
Chapter 13 

Segment Grammar: a Formalism for 
Incremental Sentence Generation 

Koenraad De Smedt  
and Gerard Kempen 

Abstract: Incremental sentence generation imposes special constraints on the 
representation of the grammar and the design of the formulator (the module which is 
responsible for constructing the syntactic and morphological structure). In the model of 
natural speech production presented here, a formalism called Segment Grammar is used 
for the representation of linguistic knowledge. We give a definition of this formalism and 
present a formulator design which relies on it. Next, we present an object- oriented 
implementation of Segment Grammar. Finally, we compare Segment Grammar with other 
formalisms. 



330 De Smedt and Kempen 

13.1    INTRODUCTION 

Natural speech is often produced in a piecemeal fashion: speakers start to articulate a 
sentence before the syntactic structure, or even the meaning content of that sentence has 
been fully determined. Under the assumption that the human language processing 
apparatus is capable of carrying out different tasks in parallel, the speaker may already 
utter the first fragments of a sentence while simultaneously processing more content to be 
incorporated in the sentence. This mode of generation, which we call incremental 
generation, seems to serve a system whose major purpose is to articulate speech without 
long pauses, even if it is imperfect or incomplete. 

Once a speaker has started to utter a sentence, the formulator (i.e. the module which 
is responsible for the syntactic and morphological structure) will try to complete the 
sentence in a maximally grammatical way and will try to avoid making revisions. 
However, a speaker who starts a sentence without knowing the entire content in detail 
forces the formulator to operate with incomplete knowledge. In an incremental mode of 
production, the formulator will sometimes make a choice which turns out to be 
incompatible with new conceptual input at a later moment. De Smedt and Kempen 
(1987) discuss how various conceptual changes may affect the structure of the utterance 
which is under construction. 

We are currently designing a computational model of a formulator which operates 
under the special constraints imposed by incremental generation. In this paper we discuss 
some aspects of that formulator and of the grammatical knowledge it uses. In particular, 
we argue that, regardless of their formal generative properties, not all grammar 
formalisms are equally suited to support incremental generation. Consider the following 
requirements put forward by Kempen (1987): 

• Three kinds of syntactic incrementation are distinguished: upward expansion, 
downward expansion, and insertion. A grammar should allow all three varieties 
(although insertion could be treated as a special case of combined upward and 
downward expansion). 

• Lexical increments can be small, even a single word. Therefore the syntactic tree 
should be able to grow by individual branches. This implies that all daughters of a 
node in the tree should not necessarily be generated at once: the formalism should 
be able to add sister nodes incrementally. 

• There is no reason to assume that the chronological order in which branches are 
attached to the syntactic tree corresponds to their linear precedence in the resulting 
utterance. Hence the grammar should separate knowledge about immediate 
dominance from knowledge about linear precedence. 
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In order to satisfy these requirements, Kempen proposes Incremental Grammar (IG), a 
new formalism for the representation of grammatical knowledge. It is especially suited to 
- but not restricted to - incremental generation. In order to clearly distinguish between the 
grammar formalism and the processing model, we will rename the grammar formalism 
Segment Grammar (SG) and we will refer to the processing model as the incremental 
formulator. After a definition of SG, we discuss how SG representations are used in our 
incremental formulator. Then we will present an implementation of SG using object-
oriented programming techniques, compare it with other formalisms, and point out its 
main advantages. 

13.2    SEGMENT GRAMMAR 

Somewhat like a lexical-functional grammar (LFG; Kaplan and Bresnan, 1982), an SG 
assigns two distinct descriptions to every sentence of the language which it generates. 
The constituent structure (or c-structure) of a sentence is a conventional phrase structure 
(PS), which is an ordered tree-shaped graph. It indicates the ‘surface’ grouping and 
ordering of words and phrases in a sentence. The functional structure (or f-structure) 
provides a more detailed representation of ‘functional’ relationships between words and 
phrases, as traditionally expressed by notions like subject, direct object, etc. The 
representation in f- structures also accounts for phenomena like agreement, and it does so 
by using features like number, gender, etc. Since SG is used for incremental processing, 
it assigns representations to partial sentences as well as to full ones. 

When an SG is used for generation, semantic and discourse information is mapped 
into f-structures, which in turn are mapped into c-structures. C-structures are then 
subjected to morpho-phonological processing, producing phonetic strings which are 
eventually uttered as speech sounds. This overall process is depicted in Figure 13.1. We 
will now be concerned with the elements which constitute the grammar. 

13.2.1    Formal Definition Of Segment Grammar 
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13.2.2    Informal Synopsis of Segment Grammar 

Segments are the elementary building blocks of the grammar. They are graphs with two 
nodes: a root node and a foot node. Isolated segments are conventionally represented in 
vertical orientation with the root node, labeled with its 

 



category, at the top, the foot node, labeled with its category, at the bottom, and an arc, 
represented as a vertically directed edge labeled with a grammatical function, between 
the nodes. An example is shown in Figure 13.2. In running text, segments are also 
written left-to-right (root-to-foot), e.g., S-SUBJECT-NP or NP-HEAD-NOUN. 
 

Syntactic segments are the smallest possible f-structures and may therefore be 
considered as atomic units. Just like atoms in chemistry combine to form molecules, 
segments combine to form larger f- structures. These structures are unordered (they are 
sometimes called mobiles), since word order is assigned at a later stage. F-structures are 
graphs consisting of nodes labeled with syntactic categories (or with lexical items). C-
structures are ordered graphs derived from f-structures by a process described later, and 
phonetic strings are the sequences of terminal nodes in c-structures. 

One basic operation, unification, governs the composition of smaller f-structures into 
larger ones. By unifying two nodes belonging to different f-structures, the nodes may 
merge into one; thus a graph of interconnected segments is formed. The two basic 
variants of unification are concatenation (vertical composition by unifying a root and a 
foot) and furcation (horizontal composition by unifying two roots). E.g., two segments 
which are instances of S-SUBJECT-NP and of NP-HEAD-NOUN can be concatenated 
by unifying their NP nodes; two segments which are instances of NP-DETERMINER-
ARTICLE and NP-HEAD-NOUN can be furcated, also by unification of their NP nodes. 
This is schematically represented in Figure 13.3. 

To each node, a set of features may be attributed. For example, S nodes have a 
feature FINITE with ‘+’ or ‘–’ as  possible  values.  If no values  are explicitly  specified,  
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then the feature has all possible values by default, in this case the set (+ –).3 When two 
nodes are unified (in either concatenation or furcation), their features are also unified. 
This process, illustrated in Figure 13.4, is essentially the same as feature unification in 
other unification-based formalisms (Karttunen, 1984). It consists of computing the union 
of all features in both nodes, and for each feature the intersection of the values in both 
nodes. 

The co-occurrence of feature restrictions on the root of a segment with feature 
restrictions on the foot may be used to model syntactic constraints. E.g., the constraint 
that “if the subject of a finite sentence is an NP, it must be nominative” is modeled by 
specifying a feature FINITE with value ‘+’ on the root of a S-SUBJECT-NP segment, and a 
feature NOMINATIVE with value ‘+’ on the foot, as depicted in Figure 13.5. In addition, the 
root and the foot of a segment may share certain features. For example, NOMINATIVE is 
shared in the NP-HEAD-NOUN segment as depicted in Figure 13.6. 

The combination of feature sharing and unification amounts to ‘feature transport’.  
By virtue of the sharing relationship in NP-HEAD-NOUN, the con- 
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catenation depicted in Figure 13.7 results in a feature change to the foot of the lower 
segment as well as to its root. Features are in fact not transported, but they are unified. 
Agreement can easily be modeled by feature sharing in concatenated and furcated 
segments. For example, the features NUMBER and PERSON are shared in S-SUBJECT-NP as 
well as in S-HEAD-FINITE-VERB. If such segments are furcated by unifying their S nodes, 
the shared features in both segments are unified, as depicted in Figure 13.8. 

The combination of root and foot in a segment is a declarative representation of a 
single immediate dominance (ID) relationship. Restrictions on sisterhood are encoded in 
a procedural way. The addition of function words, e.g., determiners and auxiliaries, is 
governed by a functorization process during formulation, which attaches grammatical 
combinations of function words to a phrase in a procedure-based way. The addition of 
non-function-words, i.e., constituents which are in a case relation to the phrase, is driven 
by the conceptual module and is restricted by valency information in lexical segments. 
E.g., the possible addition of a direct object in a clause is specified in lexical segments of 
the type S-HEAD-V. 

It is unclear whether there is a need for an explicit specification of additional, more 
global restrictions on sisterhood, e.g., the restriction that only one direct object may 
occur in a clause. We assume that conceptual input to the formulator cannot normally 
give rise to such circumstances, because there will be no contradictory information in 
case relationships. Hence, these restrictions are seen as emerging properties of the 
formulation process rather than defining properties of the grammar. If there is evidence 
that this kind of restrictions must be explicitly defined in the grammar, then it remains 
possible to specify ad hoc restrictions on unification based on the grammatical function 
labels in segments. If not, then the notion of grammatical function is disposable in SG. 

Linear precedence (LP) is encoded by assigning to each foot node a POSITIONS 
feature which contains a list of possible positions that the node may occupy in its 
destination, i.e., (by default) its mother node in the c-structure. The assignment of left-to-
right order in c-structures will be further explained in the next section. 

13.3     A LEXICALLY DRIVEN 
FORMULATOR DESIGN 

We now turn to the question of how SG is used in an incremental formulator. The lexical 
origin of syntactic configurations is present in some form or other in many modern 
grammar theories. In Government-Binding (GB) theory, for example, the Projection 
Principle states that 

Representations at each syntactic level are projected from the lexicon, in that they 
observe the subcategorization properties of lexical items. (Chomsky, 1981) 
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Conceptual and lexical guidance is also argued for by Kempen and Hoenkamp (1987). 
Approaches which differ from this principle in that they assume the insertion of lexical 
material (i.e., content words) into a previously made syntactic structure, as done in early 
transformational grammar (Chomsky, 1965) but also in some recent psycholinguistic 
models (e.g., Dell, 1986) are in our opinion unrealistic for purposes of natural language 
generation. 

On the one hand, syntactic tree formation is lexically guided in our theory, because 
the choice of lexical material clearly puts constraints on syntactic choices. For example, 
to see can take an infinitival object clause whereas to know cannot. It follows in our 
theory that the lexicon is responsible for the choice of any segments to be incorporated 
into the tree, e.g., the choice between S-OBJECT-INFINITIVAL-S and S-OBJECT-FINITE-S. 

On the other hand, the opposite guidance also holds, especially in incremental 
sentence generation: the choice of lexical material is subject to categorial restrictions 
imposed by the partial tree which has been constructed so far. For example, to dedicate 
may take a NP as a direct object, but not a S. This categorial restriction will cause a 
nominal lexical entry to be preferred to a verbal one when the direct object is to be 
lexicalized. 

It will not be surprising that the basic lexico-syntactic building block is modeled as a 
segment. A lexical segment is a segment where the foot is a word. Examples are NP-
HEAD-CAKE (a nominal lemma) and S-HEAD-EAT (a verbal lemma). Because these 
segments always link a word to a phrase, the lexicon is essentially a phrasal lexicon. 
Information which is traditionally assigned to words, such as features and valency, is in 
our approach assigned to the roots of the lemma segments (the phrases) rather than their 
feet (the words), as schematically represented in Figure 13.9. Multi-word phrases are 
part of the lexicon in the form of ready-made furcations of segments, e.g., for kick the 
bucket in Figure 13.10. The lexicon is a set of lemmas, which are lexical entries 
consisting of one or more segments. 

The lexical (pre-syntactic) stage in the formulator activates one or more lemmas on 
the basis of a conceptual fragment. It also assigns features with a non-lexical origin, such 
as PLURAL or DEFINITENESS, to those lemmas. A case relation gives rise to one or 
more non-lexical segments, such as S-DIRECT- OBJECT-NP. 

The syntactic stage of the formulator tries to attach the lemmas and non-lexical 
segments to the tree by means of unification, which enforces the categorial and feature 
restrictions in the existing (partial) tree. F-structures are complete when the head and 
other obligatory segments (according to the valency information in the phrasal nodes) 
have been incorporated and when the functorizatton process, which causes the addition 
of function words such as determiners and auxiliaries, has taken place. 
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F-structures, as constructed in this fashion, are unordered. The assignment of left-to-
right positions to constituents is not simply an ordering imposed on the existing arcs of 
an f-structure, because dominance relations in the c-structure are not necessarily identical 
to those in the f-structure (e.g., in the case of discontinuous constituents). Therefore, a 
completely new, ordered structure - the c-structure, or surface tree - is constructed. The 
procedure which assigns left-to-right positions is incremental and works in a bottom-up 
fashion: the foot node of a segment is attached directly under its destination, which is 
normally the root of the segment. However, nodes may go to higher level destinations in 
situations like clause union and WH-fronting, which give rise to c-structures which are 
non-isomorphic to the corresponding f-structures (in particular, they may be flattened). 
We refer to Kempen and Hoenkamp (1987) for details. Figure 13.11 is an example of a c-
structure. 

Since f-structures as well as c-structures are constructed in a piecemeal fashion, it is 
natural to assign word order on a first-come, first-serve basis. For this scheme we use 
absolute rather than relative positions. With each phrase, a holder is associated, which is 
a vector of slots that can be filled by its constituents. Figure 13.12 shows an example of a 
constellation of holders and constituents for the c-structure in Figure 13.11. 

The foot node of each segment in the grammar has a feature POSITIONS which lists all 
possible positions that the node can occupy in its destination. E.g., in the grammar for 
Dutch it is specified that the foot of the S-SUBJECT-NP segment may go to absolute 
positions 1 or 3. When the foot of such a segment is to be assigned a position in the 
holder of its destination, it will first attempt to occupy position 1. If position 1 has 
already been occupied, it will attempt to go to position 3. A schematic overview of such a 
situation is given in Figure 13.13. If the utterance has proceeded beyond the point where 
a constituent can be added, a syntactic dead end occurs and a self-correction or restart 
will be necessary. 

13.4     AN OBJECT-ORIENTED 

IMPLEMENTATION OF SEGMENT 
GRAMMAR 

An object-oriented version of SG has been implemented in CommonORBiT (De Smedt, 
1987, 1989). This language (based on Common LISP) stems from the object-oriented and 
frame-based paradigms. Objects are basic computational units which represent physical 
or abstract entities in the problem domain. The properties of an object as well as the 
actions it may perform are defined in aspects (slots) associated with the object. 

SG is implemented by uniformly representing all grammar concepts, such as nodes 
(phrases, words), features and syntactic segments as objects.  Segments 
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Object-oriented and frame-based formalisms typically allow the use of a specialization 
hierarchy in which specific objects (clients) may delegate requests for 
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information to other, more general, objects (proxies) in order to avoid redundancy. The 
use of such a hierarchy for linguistic concepts in the grammar as well as the lexicon has 
been advocated by De Smedt (1984). The prototypical object SYNTACTIC-SEGMENT, 
which acts as a proxy for specific segments such as NP-HEAD-NOUN, contains general 
knowledge about segments: 

 

More specific knowledge is distributed among the specific segments. For example, in 
NP-HEAD-NOUN, categories restricting the root and foot slots are given. 

Syntactic categories are also defined as CommonoRBiT objects. Phrasal categories, 
parts of speech and lexical entries are represented in the same delegation hierarchy. 
Consequently, the grammar and the lexicon are on a continuum: words are merely the 
most specific objects in the hierarchy of categories. By way of example, some delegation 
relations between concepts in SG are represented in Figure 13.14. 

13.5     DISCUSSION AND RELATION WITH 
OTHER WORK 

The use of segments for the expression of grammatical knowledge is advantageous in an 
incremental sentence formulator. We will sum up some of these advantages here and at 
the same time draw comparisons with other work. 
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13.5.1    Phrase Structure Rules and Categorial Grammar 

Phrase Structure (PS) rules are string rewriting rules which express immediate 
dominance (ID, motherhood) relationships together with sisterhood (co-occurrence) and 
linear precedence (LP) relationships. Hence, it is often necessary to express the same 
dominance relationship more than once, namely for every possible sisterhood and linear 
precedence relationship. The example below is from Sells (1985). 

 
 

We must observe that pure PS rules are seldom used. In Government and Binding (GB) 
theory, which uses PS rules mainly to specify hierarchical structure, order is fixed by 
other components of the grammar, such as case assignment. Generalized Phrase 
Structure Grammar (GPSG) (Gazdar, Klein, Pullum and Sag, 1985) uses rules in ID/LP 
format, where a comma in the right hand side of the rewrite rules indicates that the 
categories are unordered. These rules are then complemented with separate rules for 
precedence relations, e.g.: 
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Notice that, although the linear precedence is now encoded separately, ID relations are 
still expressed redundantly. SG offers a more economic way of encoding ID by 
specifying only one relationship between a pair of nodes at a time. 

But the real problem in incremental production is that the choice between rules (2a-d) 
cannot be made deterministically. If daughter constituents are produced one at a time by 
means of a PS grammar, the system will be forced to choose between rules and backtrack 
when necessary. By virtue of its orientation toward the representation of separate ID 
relationships, SG allows the incremental addition of sister nodes and hence avoids 
backtracking (cf. Kempen and Hoenkamp, 1987). 

This problem with PS rules could, in theory, be obviated by redefining the grammar 
as in (3). But then the PS structures generated by the grammar would not be isomorphic 
to those generated by grammar (2): the grammars are only weakly equivalent. 

Although classical categorial grammar (CG), unlike PS rules, is lexically guided and 
therefore suited for generation, a similar objection could be raised against it. In classical 
CG, word order and co-occurrence constraints are encoded as syntactic types on lexical 
items. Whatever choices there are with respect to either LP or sisterhood will result in 
alternative syntactic types for the same word. For languages with relatively free word 
order or many sisterhood alternatives, this may result in a drastic increase of possibilities 
encoded in the lexicon. By comparison, the opposite is true for SG, which encodes 
restrictions on sisterhood rather than alternative possibilities. In SG, a relatively word 
order free language will therefore have a relatively small grammar and lexicon. 
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13.5.2 Unification 

Unification as a general mechanism in language generation as well as in parsing has 
been proposed by Kay (1979). In Functional Unification Grammar (FUG), language 
processing is seen as the unification of an initial functional description with a grammar 
which is a very large functional description containing many alternatives. As shown by 
Appelt (1985), it is possible to use FUG in incremental production by letting an initial 
functional description unify with the grammar, then unify the result with more input in 
the form of another functional description, etc., until a sentence is completed. 

However, a drawback of FUG is that the grammar is a complicated, monolithic 
structure. Our approach is different by virtue of the fact that unification is a local 
operation on two nodes. Consequently, the grammar can be represented as a set of 
segments, which express information at a local level, i.e. encapsulated in many separate 
objects rather than in one large structure or rule base. 

The role of features in unification-based grammars (FUG, LFG, PATR-II and GPSG) 
is described by Karttunen (1984). Features are often treated as attribute-value pairs 
which are grouped in a feature matrix which then functions as the agreement of one or 
more nodes. Our approach is similar but we treat features as first-class objects in the 
sense that they may themselves be unified. This makes unification an even more 
universal mechanism and obviates the need for coreference to features by means of 
variables in the grammar. 

13.5.3 TAG 

Tree Adjoining Grammar (TAG; Joshi, 1987) is a tree generating system consisting of a 
finite set of elementary trees and a composition operation (adjoining) which builds 
derived trees out of elementary trees. Like SG, and opposed to PS-rules, TAG is tree-
based rather than string-based. FTAG, the recent “feature structures based” extension of 
TAG (Vijay-Shanker and Joshi, 1988) uses unification of features as a clearer way of 
specifying restrictions on tree adjoining, and is therefore even more similar to SG. The 
role of some elementary trees in TAG is comparable to that of SG segments, while 
adjoining takes the role of unification. For example, the auxiliary tree for an adjective 
(Figure 13.15 (a)) can be said to correspond to the NP-modifier-AP segment (Figure 
13.15 (b)), although it must be noted that SG always creates an adjectival phrase rather 
than just an adjective. The adjoining operation of the auxiliary tree for an adjective 
yields two NP nodes in the resulting structure (Figure 13.16 (a)), which is redundant, 
whereas the corresponding composition of SG segments will result in only one NP node 
(Figure  13.16 (b)). 

Word order and immediate dominance are factored in the TAG formalism, which 
provides considerable flexibility in the generation process of a sentence. 
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TAG allows incremental generation, but only as defined by the adjoining operation, 
which means that it does not allow the addition of sister nodes without structural growth 
in vertical direction. Unlike SG structures, TAG trees always contain all sisters. E.g., 
there are completely different elementary trees for transitive and intransitive verbs. It 
does not seem possible to build a transitive tree incrementally by starting with the 
intransitive tree and expanding it into a transitive one by furcating with a sister node, as 
SG might allow (if valency permits it). 

Also, TAG seems to require, for many lexical items, a number of variants of 
elementary trees. For example, the transitive verb eat requires separate elementary trees 
for the constructions Subj-V-Obj, WH(Obj)-Subj-V, to-V(infiniiive)-Obj, etc. Since, 
presumably, the speaker has to make a choice between such alternatives at an early stage, 
this imposes restrictions upon incremental production which are avoided by SG. There, 
the choice between such constructions can be postponed to a later stage, so that minimal 
commitments with respect to further incrementation are imposed. 

13.6    CONCLUDING REMARKS 

SG describes sentences of a language in terms of syntactic segments - atomic units larger 
than syntactic nodes - and their possible combinations, governed by unification. Because 
SG specifies ID relations at the level of individual segments, f-structures can be 
generated by adding daughter, mother, and sister nodes incrementally. Because SG 
specifies LP relations at the level of individual segments, word order can be determined 
for partial sentences. These properties make SG a particularly flexible formalism for 
incremental generation. Although other formalisms can in principle be adapted for 
incremental generation, a lot of bookkeeping would be required to achieve the same 
effect (e.g., backtracking in PS grammars). 

It seems that syntactic segments, as they are proposed here, are elementary structures 
which are small enough to allow any kind of incrementation, yet large enough to hold 
information (e.g., features for agreement, valency, LP rules) without having to resort to 
any additional global knowledge outside the segment definitions. We believe that this 
approach gives the grammar more modularity because the set of segments for a language 
is easily extendable and modifiable. 
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