ex-
plicitly, the diagnosed value for b 2 a resulting from
the iteration will sometimes differ from the current value
held in the prognostic variable. This difference is added
to the tendency equation for b 2 a such that it would
equal the diagnosed value after exactly one time step
in the absence of other processes.

Note that unless additional precautionary measures
are taken, there is nothing to prevent a combination of
p, q, t, and c arising that could result in negative waterr r
vapor values, that is, a , 0. When this occasionally
occurs, an additional appropriate mass of cloud con-
densate is evaporated to restore the distribution to a
physically valid bound (a 5 0) over the following time
step. An additional safety check at the beginning of each
time step ensures that the distribution width is consistent
with the values of humidity and cloud. If the distribution
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width implies partially cloudy conditions, when in fact
clear sky (rc 5 0) or overcast (ry 5 rs) conditions pre-
vail, the distribution width is adjusted as necessary using
the conditions b 5 rs or a 5 rs, respectively.

For the variance equation, the transport of variance
by vertical turbulence [second term of Eq. (20)] is
solved implicitly in the model’s diffusion scheme in the
same way as for the other prognostic quantities. Since
the vertical turbulent timescale for dissipation of vari-
ance, ty is much shorter than the model time step, and
also because the change in variance is a small residual
of large production and dissipation terms in the PBL,
the other terms in Eq. 20 are also solved implicitly, [as
in Tiedtke 1993, Eq. (39)], in order to avoid numerical
instability problems. The timescale for the horizontal
mixing term th is not allowed to exceed 20 days since
it is assumed that residual eddies will always be present
even in cases of zero horizontal wind shear.

Although the dissipation by horizontal and vertical
turbulence could in theory lead to zero variance (i.e.,
homogeneous distribution), in reality this limit will nev-
er be attained, due to residual gravity wave activity, for
example. In practice this is in any case undesirable, since
numerical inaccuracies (e.g., advection of the variance
field) could lead to negative values and ensuing nu-
merical problems. We therefore impose a small, but non-
zero, lower limit to distribution width of 0.1 y. Apartr
from the overhead of carrying an additional two prog-
nostic equations, the scheme was found to have a 2%
computational cost at T42 resolution on a scalar ma-
chine.
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