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We outline a field theory on a multifractal spacetime. The measure in the action is characterized by a

varying Hausdorff dimension and logarithmic oscillations governed by a fundamental physical length.

A fine hierarchy of length scales identifies different regimes, from a microscopic structure with discrete

symmetries to an effectively continuum spacetime. Thanks to general arguments from fractal geometry,

this scenario explicitly realizes two indirect or conjectured features of most quantum gravity models: a

change of effective spacetime dimensionality with the probed scale, and the transition from a funda-

mentally discrete quantum spacetime to the continuum. It also allows us to probe ultramicroscopic scales

where spectral methods based on ordinary geometry typically fail. Consequences for noncommutative

field theories are discussed.
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The idea that spacetime is fractal has been enticing the
community for almost 40 years. The reasons beyond this
concept and the way to realize it greatly varied from author
to author [1,2], but the common denominator was a general
lack of contact with physical applications. This may be due
to the too-formal or too-heuristic character of the models,
or simply because the full consequences of a spacetime
with fractal geometry were not fully appreciated. Recent
developments in quantum gravity stressed that theories
on effective spacetimes with a certain fractal-like feature
are typically ultraviolet (UV) finite [3]; we mention causal
dynamical triangulations (CDT), asymptotic safety,
Hořava-Lifshitz gravity, and spin foams. This feature is
dimensional flow: the spacetime spectral dimension
changes from dS � 2 at small scales to dS ¼ 4 at large
scales. The smaller effective dimension in the UV is re-
sponsible for the finiteness (or renormalizability) of the
models. Although its physical consequences are clear by
now, this phenomenon is an indirect property with no
obvious origin. Moreover, the spectral dimension was cal-
culated at different individual scales, but no control has
been exercised over dimensional flow as a whole. In an
attempt to realize it as a direct and controllable property of
spacetime, in [4] a class of field theories was constructed
where the action displays an exotic measure with anoma-
lous scaling. However, there were several unclear points,
including the relation between this type of continuum
measure and genuine fractal geometry, the way to realize
dimensional flow concretely, and the role of symmetries.
Starting from the same motivations of [4], here we take the
lessons from fractal geometry further seriously, and con-
struct a nontrivial geometry via fractional calculus. The
latter is an extremely rich compromise between full-
fledged fractal geometry (to which it is related by precise
approximation schemes [5]) and phenomenological con-
tinuum scenarios. Not only does this model allow us to
answer most of the elementary questions raised in [4], but
it is also endowed with a surprising wealth of novel

physical (and calculable) features with, possibly, long-
range consequences for quantum gravity and noncommu-
tative field theories. First, dimensional flow is implemented
in a genuine all-scale fashion by a multifractal, self-similar
measure. Second, the dimension of spacetime in the infra-
red is four by geometric requirements, not by assumption.
Third, in the UV the theory is equipped with discrete
symmetries which progressively melt into a continuum
structure as the scale increases; this transition is only
conjectured in discrete quantum gravity approaches, and
is crucial to make them viable models of nature. Fourth, at
ultramicroscopic scales we are still in full control of the
geometry, while methods based on intuitive geometric
properties were unable to enter this regime of ‘‘fuzzy’’
spacetime. At these scales, connections with CDT and
noncommutative geometry begin to emerge.
All these achievements simply stem (i) from an appli-

cation of the standard lore of fractal geometry and frac-
tional calculus to a field theory context, and (ii) from the
consequent reinterpretation of these tools in the spacetime
arena. Mathematical details of the model will be given in
two longer publications [6]. Presently, we sketch the global
physical picture for the general reader, with the hope to
elicit interest in its applications. Contrary to [4], we do not
include gravity and concentrate on the fractional analogue
of Euclidean and Minkowski spaces.
Fractal regime.—Proceeding from small to large scales,

at a deep microscopic level spacetime is assumed to be a
multifractal structure F described by standard tools of
fractal geometry [7,8]. This set is defined by a countable
(possibly finite) number of transformations Si which leave
F invariant. Fractals admit both an implicit definition or
can be conceived as embedded in an ambient space. A
prototypical example is given by self-similar sets. Let the
embedding space be spanned by coordinates x, and let
SiðxÞ ¼ �ixþ ai be N similarities, where �i > 0. As it
happens for fractals, these symmetries are discrete; a one-
dimensional case is the middle-third Cantor set, which is
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invariant under scaling transformations of strictly-fixed
ratios �1;2 ¼ 1=3. F is constructed taking sequences

of similarities and the intersection of sets F k ¼
Si1 � � � � � SikðUÞ for any U � F . Let 0< gi < 1 be N

probabilities such that
P

igi ¼ 1. One can imagine to
distribute a mass on setsF k � F by dividing it repeatedly
in N subsets of F k, in the ratios g1: � � � :gN . This defines
a self-similar measure % with support F , such that
%ðF kÞ ¼ gi1 . . . gik and, for all sets A � F ,

%ðAÞ ¼ XN

i¼1

gi%½S�1
i ðAÞ�: (1)

There is a highly nontrivial interplay between points
‘‘inside’’ the fractal and its boundary; this topological
information is encoded in the so-called harmonic structure,
and it is instrumental for a rigorous definition of the
Laplacian operator on F . Together, geometric (i.e., sym-
metry) and harmonic structures determine the Hausdorff
dimension of the set at any given scale, plus other parame-
ters later to appear. If spacetime is multifractal, the support
of the measure may be highly disconnected. We identify
this fundamental regime by a generic self-similar measure
(1), without specifying its details. A field theory on such a
set is formally described by the action

S ¼
Z

d%ðxÞL; (2)

where the Lagrangian density L contains any suitable
choice of fields and differential operators allowed by the
symmetries. Indeed, one can build a field theory on a
fractal [2], but there are two issues with that. On one
hand, the mathematical status of any such construction
has not been completely developed yet and, on the other
hand, it is technically hard to make contact with manage-
able physics. This is the point where fractional calculus
comes into play.

Log oscillations.—A fundamental result of spectral
theory on deterministic fractals is that the heat kernel
on F displays logarithmic oscillations of period �! [8].
Intuitively, this is due to the high degree of symmetry ofF ,
where symmetry parameters and probability weights are
fixed by default. These symmetries are unknown to con-
tinuous systems or artificially discrete systems such as
lattices, and go under the name of discrete scale invariance
(DSI). A DSI is a dilation transformation under arbitrary
powers �n

! of a preferred, special scaling ratio �! [9].
Log-periodicity and the associated DSI appear, e.g., in
analyses of earthquakes and financial crashes, out-of-
equilibrium and quenched disordered systems, phase tran-
sitions, and Lévy flights. Such systems do have a fractal
structure, but the associated spectral functions have an
oscillatory behavior, unusual from the point of view of
conventional geometry. However, geometry is indeed

well defined, and it is the purpose of this letter to
implement these basic ideas in a model of spacetime. In
the most general case, the number of the scaling ratios �!

is infinite and governed by a multiplicity of frequency
modes !, determined by the geometric and harmonic
structures. The periodic function in the heat kernel is not
real-valued and this corresponds to an effective complex
dimension of the fractal F (on purpose, we do not specify
which definition of dimension; see [6]). To illustrate the
main features of the proposal, it is sufficient to consider a
measure %�;!ðxÞ characterized by: (i) a set of nonnegative

modes ! � 0, (ii) a real parameter 0 � � � 1, (iii) a
combination of real coefficients A�;! and B�;! such that

the measure is real-valued (then, we say the measure is
self-conjugate). The form of these coefficients can be
specified by fractional calculus and is not important here.
For each direction x ¼ x� in spacetime, at any given � and
! we have

%�;!ðxÞ ¼ x�

�ð�þ 1Þ
�
1þ A�;! cos

�
! ln

x

‘1

�

þ B�;! sin

�
! ln

x

‘1

��
; (3a)

where ‘1 is a fundamental scale (or, in other words, a
microscopic cutoff) forcefully introduced to make the
arguments dimensionless. This measure is natural in frac-
tional calculus of order �þ i! and well approximates
many features of fractal sets. While real-order measures
realize either random fractals or deterministic fractals in
the limit where most of the probability weight is concen-
trated in one portion of the set, complex-order calculus also
accounts for the oscillatory structure [5].
Given an embedding space with D topological dimen-

sions, the total integration measure reads

d%ðxÞ ¼ X

�

g�
X

!

Y

�

d%�;!ðx�Þ; (3b)

where we also sum (or integrate) over �. For each %�;!,

oscillations are governed by a dimensionless scale

�! ¼ expð2�=!Þ: (4)

Notice the nonperturbative dependence on the frequency.
The oscillatory part of Eq. (3) is log-periodic under the
discrete scaling transformation lnðx=‘1Þ ! lnðx=‘1Þ þ
2�n=!, n ¼ 0; 1; 2; . . . , implying

x ! �n
!x; n ¼ 0; 1; 2; . . . : (5)

The characteristic (as opposed to fundamental) physical
scale associated with �! is ‘! ¼ �!‘1 > ‘1. In the
Euclidean case, � ¼ 1; . . . ; D and the embedding space
is the positive orthant RDþ with the origin, x� � 0. In
the case with Lorentzian signature, � ¼ 0; . . . ; D� 1
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and the embedding space is the positive orthant of
Minkowski spacetime. The sets x� ¼ 0 and x� ¼ þ1
are the boundary of the embedding space and of the
set F . A fractional spacetime F is defined by the embed-
ding, the measure (3), a calculus which determines the
differential operators in the Lagrangian density L, and a
set of symmetries.

Fractional field theories can be regarded as effective,
i.e., ‘‘hydrodynamical’’ approximations of microscopic
discrete theories known to display dimensional flow, such
as those of [3]. On the other hand, our model can propose
itself also as fundamental, in which case one should take
care of its UV finiteness.

In complex self-conjugate fractional models, there exists
a hierarchy of length scales ‘1 < f‘!: 0 � ! � !	g< ‘	,
where only ‘1 is fundamental. The others will be called
just ‘‘characteristic’’ and divide nonperturbatively differ-
ent regimes. We describe qualitatively each of these re-
gimes, leaving the details to [6]. For simplicity, we
consider only two modes, the zero-mode ! ¼ 0 and one
nonvanishing positive mode !> 0.

Boundary-effect regime.—Here geometry is given by the
continuum approximation (3) with discrete scale invari-
ance, but boundary effects are important: this happens
when x=‘1 
 1. Expanding Eq. (3) around this point and
dropping a constant term, we have %�;!ðxÞ ¼ C!;� lnxþ
Oðx=‘1Þ, for some calculable, real, finite normalization
constant C!;�, so that the measure becomes

%ðxÞ 
 lnx; ‘
 ‘1: (6)

This is not the same as taking the limit ! ! 1, which
is not well defined. Thus, the effective integration
measure is of the form d%�;!ðxÞ 
 vBEðxÞdDx :¼
ðx0x1 � � � xD�1Þ�1dDx. This opens up the possibility to
link together fractional and noncommutative spaces, in
particular �-Minkowski. Imposing a cyclicity-inducing
measure weight v�ðxÞ in �-Minkowski yields the condi-
tions @i½xiv�ðxÞ� ¼ 0, @0v�ðxÞ ¼ 0. If one further imposes
rotational symmetry, in D� 1 dimensions, one obtains
v�ðxÞ ¼ jxj1�D [10]. However, this is not motivated
by strict physical arguments, so another solution is
v�ðxÞ ¼ vBEðxÞ without the time coordinate. It is natural
to establish a relation between �-Minkowski and fractional
models in the boundary-effect regime, with integer time
direction. The fundamental scale of �-Minkowski (what
noncommutativists would call ‘‘the Planck length’’) is then
identified with ‘1 ¼ ‘Pl. An independent argument lead-
ing to the same conclusion is given in [6]. Since the period
of the oscillations is given by the geometry of the set, we
see the suggestive possibility to obtain the Planck length
purely from symmetry.

Oscillatory transient regime.—In the range ‘1<
‘ � ‘	, one should take the full form of Eq. (3b). The
notion of dimension is defined only as an average over
log-oscillations. Since the main symmetry of the theory is

DSI, scenarios with self-conjugate measures can be re-
garded as nonperturbative, discrete models of spacetime.
Consistently with (5), to get the continuum limit one
should send the frequency to zero from above, so that the
length cutoff vanishes: ‘! ! 0 as ! ! 0þ.
Multifractional regime.—At mesoscopic spacetime

scales ‘! � ‘ & ‘	, one neglects boundary and oscilla-
tory effects. The geometry is multifractional. To see this,
one notices that at scales much larger than the period
one can take the average of the measure %�ðxÞ :¼
h%�;!ðxÞi / x�. Then, the average of the oscillations is

zero and one remains only with the zero mode. The total
integration measure is

d%ðxÞ 
X

�

g�d%�ðxÞ; ‘1 � ‘ & ‘	: (7)

Picking only the zero mode corresponds to randomize
the fractal structure. For a fixed �, the Hausdorff dimen-
sion of spacetime is dH ¼ D� � D. This means that
the Euclidean volume of a D-ball of radius R scales as
V 
 RD�; this is apparent from the scaling of the measure,
but it is found rigorously in [6]. At this point, we have to
quote some results obtained in that paper.
(i) Just like the oscillatory structure in the full measure,

the sum over � in Eq. (7) is motivated by fractal geometry.
In particular, multifractal measures are of this form [7],
where the g� are nothing but the probability weights of
Eq. (1), labeled by �. From the perspective of field theory,
the g� are coupling constants attached to different opera-
tors, and the total multifractional action does coincide,
quite naturally, to what one would get from renormaliza-
tion group (RG) arguments: S ¼ P

�g�
R
d%�ðxÞL�,

where L� contains a finite set of operators. (ii) The range
of � is dictated by the requirement that fractional space-
time has a natural norm. This happens if � � 1=2.
(iii) The dimension of spacetime changes with the scale.
The coefficients g� are dimensionful, in order for S to
be dimensionless. Then, they determine the scale at
which geometry changes. Consider a simplified model
with one such scale ‘	. A D-ball of radius R would have

volume V ¼ ‘D�1	 ½�D;�1
ðR=‘	ÞD�1 þ�D;�2

ðR=‘	ÞD�2�,
where �1 <�2 and �D;� are dimensionless coefficients.

For a small ball (R � ‘	), V 
 RD�1 , while for a large

ball (R � ‘	), V 
 ~RD�2 , where ~R ¼ R‘�1þ�1=�2	 is the
radius measured in macroscopic length units.
(iv) In this phase, continuous symmetries emerge. In

fact, while the zero-mode part of the measure clearly
breaks ordinary Poincaré invariance, it is invariant under
nonlinear transformations of the embedding coordinates
x� which preserve the fractional line element [6]. As a
matter of fact, fractional spacetimes with fixed � admit a
very natural set of ‘‘geometric coordinates’’ given by
(index � omitted) qðxÞ :¼ %�ðxÞ ¼ x�=�ð�þ 1Þ. Since
these coordinates coincide with the measure along each
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direction, the measure in the total action at each � is
invariant under the affinity

q0�ðxÞ ¼ ~��
� q

�ðxÞ þ ~a�; (8)

where ~a� is a constant vector and ~��
�
~��
� ¼ �

�
� are Lorentz

matrices. In this respect, fractional spacetimes can be
argued to be self-affine sets in geometric coordinates. If
the fractional symmetry is imposed also toL�, one obtains
a ‘‘fractional symmetry scenario’’ where the proliferation
of operators is severely restricted scale by scale. This
situation is different from Lorentz-invariant field theory,
which is endowed with a symmetry group fixed all along
the RG flow. A hybrid scenario, which we call ‘‘fractional/
integer,’’ maintains Eq. (8) only as a symmetry of the
measure, while the LagrangianL� is made covariant under
ordinary Poincaré transformations. This corresponds to a
different definition of the UV Laplacian/d’Alembertian,
which may not be unique [6].

(v) The UV and infrared Hausdorff dimensions of
spacetime are tightly related to each other. One of the
original motivations of [4] was to obtain a theory where
the UV dimension be 2, in accordance with the phenome-
non of dimensional flow in independent quantum gravity
scenarios [3]. The deep reasons why number 2 is special
lie in the UV finiteness of all these models, but there
also exists a heuristic argument singling it out of all the
possibilities. Including Planck’s constant ℏ, the electron
charge e, Newton’s constant G, and the speed of light
c, one can construct a dimensionless constant in a space-

time of Hausdorff dimension dH as C ¼ ‘2ð3�dHÞ
Pl edH�2

GðdH=2Þ�1c2ð2�dHÞ, where ‘Pl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏG=c3

p
is the Planck

length. Remarkably, in dH ¼ 2 the fundamental constant
coincides with (the square of) the Planck length, C ¼ ‘2Pl,
while all the other couplings disappear. Now, it turns out
that, at least for the fractional/integer symmetry scenario,
the theory has a critical point at � ¼ �	 ¼ 2=D, corre-
sponding to dH ¼ 2. If �	 is also the lowest possible �,
where dimensional flow stops, then one must have D ¼ 4.
Thus, four dimensions are selected by geometry argu-
ments. To summarize, at microscopic scales much larger
than a log-period ‘! but smaller than 
‘	, spacetime is
effectively two-dimensional with well-defined fractional
geometry, given by the measure

%ðxÞ 
 %1=2ðxÞ / x1=2; ‘! � ‘ & ‘	: (9)

Classical regime.—Finally, at scales larger than the
characteristic scale ‘	, ordinary field theory on
Euclidean/Minkowski spacetime is recovered:

%ðxÞ 
 %1ðxÞ ¼ x; ‘ � ‘	: (10)

The number of topological dimensions is theoretically
constrained to be four. In this regime, the theory is almost
Poincaré invariant in the standard sense, the Hausdorff
dimension of spacetime is dH ¼ 4� 	, and Euclidean
geometry in local inertial frames gets tiny corrections.
Bounds on the parameter 	 can be taken from the literature
of dimensional regularization models; one roughly obtains
j	j< 10�8 at scales ‘
 10�15 m. The characteristic
scale ‘	 < 10�18 m can be constrained by particle physics
observations.
Discussion.—Thanks to a close inspection of the fractal

properties of fractional models, we have been able to
formulate a concrete realization of dimensional flow.
This phenomenon was only conjectured in previous papers
on fractal spacetimes, due to the difficulty in understanding
dimensional properties even at a fixed scale (here, fixed �).
The results obtained here should allow us to begin a
detailed study of the multifractional regime with RG tech-
niques. Apart from the natural realization of a discrete-to-
continuum transition in spacetime, other challenging issues
in theoretical physics could be reinterpreted under a novel
perspective. First, due to the nonperturbative exponential
law (4), it may be possible to relax the hierarchy problem.
Second, the extension of fractal models to gravity are likely
to have notable consequences on inflation (which can be
replaced by the alternative mechanism of dimensional
flow) and the big bang problem (what is the role of measure
oscillations near the singularity?). Third, there exists a
mapping between general fractional models with exotic
power-law measure %� and noncommutative spacetimes
with algebras more general than �-Poincaré [11]. Finally,
oscillatory measures can have concrete applications in
quantum gravity approaches such as CDT. One might be
able to provide further geometrical insights into the
crumpled phase (phase B) and the branched-polymeric
phase (phase A) of the CDT phase diagram [12], corre-
sponding, respectively, to configurations in the near-
boundary regime (formally similar to the structureless limit
� ! 0 in the averaged measure) and to the oscillatory
regime.
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