
A Hybrid Model of Human Sentence Processing:
Parsing Right-Branching, Center-Embedded and

Cross-Serial Dependencies

Theo Vosse
Gerard Kempen

University of Nijmegen, The Netherlands

December 1989

Abstract
A new cognitive architecture for the syntactic aspects of human sentence processing
(the Unification Space) is tested against experimental data from human subjects. The
data, originally collected by Bach, Brown and Marslen-Wilson (1986), concern com-
prehensibility ratings for three types of verb dependency constructions in Dutch and
German. A satisfactory fit is obtained between comprehensibility data and parsability
scores in the model.

Published as: Vosse, Theo & Kempen, Gerard (1991). A hybrid model of human
sentence processing: parsing rightbranching, center-embedded and cross-serial
dependencies. In: Proceedings of the Second International Workshop on Parsing
Technologies (Cancun, Mexico, February 1991).

- 2 -

1. Introduction

In a recent paper (Kempen & Vosse, 1990), we have proposed a new cognitive archi-
tecture for the syntactic aspects of human sentence processing. The model is “hybrid”
in the sense that it combines symbolic structures (parse trees) with non-symbolic
processing (simulated annealing). The computer model of this architecture — called
the Unification Space — is capable of simulating well-known psycholinguistic
sentence understanding phenomena such as the effects of Minimal Attachment, Right
Association and Lexical Ambiguity (cf. Frazier, 1987).

In this paper we test the Unification Space architecture against a set of psycho-
linguistic data on the difficulty of understanding three types of verb dependency
constructions of various levels of embedding. The data were collected by Bach,
Brown and Marslen-Wilson (1986) and concern comprehensibility ratings of cross-
serial, center-embedded and right-branching constructions as illustrated by (1).
Subjects rated two types of verb dependencies: right-branching and either center-
embedded (German) or cross-serial (Dutch) dependencies.

 Dependency type

(1a) … when John saw Peter walk Right-branching

(1b) … als Johan Peter laufen sah Center-embedded (nested)

(1c) … toen Jan Peter zag lopen Cross-serial (crossed)

The right-branching constructions are quite common in Dutch and German. German
sentences were rated only by native speakers of German, Dutch sentences only by
native speakers of Dutch. Figure 1 shows the obtained comprehensibility (or rather,
incomprehensibility) ratings for four “levels” (the term level refers to the depth of
embedding; level 1: one clause, without embeddings; level 2: two clauses, one
embedded in the other as in (1), etc.). Notice that the (Dutch) crossed dependencies
were consistently rated easier to understand than the (German) nested dependencies.
From level 3 onward, the right-branching structures are much easier to understand
then their crossed or nested counterparts.

In Section 2 we outline briefly the type of grammar we use to represent syntactic
structures. The parsing mechanism capable of building such structures is described in
Section 3. Section 4 is devoted to design and results of the computer simulation. In
Section 5, finally, we draw some comparisons and conclusions.

- 3 -

2. Segment Grammar

Kempen (1989) introduced Segment Grammar as a formalism for generating syntactic
trees out of so-called segments. A segment is a node-arc-node triple, the top node
being called “root” and the bottom node “foot”. Both root and foot nodes are labelled
by a syntactic category (e.g. S, NP) and have associated with them a matrix of
features (i.e., attribute-value pairs). Arc labels represent grammatical functions. See
Figure 2 for some examples. All syntactic knowledge a segment needs (including
ordering rules) is represented in features.

S

NP

Subj

S

V

Head

S

NP

Obj

 NP

 Art

Det

S

PP

Mod

 NP

 N

Head

 NP

 PP

Mod

 PP

 P

Head

 PP

 NP

PObj

Figure 2. Various types of syntactic segments.

The basic tree formation operation is unification of the feature matrices of nodes
which carry the same category label. In Figure 3 successful unification has been visu-
alized as the merger of the corresponding nodes.

Segment Grammar is completely lexicalized. Every lexical entry specifies a single
segment or a sub-tree consisting of several segments. For instance, one entry for the
English verb “eat” looks like Figure 4. It specifies the subcategorization features for

0 1 2 3 4

0

2

4

6

8

Center-embedded

Cross-serial

Right-Branching

Level

C
o
m
p
re
h
en
si
b
il
it
y

Figure 2. Comprehensibility ratings for various construction types and depths

(1 = very easy, 9 = very hard).

- 4 -

this verb, including the fact that it can take zero or more modifiers (Mod*) in the
form of prepositional or adverbial phrases. For more details about Segment Grammar
(including the Dutch sentence generator based on it) see De Smedt (1990).

3. The Unification Space

The dynamics of the Unification Space model were inspired by the metaphor of bio-
chemical synthesis. Think of the segments as molecules floating around in a test-tube
and entering into chemical bonds with other molecules (unification of nodes). The
resulting larger structure may be insufficiently stable and fall apart again. After that,
the segments continue their search for suitable unification partners until a stable
configuration — that is, the final parse tree — has been reached.

Henceforth, we denote the test-tube by the term Unification Space. Words recog-
nized in the input string are immediately looked up in the mental lexicon and the
lexical entry listed there is immediately entered into the Unification Space. In case of
an ambiguous input word, all entries are fed into the system simultaneously.

The following principles control the events in the Unification Space:
• Activation decay. When the nodes are entered into the Unification Space they are

assigned an initial activation level by their lexicon entry. This activation level
decays over time.

Subj Head Obj Mod*

S

NP V
eat

NP PP/AP

Figure 4. Lexical entry for the transitive verb “eat”.

S

NP

Subj

S

V

Head

walks

 Art

Det

the
 N

Head

boy

S

V

Head

walks
NP

Subj

 NP

 Art

Det

 NP

 N

Head

the boy
Figure 3. Building a tree through unification.

- 5 -

• Stochastic optimization. Generally, on the basis of its feature composition, a node
could unify with several other nodes present in the Unification Space. In order to
make the best possible choice, Simulated Annealing is used as a stochastic opti-
mization technique. If two nodes can unify, they actually unify with probability pU.
This probability depends, among others, on the activation level of both nodes and
on the grammatical “goodness of fit”. (We cannot go into the syntactic and semantic
factors which are at stake here). On the other hand, once unified nodes may also
break up again, with probability pB. This probability increases accordingly as the
activation of the nodes and/or their grammatical goodness of fit decrease. One con-
sequence of this scheme is a bias in favor of semantically and syntactically well-
formed syntactic trees encompassing recent nodes.

• Global excitation. Due to the spontaneous decay of node activation and the con-
comitant rising pB, all unifications would ultimately be annulled in the absence of a
mechanism for intercepting and “freezing” high-quality parse trees. In standard
versions of simulated annealing one obtains this effect by making both pU and pB
dependent on a global “temperature” variable T. In a similar vein, we define a
parameter E (global Excitation) whose value, at any point, is proportional to the
summed activations of all nodes that currently populate the Unification Space.

 The relation between E on one hand and pU and pB on the other is such that, after
E has fallen below a threshold value, no unifications are attempted, nor can unified
nodes break up again. If the resulting frozen configuration consists of exactly one
tree, the parsing process is said to have succeeded. If several disconnected, partial
trees result, the parsing has failed. (We cannot discuss here what happens in case of
lexical or structural ambiguity. At any rate, the workings of the Unification Space
prevent the growth of multiple parse trees spanning the same input string. See
Kempen & Vosse (1990) for details.)

We now describe the essence of the computer implementation of the Unification
Space model.
1. Time is sliced up into intervals of equal duration. During each cycle, one iteration

of the basic algorithm is carried out. This process stops when E has fallen below the
threshold value.

2. Words recognized in the input sentence are stored in an input buffer for a limited
period of time, TB. Individual words are read out from left to right at fixed intervals
Tw << TB. Their corresponding lexical entries are immediately entered into the
Unification Space.

3. During each cycle, two nodes, n1 and n2, are picked at random. If their feature
composition permits unification, they actually unify with a probability of pU which

- 6 -

covaries with n1's and n2's activation levels. The activation level of the resulting
single node is higher than the activation level of either n1 or n2.

4. Then, for each segment in the Unification Space, it is determined whether or not it
will break away from its unification partner (if any). This event takes place with
probability pB which correlates negatively with the activation level. Whenever
lexical segments are are involved in a break-up (lexical segments have word classes
rather than phrases as their foot labels), their lexical entries are reentered into the
Unification Space without delay. Thus they are given a new chance to find a
suitable unification partner. The activation levels of reentering nodes are reset to the
initial value stored in the lexicon. However, if a word has already been dropped
from the input buffer, its lexical entry is not reentered.

5. The activation levels of all nodes are adjusted on the basis of the decay parameter
and the new value for E are computed.

Due to space limitations, we cannot provide a more detailed description of the
model here. We refer the interested reader to Kempen & Vosse (1990).

4. The Simulation Study
In order to avoid controversial assumptions about the shape of the syntactic trees

that underlie the three verb dependency constructions, we have devised a simple arti-
ficial grammar. It generates right-branching, center-embedded and cross-serial depen-
dencies among pairs of an opening and a closing bracket, e.g. “(){}”, “({})” or “({)}”.
The grammar contains two types of lexical segments (with arc labels Left and Right)
and two types of non-lexical segments (with arc labels Mod1 and Mod2). Mod
segments are optional but, unlike modifiers of natural languages, no more than one
Mod1 and/or Mod2 segment is permitted (cf. Figure 4). We have arbitrarily decided
to attach Mod1 and Mod2 segments to the lexical entries of opening rather than
closing brackets (see Figure 5). The reader will have noticed that it is the Mod
segments that give the grammar a recursive flavor. Center-embeddings are obtained
by attaching a segment to the foot of the Mod1 segment. This is controlled by an
ordering rule which assigns Right segments a position inbetween the Mod1 and Mod2
segments. By virtue of the same rule, attachment to a Mod2 segment causes right-
branching dependencies. Cross-serial dependencies are structurally ambiguous in this
grammar. For example, the sentence “({)}” could be assigned a parse tree in which
the curly brackets are dominated by the Mod1 segment of the top-level S (rather than
by the Mod2 segment as shown in Figure 6). The simulation results for the 15
sentences are depicted in Figure 7. They show the same general pattern as the com-
prehensibility ratings displayed in Figure 2 above. That is, (1) comprehensibility
decreases with increasing depth of embedding, (2) center-embedded dependencies are

- 7 -

harder than cross-serial dependencies, and (3) right-branching dependencies take a
strong lead, being much easier to understand than both other constructions.

S

S

Mod1

S

Lparen

Left

S

Rparen

Right

S

S

Mod2

Left

S

Mod1

SLparen
(

S

Mod2

S

Right

)
Rparen

Figure 5. Lexical segments of the grammar, and the lexical entries for '(' and ')'.

The S nodes have associated with them a “bracket type” feature whose value is
'round', 'curly', 'square', etc. This prevents unification of S nodes that dominate
brackets of different types, e.g. S-Left-{ with S-Right-]. The reader will have noticed
that “correct” parse trees are guaranteed only for sentences which contain no more
than one pair of brackets of a certain type.

The actual simulations were run with 5 (levels) times 3 (dependency types) equals
15 different input sentences. Each sentence was fed into the Unification Space 400
times. The parameter settings were exactly equal to those used in the earlier Kempen
& Vosse (1990) paper†.

There are also differences between the human data and computer simulation, how-
ever. First of all, the comprehension scores for the three dependency types fan out
more rapidly in our simulation than in the human subjects. Second, in the human data
the first signs of a differentiation between sentence types manifest themselves already
at level 2, whereas in our simulation the percentages start diverging at level 3 only.
From our previous study (Kempen & Vosse, 1990), we know that the Unification
Space is rather sensitive to sentence length. If this applies to human readers as well,

†For Chaos parameter C (not discussed in the present paper) we had four different values: .1, .2, .3 and
.4. There were 100 runs for each value of C. In Figure 7 we show percentages averaged over C values.

Lparen

Left

S

(}) {
Lparen

RightLeft

S

Mod2

RparenRparen

Right Left

S

(

Right

)

Left

{

S

Mod1

}
Lparen Rparen RparenLparen

Right Left

S

(

Right

}

Left

{

S

Mod2

)
Lparen RparenRparenLparen

Right

Figure 6. Example parse trees of level 2: respectively right-branching, center-embedded

and cross-serial.

- 8 -

we could argue that our level 1 and level 2 scores are too good (in Bach et al.'s study,
these levels were tested through sentence of 6 to 8 words long).

5. Conclusion

The Unification Space has further substantiated its capability of simulating phenom-
ena of human sentence processing and thereby enhanced its plausibility as a psycho-
linguistic model. As far as we know, there is no competing model of comparable wide
coverage.

A recent paper by Joshi (1989) motivated us to do this present study. He succeeds
in obtaining a good fit between Bach et al.'s data and a complexity measure deriving
from his model, which is based on Tree Adjoining Grammar (TAG) in conjunction
with an Embedded Push-Down Automaton (EPDA). We are looking forward to fur-
ther tests of this type of model against the classical psycholinguistic phenomena
reported in the literature on human sentence processing.

6. References

Bach, E., C. Brown and W. Marslen-Wilson (1986) Crossed and nested dependencies
in German and Dutch: a psycholinguistic study. Language and Cognitive
Processes, 1, 249-262.

0 1 2 3 4 5

0

20

40

60

80

100

Right-branching

Cross-serial

Center-embedded

Level
Figure 7. The influence of dependency type and depth of embedding on parsability

in the Unification Space model.

- 9 -

De Smedt, K. (1990) Incremental sentence generation: Representational and
computational aspects. Ph.D. thesis, University of Nijmegen.

Frazier, L. (1987) Theories of sentence processing. In: J.L. Garfield (Ed.), Modularity
in knowledge representation and natural language understanding. Cambridge,
MA: M.I.T. Press.

Joshi, Aravind K. (1989) Processing crossed and nested dependencies: an automaton
perspective on the psycholinguistic results. Technical Report, Department of
Computer and Information Science, University of Pennsylvania.

Kempen, G. (1987) A framework for incremental syntactic tree formation. In:
Proceedings of the Tenth International Joint Conference on Artificial Intelligence
(IJCAI-87), Milan, p. 655-660.

Kempen, G., and T. Vosse (1990) Incremental Syntactic Tree Formation in Human
Sentence Processing: an Interactive Architecture Based on Activation Decay and
Simulated Annealing. Connection Science, 1(3).

