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Abstract 
When children learn their native language, they have to deal 
with a confusing array of dependencies between various 
elements in an utterance. Some of these dependencies may be 
adjacent to one another whereas others can be separated by 
considerable intervening material. Research on statistical 
learning has begun to explore how such adjacent and non-
adjacent dependencies may be learned—but in separate 
studies. In this paper, we investigate whether both types of 
dependencies can be learned together, similarly to the task 
facing young children. Statistical learning of adjacent and 
non-adjacent dependencies was assessed using a modified 
serial-reaction-time task. The results showed (i) increasing 
online sensitivity to both dependency types during training, 
and (ii) non-adjacent dependency learning being highly 
correlated with adjacent dependency learning. These results 
suggest that adjacency and non-adjacency learning can occur 
in parallel and that they might be subserved by a common 
statistical learning mechanism. 

Keywords: Statistical learning; Non-adjacent Dependencies; 
Adjacent Dependencies; Artificial Grammar Learning; Serial 
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Introduction 
It is generally assumed that statistical learning, a domain-
general mechanism that encodes statistical regularities 
across space and time, plays a role in language acquisition 
(see Saffran, 2003, for a review). The extent to which 
statistical learning can support language acquisition is, 
however, a point of controversy (e.g., Marcus, Vijayan, Rao, 
& Vishton, 1999, Seidenberg & Elman, 1999; Yang, 2002). 
This is in part because in natural languages dependencies 
can concern adjacent elements (e.g., dependencies between 
verb stems and inflectional morphemes as in learning) or 
non-adjacent ones (e.g., dependencies between auxiliaries 
and inflectional morphemes as in is learning), but studies of 
artificial grammar learning have shown that adults and 
children are highly sensitive to the former type of regularity 
(e.g, Saffran, Aslin, & Newport, 1996) and considerably 
less sensitive to the latter (e.g., Gómez, 2002; Newport & 
Aslin, 2004).  

Why are non-adjacent dependencies hard to learn?  One 
proposal is that this might be due to a default bias towards 
adjacent dependencies (Gómez, 2002). Evidence for this 
hypothesis comes from studies demonstrating the variability 

effect, which is the finding that high variability in the 
material embedded between the non-adjacent dependent 
elements facilitates non-adjacent dependency learning 
compared to low variability (Gómez, 2002; see also Onnis, 
Christiansen, Chater, & Gómez, 2003). In the relevant 
studies, participants were trained on an artificial grammar of 
the form aXb, in which the non-adjacent pairing between the 
first and third element (a-b) was fixed at the perfect level 
(non-adjacent transitional probability = 1.0), while the 
adjacent pairing between the first and second element (a-X) 
was variable. Across participant groups, the size of the 
adjacent set varied from 2 (yielding an adjacent transitional 
probability between the first and second element of .50) to 
24 (yielding an adjacent transitional probability of .04). The 
participants listened to the sequences during training and 
later took a surprise grammaticality judgment test that 
assessed their non-adjacent dependency learning. Results 
showed significantly worse non-adjacent dependency 
learning at the smaller than at the larger adjacent set sizes.  

In light of the above findings, Gómez (2002) proposed 
that learners might initially have a default focus on adjacent 
dependencies (henceforth, the adjacency-first view). When 
the adjacent set has relatively low variability (with a smaller 
adjacent set size), adjacency learning continues to 
predominate. By contrast, when the adjacent set has high 
variability (with a large adjacent set size), learners might 
soon “seek out alternative sources of predictability” (e.g., 
non-adjacent dependencies) (pg. 435). Statistical learning is 
therefore partially flexible, as the adjacency bias could be 
overridden given high variability in the adjacent set. 
However, a trade-off between adjacency and non-adjacency 
learning that favors adjacency learning might result when 
adjacent-set variability is low. This proposal thus elegantly 
accounts for the poorer non-adjacency learning performance 
at the smaller adjacent set sizes despite the still perfect non-
adjacency statistics in those conditions. Note that not all 
observed effects of adjacent on non-adjacent dependency 
learning are negative. Later studies (Lany & Gómez, 2008; 
Lany, Gómez, & Gerken, 2007) have shown that if the non-
adjacent dependency to be learned has been encountered 
earlier as an adjacent pair, then non-adjacent dependency 
learning is facilitated (see also, e.g., Newport & Aslin, 
2004; Creel, Newport, & Aslin, 2004 for other facilitating 
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factors). In either case, existing evidence suggests a heavy 
influence of adjacent on non-adjacent dependency learning.  

 In the current study, we aimed to assess this interaction 
between adjacency and non-adjacency learning by re-
examining the learning of non-adjacent dependencies under 
a small adjacent set size condition thought to be favorable to 
adjacent dependency learning, and less favorable to non-
adjacent dependency learning (Gómez, 2002; Onnis et al., 
2003). Previous studies used an offline judgment task to 
measure learning of non-adjacent dependencies (e.g., 
Gómez, 2002, Onnis et al., 2003), or they used an online 
task but measured learning of adjacent and non-adjacent 
dependencies in different experiments (Misyak & 
Christiansen, 2010; Misyak, Christiansen, & Tomblin, 
2010), or they trained participants on adjacent and non-
adjacent dependencies within the same experiment but in a 
serial manner (Lany & Gómez, 2008; Lany, Gómez, 
& Gerken, 2007). By contrast, we tracked online learning of 
both adjacent and non-adjacent dependencies 
simultaneously in the same task as learning progressed. 

Training materials were similar in structure to those used 
in Lany et al. (2007, Experiment 3) and consisted of four 
non-adjacent dependency pairs with an adjacent set size of 6 
(e.g., aX1-6b). To track learning online, we adopted the 
artificial grammar learning-serial reaction time (AGL-SRT) 
paradigm (Misyak et al., 2010, see Figure 2). The 
participants listened to triplets of sound sequences, such as 
jom - namie - mig. On the computer screen, they saw the 
written versions of the stimuli along with three distractors. 
They listened to the strings one element at a time and made 
a mouse click response to select the corresponding element 
on the visual display. We measured the latencies from the 
presentation of each element in the string and tracked the 
participants’ developing sensitivities to adjacent and non-
adjacent dependency patterns by computing adjacency and 
non-adjacency facilitation scores. These scores were derived 
by taking the reaction time (RT) to the first, non-predictable 
targets as baseline and subtracting from it the RTs to the 
predictable second and third targets, respectively. In this 
paradigm, increasing sensitivity manifests itself in 
increasing facilitation scores, averaged across each training 
block. 

In order to provide an opportunity for non-adjacent 
dependency learning to develop, we used more training 
trials than usual in this kind of study (two sessions on 
successive days totaling over 1000 trials compared to 
typical training regimes consisting of a single session under 
500 trials). As in Misyak et al. (2010), the penultimate block 
of each session featured only ungrammatical sequences in 
which both previously trained adjacent and non-adjacent 
pairings were violated. Because the first element in the 
ungrammatical block was no longer predictive of the second 
and third elements, the prediction-based benefits in RT 
should be eliminated, thus leading to a drop in the 
facilitation scores towards baseline in this block. The final 
block of each session was a recovery block in which the 
original pairings were reinstated. If participants had learned 

the dependency patterns well, there should be a rebound in 
the facilitation scores because the first element was again 
predictive in this block. After completing the AGL-SRT 
task, participants were asked to complete a prediction task 
as well as a standard grammaticality judgment task. 

Given that the probabilities used in this study favored 
non-adjacent dependencies, one may perhaps expect better 
non-adjacency than adjacency learning eventually. 
However, the critical prediction concerns the learning time 
course of the two patterns. As the current adjacent set size 
was relatively small (and would not fall into the category of 
"high variability" in Gómez's (2002) study), the adjacency-
first view would predict that learners first focus on adjacent 
dependencies and then on non-adjacent dependencies (if at 
all). Therefore, according to this view, we should find an 
early emergence of sensitivity to adjacent and a later 
emergence of sensitivity to non-adjacent dependencies. 
 

Methods 

Participants 
Twenty-two Dutch native speakers recruited from local 
universities in Nijmegen, the Netherlands (mean age = 20.8, 
SD = 2.2, 5 men) participated in exchange for monetary 
compensation (8 Euros/hour).  

Materials 
Training materials consisted of spoken three-element strings 
of Dutch pseudowords. In keeping with previous materials 
for comparison purposes (Gómez, 2002), the first and third 
element of the strings were monosyllabic (lin, pes, zol, taf, 
bur, jom, mig, vun), whereas the second one was disyllabic  
(namie, hufel, hagix, dazan, fenar, gunis, dosef, witus, sluro, 
kapek, worat, ruxot). Assignment of tokens to target 
elements was randomized across participants. The stimuli 
were recorded by a female Dutch native speaker. The 
average durations were 373 ms (SD = 48) for the 
monosyllabic items and 546 ms (SD = 46) for the disyllabic 
items.  

The first and third element of the training strings formed 
four fixed non-adjacent dependency pairs (a-b, c-d, e-f, and 
g-h; non-adjacent transitional probability = 1.0). Similar to 
Lany et al. (2007; Experiment 3), the non-adjacent 
dependency pairs were divided into two subsets, each 
sharing the same set of six intervening items in the second 
position (aX1-6b and cX1-6d vs. eY1-6f and gY1-6h; adjacent 
transitional probability = .17, see Figure 1). Therefore, for a 
given participant, two non-adjacent dependency pairs (e.g., 
jom-mig and zol-vun) were only combined with one second-
element subset (e.g., namie, sluro, hagix, worat, ruxot, and 
kapek), whereas the other two non-adjacent dependency 
pairs (e.g., taf-bur and pes-lin) were only combined with the 
remaining subset of second elements (e.g., hufel, fenar, 
dosef, witus, dazan, and gunis). 
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a! X1-6 !! b!
c! d!X1-6 !!

e! Y1-6 !! f!
g! h!Y1-6 !!

Subset 1!

Subset 2!

adjacent pairs!

nonadjacent pairs!

 
 

Figure 1: Structure of the training materials. 

On the computer screen, the participants saw written 
versions of the targets along with three distractors drawn 
from items at the same element position of the other 
stimulus subset (e.g., only the second-element, but not the 
first- or third-element items, from the other subset could 
serve as distractors for a given second-element target). Each 
pseudoword appeared equally often as a target and as a 
distractor. For the ungrammatical block, both adjacent and 
non-adjacent pairs were violated such that the second targets 
were switched between subsets while the third targets 
between pairs within the same subset (e.g., *aYd: jom-fenar-
vun, *eXh: taf-ruxot-lin). 

For the prediction task, correct target elements were 
presented together with distractors as in training (see 
Procedure). For the grammaticality judgment task, half of 
the strings contained intact adjacent and non-adjacent pairs 
(e.g., aXb: jom-namie-mig), while the other half contained 
intact adjacent but violated non-adjacent pairs with the third 
elements being switched between subsets (e.g., *aXh: jom-
namie-lin). 

Procedure 
Participants were tested in two sessions, with the second 
session taking place within 24 +/-3 hours after the first. In 
each session, participants went through six training blocks 
of 96 trials each (4 non-local pairs x 6 local pairs x 4 
repetitions), followed by an ungrammatical block of 24 
trials (4 non-local pairs x 6 local pairs), and a recovery 
block of 96 trials (4 non-local pairs x 6 local pairs x 4 
repetitions). In the second session, they were also 
administered two surprise tasks, a prediction task and a 
grammaticality judgment task (24 trials each). 

Similar to previous AGL-SRT studies (see Misyak et al., 
2010 for details), target items were presented along with 
distractors in a rectangular grid display on the computer 
screen (see Figure 2). The first, second, and third target 
appeared in either the upper or lower row of the first, 
second, and third column, respectively. Target positions 
were counterbalanced such that each target was as likely to 
occur in the upper as in the lower row. Each training trial 
started with the presentation of a fixation cross in the center 
of the computer screen for 750 ms. Then the visual display 
was shown until the end of the trial. 250 ms after the onset 
of the display, the first target was played. The participants 
were asked to make a mouse click inside the rectangular 

area containing the target as quickly and accurately as 
possible. Immediately following the participants' response, 
the second target was played and the participants made a 
second mouse click response. The same procedure applied 
to the third target, after which the current trial was brought 
to an end. A different random order of trials was used for 
each participant. 

JOM! NAMIE ! BUR!

PES! HUFEL! MIG!

JOM! BUR!

PES! HUFEL! MIG!

JOM! BUR!

PES! HUFEL! MIG!

Target 1!
 jom!

Target 2!
 namie!

Target 3!
mig!

NAMIE !

NAMIE !

 
 

Figure 2: Example of a series of events in a training trial. 
The gray arrows indicate the targets. 

Following the training trials in the second session, 
participants were told that the triplets heard on training trials 
had followed certain patterns on which they would be tested 
in two short tasks. In the prediction task, the same procedure 
was followed as during training for the first two elements, 
but for the third element the participants were asked to 
select the appropriate target without any auditory 
information. In the grammaticality judgment task, they 
heard a stimulus triplet and responded by pressing one of 
two keys to indicate whether or not it followed the 
previously trained patterns. The materials were presented in 
a different randomized order to each participant. 

Results 
Participants were 98% accurate on average (SD = 1.17) in 
making mouse click responses during training. Correct 
reaction times (RT) beyond 2000 ms were excluded from 
analysis (0.20% of the data). As the auditory targets differed 
in length, we corrected for length by performing a linear 
regression predicting each participant's correct RTs from the 
targets’ spoken durations (Ferreira & Clifton, 1986). We 
then computed each participant's average residual RT per 
block. Adjacency and non-adjacency facilitation scores were 
computed by subtracting average second- and third-target 
residual RTs, respectively, from first-target residual RTs for 
each block and participant. Positive adjacency facilitation 
scores indicate faster responses to the second than to the 
first target. Likewise, positive non-adjacency facilitation 
scores indicate faster responses to the third than to the first 
target. A summary of the facilitation scores is shown in 
Figure 3. 
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Figure 3: Mean adjacency and non-adjacency facilitation 
(msec) across training blocks and days (ungram = 

ungrammatical block, rec = recovery block). 

There were two clear patterns in the data. First, the two 
facilitation curves showed remarkably similar increasing 
trends across the grammatical training blocks (except for 
block 6 in session 1, featuring an unexpected drop in 
facilitation perhaps due to fatigue). Second, there was more 
non-adjacency than adjacency facilitation, especially in the 
second session.  Results from a 2 (Type: adjacency vs. non-
adjacency facilitation) x 2 (Day: 1 vs. 2) x 8 (Block: 1 to 8) 
within-subject ANOVA on mean facilitation scores per 
block confirmed that, overall, facilitation scores changed as 
a function of blocks in both the training sessions (main 
effect of Block, Greenhouse-Geisser corrected for violation 
of sphericity assumption: F (4.72, 99.02) = 8.63, p < .001). 
The overall amount of non-adjacency facilitation indeed 
exceeded that of adjacency facilitation (19 ms difference, 
main effect of Type: F (1, 21) = 10.49, p = .004), and this 
difference was significantly larger in the second than in the 
first training session (Type x Day interaction was 
significant: F (1, 21) = 7.73, p = .01). Analyses of simple 
effects showed that the difference between the adjacency 
and non-adjacency facilitation scores was only marginally 
significant in the first session (12 ms difference, p = .07), 
but highly significant in the second session (25 ms 
difference, p = .001). No other interaction effects were 
significant.  

To assess learning further, we focused on the final three 
training blocks of each session and performed two planned 
comparisons (last training vs. ungrammatical block, and 
recovery vs. ungrammatical block) on the adjacency and 
non-adjacency facilitation scores. Significantly greater 
facilitation in the last training and recovery block compared 
to that in the ungrammatical block would indicate that the 
participants had acquired the trained patterns. In the first 
session, neither the adjacency nor the non-adjacency 
facilitation scores in the last training or recovery block 
differed significantly from the score in the ungrammatical 
block (ts ≤ 1), indicating that participants had not learned 

the adjacent or non-adjacent dependencies. However in the 
second session, clear evidence for non-adjacent dependency 
learning emerged (last training vs. ungrammatical block:  49 
ms facilitation; t (21) = 6.19; recovery vs. ungrammatical 
block: 40 ms facilitation. t (21)=3.99, both ps < .001). The 
facilitations scores for adjacent dependency learning were 
likewise significant (last training vs. ungrammatical block: 
24 ms, t (21) = 3.08, p < .01; recovery vs. ungrammatical 
block: 16 ms, t (21)= 2.37, p < .03). 

Although an earlier emergence of sensitivity to adjacent 
dependencies was not evident in the online data averaged 
across blocks, such a pattern might have emerged and then 
faded extremely early during training, so that the adjacency-
first pattern could be revealed only if the earliest training 
trials were examined. To assess that possibility, we divided 
the first training block into four sub-blocks (24 trials each) 
and tracked adjacency and non-adjacency facilitation scores 
across the sub-blocks. As Figure 4 shows, the data did not 
support the adjacency-first hypothesis, as the adjacency 
facilitation scores were overall lower than the non-
adjacency facilitation scores (however, none of the 
facilitation scores were significantly above the first-target 
baseline in any of the sub-blocks). 
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Figure 4: Mean adjacency and non-adjacency facilitation 
(msec) across sub-blocks of block 1. 

Participants scored an average of 64% correct (SD = 20.2) 
on the prediction task and 62% correct (SD = 20.6) on the 
judgment task. Consistent with the positive RT non-adjacent 
dependency learning results in the second session, 
performances were significantly above chance level (i.e., 
50%) on both tasks (t (21) = 3.34, p = .003, and 2.81, p = 
.01, respectively).  

Discussion 
The participants acquired the adjacent dependencies, as 
evidenced by the significantly greater facilitation in the last 
training and recovery block compared to that in the 
ungrammatical block in the second session. They also 
acquired the non-adjacent dependencies, as evidenced by 
the significant facilitation and accuracy results in the same 
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session. Consistent with prior studies that trained 
participants in one session only (e.g., Gómez, 2002), we 
found no evidence of non-adjacent dependency learning in 
the first session. The significant learning found in the 
second session demonstrates that extended training is 
worthwhile if the goal is to track gradual acquisition of 
complex patterns.  

In accordance with the higher informativeness of the non-
adjacent statistics compared to the adjacent statistics used in 
this study, the non-adjacent dependencies were learned 
better than the adjacent ones. Importantly, at no point during 
training was sensitivity to adjacent dependencies greater 
than sensitivity to non-adjacent dependencies. Despite the 
relatively small adjacent set size, participants did not first 
focus on adjacent dependencies and then on non-adjacent 
dependencies during learning. The current results therefore 
do not support the adjacency-first view of non-adjacent 
dependency learning (Gómez, 2002). Instead, they suggest 
that adjacent and non-adjacent dependency learning 
processes can run in parallel as learners are exposed to 
strings containing learnable adjacent and non-adjacent 
dependencies. It should, however, be noted that we used 
quite different probabilities for the two dependency types, 
much higher for non-adjacent than for adjacent 
dependencies (in keeping with the smaller adjacent set size 
conditions in Gómez, 2002). It remains to be seen whether 
an adjacency-first bias would arise when the relative 
strengths of the two dependency types are more comparable.  

An issue that is yet to be settled is whether adjacent and 
non-adjacent dependency learning involves the same or 
different mechanisms. In a brain-imaging AGL study, 
Friederici, Bahlmann, Heim, Schubotz, and Anwander 
(2006) found additional recruitment of Broca’s area (BA 
44/45) in the processing of trained sequences that contained 
hierarchically nested non-adjacent dependencies (e.g., 
A1A2B2B1), as compared to the brain activation pattern for 
the processing of trained sequences containing adjacent 
dependencies (e.g., A1B1A2B2). This suggests a specific brain 
area, and presumably a separate mechanism, for the 
computation of hierarchical non-adjacent dependencies (see 
also Bahlmann, Schubotz, & Friederici, 2008, but see de 
Vries, Monaghan, Knecht, & Zwitserlood, 2008). 
Weakening that claim, however, are convergent findings 
from a number of recent studies showing that Broca’s area 
is also engaged in artificial grammar learning that does not 
involve hierarchical non-adjacent dependencies 
(Christiansen, Kelly, Schillcock, & Greenfield, 2010; 
Petersson, Folia, & Hagoort, in press; Uddén et al., 2008).  

The time course data in our study do not reveal whether 
learning the adjacent and non-adjacent dependencies 
engaged one learning mechanism, which simultaneously 
extracted both patterns, or whether distinct learning 
mechanisms were involved. To explore the relationships 
between adjacent and non-adjacent dependency learning in a 
different way, we computed by-subject online learning 
scores using the RT facilitation in the first training block as 
baseline and subtracting it from the facilitation obtained in 

the last training block of the second session (block 14; see 
also Misyak et al., 2010). We found a strong positive 
correlation between the adjacency and non-adjacency online 
learning scores across participants (r = .78, p < .001, see 
Figure 5)1. While the absence of a correlation or a negative 
correlation would have pointed towards distinct learning 
mechanisms, the presence of correlation cannot be 
unambiguously interpreted. It certainly suggests a shared 
learning mechanism, but it could also be the case that the 
acquisition of adjacent and of non-adjacent dependencies 
both depends on a trait or ability that was not assessed in 
our study (see, e.g., Kaufman, DeYoung, Gray, Jiménez, 
Brown, & Mackintosh, 2010). 
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Figure 5: Correlation between adjacency and non-adjacency 
learning. 

 
Finally, we found better learning in the second than in the 

first training session. This is somewhat reminiscent of 
consolidation effects found in other verbal learning tasks 
(e.g., Davies & Gaskell, 2009; Dumay & Gaskell, 2007), 
though we can, of course, not separate the effects of 
increased practice and memory consolidation over time nor 
do we know whether sleep was essential for obtaining any 
consolidation effects. The finding that learning increments 
in the second session were larger for non-adjacent than for 
adjacent dependencies may point towards the involvement 
of different learning or consolidation mechanisms. 
Alternatively, the divergence in learning rates in the second 
session might simply reflect cumulative differences with 
extended exposure that stemmed directly from the 
difference in statistical strength for the adjacent vs. non-

                                                           
1  A similar correlation obtained (r = .74, p < .001) when 

adjacency and non-adjacency learning scores were computed 
without involving the common first element in the baseline, by 
subtracting second-element residual RTs at the final training block 
from those at the first training block (adjacency learning), and by 
subtracting third-element residual RTs at the final from those at the 
first block (non-adjacency learning). 
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adjacent dependencies. To assess these options future 
studies are required, where one could, for instance, 
systematically vary the retention intervals between training 
sessions, the timing of the sessions (with/without 
intervening sleep), and the adjacent and non-adjacent 
dependencies in the training sequences.  

In sum, the current study demonstrates the usefulness of 
obtaining online data for assessment of statistical learning 
(see also Misyak & Christiansen, 2010; Misyak et al., 
2010). Through this approach, we obtained compelling 
evidence for simultaneous adjacent and non-adjacent 
dependency learning in an extended artificial grammar 
learning task. Thus, our results suggest that statistical 
learning is both more powerful, making it possible to learn 
multiple types of dependencies simultaneously, and more 
robust, allowing non-adjacent dependencies to be learned 
without high adjacent-set variability, than previously 
thought. This provides further support for the hypothesis 
that statistical learning may play a crucial role in the 
acquisition of long-distance dependencies in natural 
language.  
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