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Abstract 
A new cognitive architecture for the syntactic aspects of human sentence processing 
(the Unification Space) is tested against experimental data from human subjects. The 
data, originally collected by Bach, Brown and Marslen-Wilson (1986), concern com-
prehensibility ratings for three types of verb dependency constructions in Dutch and 
German. A satisfactory fit is obtained between comprehensibility data and parsability 
scores in the model. 
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1. Introduction 

In a recent paper (Kempen & Vosse, 1990), we have proposed a new cognitive archi-
tecture for the syntactic aspects of human sentence processing. The model is “hybrid” 
in the sense that it combines symbolic structures (parse trees) with non-symbolic 
processing (simulated annealing). The computer model of this architecture — called 
the Unification Space — is capable of simulating well-known psycholinguistic 
sentence understanding phenomena such as the effects of Minimal Attachment, Right 
Association and Lexical Ambiguity (cf. Frazier, 1987). 

In this paper we test the Unification Space architecture against a set of psycho-
linguistic data on the difficulty of understanding three types of verb dependency 
constructions of various levels of embedding. The data were collected by Bach, 
Brown and Marslen-Wilson (1986) and concern comprehensibility ratings of cross-
serial, center-embedded and right-branching constructions as illustrated by (1). 
Subjects rated two types of verb dependencies: right-branching and either center-
embedded (German) or cross-serial (Dutch) dependencies.  

      Dependency type 

(1a) … when John saw Peter walk  Right-branching 

(1b) … als Johan Peter laufen sah  Center-embedded (nested) 

(1c) … toen Jan Peter zag lopen  Cross-serial (crossed) 

The right-branching constructions are quite common in Dutch and German. German 
sentences were rated only by native speakers of German, Dutch sentences only by 
native speakers of Dutch. Figure 1 shows the obtained comprehensibility (or rather, 
incomprehensibility) ratings for four “levels” (the term level refers to the depth of 
embedding; level 1: one clause, without embeddings; level 2: two clauses, one 
embedded in the other as in (1), etc.). Notice that the (Dutch) crossed dependencies 
were consistently rated easier to understand than the (German) nested dependencies. 
From level 3 onward, the right-branching structures are much easier to understand 
then their crossed or nested counterparts. 

In Section 2 we outline briefly the type of grammar we use to represent syntactic 
structures. The parsing mechanism capable of building such structures is described in 
Section 3. Section 4 is devoted to design and results of the computer simulation. In 
Section 5, finally, we draw some comparisons and conclusions. 
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2. Segment Grammar 

Kempen (1989) introduced Segment Grammar as a formalism for generating syntactic 
trees out of so-called segments. A segment is a node-arc-node triple, the top node 
being called “root” and the bottom node “foot”. Both root and foot nodes are labelled 
by a syntactic category (e.g. S, NP) and have associated with them a matrix of 
features (i.e., attribute-value pairs). Arc labels represent grammatical functions. See 
Figure 2 for some examples. All syntactic knowledge a segment needs (including 
ordering rules) is represented in features. 
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Figure 2. Various types of syntactic segments. 

The basic tree formation operation is unification of the feature matrices of nodes 
which carry the same category label. In Figure 3 successful unification has been visu-
alized as the merger of the corresponding nodes. 

Segment Grammar is completely lexicalized. Every lexical entry specifies a single 
segment or a sub-tree consisting of several segments. For instance, one entry for the 
English verb “eat” looks like Figure 4. It specifies the subcategorization features for 
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Figure 2. Comprehensibility ratings for various construction types and depths 

(1 = very easy, 9 = very hard). 
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this verb, including the fact that it can take zero or more modifiers (Mod*) in the 
form of prepositional or adverbial phrases. For more details about Segment Grammar 
(including the Dutch sentence generator based on it) see De Smedt (1990). 

3. The Unification Space 

The dynamics of the Unification Space model were inspired by the metaphor of bio-
chemical synthesis. Think of the segments as molecules floating around in a test-tube 
and entering into chemical bonds with other molecules (unification of nodes). The 
resulting larger structure may be insufficiently stable and fall apart again. After that, 
the segments continue their search for suitable unification partners until a stable 
configuration — that is, the final parse tree — has been reached. 

Henceforth, we denote the test-tube by the term Unification Space. Words recog-
nized in the input string are immediately looked up in the mental lexicon and the 
lexical entry listed there is immediately entered into the Unification Space. In case of 
an ambiguous input word, all entries are fed into the system simultaneously. 

The following principles control the events in the Unification Space: 
• Activation decay. When the nodes are entered into the Unification Space they are 

assigned an initial activation level by their lexicon entry. This activation level 
decays over time. 
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Figure 4. Lexical entry for the transitive verb “eat”. 
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• Stochastic optimization. Generally, on the basis of its feature composition, a node 
could unify with several other nodes present in the Unification Space. In order to 
make the best possible choice, Simulated Annealing is used as a stochastic opti-
mization technique. If two nodes can unify, they actually unify with probability pU. 
This probability depends, among others, on the activation level of both nodes and 
on the grammatical “goodness of fit”. (We cannot go into the syntactic and semantic 
factors which are at stake here). On the other hand, once unified nodes may also 
break up again, with probability pB. This probability increases accordingly as the 
activation of the nodes and/or their grammatical goodness of fit decrease. One con-
sequence of this scheme is a bias in favor of semantically and syntactically well-
formed syntactic trees encompassing recent nodes. 

• Global excitation. Due to the spontaneous decay of node activation and the con-
comitant  rising pB, all unifications would ultimately be annulled in the absence of a 
mechanism for intercepting and “freezing” high-quality parse trees. In standard 
versions of simulated annealing one obtains this effect by making both pU and pB 
dependent on a global “temperature” variable T. In a similar vein, we define a 
parameter E (global Excitation) whose value, at any point, is proportional to the 
summed activations of all nodes that currently populate the Unification Space. 

  The relation between E on one hand and pU and pB on the other is such that, after 
E has fallen below a threshold value, no unifications are attempted, nor can unified 
nodes break up again. If the resulting frozen configuration consists of exactly one 
tree, the parsing process is said to have succeeded. If several disconnected, partial 
trees result, the parsing has failed. (We cannot discuss here what happens in case of 
lexical or structural ambiguity. At any rate, the workings of the Unification Space 
prevent the growth of multiple parse trees spanning the same input string. See 
Kempen & Vosse (1990) for details.) 

We now describe the essence of the computer implementation of the Unification 
Space model. 
1. Time is sliced up into intervals of equal duration. During each cycle, one iteration 

of the basic algorithm is carried out. This process stops when E has fallen below the 
threshold value. 

2. Words recognized in the input sentence are stored in an input buffer for a limited 
period of time, TB. Individual words are read out from left to right at fixed intervals 
Tw << TB. Their corresponding lexical entries are immediately entered into the 
Unification Space. 

3. During each cycle, two nodes, n1 and n2, are picked at random. If their feature 
composition permits unification, they actually unify with a probability of pU which 
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covaries with n1's and n2's activation levels. The activation level of the resulting 
single node is higher than the activation level of either n1 or n2. 

4. Then, for each segment in the Unification Space, it is determined whether or not it 
will break away from its unification partner (if any). This event takes place with 
probability pB which correlates negatively with the activation level. Whenever 
lexical segments are are involved in a break-up (lexical segments have word classes 
rather than phrases as their foot labels), their lexical entries are reentered into the 
Unification Space without delay. Thus they are given a new chance to find a 
suitable unification partner. The activation levels of reentering nodes are reset to the 
initial value stored in the lexicon. However, if a word has already been dropped 
from the input buffer, its lexical entry is not reentered. 

5. The activation levels of all nodes are adjusted on the basis of the decay parameter 
and the new value for E are computed. 

Due to space limitations, we cannot provide a more detailed description of the 
model here. We refer the interested reader to Kempen & Vosse (1990). 

4. The Simulation Study 
In order to avoid controversial assumptions about the shape of the syntactic trees 

that underlie the three verb dependency constructions, we have devised a simple arti-
ficial grammar. It generates right-branching, center-embedded and cross-serial depen-
dencies among pairs of an opening and a closing bracket, e.g. “(){}”, “({})” or “({)}”. 
The grammar contains two types of lexical segments (with arc labels Left and Right) 
and two types of non-lexical segments (with arc labels Mod1 and Mod2). Mod 
segments are optional but, unlike modifiers of natural languages, no more than one 
Mod1 and/or Mod2 segment is permitted (cf. Figure 4). We have arbitrarily decided 
to attach Mod1 and Mod2 segments to the lexical entries of opening rather than 
closing brackets (see Figure 5). The reader will have noticed that it is the Mod 
segments that give the grammar a recursive flavor. Center-embeddings are obtained 
by attaching a segment to the foot of the Mod1 segment. This is controlled by an 
ordering rule which assigns Right segments a position inbetween the Mod1 and Mod2 
segments. By virtue of the same rule, attachment to a Mod2 segment causes right-
branching dependencies. Cross-serial dependencies are structurally ambiguous in this 
grammar. For example, the sentence “({)}” could be assigned a parse tree in which 
the curly brackets are dominated by the Mod1 segment of the top-level S (rather than 
by the Mod2 segment as shown in Figure 6). The simulation results for the 15 
sentences are depicted in Figure 7. They show the same general pattern as the com-
prehensibility ratings displayed in Figure 2 above. That is, (1) comprehensibility 
decreases with increasing depth of embedding, (2) center-embedded dependencies are 
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harder than cross-serial dependencies, and (3) right-branching dependencies take a 
strong lead, being much easier to understand than both other constructions. 
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Figure 5. Lexical segments of the grammar, and the lexical entries for '(' and ')'. 

The S nodes have associated with them a “bracket type” feature whose value is 
'round', 'curly', 'square', etc. This prevents unification of S nodes that dominate 
brackets of different types, e.g. S-Left-{ with S-Right-]. The reader will have noticed 
that “correct” parse trees are guaranteed only for sentences which contain no more 
than one pair of brackets of a certain type. 

The actual simulations were run with 5 (levels) times 3 (dependency types) equals 
15 different input sentences. Each sentence was fed into the Unification Space 400 
times. The parameter settings were exactly equal to those used in the earlier Kempen 
& Vosse (1990) paper†. 

There are also differences between the human data and computer simulation, how-
ever. First of all, the comprehension scores for the three dependency types fan out 
more rapidly in our simulation than in the human subjects. Second, in the human data 
the first signs of a differentiation between sentence types manifest themselves already 
at level 2, whereas in our simulation the percentages start diverging at level 3 only. 
From our previous study (Kempen & Vosse, 1990), we know that the Unification 
Space is rather sensitive to sentence length. If this applies to human readers as well, 

                                                
†For Chaos parameter C (not discussed in the present paper) we had four different values: .1, .2, .3 and 
.4. There were 100 runs for each value of C. In Figure 7 we show percentages averaged over C values. 
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Figure 6. Example parse trees of level 2: respectively right-branching, center-embedded 

and cross-serial. 
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we could argue that our level 1 and level 2 scores are too good (in Bach et al.'s study, 
these levels were tested through sentence of 6 to 8 words long). 

5. Conclusion 

The Unification Space has further substantiated its capability of simulating phenom-
ena of human sentence processing and thereby enhanced its plausibility as a psycho-
linguistic model. As far as we know, there is no competing model of comparable wide 
coverage. 

A recent paper by Joshi (1989) motivated us to do this present study. He succeeds 
in obtaining a good fit between Bach et al.'s data and a complexity measure deriving 
from his model, which is based on Tree Adjoining Grammar (TAG) in conjunction 
with an Embedded Push-Down Automaton (EPDA). We are looking forward to fur-
ther tests of this type of model against the classical psycholinguistic phenomena 
reported in the literature on human sentence processing. 
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