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In this paper we examine the neurobiological correlates of syntax, the processing of structured sequences,
by comparing FMRI results on artificial and natural language syntax. We discuss these and similar find-
ings in the context of formal language and computability theory. We used a simple right-linear unifica-
tion grammar in an implicit artificial grammar learning paradigm in 32 healthy Dutch university students
(natural language FMRI data were already acquired for these participants). We predicted that artificial
syntax processing would engage the left inferior frontal region (BA 44/45) and that this activation would
overlap with syntax-related variability observed in the natural language experiment. The main findings of
this study show that the left inferior frontal region centered on BA 44/45 is active during artificial syntax
processing of well-formed (grammatical) sequence independent of local subsequence familiarity. The
same region is engaged to a greater extent when a syntactic violation is present and structural unification
becomes difficult or impossible. The effects related to artificial syntax in the left inferior frontal region
(BA 44/45) were essentially identical when we masked these with activity related to natural syntax in
the same subjects. Finally, the medial temporal lobe was deactivated during this operation, consistent
with the view that implicit processing does not rely on declarative memory mechanisms that engage
the medial temporal lobe. In the context of recent FMRI findings, we raise the question whether Broca’s
region (or subregions) is specifically related to syntactic movement operations or the processing of hier-
archically nested non-adjacent dependencies in the discussion section. We conclude that this is not the
case. Instead, we argue that the left inferior frontal region is a generic on-line sequence processor that
unifies information from various sources in an incremental and recursive manner, independent of
whether there are any processing requirements related to syntactic movement or hierarchically nested
structures. In addition, we argue that the Chomsky hierarchy is not directly relevant for neurobiological
systems.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

The human capacity for language and communication is sub-
served by a network of brain regions that collectively instantiate
the semantic, syntactic, phonological and pragmatic operations
necessary for adequate language comprehension and production.
A growing number of studies on the neural architecture of lan-
guage, using electromagnetic (EEG/MEG) and hemodynamic meth-
ods (PET/FMRI), have added to, and also changed previous views on
the brain’s infrastructure for language. Before elaborating on some
current issues related to the neurobiology of syntax, here is what
we believe to be the major conclusions from the overall body of lit-
erature on the neurobiology of language:
ll rights reserved.
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(i) The language network is more extended than the classical
language regions (Broca’s and Wernicke’s areas). It includes,
next to Broca’s region, adjacent cortex in the left inferior and
middle frontal region, as well as substantial parts of superior
and middle temporal cortex, inferior parietal cortex, and
parts of the basal ganglia. In addition, homotopic regions
in the right hemisphere are more often than not engaged
in language processing (Hagoort, 2009).

(ii) The division of labor between Broca’s region (frontal cor-
tex) and Wernicke’s region (temporal cortex) is not lan-
guage production vs. language comprehension. The
neocortex centered on the left inferior frontal region is
involved in, at least, syntactic and semantic unification
(on-line combinatorial operations during comprehension).
Wernicke’s region is involved in language production, at
least at the level of word-form encoding (Indefrey &
Levelt, 2004).
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Fig. 1. The Chomsky hierachy. Informally, regular (finite-state) or right-linear
phrase-structure grammars are built from a collection of production rules of the
form S ? abS and S ? ab (where lower case indicates terminal symbols and S a
non-terminal sentence or start symbol). It is the inclusion of the start symbol on the
right hand side of the first regular rule (S ? abS) that makes this grammar recursive
(Soare, 1996). The non-regular context-free case allows the right hand side to
involve terminal symbols around the sentence symbol additional as in S ? aSb and
S ? ab. In the non-regular context-sensitive case, the left hand side has a ‘‘context”
as exemplified in a1anSb1bn ? a1anan+2Sb1bnbn+2 (cf., Davis et al., 1994).
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(iii) None of the language-relevant regions and none of the lan-
guage-relevant neurophysiological effects are language-spe-
cific. All language-relevant ERP effects (e.g., N400, P600,
(E)LAN) seem to be triggered by other than language input
as well (e.g., music, pictures, gestures).

(iv) For language, as for most other cognitive functions, the func-
tion-to-structure mapping as one-area-one-function is
almost certainly incorrect. More likely, any cortical region
is a node that participates in the function of more than
one functional network. Conceivably, top-down connections
from supramodal regions could differentially recruit such a
cortical node in the service of one network or another
(Mesulam, 1990, 1998).

In normal language processing, semantics, phonology and syn-
tax operate in close spatial and temporal contiguity in the human
brain. Therefore the artificial grammar learning (AGL) paradigm
has been used to create a relatively uncontaminated window onto
the neurobiology of syntax (Gómez & Gerken, 2000; Petersson,
Forkstam, & Ingvar, 2004; Reber, 1967). In addition, AGL has been
used in cross-species comparisons in an attempt to establish the
uniquely human component of language (Fitch & Hauser, 2004;
Gentner, Fenn, Margoliash, & Nusbaum, 2006; Hauser, Chomsky,
& Fitch, 2002; O’Donnell, Hauser, & Fitch, 2005; Saffran et al.,
2008). Here, we will present data from an FMRI experiment that
speaks to the neurobiology of syntax. In addition, we will discuss
some of the theoretical issues resulting from the fact that, from a
brain perspective, reference to and application of the Chomsky
hierarchy is not directly relevant – a point that can be made on lin-
guistic grounds as well (Pullum & Scholz, 2009, 2010).

The implicit AGL paradigm allows a systematic investigation of
aspects of structural (i.e., syntactic) acquisition from grammatical
examples alone, without providing explicit feedback, teaching
instruction, or engaging the subjects in explicit problem solving
based on instruction. These acquisition conditions resemble, in cer-
tain important respects, those found in natural-language develop-
ment. Generally, AGL consists of acquisition and test phases. In the
acquisition phase, participants are exposed to an acquisition sam-
ple generated from a formal grammar. In the standard version, sub-
jects are informed after acquisition that the sequences were
generated according to a complex set of rules, and are asked to
classify novel sequences as grammatical or not, based on their
immediate intuitive impression (i.e., guessing based on ‘‘gut feel-
ing”). A robust finding in this type of paradigm is that after several
days of implicit acquisition subjects perform well above chance;
they do so on regular (e.g., Folia et al., 2008; Forkstam, Elwér,
Ingvar, & Petersson, 2008; Petersson et al., 2004; Stadler & Frensch,
1998) as well as non-regular grammars (Poletiek, 2002; Uddén
et al., 2009), generating context-free and context-sensitive
non-adjacent dependencies (Uddén, Ingvar, Hagoort, & Petersson,
submitted for publication; Uddén et al., 2009). In passing, we note
that a qualitative match between the performance of simple recur-
rent networks and human comprehension of nested (context-free)
and crossed (context-sensitive) dependencies has been reported
(Christiansen & Chater, 1999; Christiansen & MacDonald, 2009).
Because (in a technical sense), noisy or discrete simple recurrent
networks are finite-state architectures (Casey, 1996; Maass, Joshi,
& Sontag, 2007; Maass & Orponen, 1998; Maass & Sontag, 1999;
see also, Petersson, 2005b; Petersson, Grenholm, & Forkstam,
2005), these results suggest that actual language processing uses
no more on-line memory resources than can be provided by a fi-
nite-state architecture. These simulations, of course, only illustrate
that recurrent networks can handle (bounded) non-regular pro-
cessing at some level of proficiency. However, a correlation be-
tween the processing of long-distance-dependencies in natural
language and statistical learning of non-adjacent dependencies
was recently reported, suggesting a link between natural-language
processing and implicit sequence learning. The latter performance
was adequately modeled by a simple recurrent network in a visu-
omotor sequence learning task (Misyak, Christiansen, & Tomblin,
2009, 2010).

The recursion-only hypothesis concerning the faculty of lan-
guage (Hauser et al., 2002), and subsequent discussion (e.g., Chom-
sky, Fitch, & Hauser, 2005; Jackendoff & Pinker, 2005; Pinker &
Jackendoff, 2005), has inspired research on the neurobiology of
syntax to be phrased in terms of recursion and the Chomsky hier-
archy. More specifically, the recursion-only hypothesis suggests
that some aspects of the language faculty are shared with non-hu-
man animals, whereas other aspects are specific to the human lan-
guage faculty and the quest for ‘‘core syntax” in behavioral and
functional neuroimaging studies of natural and artificial syntax
has sometimes centered on the theoretical construct of the Chom-
sky hierarchy (Fig. 1).

In particular the syntactic feature of center- or nested embed-
ding has been the focus of recent research (Bahlmann, Schubotz,
& Friederici, 2008; Fitch & Hauser, 2004; Friederici, Bahlmann,
Heim, Schubotz, & Anwander, 2006; Makuuchi, Bahlmann,
Anwander, & Friederici, 2009). In the linguistic and psycholinguis-
tic literature, the Chomsky hierarchy is most often formulated in
terms of formal grammars. However, from a neurobiological point
of view it is more natural to formulate the Chomsky hierarchy in
terms of (equivalent) computational mechanisms (cf. e.g., Cutland,
1980; Davis, Sigal, & Weyuker, 1994; Hopcroft, Motwani, & Ullman,
2000; Savage, 1998; Soare, 1996), since the objective in neurobiol-
ogy is to identify the neurobiological mechanisms underlying syn-
tax. From the point of view of computability theory, the Chomsky
hierarchy is in essence a memory hierarchy, which specifies the
necessary (minimal) memory resources required for a given level
of computational expressivity. However, it is not a complexity hier-
archy for the mechanism(s) involved in various computational
architectures, which are all equivalent to finite-state architectures
(Minsky, 1967; Soare, 1996; Turing, 1936a, 1936b; Wells, 2005).
We will return to the significance of this fact in the discussion
section.



Table 1
Example sentences used in the natural language experiment. The critical noun is
italicized, incorrect articles and anomalous adjectives are in bold. CR = correct;
SY = syntactically anomalous; SE = semantically anomalous; and CB = combined syn-
tactic and semantic anomalies.

De kapotte paraplu staat in de garage (CR)
Het kapotte paraplu staat in de garage (SY)
De eerlijke paraplu staat in de garage (SE)
Het eerlijke paraplu staat in de garage (CB)
Thecom/Theneut broken/honest umbrellacom is in the garage
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In this event-related FMRI study, we investigated a simple right-
linear unification grammar (cf., Hagoort, 2005; Joshi & Schabes,
1997; Vosse & Kempen, 2000). In an implicit AGL paradigm 32 sub-
jects were exposed to grammatical sequences during an immediate
short-term memory task. No performance feedback was provided.
Implicit acquisition took place over 5 days. On the last day a
grammaticality classification test was administered, in which new
sequences were presented in a 2 � 2 factorial design, with the fac-
tors grammaticality and local subsequence familiarity (Forkstam,
Hagoort, Fernandez, Ingvar, & Petersson, 2006; Knowlton & Squire,
1996; Meulemans & Van der Linden, 1997). The second factor, local
subsequence familiarity (technically, associative chunk strength
(ACS), cf., Forkstam et al., 2006; Meulemans & Van der Linden,
1997), is an associative measure of the superficial resemblance
between classification sequences and the sequences in the acquisi-
tion set. The classification sequences with high local subsequence
familiarity contained subsequences that appeared frequently in
the acquisition set, while sequences with low local subsequence
familiarity contained subsequences of low frequency in the acquisi-
tion set. In addition, natural language data was acquired in the same
subjects in another FMRI experiment, very similar to the artificial
grammar experiment, in a 2 � 2 factorial design with the factors
syntax and semantics (Folia, Forkstam, Hagoort, & Petersson,
2009). Based on previous findings (Forkstam et al., 2006; Petersson
et al., 2004; Uddén et al., 2008), we predicted that artificial syntax
processing would engage the left inferior frontal region
(Brodmann’s area (BA) 44 and 45) and that this activation would
overlap with syntax-related variability observed in the natural
language experiment.

In the context of recent FMRI findings, we raise the question
whether Broca’s region (or subregions) is specifically related to
syntactic movement operations or the processing of hierarchically
nested non-adjacent dependencies in the discussion section. We
conclude that this is not the case. Instead, we argue that the left
inferior frontal region is a generic on-line sequence processor that
unifies information from various sources in an incremental and
recursive manner, independent of whether there are any process-
ing requirements related to syntactic movement or hierarchically
nested structures.
2. Materials and methods

2.1. Participants

Thirty-two healthy right-handed (16 females, mean
age ± SD = 22 ± 3 years; mean years of education ± SD = 16 ± 2)
Dutch university students participated in the study. They were
all pre-screened and none of the subjects used any medication,
had a history of drug abuse, head trauma, neurological or psychiat-
ric illness, or a family history of neurological or psychiatric illness.
All subjects had normal or corrected-to-normal vision. Written in-
formed consent was obtained from all participants according to the
Declaration of Helsinki. Approval of the local medical ethics com-
mittee was obtained.
2.2. The natural language experiment

Here we briefly summarize the natural language experiment
(for details, see Folia et al., 2009). The stimulus material consisted
of 160 sentences from Hagoort (2003). The material consisted of
sentence frames with a critical word position. There were four ver-
sions of sentence, one for each factor level combination (Table 1):
(1) syntactically and semantically well-formed, correct sentences
(CR); (2) semantically correct sentences with a gender agreement
violation between the definite article and the noun (SY); (3) syn-
tactically correct sentences including a lexical semantic anomaly
that consisted of a semantically unacceptable combination of the
adjective and the following noun (SE); and (4) a combination of
the syntactic and semantic anomalies (CB) described in (2) and
(3). In the semantically correct and anomalous conditions, different
adjectives preceded the nouns in the critical word (CW) position.
These adjectives were matched in length and frequency. Critically,
the violation of the gender agreement and the violation of the
semantic constraint became clear at the same noun in critical word
position. Thus, lexical differences do not interfere with the exper-
imentally manipulated factors.

The sentence materials were constructed so that 25% of the sen-
tences were syntactically and semantically correct; 25% contained
a syntactic but no semantic anomaly; 25% contained a semantic
but no syntactic anomaly; and 25% of the sentences contained both
a syntactic and a semantic anomaly. To make sure that the viola-
tions of gender agreement did occur with equal probability after
a common and neuter gender article, 160 filler sentences were
added. In this way, violations of gender agreement could not be
predicted on the basis of probability or sentence context. The sen-
tences had a mean length of eight words (SD = 1 word). Words
were never longer than 12 letters, with nouns in the CW position
having a maximal length of 10 letters. All sentences were simple
active or passive sentences. In the semantically correct/anomalous
conditions, different adjectives preceded the nouns in the critical
word position. These adjectives were matched in length and fre-
quency. The experimental procedures were essentially identical
to the AGL experiment (cf., below). The participants were in-
structed to read the sentences carefully and attentively for com-
prehension and to indicate for each sentence whether it was
acceptable or not. Before the FMRI experiment started, each sub-
ject practiced on practice sentences to familiarize with the exper-
imental procedure. The experimental sentences were presented in
four blocks of approximately 10 min each, with a short break be-
tween each block.
2.3. Stimulus material

We used a simple right-linear unification grammar G with the
following vocabulary of terminal symbols {M, S, V, R, X} and lexicon
of primitive trees (treelets) {[s1, [M, s2]], [s2, [S, s2]], [s2, [V, s4]], [s3,
[X, s2]], [s3, [X, s5]], [s4, [R, s3]], [s4, [S, s6]], [s4, #], [s5, [R, s5]], [s5, [M,
s6]], [s5, #], [s6, #]}. For a given lexical item (e.g., [sj, [T, sk]]), sj, sk

can be interpreted as syntactic control features and T as a surface
feature. Within the unification framework (cf., Hagoort, 2005; Vos-
se & Kempen, 2000), an incoming sequence of surface symbols
(e.g., MSV. . .) initiates the retrieval of lexical items from the mental
lexicon. As a result, they enter an on-line unification space, [s1, [M,
s2]], [s2, [S, s2]], [s2, [V, s4]] . . ., where two lexical items (e.g., [si, [R,
sj]], [sk, [Q, sl]]) unify, combine, or merge through a unification oper-
ation U if and only if sj = sk, or sl = si. This process is incremental and
recursive: if the structure U([s1, [M, s2]], [s2, [S, s2]]) = [s1, [M, [s2, [S,
s2]]]] is already present in the unification space when the lexical
item [s2, [V, s4]] is retrieved, a larger combinatorial structure can
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be formed by the unification operation U([s1, [M, [s2, [S, s2]]]], [s2,
[V, s4]]) = [s1, [M, [s2, [S, [s2, [V, s4]]]]]], and so on.

For this simple right-linear unification grammar, it is easy to
construct the corresponding machine table (Minsky, 1967), here
represented as a transition graph (Fig. 2). This is done by mapping
the control features of a given lexical item [sj, [T, sk]] onto corre-
sponding internal states sj, and sk of the computational machine,
as well as onto a labeled transition sj!

T
sk. We note that the Unifi-

cation operator works similarly in all unification grammars. The
structures generated by the Unification operator depend on the
structure of the lexical items in any given formal language/gram-
mar. Thus, in the current study, the Unification operator yielded
right-linear phrase structures.

We generated 569 grammatical (G) sequences from the gram-
mar, with a sequence length ranging from 5 to 12. For each item
we calculated the frequency distribution of 2 and 3 letter chunks
for both terminal and complete sequence positions. In this way
we derived the associative chunk strength (ACS) for each item
(cf., Forkstam et al., 2006; Knowlton & Squire, 1996; Meulemans
& Van der Linden, 1997). Next, for the acquisition set we randomly
selected in an iterative way 100 sequences that were representa-
tive, in terms the letter chunks, for the complete sequence set. In
the next step, we generated the non-grammatical (NG) sequences,
derived from non-selected G sequences, by switching letters in two
non-terminal positions. The NG sequences matched the G se-
quences in terms of both terminal and complete-sequence ACS. Fi-
nally, in an iterative procedure, we randomly selected two sets of
56 sequences each from the remaining G sequences, to serve as
classification sets. These sets thus consisted of 25% G/high ACS;
25% G/low ACS; 25% NG/high ACS; and 25% NG/low ACS sequences.

In summary, the stimulus material included an acquisition set
and two classification sets (all sets were pair-wise disjoint). The
classification sets were used in a 2 � 2 factorial design with the
factors Grammaticality and local subsequence familiarity (ACS).
Thus, each classification set consisted of 28 sequences of each se-
quence-type: high ACS grammatical (HG), low ACS grammatical
(LG), high ACS non-grammatical (HNG), and low ACS non-gram-
matical (LNG).

2.4. Experimental procedures

During the acquisition and classification sessions of the AGL
part, each sequence was centrally presented letter-by-letter on a
computer screen (3–7 s corresponding to 5–12 terminal symbols;
Fig. 2. The finite-state architecture parsing and producing the simple right-linear
unification grammar used in the experiment, here represented as the corresponding
transition graph implementation of the corresponding grammar G (Reber, 1967).
300 ms presentation, 300 ms inter-symbol-interval) using Presen-
tation software (http://nbs.neuro-bs.com). Subjects were pre-
sented with the 100 acquisition sequences (presentation order
randomized for each acquisition session), and the task was an
immediate short-term memory task. When the last letter in a se-
quence disappeared, subjects were instructed to immediately
reconstruct the sequence from memory and type it on a keyboard.
No performance feedback was given, and only grammatical se-
quences (i.e., positive examples) were presented. The acquisition
phase lasted approximately 20–40 min. On the last (5th) day of
the AGL experiment, subjects were informed about the existence
of an underlying complex set of rules that determined the sequen-
tial structure of the sequences. Their new task was to classify novel
sequences as grammatical or not, based on their immediate intui-
tive impression (i.e., guessing based on ‘gut feeling’). This task was
performed in the MRI-scanner. During classification, sequences
were presented via an LCD-projector, projecting the computer dis-
play onto a semi-transparent screen that the subject comfortably
viewed through a mirror device mounted on the head-coil, while
FMRI data was acquired. The classification session was split in
two parts, in order to balance response finger within subjects. Each
part lasted approximately 20 min. After a 1 s pre-stimulus period,
the sequences were presented sequentially, followed by a 3 s re-
sponse window. Within this response window, the subjects had
to indicate their decision by pushing the corresponding response
key with their left or right index finger. A low-level baseline condi-
tion was added, consisting of a sensorimotor decision task. In this
task, sequences of repeated letters P or L (matched for sequence
length to the classification items) were presented in the same fash-
ion as the classification sequences. Subjects had to respond to
these sequences by pressing the right or left index finger, respec-
tively. The different stimulus types were presented in random
order.
3. Data acquisition and analysis

Behavioral data were analyzed with repeated-measures ANO-
VAs (SPSS 15.0) with non-sphericity correction. A significance level
of P < 0.05 was used throughout.

3.1. MR data acquisition

Whole head T2*-weighted functional echo planar blood oxygen-
ation level dependent (EPI-BOLD) FMRI data were acquired with a
SIEMENS Avanto 1.5T scanner using an ascending slice acquisition
sequence (volume TR = 2.6 s, TE = 40 ms, 90� flip-angle, 33
axial slices, slice-matrix size = 64 � 64, slice thickness = 3 mm,
slice gap = 0.5 mm, FOV = 224 mm, isotropic voxel
size = 3.5 � 3.5 � 3.5 mm3) in a randomized event related fashion.
For the structural MR image volume, a high-resolution
T1-weighted magnetization-prepared rapid gradient-echo pulse
sequence was used (MP-RAGE; volume TR = 2250 ms, TE = 3.93 ms,
15� flip-angle, 176 axial slices, slice-matrix size = 256 � 256, slice
thickness = 1 mm, field of view = 256 mm, isotropic voxel-
size = 1.0 � 1.0 � 1.0 mm3).

3.2. MR image preprocessing and statistical analysis

We used the SPM5 software for image preprocessing and statis-
tical analysis. The EPI-BOLD volumes were realigned to correct for
individual subject movement and were corrected for differences in
slice-time. The subject-mean EPI-BOLD images were subsequently
spatially normalized to the functional EPI template provided by
SPM5. The normalization transformations were generated from
the subject-mean EPI-BOLD volumes and applied to the corre-

http://nbs.neuro-bs.com
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sponding functional volumes. The functional EPI-BOLD volumes
were transformed into the MNI space, an approximate Talairach
space (Talairach and Tournoux 1988), defined by the SPM5 tem-
plate, and spatially filtered with an isotropic 3D spatial Gaussian
filter kernel (FWHM = 10 mm). The FMRI data were analyzed sta-
tistically, using the general linear model framework and statistical
parametric mapping (Friston, Ashburner, Kiebel, Nichols, & Penny,
2007) in a two-step mixed-effects summary-statistics procedure
(Friston et al., 2007). We included the realignment parameters
for movement artifact correction and a temporal high-pass filter
(cycle cut-off at 128 s), to account for various low-frequency
effects.

At the first-level, single-subject fixed effect analyses were con-
ducted. The linear model included explanatory regressors model-
ing the sequence presentation period from the violation position
in the HNG and LNG conditions and their correct counterparts in
the HG and LG conditions. This was done separately for correct
and incorrect responses. The initial part of the sequences was also
modeled separately, as was the baseline and the inter-sequence-
interval. The explanatory variables were temporally convolved
with the canonical hemodynamic response function provided by
SPM5. At the second-level, we generated single-subject contrast
images for the correctly classified HG, LG, HNG, and LNG se-
quences, relative to baseline. These were analyzed in a random-ef-
fects repeated-measures ANOVA with non-sphericity correction for
unequal variance between conditions. Statistical inference was
based on the cluster-size test-statistic from the relevant second-le-
vel SPM[F] and SPM[T] maps thresholded at P = 0.001 (uncor-
rected). Only clusters significant at P < 0.05 (family-wise error
(FWE) corrected for multiple non-independent comparisons based
on smooth 3D random field theory, Adler, 1981; Adler & Taylor,
2007; Friston et al., 2007; Worsley et al., 1996) are described. In
the following, we use the terms activation and deactivation as syn-
onyms for a relative increase and decrease in BOLD signal, respec-
tively. For reasons of portability of results, we use the Talairach
nomenclature (Talairach and Tournoux 1988) in the tables. In an
additional analysis, we examined the common overlap between
artificial and natural-syntax processing in the lateral prefrontal
cortex by masking the NG vs. G effect with the natural-syntax-re-
lated variability that was observed in Folia et al. (2009), inclusive
masking, mask thresholded at P = .001). Again, only clusters signif-
icant at P < 0.05 family-wise error (FWE) corrected for multiple
non-independent comparisons, based on smooth 3D random field
theory, for the whole brain are reported. In addition, we list the
coordinates of local maxima and their corresponding P-values cor-
rected for the false discovery rate (FDR, Genovese, Lazar, & Nichols,
2002) for descriptive purposes.

Finally, in a regional specific analysis, we tested for the nearest
supra-threshold voxel (Friston, 1997; Worsley, 2003), and investi-
gated spherical regions of radius 10 mm. The size of this region was
chosen because we used a spatial filter kernel of FWHM = 10 mm,
which roughly corresponds to the spatial scale of localization
precision in group FMRI studies (Brett, Johnsrude, & Owen, 2002;
Petersson, Nichols, Poline, & Holmes, 1999), including language
(Hagoort, 2005; Petersson et al., 2004). In this analysis we used
small volume correction based on the family-wise error (FWE) cor-
rected for multiple non-independent comparisons based on
smooth 3D random field theory (Adler & Taylor, 2007).
4. Results

4.1. Behavioral characterization

Behavioral AGL results have previously been reported in Folia
et al. (2008). Here we only give a brief summary of the most
important results. Consistent with previous findings (Forkstam
et al., 2006; Petersson et al., 2004) the overall correct classification
performance was clearly above chance (73 ± 16% correct,
T(31) = 7.7, P < .001). The analysis of hit rate showed that the sub-
jects were sensitive to the grammaticality of the items
(F(2, 62) = 26, P < .001). Standard signal detection analysis showed
a robust d-prime effect in discriminating between grammatical (G)
and non-grammatical (NG) sequences (mean d-prime: 1.53;
T(31) = 7.63, P < .001). No significant response bias was found
(mean beta-values: 1.17; P > .6). Participants did not discriminate
between high and low ACS sequences (mean d-prime: 0.21;
P > .66), and no significant response bias was found (mean beta-
values: 1.00; P > .8). We then analyzed the performance data in
terms of endorsement rate (i.e., item classified as grammatical,
independent of their actual grammaticality status). In other words,
if the subjects acquire significant aspects of the grammar, then
they should endorse grammatical more often than non-grammati-
cal items. Both grammaticality and local subsequence familiarity
(ACS) influenced the endorsement rate. More specifically, the
endorsement rate was significantly affected by grammaticality sta-
tus (F(1, 31) = 61.6, P < .001), and by ACS (F(1, 31) = 13.6, P < .001),
while the interaction between grammaticality and ACS was non-
significant (F(1, 31) = 2.6, P = .11). In addition, we compared LG
and HNG, because this comparison maximally contrasts structural
vs. subsequence knowledge. If grammaticality status is used for
classification, the acceptance of an LG item would crucially depend
on the grammaticality of the item. If, in contrast, subsequence
knowledge is used, the low ACS status would promote a rejection
decision. On the other hand, if subsequence knowledge is used
for classification, the acceptance of HNG items would depend on
the high ACS status, while if grammatical status is used, the gram-
maticality status would indicate a rejection decision. We found a
significant advantage for LG over HNG sequences in terms of
endorsement rate (LG > HNG; T(31) = 5.82, P < .001). Taken to-
gether, these results show that, independent of local subsequence
familiarity, grammaticality status is used for structural generaliza-
tion in classifying novel sequences and thus provide support for
the notion that grammatical structure instead of subsequence or
fragment features determine classification.

4.2. FMRI results

Compared to the sensorimotor decision baseline, grammatical-
ity classification significantly activated a set of regions
(PFWE < .001) similar to those found in previous studies (Forkstam
et al., 2006; Petersson et al., 2004). These included the inferior
and middle frontal regions bilaterally (cluster PFWE < .001), cen-
tered on BA 44/45 and extending into surrounding cortical regions
(BA 6, 8, 9, 46, 47), including the frontal operculum and anterior in-
sula (BA 13/15/47). Additional prefrontal activations included the
anterior cingulate cortex (BA 32) bilaterally, extending laterally
into anterior middle frontal regions (BA 6/8/9). Bilateral posterior
activations (cluster PFWE < .001) included the inferior parietal cor-
tex (BA 39/40), extending into the inferior parts of BA 7 and the
posterior cingulate cortex (BA 24/31, cluster PFWE < .001) bilater-
ally. Bilateral occipital activations (cluster PFWE < .001) were cen-
tered on the middle and inferior occipital regions (BA 18/19) and
extended into the fusiform (BA 19/37) and the posterior mid-infe-
rior temporal (BA 20/21) regions, as well as the cerebellum. Signif-
icant activations were also observed in the basal ganglia bilaterally
(cluster PFWE < .001), including the caudate nucleus, globus palli-
dus, putamen, and the medial aspects of the thalamus, extending
into mesencephalic nuclei. Besides a typical default mode network,
strong deactivations were found in the bilateral medial temporal
lobe memory system, including the hippocampus proper (cluster
PFWE < .001). The results were very similar when activity from the



Fig. 4. Brain regions engaged during correctly classified artificial syntactic viola-
tions (i.e., main effect NG > G).

Fig. 5. Brain regions engaged during both artificial and natural-syntax processing.
The main effect NG > G masked with the syntax-related variability observed in Folia
et al. (2009).
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correctly classified HG- and LG sequences were compared sepa-
rately with the sensorimotor decision baseline (Fig. 3).

As in previous studies (Forkstam et al., 2006; Petersson et al.,
2004), artificial syntactic violations (main effect NG > G; Fig. 4) en-
gaged a network of regions (PFWE = .002), including the lateral pre-
frontal cortices bilaterally (left: cluster PFWE < .001; right: cluster
PFWE < .001) centered on the inferior frontal region (BA 44/45),
extending into BA 47 and the middle frontal cortex (BA 46), as well
as frontal operculum/anterior insula (BA 13/15/47; cluster
PFWE = .001). It further included regions in the anterior cingulate
(BA 24/32; cluster PFWE < .001), the right inferior parietal (BA 39;
cluster PFWE < .001), and the fusiform and inferior temporal (BA
19/20; cluster PFWE < .001) regions, bilaterally. As in previous stud-
ies (Folia et al., 2008; Forkstam, Elwér, Ingvar, & Petersson, 2008;
Forkstam et al., 2006), we examined the artificial syntactic viola-
tion effect (NG > G) by maximally contrasting structural knowledge
vs. local subsequence familiarity (i.e., HNG vs. LG) in the lateral
prefrontal cortex.

Consistent with previous findings, we observed significant ef-
fects in the left inferior frontal region (BA 44/45; cluster
PFWE < .001) while the right inferior frontal regions showed a trend
(PFWE = .063). In the reverse contrast (G > NG), we observed a sig-
nificant effect in the inferior medial frontal cortex (cluster
PFWE < 0.001), and we also replicated our previously reported cau-
date activation (Forkstam et al., 2006) with a small volume correc-
tion (centered at [3 18 �3]; radius: 5 mm; cluster PFWE = .039).
There was no significant main effect of local subsequence familiar-
ity (cluster PFWE > .83), neither were there any significant interac-
tions (cluster PFWE > .64), consistent with our behavioral findings
(Folia et al., 2008; Forkstam et al., 2008). We also tested LG > HG
and HG > LG, but found no significant effect (cluster PFWE > .95).

Finally, we examined the common overlap between artificial and
natural-syntax processing (Fig. 5) in the lateral prefrontal cortex by
masking the NG vs. G effect with the natural-syntax-related vari-
ability (i.e., the main effect of syntax in the 2 � 2 natural language
experiment; cf., Table 1) observed in Folia et al. (2009, F-contrast
thresholded at P = .001) in the same subjects. We examined these
results in relation to recent claims of a syntactic specialization with-
in Broca’s region. We observed a common overlap in the left inferior
frontal region (cluster PFWE = .001; including local maxima:
[�50 24 26], PFDR = .001; [�48 8 34], PFDR = .001; [�46 22 24],
PFDR = .001; [�46 8 28], PFDR = .002; [�42 6 30], PFDR = .002;
[�50 16 30], PFDR = .003; cluster PFWE = .003; local maxima:
[�30 24 �2], PFDR = .001; [�40 18 �2], PFDR = .001) and right infe-
rior frontal region (cluster PFWE = .001; local maxima: [36 24 -2],
Fig. 3. Brain regions engaged during correct classification of grammatical sequences
sensorimotor decision baseline.
PFDR < .001; [32 24 2], PFDR < .001), centered on BA 44 and 45, as well
as in the anterior cingulate (BA 32; cluster PFWE < .001). At the indi-
vidual subject level, each subject showed overlap between artificial
and natural-syntax processing in the left inferior frontal region, in or
with high (HG) and low (LG) local subsequence familiarity (ACS) relative to the



K.-M. Petersson et al. / Brain & Language 120 (2012) 83–95 89
in the vicinity of BA 44/45. The localization of individual overlap
varied from the posterior–superior parts to the anterior–inferior
parts of the left inferior frontal gyrus (26 participants showed over-
lap in BA 44/45 and 5 in BA 47; P < .001).
5. Discussion

In this study, the behavioral results convincingly show that the
participants implicitly acquired significant knowledge about a sim-
ple unification grammar from grammatical examples alone and
without performance feedback. The main FMRI results show that
the left inferior frontal region, centered on BA 44 and 45, is en-
gaged during artificial syntax processing of well-formed (gram-
matical) sequences independent of local subsequence familiarity.
This region is activated to a greater extent when the sequence con-
tains an artificial syntactic violation, that is, when the unification of
structural pieces becomes difficult or impossible. We note that the
unification process is incremental and recursive even in its simplest
instantiation (see Section 2/Section 2.3 for technical details). In
addition, the effects related to artificial syntax processing in the
left inferior frontal region (BA 44/45) were essentially identical
when we masked these with activity related to natural-syntax pro-
cessing in the same subjects. Our results are also highly consistent
with functional localization of natural language syntax in the left
inferior frontal gyrus (Bookheimer, 2002; Hagoort, 2005; Petersson
et al., 2004). Similarly, Dominey and coworkers (Dominey & Hoen,
2006; Hoen, Pachot-Clouard, Segebarth, & Dominey, 2006), using a
different approach based on construction grammars and explicit
training of subjects on two constructions (‘‘rules”) for artificial
and natural language materials, observed a common overlap be-
tween artificial and natural-language processing in several brain
regions, including frontal regions. Finally, the medial temporal lobe
was deactivated during artificial syntax processing, consistent with
the view that implicit processing does not rely on declarative
memory mechanisms that engage the medial temporal lobe mem-
ory system (Forkstam & Petersson, 2005; Knowlton & Squire, 1996;
Seger, 1994).

How do these results square with some recently proposed func-
tional roles of Broca’s region or its subregions? For example,
Grodzinsky and colleagues have claimed that Broca’s region is spe-
cifically related to syntactic movement operations (Ben-Shachar,
Hendler, Kahn, Ben-Bashat, & Grodzinsky, 2003; Ben-Shachar, Palti,
& Grodzinsky, 2004; Santi & Grodzinsky, 2007a, 2007b). Friederici
and colleagues (2006) argue that their FMRI findings (p. 2458)
‘‘show that the processing of these two sequence types [generated
by a ‘‘finite state” and a ‘‘phrase structure” grammar, respectively]
is supported by different areas in the human brain” and that their
results (p. 2460) ‘‘indicate a functional differentiation between
two cytoarchitectonically and phylogenetically different brain areas
in the left frontal cortex [”frontal operculum” and ‘‘BA 44”]”. Similar
reasoning is found in Friederici, Bahlmann et al. (2006), Friederici,
Fiebach, Schlesewsky, Bornkessel, and von Cramon (2006),
Bahlmann et al. (2008), and Makuuchi et al. (2009)1. In the context
1 Bahlmann et al. (2008, p. 532): ‘‘This finding indicates that Broca’s area is
particularly engaged in processing hierarchical as compared to non-hierarchical
grammars, a finding further supporting the idea formulated in a previous study
(Friederici, Bahlmann et al. 2006”, p. 533): ‘‘Rather, the notion put forward here is that
Broca’s area subserves the processing of hierarchical structures in the domain of
grammar”; Makuuchi et al. (2009, p. 8362): ‘‘If the processing of PSG is fundamental
to human language, the questions about how the brain implements this faculty arise.
The left pars opercularis (LPO), a posterior part of Broca’s area, was found as a neural
correlate of the processing of AnBn sequences in human studies by an artificial
grammar learning paradigm comprised of visually presented syllables (Bahlmann
et al., 2008; Friederici, Bahlmann et al. 2006”, and p. 8367): these ‘‘2 studies therefore
strongly suggest that LPO is a candidate brain area for the processor of PSG (i.e.,
hierarchical structures)”.
of these FMRI findings and suggestions, we raise the question whether
Broca’s region (or subregions) is specifically related to syntactic
movement operations or the processing of hierarchically nested
non-adjacent dependencies? In Table 2 we specify the overlap be-
tween the clusters that we found activated in the left inferior frontal
region in this study and the activated clusters reported in the above
mentioned studies.

All regional effects of the studies reviewed here were localized
within the left inferior frontal activation we observed in grammat-
icality classification as well as when only the correctly classified
HG- and LG sequences were examined. This is clear from Fig. 3
showing the activity related to the correctly classified HG and LG
sequences (left inferior frontal clusters centered on BA 44/45; clus-
ter PFWE < .001). The only exception to this was [�42 6 5] of Santi
and Grodzinsky (2007a) where we find supra-threshold voxels
localized �5 mm more laterally to that of Santi and Grodzinsky
(2007a). This is because [�42 6 5] is localized to the superior part
of mid-anterior insula, while our effect is localized to BA 44/45. Fi-
nally, the variability in spatial localization precision in the studies
of Friederici et al. and Grodzinsky et al. were �13 and �10 mm,
respectively. This is entirely consistent with what is known about
localization precision in FMRI group studies (Brett et al., 2002;
Petersson et al., 1999), including language (Bookheimer, 2002;
Hagoort, 2005; Petersson et al., 2004), despite the fact that most
of the reported coordinates were either chosen or observed in pre-
determined regions of interest. Our results show that the left infe-
rior frontal region (BA 44/45) is significantly activated during
artificial syntax processing, despite the fact that the simple right-
linear unification grammar we investigated does not involve syn-
tactic movement or nested center-embeddings.

The main conclusion we draw from this comparison is that, in
the context of language processing, the left inferior frontal region
cannot be specific to the processing of syntactic movement or
nested structures. Rather, our results, in conjunction with previous
functional neuroimaging results, suggest that the left inferior fron-
tal region is a generic on-line structured sequence processor that
unifies information from various sources in an incremental and
recursive manner (Hagoort, 2005, 2009), independent of whether
there are any processing requirements related to syntactic move-
ment or hierarchically nested structures. This is consistent with re-
cent behavioral findings (Uddén et al., 2009, submitted for
publication) that suggest that there is little qualitative differences
between the implicit acquisition of non-adjacent and adjacent
dependencies in humans. Taken together, we suggest that there
is a quantitative difference (e.g., in terms of minimal memory
requirements) in processing sequences with adjacent and non-
adjacent dependencies, but that the nature of the underlying se-
quence processing is the same. This suggestion appears consistent
with the position of Bahlmann et al. (2008)2. Below, we review
some of the literature supporting our position and then discuss the
empirical findings in the light of some theoretical issues related to
computability and the relevance of the Chomsky hierarchy for
neurobiological mechanisms underlying syntax, since, in the final
analysis, whatever operations linguists propose, these must ulti-
mately be embedded in brain circuitry (Hornstein, 2009). However,
first we make a few general remarks concerning the interpretation
of functional neuroimaging results in the current context.
2 Bahlmann et al. (2008) acknowledge (pp. 525–526) that the case of Friederici
et al. (2006) might be overstated and that their own findings (p. 532) can be
interpreted differently: ‘‘both rule types might be on the same level of the Chomsky
hierarchy. Accordingly, the observed activation pattern in the contrast of hierarchical
vs. adjacent dependency rule may not be taken to reflect grammatical complexity, but
different dependency types involving different verbal working memory loads”. To be
fair, Bahlmann et al. (2008) never explicitly claim that Broca’s region, including the
subregion engaged by ’’hierarchical’’ sequences, is not involved in the processing of
‘‘non-hierarchical” sequences – the point we are substantiating in this paper.



Table 2
Overlap between the activated clusters in the listed studies and the clusters that we found activated in this region for the NG vs. G contrast. Columns 1–3: The [x, y, z] coordinates
and the function labeling are taken from the studies: Makuuchi et al. (2009), Bahlmann et al. (2008), Friederici, Bahlmann et al. (2006), Friederici, Fiebach et al. (2006), Santi and
Grodzinsky (2007a), Ben-Shachar et al. (2003, 2004). Santi and Grodzinsky (2007b) reported the coordinates [�50 32 6] and [�50 33 8], but since this is a fixed-effects study we
did not further analyze this here. Friederici, Bahlmann et al. (2006), Friederici, Fiebach et al. (2006) report a syntactic violation effect at [�46 �7 17], but this is localized to the
precentral gyrus BA 4/6 and not Broca’s region. We also note that the AGL studies reviewed here related to nested-dependency processing (Bahlmann et al., 2008; Friederici,
Bahlmann et al., 2006) used explicit AGL paradigms (explicit task instructions to figure out the underlying rule(s), grammatical and non-grammatical items were presented during
acquisition, and performance feedback was provided during learning/classification). Columns 4–8: Cluster P-values, nearest supra-threshold voxel, local maxima, and
corresponding family-wise error rate corrected P-values (PFWE) are from the current study.

Study [x, y, z] Function Cluster Nearest PFWE Local max PFWE

Makuuchi et al. (2009) [�45 6 24] Nested PFWE = .001 [�46 6 26] .001 [�46 8 32] .001
[�42 6 30] .002

Bahlmann et al. (2008) [�46 5 16] Nested PFWE = .03 [�44 8 24] .001 [�46 6 26] .02
[�34 28 22] Nested [�42 26 20] .001 [�42 22 22] .004

Friederici Bahlmann et al. (2006) [�36 20 �2] Nested PFWE < .001 [�36 20 �2] .001 [�30 24 �2] .001
[�46 16 8] Nested [�44 18 6] .001 [�40 18 2] .001

Friederici Fiebach et al. (2006) [�49 10 4] Complexity PFWE = .02 [�48 14 0] .001 [�44 16 0] .001
Santi and Grodzinsky (2007a) [�42 6 5] Movement PFWE < .05 [�42 16 6] .001 [�42 16 6] .04
Ben-Shachar et al. (2003) [�45 23 7] Movement PFWE = .005 [�46 24 6] .001 [�42 20 0] .003
Ben-Shachar et al. (2004) [�43 21 7] Movement PFWE = .004 [�44 22 6] .001 [�40 20 0] .003

[�44 21 8] Movement [�44 24 18] .05
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At a general level, unless one has an explicit neurobiological
theory of for example the parsing process, it is seldom possible
to determine with certainty which architectural component gives
rise to a given observed effect. Experimental manipulations are
typically described at Marr’s level 1 or 2 (Marr, 1982), while the
neurobiological observations are level 3 phenomena. Observed
neurobiological effects, therefore, do not necessarily force a causal
interpretation of results directly in terms of nominal experimental
manipulations. More specifically, it would be surprising if very spe-
cific, and competence theory dependent linguistic phenomena,
map onto brain regions or neocortical processes in a simple, spe-
cific, and transparent manner. For example, Hornstein (2009) argue
that the view that language is a neurobiological system entails that
the hypothesized linguistic constructs have to map onto neuro-
physiological processes, that is, recurrent spiking neural networks.
It is known theoretically that (Church-Turing) computable pro-
cesses can be embedded in the relevant type of dynamical systems
instantiated by neural networks. However the relations between
descriptive levels, implicit in this embedding, are not simple and
transparent, but relies on intricate representational schemes (e.g.,
Buonomano & Maass, 2009; Rabinovich, Varona, Selverston, &
Abarbanels, 2006; Siegelmann, 1999). However, for relatively
transparent cases, see (e.g., Casey, 1996; Petersson, 2008;
Rodriguez, 2001).

5.1. Dynamic functional modularity and the role of the left inferior
frontal region

Claims that Broca’s region, or more generally, that the left infe-
rior frontal region, is specifically related to different aspects of lan-
guage processing is not well supported by neuropsychological
lesion studies nor by functional neuroimaging data. For example,
Kaan and Swaab (2002) argue that lesion of Broca’s region is nei-
ther necessary nor sufficient to induce syntactic deficits and sug-
gest that Broca’s aphasia can be interpreted as a processing
deficit in contrast to a knowledge deficit. In other words, Broca’s
aphasia can be understood in terms of difficulties with certain as-
pects of temporal processing or on-line integration of information.
Furthermore, several recent studies have shown that the left infe-
rior frontal region has a broader role in cognition than just lan-
guage (Hagoort, 2005; Marcus, Vouloumanos, & Sag, 2003),
including musical syntax (e.g., Koelsch et al., 2002; Maess, Koelsch,
Gunter, & Friederici, 2001) and visuo-spatial sequence processing
(Bahlmann, Schubotz, Mueller, Koester, & Friederici, in press).
Thus, next to evidence from a study on aphasic patients (Patel,
Iversen, Wassenaar, & Hagoort, 2008), a growing body of evidence
from functional neuroimaging suggests an overlap in the process-
ing of structural relations in language and music (for a review
see Patel, 2003). It is also of interest to note that there seems to
be a considerable overlap between regions implicated in the per-
ception/production of music and the perception/production of ab-
stract sequences, including the left inferior frontal region (Janata &
Grafton, 2003; Tillmann et al., 2006). Brain lesion data and results
on specific language impairment (SLI) are consistent with these
findings, suggesting that abnormal language processing are paral-
leled by impairment in structured sequence learning/processing
(Christiansen, Kelly, Shillock, & Greenfield, 2009; Evans, Saffran,
& Robe-Torres, 2009; Hoen et al., 2003; Hsu, Christiansen, Tomblin,
Zhang, & Gómez, 2006; Pothos & Wood, 2009; Reali & Christiansen,
2009; Richardson, Harris, Plante, & Gerken, 2006; Uddén et al.,
2008). However, there is a functional anterior–posterior gradient
within the left inferior frontal region related to language (Bookhei-
mer, 2002; Hagoort, 2005). The proposed gradient suggests that BA
45/47 is related to unification of semantic structures (Folia et al.,
2009; Hagoort, Hald, Bastiaansen, & Petersson, 2004; Menenti,
Petersson, Scheeringa, & Hagoort, 2008; Tesink et al., 2008), BA
44/45 to unification of syntactic structure (Folia et al., 2009;
Snijders et al., 2009), and BA 6/44 to phonological unification
(Bookheimer, 2002; see also Jackendoff, 2007).

There is also a growing body of evidence suggesting that regions
other than Broca’s region are related to the processing of syntactic
information, such as the left superior anterior temporal lobe, the
left middle and posterior parts of the superior and middle temporal
gyri, as well as right-hemisphere regions (Snijders et al., 2009).
Kaan and Swaab (2002) have argued that none of these regions
are uniquely, or specifically, related to syntactic processing. It is
thus not unreasonable to suggest that syntactic natural-language
processing, or more generally the faculty of language, is in fact
dependent on a functional network of interacting brain regions,
none of which is uniquely and exclusively involved in syntactic
processing (Hagoort, 2009).

One suggestion, therefore, is that particular brain regions are
only computationally or processing specific in connection with
other brain regions that provide the input from particular content
domains. This notion gives rise to the concept of dynamic func-
tional modularity, implying that the role of a given brain region
at any given moment is determined in important respects by the
neural processing context in which it participates – specifically,
which other brain regions it currently interacts with. This notion
is not new (Mesulam, 1990, 1998). In fact, dynamic functional



3 It is trivial to see why this is the case. Consider a Turing machine with a finite
memory tape. Include a given memory state m (of which only a finite number exist by
assumption) with the internal state s of the finite-state control (of which only a finite
number exist by definition) in an ordered pair [s, m] (for all s and m) and derive the
corresponding machine table for the equivalent finite-state machine. Another simple
example is a push-down machine with a stack memory of capacity N <1. An
analogous argument applies in this case as well and yields the same conclusion.
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modularity is the organizing principle for structured computing
systems more generally, where processing and flow-control are
implemented in the same hardware. This allows any given com-
puting unit to take on various functional roles dynamically. For
example, in the context of computers, the functional role of clus-
ters of logical gates depends on the settings of control pins which
in turn are recursively determined by earlier information process-
ing (Savage, 1998; Tanenbaum, 1990). Therefore, we suggest, that
dynamic functional modularity and neural processing context
should be understood not only in terms of space (i.e., network
interactions) but also in terms of time (i.e., processing history or
memory). In other words, the function of a given brain region is
to some extent dynamically determined by its full spatio-temporal
processing context. As noted by Marcus et al. (2003), specific brain
regions may genuinely participate in a range of tasks with special-
ized function emerging from unique network configurations of do-
main-general mechanisms. We conclude that the idea that Broca’s
region is, in any relevant sense, a syntax specific region is, overall,
not well supported.

5.2. Finiteness of neural systems

Much of the discussion of the recursion-only hypothesis, con-
cerning the narrow faculty of language (FLN, Hauser et al., 2002),
has been phrased in terms of concepts derived from the Chomsky
hierarchy; for example, non-regular context-free vs. right-linear
regular grammars (e.g., de Vries, Monaghan, Knecht, & Zwitserlood,
2008; Fitch & Hauser, 2004; Gentner et al., 2006; Perruchet & Rey,
2005; Uddén et al., 2009). Here, we will show why the Chomsky
hierarchy is irrelevant in the context of finite processing systems.
We take it as plausible that the brain is such a finite system. Be-
yond the finiteness of the processing infrastructure (e.g., finite
number of logical gates, neurons, or finite machine tables), there
are two concepts of finiteness that are relevant, depending on
how one chooses to formalize computational models. The first,
finiteness of memory, is relevant to classical cognitive models
(i.e., Church-Turing computable), and the second, finiteness of pro-
cessing precision, is relevant to non-classical computational mod-
els. We will discuss these matters mostly in terms of the machine
formulation of the Chomsky hierarchy, instead of the equivalent
grammar formulation (cf. e.g., Cutland, 1980; Davis et al., 1994;
Hopcroft et al., 2000; Lewis & Papadimitriou, 1981).

Cognitive neuroscience approaches the brain as a computa-
tional system – a system conceptualized in terms of information
processing. This entails that a subclass of its physical states is
viewed as representations and that transitions between states
can be understood as a process implementing operations on the
corresponding representational structures. It is uncontroversial
that any physically realizable computational system is necessarily
finite with respect to its memory organization and that it processes
information with finite precision (e.g., presence of noise or archi-
tectural imprecision). We have previously indicated why this state
of affairs implies the collapse of the Chomsky hierarchy for
classical cognitive models, and why it makes the dynamical
neurobiological analogue of the finite-state architecture relevant
for non-classical computational models (Petersson, 2005b). Of
course this does not imply that the Chomsky hierarchy is irrelevant
for computational theory (Davis et al., 1994; Pullum & Scholz,
2010), but as remarked in the introduction, the Chomsky hierarchy
is in essence a memory hierarchy, specifying the necessary mem-
ory resources needed for a given level of expressivity. It is the infi-
nite aspect inherent in the Chomsky hierarchy which makes it less
relevant for neurobiological language research (Levelt, 1974;
Petersson, 2005b; Pullum & Scholz, 2010). However, bounded
versions of the different memory architectures entailed by the
hierarchy might be relevant (although we think these should not
be taken too seriously). For example, one memory architecture in
the hierarchy is the push-down stack, and it is conceivable that a
bounded push-down stack is used in language processing, as sug-
gested by for example Levelt (1974) as one possibility. We now
turn to a brief discussion of both classical (Church-Turing) and
non-classical computational architectures.

Turing (1936a, 1936b) explicitly models his machine on human
calculation capacities in what must be some of the most important
work in theoretical cognitive science (Wells, 2005). It clearly rivals
the work of Chomsky (1957, 1965), who borrowed some of the cru-
cial concepts and ideas from this branch of mathematics, including
the work of Post (1944) and Kleene (1952). Turing explicitly de-
signs the computational part of his machine as a finite-state con-
trol architecture for reasons of finite-precision computation
(1936a; 1936b). What, then, is the crucial difference between the
Turing machine architecture, which is at the top of the Chomsky
hierarchy, and finite-state machines, which correspond to regular
grammars? The answer is that, while finite-state machines have
access to finite memory resources, Turing machines generally have
infinite memory resources. Thus, Turing machines with finite
memory resources are finite-state machines3 (see also e.g. ch. 1–4
in Savage, 1998; see also e.g. p.292 in Soare, 1996). It follows that
any explicit classical cognitive model that takes into account the fi-
nite memory resources of the brain is necessarily a finite-state ma-
chine. In a fundamental sense, it is the characteristics of the
memory organization that allow a computational architecture to
re-use its processing capacities (i.e., computational mechanisms)
recursively to generate its expressive range. If finite memory con-
straints are imposed, it follows that the computational mechanisms
of universal architectures are no more powerful than that of the fi-
nite-state architecture. It is obvious that the finite-state architecture
is the only computational architecture in the Chomsky hierarchy
which is finite with respect to both its computational mechanism
and its memory organization (Petersson, 2005b, 2008).

Given that the levels of the Chomsky hierarchy are strictly
inclusive, it is commonly held that the finite-state architecture is
too restrictive to capture all syntactic phenomena found in natural
languages (Chomsky, 1956, 1957). However, as noted by for exam-
ple Pullum and Scholz (2009), regular parsing is powerful. Pullum
and Scholz (2009) argue that it would suffice for pretty much all
the linguistic processing that humans ever do. Pullum and Scholz
(2009) provide an interesting example of a regular language:
a(c*dc*dc*)*a + b(c*dc*dc*)*b; in which all strings begin with either
a or b; the middle is an indefinitely long stretch of c and d in ran-
dom order, but always containing an even number of d:s; and
strings end with whatever they began with. Thus, in this regular
language there are unbounded non-adjacent dependencies, and is
parsed by a very simple finite-state machine. Pullum and Scholz
(2009) argue that figuring out the underlying grammar from exam-
ples in this particular case would be way beyond the abilities of
any mammal other than a skilled human puzzle-solver with pencil
and paper.

Related to a different set of issues, Friederici (2004) claims that
phrase-structure grammars are characterized by their admission
of complex hierarchical structures and long-distance dependen-
cies. In fact, András Kornai has provided one example of a con-
text-sensitive grammar (there are infinitely many such
generative grammars), with no useless rules – all rules participate
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in all derivations that terminate – yet, only a finite string set is
generated; and in the example of András Kornai, precisely one
string is generated (cf., Pullum & Scholz, 2010). In summary, reg-
ular grammars can represent non-adjacent dependencies, and
conversely, there are non-trivial context-sensitive grammars that
only generate a finite language. Therefore, the phenomenon of
non-adjacent dependencies, a characteristic of natural languages,
can not simply be reduced to a choice between regular or non-
regular grammars.

From a neurobiological perspective, it is reasonable to assume
that the brain only possesses finite memory resources (with re-
spect to both short- and long-term memory). It is thus clear that
seeing language as an internal system of the brain forces us to
characterize language in terms of a computational system with fi-
nite memory resources. The argument here is simple: [neurobio-
logical systems do not have greater capacity than any physically
realizable information processor, i.e., finite-state capacity] & [the
language faculty is a neurobiological system] � [the language fac-
ulty is finite-state system]. Moreover, finite-state and finite-preci-
sion computation devices, including real neural networks, are
sufficient to handle finite recursion of general type, so there is no
real problem here (Siegelmann, 1999; Siegelmann & Fishman,
1998). It is also clear from, for example, Lasnik’s Syntactic Structures
Revisited (p. 4, 2000) that the assumption of infinite memory re-
sources, N =1, is a simplifying assumption in theoretical linguis-
tics (as in theoretical computer science), because the issue of
memory limitations does not have to be dealt with explicitly –
although this is forced upon us when we deal with real computa-
tional mechanisms in brains (or real computers). It is also a com-
mon misconception that the finite-state architecture lacks
memory, and that it is this limitation which prevents finite-state
machines from successfully characterizing natural languages
(e.g., Lasnik, 2000). On the contrary, the finite-state architecture
supports a fixed finite memory resource (Minsky, 1967; Savage,
1998). We note that it is possible to implement any recursive type
(general recursion) in a finite-state architecture as long as this is
used with recursive depth � N, for some fixed N <1, or can be fi-
nitely expressed within this memory limitation during real-time
operations. Thus, the finite-state architecture supports unlimited
concatenation recursion and finite recursion of a general type
and this is also the characteristic of human cognition and perfor-
mance. In addition, these observations suggest an explanation
why simple computational schemes are able to capture human
performance qualitatively. For example, the discrete-time simple
recurrent network (SRN) can be viewed as a simple network ana-
logue of the finite-state architecture (Petersson, 2005b). Recent
studies suggest that discrete-time SRNs, or similar network mod-
els, model different types of finite recursion with some success
(Christiansen & Chater, 1999; Elman, 1991; Misyak et al., 2009;
Petersson, 2008; Petersson et al., 2005; Tong, Bickett, Christiansen,
& Cottrell, 2007).

The aforementioned arguments also imply that the fundamen-
tal difference between animal and human communication systems
cannot be captured by direct reference to the Chomsky hierarchy,
for example by referring to the distinction between the regular-
(e.g., right-linear or finite-state) and non-regular (e.g., context-free,
context-sensitive) classes of grammars per se (e.g., Fitch & Hauser,
2004; Gentner et al., 2006; Hauser et al., 2002). O’Donnell et al. (p.
287, 2005), for example, notice that infinite (‘’unbounded’’) mem-
ory resources are necessary to process non-regular grammars. On
the other hand, they state (p. 288, O’Donnell et al., 2005), ‘’Fair
tests of the generalization phase must of course, take into account
factors such as known limitations on working memory in appropri-
ate modalities’’. Taken together, this position does not seem coher-
ent to us. We now turn to non-classical computational
architectures.
Generally, analog dynamical systems provide a non-classical
information processing alternative to classical computational
architectures (Siegelmann & Fishman, 1998). In particular, network
approaches offer possibilities to model cognition within a non-
classical dynamical systems framework that is more natural from
a brain perspective. As noted above, it is known theoretically that
(Church-Turing) computable processes can be embedded in
dynamical systems, instantiated by neural networks (e.g., Siegel-
mann, 1999). The recurrent neural network architecture can be
viewed as a finite number of analog registers (e.g., the ‘‘membrane
potential”) that processes information interactively. Computations
are determined by the network topology and by the transfer func-
tions of the processing units, as well as the set of dynamical vari-
ables associated with the processing units. Several non-standard
computational models have been outlined, including generaliza-
tions of the Church-Turing framework (for reviews see Buonomano
& Maass, 2009; Casey, 1996; Moore, 1990; Siegelmann, 1995,
1999; Siegelmann & Fishman, 1998). However, their dependence
on infinite precision processing implies that the computational
capacities of these systems generally are sensitive to system noise.
Theoretical results show that common types of noise put hard lim-
its on the kinds of languages that analog neural networks can
meaningfully process or recognize (Casey, 1996; Maass & Orponen,
1997, 1998; Maass & Sontag, 1999). We note that, in addition to
external noise, there are several relevant brain-internal noise
sources (e.g., Koch, 1999). Moreover, it seems clear that any rea-
sonable analog model of a given brain system will have a state-
space in the form of a finite dimensional compact manifold (i.e.,
closed and bounded). Here, compactness represents the natural
generalization of finiteness in the classical framework. Qualita-
tively, it follows from the compactness property that finite pro-
cessing precision or realistic noise levels have the effect of coarse
graining the state-space – effectively ‘‘discretizing” this into a fi-
nite number of elements which become the relevant computa-
tional states. Thus, it seems that even if we model a given brain
system as an analog dynamical system, this would approximately
behave as, or could be well-approximated by, a finite-state ana-
logue. Moreover, under the additional assumption that the avail-
able processing time is finite, the same conclusion follows for the
continuous-time case, if finite temporal precision or temporal
noise is assumed. This is essentially what the technical results of
Maass and colleagues (Maass & Orponen, 1997, 1998; Maass &
Sontag, 1999; Maass et al., 2007), as well as others (Casey, 1996;
Siegelmann, 1999), entail.

The conclusions for non-classical computational frameworks
are, therefore, essentially the same as for the classical framework.
Thus, more than 70 years down the line, Turing’s fundamental
analysis of human cognition with explicit reference to finite-preci-
sion computation has proven to stand the tooth of time. Maass and
colleagues (pp. 19–20, 2007) summarize these issues succinctly: ‘‘a
generic neural circuit may become through feedback a universal
computational device . . . [and it is] . . . known that the memory
capacity of such a circuit is reduced to some finite number of bits
if these feedback functions . . . are not learnt perfectly [with infinite
precision], or if there are other sources of noise in the system”.
They conclude that under noise or finite-precision computation,
the maximal possible computational power that these systems
achieve is that ‘‘they can simulate any given finite-state machine
. . .[and that] . . . any Turing machine with tapes of finite length is
a special case” (Maass et al., 2007).

What are the implications of this for theoretical models of lan-
guage and grammar? If we view the faculty of language as a neuro-
biological system, given its finite storage capacity and finite-
precision computation, the Chomsky hierarchy is less relevant –
it does not make the relevant distinctions. The Chomsky hierarchy
only has theoretical meaning in the context of infinite memory
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resources. Rather than giving ‘‘recursion’’ the centre stage, some of
the real issues in the neurobiology of syntax, and language more
generally, are related to the nature of the neural code (i.e., repre-
sentation), the character of human on-line processing memory
and neural finite-precision computation. Recurrent connectivity
is a generic feature of brain network topology (Koch & Laurent,
1999; Nieuwenhuys, Voogd, & van Huijzen, 1988; Petersson,
Ingvar, & Reis, 2009). Thus, recursive processing is a latent capacity
in almost any neurobiological system and it would be surprising,
indeed, if this feature would be unique to the faculty of language.
We noted that the relevant issue from the point of view of natural
language is the human capacity to process patterns of non-adja-
cent dependencies – not arbitrarily ‘‘long” non-adjacent dependen-
cies – there is a definite upper-bound set by the brain and its
underlying neurophysiology. We can thus choose to work with
any fruitful formal syntactic framework as long as this serves its
purpose, for example, to capture the presence of relational patterns
between lexical items in compositionally constructed sentences, or
to elaborate a parameterized model of language acquisition. How-
ever, from a neurobiological perspective, it seems natural to try to
understand language acquisition and language processing in terms
of adaptive stochastic dynamical systems (Petersson, 2005a). Thus,
the real challenge in the neurobiology of syntax is to understand
syntax processing in terms of noisy spiking network processors.
Similar, independent, accounts have been proposed by Culicover
& Nowak in their Dynamical Grammar (2003) as well as others
(Christiansen & Chater, 1999; Rodriguez, 2001; Rodriguez, Wiles,
& Elman, 1999).
6. Conclusion

We presented FMRI results on artificial syntax processing and
showed that this engages the left inferior frontal region, centered
on BA 44 and 45, during the processing of well-formed sequences,
independent of local subsequence familiarity. Crucially, the pre-
sented sequences lacked requirements for syntactic movement or
nested embedding processing. We found that Broca’s region is en-
gaged to a greater extent when the system is attempting to process
non-grammatical sequences, and thereby, the unification of struc-
tural pieces becomes difficult or impossible. These effects related
to artificial syntactic processing were essentially identical when
we masked these with activity related to natural-syntax processing
in the same subjects. The behavioral performance of subjects par-
alleled the FMRI findings closely and were highly consistent with
these.

In the context of recent FMRI findings related to Broca’s region,
we investigated whether this, or any of its subregions, can be con-
sidered specific to syntactic movement operations or the process-
ing of hierarchically nested non-adjacent dependencies. We did
so by comparing our results with findings interpreted in support
for these functional roles of Broca’s region. Essentially, we find that
the same neocortical territory is engaged in structured sequence
processing lacking such processing requirements. The main con-
clusion we draw from these findings is that the left inferior frontal
region cannot be specific to the processing of syntactic movement
or nested structures. Instead, our results, in conjunction with pre-
vious functional neuroimaging results, suggest that the left inferior
frontal region is a generic on-line sequence processor that unifies
information from various sources in an incremental and recursive
manner, independent of whether there are any processing require-
ments related to syntactic movement or hierarchically nested
structures. We suggest that there is a quantitative difference
(e.g., in terms of minimal memory requirements) in processing se-
quences with adjacent and non-adjacent dependencies, but that
the nature of the processing is the same. Finally, based on a
theoretical review in combination with the notion of finiteness of
neurobiological systems, we concluded that concepts derived from
the Chomsky hierarchy are not directly relevant for neurobiological
systems. This includes the theoretical distinction between regular
and non-regular grammars. The relevant issue from the point of
view of natural-language processing, is the human capacity to pro-
cess bounded patterns of dependencies.
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