
Chapter 13

Segment Grammar: a Formalism for
Incremental Sentence Generation

Koenraad De Smedt
and Gerard Kempen

Abstract: Incremental sentence generation imposes special constraints on the
representation of the grammar and the design of the formulator (the module which is
responsible for constructing the syntactic and morphological structure). In the model of
natural speech production presented here, a formalism called Segment Grammar is used
for the representation of linguistic knowledge. We give a definition of this formalism and
present a formulator design which relies on it. Next, we present an object- oriented
implementation of Segment Grammar. Finally, we compare Segment Grammar with other
formalisms.

330 De Smedt and Kempen

13.1 INTRODUCTION

Natural speech is often produced in a piecemeal fashion: speakers start to articulate a
sentence before the syntactic structure, or even the meaning content of that sentence has
been fully determined. Under the assumption that the human language processing
apparatus is capable of carrying out different tasks in parallel, the speaker may already
utter the first fragments of a sentence while simultaneously processing more content to be
incorporated in the sentence. This mode of generation, which we call incremental
generation, seems to serve a system whose major purpose is to articulate speech without
long pauses, even if it is imperfect or incomplete.

Once a speaker has started to utter a sentence, the formulator (i.e. the module which
is responsible for the syntactic and morphological structure) will try to complete the
sentence in a maximally grammatical way and will try to avoid making revisions.
However, a speaker who starts a sentence without knowing the entire content in detail
forces the formulator to operate with incomplete knowledge. In an incremental mode of
production, the formulator will sometimes make a choice which turns out to be
incompatible with new conceptual input at a later moment. De Smedt and Kempen
(1987) discuss how various conceptual changes may affect the structure of the utterance
which is under construction.

We are currently designing a computational model of a formulator which operates
under the special constraints imposed by incremental generation. In this paper we discuss
some aspects of that formulator and of the grammatical knowledge it uses. In particular,
we argue that, regardless of their formal generative properties, not all grammar
formalisms are equally suited to support incremental generation. Consider the following
requirements put forward by Kempen (1987):

• Three kinds of syntactic incrementation are distinguished: upward expansion,
downward expansion, and insertion. A grammar should allow all three varieties
(although insertion could be treated as a special case of combined upward and
downward expansion).

• Lexical increments can be small, even a single word. Therefore the syntactic tree
should be able to grow by individual branches. This implies that all daughters of a
node in the tree should not necessarily be generated at once: the formalism should
be able to add sister nodes incrementally.

• There is no reason to assume that the chronological order in which branches are
attached to the syntactic tree corresponds to their linear precedence in the resulting
utterance. Hence the grammar should separate knowledge about immediate
dominance from knowledge about linear precedence.

Segment Grammar: a Formalism for Incremental Sentence Generation 331

In order to satisfy these requirements, Kempen proposes Incremental Grammar (IG), a
new formalism for the representation of grammatical knowledge. It is especially suited to
- but not restricted to - incremental generation. In order to clearly distinguish between the
grammar formalism and the processing model, we will rename the grammar formalism
Segment Grammar (SG) and we will refer to the processing model as the incremental
formulator. After a definition of SG, we discuss how SG representations are used in our
incremental formulator. Then we will present an implementation of SG using object-
oriented programming techniques, compare it with other formalisms, and point out its
main advantages.

13.2 SEGMENT GRAMMAR

Somewhat like a lexical-functional grammar (LFG; Kaplan and Bresnan, 1982), an SG
assigns two distinct descriptions to every sentence of the language which it generates.
The constituent structure (or c-structure) of a sentence is a conventional phrase structure
(PS), which is an ordered tree-shaped graph. It indicates the ‘surface’ grouping and
ordering of words and phrases in a sentence. The functional structure (or f-structure)
provides a more detailed representation of ‘functional’ relationships between words and
phrases, as traditionally expressed by notions like subject, direct object, etc. The
representation in f- structures also accounts for phenomena like agreement, and it does so
by using features like number, gender, etc. Since SG is used for incremental processing,
it assigns representations to partial sentences as well as to full ones.

When an SG is used for generation, semantic and discourse information is mapped
into f-structures, which in turn are mapped into c-structures. C-structures are then
subjected to morpho-phonological processing, producing phonetic strings which are
eventually uttered as speech sounds. This overall process is depicted in Figure 13.1. We
will now be concerned with the elements which constitute the grammar.

13.2.1 Formal Definition Of Segment Grammar

332 De Smedt and Kempen

13.2.2 Informal Synopsis of Segment Grammar

Segments are the elementary building blocks of the grammar. They are graphs with two
nodes: a root node and a foot node. Isolated segments are conventionally represented in
vertical orientation with the root node, labeled with its

category, at the top, the foot node, labeled with its category, at the bottom, and an arc,
represented as a vertically directed edge labeled with a grammatical function, between
the nodes. An example is shown in Figure 13.2. In running text, segments are also
written left-to-right (root-to-foot), e.g., S-SUBJECT-NP or NP-HEAD-NOUN.

Syntactic segments are the smallest possible f-structures and may therefore be
considered as atomic units. Just like atoms in chemistry combine to form molecules,
segments combine to form larger f- structures. These structures are unordered (they are
sometimes called mobiles), since word order is assigned at a later stage. F-structures are
graphs consisting of nodes labeled with syntactic categories (or with lexical items). C-
structures are ordered graphs derived from f-structures by a process described later, and
phonetic strings are the sequences of terminal nodes in c-structures.

One basic operation, unification, governs the composition of smaller f-structures into
larger ones. By unifying two nodes belonging to different f-structures, the nodes may
merge into one; thus a graph of interconnected segments is formed. The two basic
variants of unification are concatenation (vertical composition by unifying a root and a
foot) and furcation (horizontal composition by unifying two roots). E.g., two segments
which are instances of S-SUBJECT-NP and of NP-HEAD-NOUN can be concatenated
by unifying their NP nodes; two segments which are instances of NP-DETERMINER-
ARTICLE and NP-HEAD-NOUN can be furcated, also by unification of their NP nodes.
This is schematically represented in Figure 13.3.

To each node, a set of features may be attributed. For example, S nodes have a
feature FINITE with ‘+’ or ‘–’ as possible values. If no values are explicitly specified,

Segment Grammar: a Formalism tor Incremental Sentence Generation 333

334 De Smedt and Kempen

then the feature has all possible values by default, in this case the set (+ –).3 When two
nodes are unified (in either concatenation or furcation), their features are also unified.
This process, illustrated in Figure 13.4, is essentially the same as feature unification in
other unification-based formalisms (Karttunen, 1984). It consists of computing the union
of all features in both nodes, and for each feature the intersection of the values in both
nodes.

The co-occurrence of feature restrictions on the root of a segment with feature
restrictions on the foot may be used to model syntactic constraints. E.g., the constraint
that “if the subject of a finite sentence is an NP, it must be nominative” is modeled by
specifying a feature FINITE with value ‘+’ on the root of a S-SUBJECT-NP segment, and a
feature NOMINATIVE with value ‘+’ on the foot, as depicted in Figure 13.5. In addition, the
root and the foot of a segment may share certain features. For example, NOMINATIVE is
shared in the NP-HEAD-NOUN segment as depicted in Figure 13.6.

The combination of feature sharing and unification amounts to ‘feature transport’.
By virtue of the sharing relationship in NP-HEAD-NOUN, the con-

Segment Grammar: a Formalism for Incremental Sentence Generation 335

De Smedt and Kempen

Segment Grammar: a Formalism for Incremental Sentence Generation 337

catenation depicted in Figure 13.7 results in a feature change to the foot of the lower
segment as well as to its root. Features are in fact not transported, but they are unified.
Agreement can easily be modeled by feature sharing in concatenated and furcated
segments. For example, the features NUMBER and PERSON are shared in S-SUBJECT-NP as
well as in S-HEAD-FINITE-VERB. If such segments are furcated by unifying their S nodes,
the shared features in both segments are unified, as depicted in Figure 13.8.

The combination of root and foot in a segment is a declarative representation of a
single immediate dominance (ID) relationship. Restrictions on sisterhood are encoded in
a procedural way. The addition of function words, e.g., determiners and auxiliaries, is
governed by a functorization process during formulation, which attaches grammatical
combinations of function words to a phrase in a procedure-based way. The addition of
non-function-words, i.e., constituents which are in a case relation to the phrase, is driven
by the conceptual module and is restricted by valency information in lexical segments.
E.g., the possible addition of a direct object in a clause is specified in lexical segments of
the type S-HEAD-V.

It is unclear whether there is a need for an explicit specification of additional, more
global restrictions on sisterhood, e.g., the restriction that only one direct object may
occur in a clause. We assume that conceptual input to the formulator cannot normally
give rise to such circumstances, because there will be no contradictory information in
case relationships. Hence, these restrictions are seen as emerging properties of the
formulation process rather than defining properties of the grammar. If there is evidence
that this kind of restrictions must be explicitly defined in the grammar, then it remains
possible to specify ad hoc restrictions on unification based on the grammatical function
labels in segments. If not, then the notion of grammatical function is disposable in SG.

Linear precedence (LP) is encoded by assigning to each foot node a POSITIONS
feature which contains a list of possible positions that the node may occupy in its
destination, i.e., (by default) its mother node in the c-structure. The assignment of left-to-
right order in c-structures will be further explained in the next section.

13.3 A LEXICALLY DRIVEN
FORMULATOR DESIGN

We now turn to the question of how SG is used in an incremental formulator. The lexical
origin of syntactic configurations is present in some form or other in many modern
grammar theories. In Government-Binding (GB) theory, for example, the Projection
Principle states that

Representations at each syntactic level are projected from the lexicon, in that they
observe the subcategorization properties of lexical items. (Chomsky, 1981)

338 De Smedt and Kempen

Conceptual and lexical guidance is also argued for by Kempen and Hoenkamp (1987).
Approaches which differ from this principle in that they assume the insertion of lexical
material (i.e., content words) into a previously made syntactic structure, as done in early
transformational grammar (Chomsky, 1965) but also in some recent psycholinguistic
models (e.g., Dell, 1986) are in our opinion unrealistic for purposes of natural language
generation.

On the one hand, syntactic tree formation is lexically guided in our theory, because
the choice of lexical material clearly puts constraints on syntactic choices. For example,
to see can take an infinitival object clause whereas to know cannot. It follows in our
theory that the lexicon is responsible for the choice of any segments to be incorporated
into the tree, e.g., the choice between S-OBJECT-INFINITIVAL-S and S-OBJECT-FINITE-S.

On the other hand, the opposite guidance also holds, especially in incremental
sentence generation: the choice of lexical material is subject to categorial restrictions
imposed by the partial tree which has been constructed so far. For example, to dedicate
may take a NP as a direct object, but not a S. This categorial restriction will cause a
nominal lexical entry to be preferred to a verbal one when the direct object is to be
lexicalized.

It will not be surprising that the basic lexico-syntactic building block is modeled as a
segment. A lexical segment is a segment where the foot is a word. Examples are NP-
HEAD-CAKE (a nominal lemma) and S-HEAD-EAT (a verbal lemma). Because these
segments always link a word to a phrase, the lexicon is essentially a phrasal lexicon.
Information which is traditionally assigned to words, such as features and valency, is in
our approach assigned to the roots of the lemma segments (the phrases) rather than their
feet (the words), as schematically represented in Figure 13.9. Multi-word phrases are
part of the lexicon in the form of ready-made furcations of segments, e.g., for kick the
bucket in Figure 13.10. The lexicon is a set of lemmas, which are lexical entries
consisting of one or more segments.

The lexical (pre-syntactic) stage in the formulator activates one or more lemmas on
the basis of a conceptual fragment. It also assigns features with a non-lexical origin, such
as PLURAL or DEFINITENESS, to those lemmas. A case relation gives rise to one or
more non-lexical segments, such as S-DIRECT- OBJECT-NP.

The syntactic stage of the formulator tries to attach the lemmas and non-lexical
segments to the tree by means of unification, which enforces the categorial and feature
restrictions in the existing (partial) tree. F-structures are complete when the head and
other obligatory segments (according to the valency information in the phrasal nodes)
have been incorporated and when the functorizatton process, which causes the addition
of function words such as determiners and auxiliaries, has taken place.

340 De Smedt and Kempen

Segment Grammar: a Formalism for Incremental Sentence Generation 341

F-structures, as constructed in this fashion, are unordered. The assignment of left-to-
right positions to constituents is not simply an ordering imposed on the existing arcs of
an f-structure, because dominance relations in the c-structure are not necessarily identical
to those in the f-structure (e.g., in the case of discontinuous constituents). Therefore, a
completely new, ordered structure - the c-structure, or surface tree - is constructed. The
procedure which assigns left-to-right positions is incremental and works in a bottom-up
fashion: the foot node of a segment is attached directly under its destination, which is
normally the root of the segment. However, nodes may go to higher level destinations in
situations like clause union and WH-fronting, which give rise to c-structures which are
non-isomorphic to the corresponding f-structures (in particular, they may be flattened).
We refer to Kempen and Hoenkamp (1987) for details. Figure 13.11 is an example of a c-
structure.

Since f-structures as well as c-structures are constructed in a piecemeal fashion, it is
natural to assign word order on a first-come, first-serve basis. For this scheme we use
absolute rather than relative positions. With each phrase, a holder is associated, which is
a vector of slots that can be filled by its constituents. Figure 13.12 shows an example of a
constellation of holders and constituents for the c-structure in Figure 13.11.

The foot node of each segment in the grammar has a feature POSITIONS which lists all
possible positions that the node can occupy in its destination. E.g., in the grammar for
Dutch it is specified that the foot of the S-SUBJECT-NP segment may go to absolute
positions 1 or 3. When the foot of such a segment is to be assigned a position in the
holder of its destination, it will first attempt to occupy position 1. If position 1 has
already been occupied, it will attempt to go to position 3. A schematic overview of such a
situation is given in Figure 13.13. If the utterance has proceeded beyond the point where
a constituent can be added, a syntactic dead end occurs and a self-correction or restart
will be necessary.

13.4 AN OBJECT-ORIENTED

IMPLEMENTATION OF SEGMENT
GRAMMAR

An object-oriented version of SG has been implemented in CommonORBiT (De Smedt,
1987, 1989). This language (based on Common LISP) stems from the object-oriented and
frame-based paradigms. Objects are basic computational units which represent physical
or abstract entities in the problem domain. The properties of an object as well as the
actions it may perform are defined in aspects (slots) associated with the object.

SG is implemented by uniformly representing all grammar concepts, such as nodes
(phrases, words), features and syntactic segments as objects. Segments

342 De Smedt and Kempen

Object-oriented and frame-based formalisms typically allow the use of a specialization
hierarchy in which specific objects (clients) may delegate requests for

Segment Grammar: a Formalism tor Incremental Sentence Generation 343

information to other, more general, objects (proxies) in order to avoid redundancy. The
use of such a hierarchy for linguistic concepts in the grammar as well as the lexicon has
been advocated by De Smedt (1984). The prototypical object SYNTACTIC-SEGMENT,
which acts as a proxy for specific segments such as NP-HEAD-NOUN, contains general
knowledge about segments:

More specific knowledge is distributed among the specific segments. For example, in
NP-HEAD-NOUN, categories restricting the root and foot slots are given.

Syntactic categories are also defined as CommonoRBiT objects. Phrasal categories,
parts of speech and lexical entries are represented in the same delegation hierarchy.
Consequently, the grammar and the lexicon are on a continuum: words are merely the
most specific objects in the hierarchy of categories. By way of example, some delegation
relations between concepts in SG are represented in Figure 13.14.

13.5 DISCUSSION AND RELATION WITH
OTHER WORK

The use of segments for the expression of grammatical knowledge is advantageous in an
incremental sentence formulator. We will sum up some of these advantages here and at
the same time draw comparisons with other work.

344 De Smedt and Kempen

13.5.1 Phrase Structure Rules and Categorial Grammar

Phrase Structure (PS) rules are string rewriting rules which express immediate
dominance (ID, motherhood) relationships together with sisterhood (co-occurrence) and
linear precedence (LP) relationships. Hence, it is often necessary to express the same
dominance relationship more than once, namely for every possible sisterhood and linear
precedence relationship. The example below is from Sells (1985).

We must observe that pure PS rules are seldom used. In Government and Binding (GB)
theory, which uses PS rules mainly to specify hierarchical structure, order is fixed by
other components of the grammar, such as case assignment. Generalized Phrase
Structure Grammar (GPSG) (Gazdar, Klein, Pullum and Sag, 1985) uses rules in ID/LP
format, where a comma in the right hand side of the rewrite rules indicates that the
categories are unordered. These rules are then complemented with separate rules for
precedence relations, e.g.:

Segment Grammar: a Formalism for Incremental Sentence Generation 345

Notice that, although the linear precedence is now encoded separately, ID relations are
still expressed redundantly. SG offers a more economic way of encoding ID by
specifying only one relationship between a pair of nodes at a time.

But the real problem in incremental production is that the choice between rules (2a-d)
cannot be made deterministically. If daughter constituents are produced one at a time by
means of a PS grammar, the system will be forced to choose between rules and backtrack
when necessary. By virtue of its orientation toward the representation of separate ID
relationships, SG allows the incremental addition of sister nodes and hence avoids
backtracking (cf. Kempen and Hoenkamp, 1987).

This problem with PS rules could, in theory, be obviated by redefining the grammar
as in (3). But then the PS structures generated by the grammar would not be isomorphic
to those generated by grammar (2): the grammars are only weakly equivalent.

Although classical categorial grammar (CG), unlike PS rules, is lexically guided and
therefore suited for generation, a similar objection could be raised against it. In classical
CG, word order and co-occurrence constraints are encoded as syntactic types on lexical
items. Whatever choices there are with respect to either LP or sisterhood will result in
alternative syntactic types for the same word. For languages with relatively free word
order or many sisterhood alternatives, this may result in a drastic increase of possibilities
encoded in the lexicon. By comparison, the opposite is true for SG, which encodes
restrictions on sisterhood rather than alternative possibilities. In SG, a relatively word
order free language will therefore have a relatively small grammar and lexicon.

346 De Smedt and Kempen

13.5.2 Unification

Unification as a general mechanism in language generation as well as in parsing has
been proposed by Kay (1979). In Functional Unification Grammar (FUG), language
processing is seen as the unification of an initial functional description with a grammar
which is a very large functional description containing many alternatives. As shown by
Appelt (1985), it is possible to use FUG in incremental production by letting an initial
functional description unify with the grammar, then unify the result with more input in
the form of another functional description, etc., until a sentence is completed.

However, a drawback of FUG is that the grammar is a complicated, monolithic
structure. Our approach is different by virtue of the fact that unification is a local
operation on two nodes. Consequently, the grammar can be represented as a set of
segments, which express information at a local level, i.e. encapsulated in many separate
objects rather than in one large structure or rule base.

The role of features in unification-based grammars (FUG, LFG, PATR-II and GPSG)
is described by Karttunen (1984). Features are often treated as attribute-value pairs
which are grouped in a feature matrix which then functions as the agreement of one or
more nodes. Our approach is similar but we treat features as first-class objects in the
sense that they may themselves be unified. This makes unification an even more
universal mechanism and obviates the need for coreference to features by means of
variables in the grammar.

13.5.3 TAG

Tree Adjoining Grammar (TAG; Joshi, 1987) is a tree generating system consisting of a
finite set of elementary trees and a composition operation (adjoining) which builds
derived trees out of elementary trees. Like SG, and opposed to PS-rules, TAG is tree-
based rather than string-based. FTAG, the recent “feature structures based” extension of
TAG (Vijay-Shanker and Joshi, 1988) uses unification of features as a clearer way of
specifying restrictions on tree adjoining, and is therefore even more similar to SG. The
role of some elementary trees in TAG is comparable to that of SG segments, while
adjoining takes the role of unification. For example, the auxiliary tree for an adjective
(Figure 13.15 (a)) can be said to correspond to the NP-modifier-AP segment (Figure
13.15 (b)), although it must be noted that SG always creates an adjectival phrase rather
than just an adjective. The adjoining operation of the auxiliary tree for an adjective
yields two NP nodes in the resulting structure (Figure 13.16 (a)), which is redundant,
whereas the corresponding composition of SG segments will result in only one NP node
(Figure 13.16 (b)).

Word order and immediate dominance are factored in the TAG formalism, which
provides considerable flexibility in the generation process of a sentence.

Segment Grammar: a Formalism for Incremental Sentence Generation 347

348 De Smedt and Kempen

TAG allows incremental generation, but only as defined by the adjoining operation,
which means that it does not allow the addition of sister nodes without structural growth
in vertical direction. Unlike SG structures, TAG trees always contain all sisters. E.g.,
there are completely different elementary trees for transitive and intransitive verbs. It
does not seem possible to build a transitive tree incrementally by starting with the
intransitive tree and expanding it into a transitive one by furcating with a sister node, as
SG might allow (if valency permits it).

Also, TAG seems to require, for many lexical items, a number of variants of
elementary trees. For example, the transitive verb eat requires separate elementary trees
for the constructions Subj-V-Obj, WH(Obj)-Subj-V, to-V(infiniiive)-Obj, etc. Since,
presumably, the speaker has to make a choice between such alternatives at an early stage,
this imposes restrictions upon incremental production which are avoided by SG. There,
the choice between such constructions can be postponed to a later stage, so that minimal
commitments with respect to further incrementation are imposed.

13.6 CONCLUDING REMARKS

SG describes sentences of a language in terms of syntactic segments - atomic units larger
than syntactic nodes - and their possible combinations, governed by unification. Because
SG specifies ID relations at the level of individual segments, f-structures can be
generated by adding daughter, mother, and sister nodes incrementally. Because SG
specifies LP relations at the level of individual segments, word order can be determined
for partial sentences. These properties make SG a particularly flexible formalism for
incremental generation. Although other formalisms can in principle be adapted for
incremental generation, a lot of bookkeeping would be required to achieve the same
effect (e.g., backtracking in PS grammars).

It seems that syntactic segments, as they are proposed here, are elementary structures
which are small enough to allow any kind of incrementation, yet large enough to hold
information (e.g., features for agreement, valency, LP rules) without having to resort to
any additional global knowledge outside the segment definitions. We believe that this
approach gives the grammar more modularity because the set of segments for a language
is easily extendable and modifiable.

BIBLIOGRAPHY

Appelt, D. 1985. Planning English Sentences. Cambridge: Cambridge U.P.

Chomsky, N. 1981. Lectures on Government and Binding. Dordrecht: Foris.

Segment Grammar: a Formalism for Incremental Sentence Generation 349

Chomsky, N. 1965. Aspects of the theory of syntax. Cambridge, MA: MIT Press.

Dell, G.S. 1986. A Spreading-Activation Theory of Retrieval in Sentence Production.
Psychological Review, 93, 238-321.

De Smedt, K. 1984. Using object-oriented knowledge-representation techniques in
morphology and syntax programming. In: O’Shea, T. (ed.) ECAI-84- Proceedings of the
Sixth European Conference on Artificial Intelligence (pp. 181-184). Amsterdam: Elsevier.

De Smedt, K. and Kempen, G. 1987. Incremental sentence production, self-correction
and coordination. In: Kempen, G. (ed.) Natural language generation: New results in
Artificial Intelligence, psychology and linguistics (pp. 365-376). Dordrecht/Boston:
Martinus Nijhoff Publishers (Kluwer Academic Publishers).

De Smedt, K. 1987. Object-oriented programming in Flavors and CommonOR-BIT. In:
Hawley, R. (ed.) Artificial Intelligence Programming Environments (pp. 157-176).
Chichester: Ellis Horwood.

De Smedt, K. 1989. Object-oriented knowledge representation in CommonORBIT. Internal
report 89-NICI-01, Nijmegen Institute for Cognition research and Information
Technology, University of Nijmegen.

Gazdar, G., Klein, E., Pullum, G. and Sag, I. 1985. Generalized Phrase Structure
Grammar. Oxford: Basil Blackwell.

Joshi, A. 1987. The relevance of tree adjoining grammar to generation. In: Kempen, G.
(ed.) Natural language generation: New results in Artificial Intelligence, psychology and
linguistics (pp. 233-252). Dordrecht/Boston: Martinus Nijhoff Publishers (Kluwer
Academic Publishers).

Karttunen, L. 1984. Features and values. In: Proceedings of Coling-84 (pp. 28-33).
Association for Computational Linguistics.

Kay, M. 1979. Functional Grammar. In: Proceedings of the Fifth Annual Meeting of the
Berkeley Linguistic Society (pp. 142- 158). Berkeley, CA: Berkeley Linguistic Society.

Kempen, G. 1987. A framework for incremental syntactic tree formation. Proceedings of
the tenth IJCAI (pp. 655-660). Los Altos: Morgan Kaufmann.

Kempen, G. and Hoenkamp, E. 1987. An incremental procedural grammar for sentence
formulation. Cognitive Science, 11, 201- 258.

Sells, P. 1985. Lectures on contemporary syntactic theories. CSLI Lecture notes Nr. 3.
Stanford: CSLI.

Vijay-Shanker, K. and Joshi, A. 1988. Feature Structures Based Tree Adjoining
Grammars. In: Coling ‘88: Proceedings of the 12th International Conference on
Computational Linguistics, 22-27 August 1988. Association for Computational Linguistics.

