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Original Article

High variability of TLR4 gene in different
ethnic groups in Iran

Mihai Ioana1,2,3*, Bart Ferwerda1,4*, Shirin Farjadian5,6,
Luiza Ioana1, Abbas Ghaderi7, Marije Oosting1, Leo
AB Joosten1, Jos WM van der Meer1, Giovanni Romeo8,
Donata Luiselli9, Dan Dediu10 and Mihai G Netea1

Abstract

Infectious diseases exert a constant evolutionary pressure on the innate immunity genes. TLR4, an important member of

the TLR family, specifically recognizes conserved structures of various infectious pathogens. Two functional TLR4 poly-

morphisms, Asp299Gly and Thr399Ile, modulate innate host defense against infections, and their prevalence between

various populations has been proposed to be influenced by local infectious pressures. If this assumption is true, strong

local infectious pressures would lead to a homogeneous pattern of these ancient TLR4 polymorphisms in geographically-

close populations, while a weak selection or genetic drift may result in a diverse pattern. We evaluated TLR4 polymor-

phisms in 15 ethnic groups in Iran, to assess whether infections exerted selective pressures on different haplotypes

containing these variants. The Iranian subpopulations displayed a heterogeneous pattern of TLR4 polymorphisms, com-

prising various percentages of Asp299Gly and Thr399Ile, alone or in combination. The Iranian sample, as a whole,

showed an intermediate mixed pattern when compared with commonly-found patterns in Africa, Europe, Eastern

Asia and the Americas. These findings suggest a weak, or absent, selection pressure on TLR4 polymorphisms in the

Middle-East that does not support the assumption of an important role of these polymorphisms in the host defense

against local pathogens.
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Introduction

The innate immune system is constantly exposed to
pressures from infectious diseases, suggesting that one
of the evolutionary selective forces shaping our genome
during human history is represented by infectious path-
ogens.1,2 Among immunity genes, positive natural
selection, and especially balancing selection, is

relatively common compared with other functional
gene classes.1 The initial step in the initiation of an
immune response is represented by specific recognition
of conserved structures of bacteria, viruses, fungi and
protozoa by so-called pattern recognition receptors
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(PRRs).3 The most studied PRRs are the TLRs.4

Among them, TLR4, encoded by the gene with the
same name located on chromosome 9, is the master
receptor for the LPS component of Gram-negative bac-
teria, but it also recognizes other pathogen-associated
molecular patterns (PAMPs) from mycobacteria, fungi,
viruses and even parasites, such as malaria.5–8

So far, more then 35 TLR4 polymorphisms have
been described,9 among which the most studied are
two non-synonymous single-nucleotide polymorphisms
(SNPs) located in the leucine-rich repeat domain
responsible for ligand recognition: an A/G transition
at SNP rs4986790 (896A/G) that causes an Asp/Gly
amino acid change at position 299 of the molecule,
and a C/T transition at SNP rs4986791 (1196C/T)
that causes a Thr/Ile amino acid change at position
399. These mutations affect the ligand-binding region
(Asp299Gly) of TLR4 and the co-receptor-binding
region (Thr399Ile) of the receptor respectively.10,11 It
has been shown that these TLR4 polymorphisms have
important functional consequences related to the pro-
duction of pro- and anti-inflammatory cytokines. In
addition, they modulate the systemic inflammatory
response syndrome in septic shock12 and influence sus-
ceptibility to Gram-negative infections.13

Based on the prevalence in various populations
around the globe, it has been shown that both these
polymorphisms are ancient and occurred more than
65,000 years ago in Africa, before the migration of
Homo sapiens out of Africa. Important differences
have been described in the prevalence of TLR4 polymor-
phisms in various populations, possibly depending on
local infectious pressure and population migration.
The non-synonymous polymorphism Asp299Gly has a
high prevalence in sub-Saharan Africa, and it has been
proposed to have protective effects against mortality
frommalaria.6 However, because of its effects in increas-
ing susceptibility to severe bacterial infections, the TLR4
haplotype containing solely this polymorphism seems to
have disappeared from Asians and Americans. In con-
trast, Asp299Gly has been found present in co-segrega-
tion with Thr399Ile in Europeans; this haplotype
showing selective neutrality.6,14

Despite the progress in understanding the biology of
TLR4, several important questions remain regarding
the factors influencing the prevalence of TLR4 poly-
morphisms in various populations. One of the most
intriguing questions to be answered is that of the
degree to which the Asp299Gly and Thr399Ile SNPs
(and especially of the haplotype containing both muta-
tions) have influenced susceptibility to infections (espe-
cially in Europe and West Asia), with two possible
scenarios: one in which these TLR4 polymorphisms
strongly influenced susceptibility to infections and, sub-
sequently, their prevalence was under selective pressure,
and another one in which they had little influence of
infection susceptibility and their prevalence in the

Eurasian landmass was mainly influenced by genetic
drift, as previously proposed.14 One approach to
assess whether infections exerted selective pressure on
the TLR4 variants is to investigate these polymor-
phisms in populations of different ethnic origins that
have been living in the same geographical location for
a long period of time and under the same infectious
pressure. One would expect that in case of strong infec-
tious pressure, the prevalence of ancient polymor-
phisms such as these TLR4 SNPs and haplotypes
would become similar in the populations, irrespective
of their ethnicity. The Middle East, and especially Iran,
is an ideal target for such a study, considering its rich
ethnic diversity and its key location on the routes of
migration during the out of Africa human migration.

Materials and methods

Description of the Iranian subpopulations

A total of 738 individuals were recruited from 15 dif-
ferent ethnic and cultural groups from Iran: Pars,
Armenian, Gilak, Mazendarani, Baloch, Kurd,
Zoroastrian, Lur of Luristan, Lur of Kohgiluyeh and
Buyer-Ahmad, Turkmen, Qashquaee, Azeri, Jew,
People of Qeshm and Arab. Eight individuals were
excluded because of missing data. The ethno-linguistic
diversity in Iran, reflected by the important number of
languages (77, 75 of which are living languages and 2
may only recently have become extinct),15 is well rep-
resented among our sampled groups that belong to
three major linguistic families: Indo-European (Indo-
Iranian and Armenian subfamilies), Altaic (Turkic sub-
family) and Afro-Asiatic (Semitic subfamily). A few of
these populations are present in Iran only (e.g. Gilak
and Mazendarani), but most of them are also found in
other Middle-Eastern locations (Table 1).

Sample collection

Blood samples were collected from unrelated
healthy volunteers after obtaining informed consent.
All selected participants were self-reported third-
generation members of a specific ethnic group, as
described above. Those individuals of mixed ancestry
or from mixed marriages were excluded. The evaluated
samples were collected from different Iran provinces as
shown in Figure 1A.

Genotyping

DNA samples were extracted from whole blood using
the salting out method.16 To screen for the TLR4 poly-
morphisms Asp299Gly (rs4986790) and Thr399Ile
(rs4986791), the amplified sequences were digested
with the restriction enzymes Nco-I and Hinf-I (New
England BioLabs, Beverly, MA, USA) and separated
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on agarose gel 2% stained with ethidium bromide. PCR
was performed as described by Van Der Graaf et al.17

Single-nucleotide polymorphisms and haplotype data
analysis

Data analysis used the open-source statistical environ-
ment R18 and several of its packages (available for free
download at: www.r-project.org). The linkage disequi-
librium between the two loci (D’ and r)19 was computed
using the LD function in package genetics,20 and the
deviation from Hardy-Weinberg equilibrium (HWE)
for each locus was tested using function HWE.test in
the same package. Genotype and haplotype frequencies
between populations were compared using Fisher’s
exact test with 10,000 permutations as implemented
by the Fisher test in the statistics package,18 as well
as G-tests21 using function test.g in package hierfstat,22

also with 10,000 permutations. We computed Wright’s
fixation index FST

23 between populations using calcFst
in package polysat24 and used these as genetic distances
between populations. In order to search for structure in
the genetic data, we projected the FST distances in two
dimensions using classical multidimensional scaling
(function cmdscale in package stats)18 and we also con-
ducted hierarchical agglomerative clustering (hclust in
the same package). The geographic distances were com-
puted as great circle distances using function distance
in package argosfilter.25 The Mantel correlations26

between genetic and geographic distances were com-
puted with function mantel in package vegan27 using
99,999 permutations. Geneland28–30 searches for popu-
lation structure using genetic and geographic data using
a Bayesian approach; we used this package in an
attempt to identify patterns in our samples [with and
without geographic structure, 5,000,000 Markov Chain
Monte Carlo (MCMC) iterations].

The molecular genetic variation within, and among,
populations was tested using different implementations
of Analysis of Molecular Variance (AMOVA) as given
in the R packages: pegas (function amova),31 ade4
(functions amova and randtest)32 and vegan (function
adonis).33,34

When necessary, the P-values were adjusted for mul-
tiple comparisons using Holm’s correction,35 as imple-
mented by function p.adjust in package stats.18

Statistical significance was accepted for P-values< 0.05.

Results

TLR4 haplotype frequencies for the overall Iranian
sample and for each of the studied Iranian
subpopulations

Iranian TLR4 haplotype frequency pattern and the
haplotype frequencies for all the studied groups are
shown in Table 2 and Figure 1. The calculated frequen-
cies of the minor alleles for rs4986790 was 0.05, whereas

Table 1. List of the 15 Iranian subpopulations evaluated in this study

Ethnic group N Middle East location Language family

Pars (Pa) 66 Iran, United Arab Emirates, Bahrain, Iraq, Kuwait, Oman,

Afghanistan, Pakistan, Uzbekistan, Tajikistan

Indo-European

Armenian (Am) 64 Armenia, Georgia, Iran, Lebanon, Israel, Syria, Jordan, Iraq

Gilak (Gi) 23 Iran (South-Eastern Caspian Sea-coast)

Mazendarani (Ma) 51 Iran (South-Eastern Caspian Sea-coast)

Baloch (Ba) 64 Iran, Pakistan, Afghanistan

Kurd (Ku) 47 Iran, Iraq, Turkey, Syria, Armenia, Georgia, Lebanon,

Azerbaijan, Turkmenistan

Zoroastrian (Zo) 50 India, Pakistan, Iran

Lur (LL) 28 Iran (South-West)

Lur (LKB) 27 Iran (South-West)

Turkmen (Tu) 53 Turkmenistan, Afghanistan, Iraq, Iran, Pakistan Altaic/Turkic

Qashquaee (Qa) 44 Iran (South-West)

Azeri (Az) 51 Azerbaijan, Iran, Turkey, Georgia, Kazakhstan

Jew (Je) 60 Israel, Iran, Iraq, Georgia, Bahrain, Yemen, Lebanon, Syria,

Afghanistan, Ethiopia

Afro-Asiatic/Semitic

People of Qeshm (Qe) 55 Qeshm Island (Southern coast of Iran) Mixed

Arab (Ar) 47 Egypt, Lebanon, Saudi-Arabia, Iraq, Yemen, Syria, Sudan,

Somalia, Jordan, Kuwait, UAE, Oman, Qatar, Bahrain,

Israel, Iran, Turkey, Pakistan

Afro-Asiatic/Semitic

Total 730
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Figure 1. (A) Iranian distribution of TLR4 haplotypes among the 15 groups and the main locations of these groups in Iran.

Approximate geographic sampling location of each group is indicated by black arrows. Circles indicate allele frequency (red,

Asp299Gly; yellow, Thr399Ile; blue, Asp299Gly/Thr399Ile). (B) The most likely paths of migration during the ‘out of Africa’ migration

of modern humans and the world distribution pattern of TLR4 haplotypes in Europe (EU), Africa (AF), East-Asia (EAS) and the

Americas (AM), and the key location of Iran on the route.
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for rs4986791 it was 0.018. Fisher’s exact test showed
no deviation from Hardy–Weinberg equilibrium for
both evaluated SNPs, both in the overall Iranian
sample (P-values of 0.1221 for Asp299Gly and 0.1322
for Thr399Ile) and in each individual group (data not
shown). We observed a high degree of linkage disequi-
librium between the rs4986790 and rs4986791 SNPs,
both in the whole sample (D’¼ 0.75, r¼ 0.74,
�2(730)¼ 798.72, P¼ 0) and in each population sepa-
rately, confirming the reported co-segregation (data
not shown).36

The differences between populations for rs4986790
did not reach statistical significance, although a ten-
dency towards significance was observed (Fisher’s
exact test with 10,000 permutations, P¼ 0.066). In con-
trast, a statistically significant difference between pop-
ulations was found for the rs4986791 SNP (P¼ 0.010).
Table 3 shows the diplotype distribution among all
included individuals. When assessing the distribution
of TLR4 haplotypes based on these two SNPs, signifi-
cant differences between populations (Fisher’s exact

test with 10,000 permutations P¼ 0.022) seemed to be
present. However, although several pairs of popula-
tions did seem to differ at first sight (Table 4 shows
uncorrected Fisher’s exact test P-values), many of
these paired tests did not survive Holm’s multiple test-
ing correction (data not shown).

To evaluate the significance of genetic differences,
we also used G-tests [overall: 10,000 permutations,
G¼ 69.24, P¼ 0.0024 for each pair of populations,
see supplementary data (supplementary Table 1)].
As in the case of Fisher’s exact test, no paired test
survived Holm’s multiple testing correction. These
results were confirmed by AMOVA. The values of
FST genetic distances between population pairs
(supplementary Table 2) are graphically represented
in Figure 2 (white¼min, black¼max). It can be
seen that Lurs of Luristan and Arabs are the most
different, but the differences are relatively small
(min¼ 0.0, max¼ 0.039, mean¼ 0.0092, med-
ian¼ 0.0056) and statistically not significant. Multi-
dimensional scaling (MDS),37 a method for visually

Table 2. TLR 4 896A/G (Asp299Gly) and 1196C/T (Thr399Ile) haplotype frequencies in Iran and in the various ethnic groups

Haplotype frequencies

Populations AC (AspThr) GT (GlyIle) GC (GlyThr) AT (AspIle)

Pars 0.894 0.068 0.008 0.030

Armenian 0.891 0.078 0.008 0.023

Gilak 0.935 0.043 - 0.022

Mazendarani 0.910 0.060 0.010 0.020

Baloch 0.922 0.031 0.047 -

Kurd 0.958 0.021 0.021 -

Zoroastrian 0.950 0.050 - -

Lur (Luristan) 1.000 - - -

Lur (Kohgiluyeh and Buyer Ahmad) 0.925 0.056 - 0.019

Turkmen 0.887 0.066 0.038 0.009

Qashquaee 0.944 0.034 0.011 0.011

Azeri 0.980 0.020 - -

Jew 0.942 0.008 - 0.050

People of Qeshm 0.964 0.027 - 0.009

Arab 0.989 - 0.011 -

Iran 0.936 0.039 0.012 0.013

Table 3. The overall Iranian distribution of 896A/G and 1196C/T diplotypes

1196 C/T (Thr399Ile)

896A/G (Asp299Gly)

AA AG GG

CC 641 (87.81) 16 (2.19) -

CT 18 (2.46) 50 (6.85) 1 (0.14)

TT 1 (0.14) - 3 (0.41)

Data are presented as number (%) of diplotypes in Iranian individuals.
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representing distance matrices, was used it to plot the
pair-wise FST distances between the 15 studied popu-
lations in order to identify any patterns and clusters in
the genetic data (Figure 3).

We also executed 10 independent runs of Geneland
using only the genetic information, with 1,000,000
MCMC generations,38 a thinning of 100 and burn-in
of 2000, and all converged to classifying all individuals

Pa

Ar

Qe

Je

Az

Qa

Tu

LKB

LL

Zo

Ku

Ba

Ma

Gi

Am

Pa

Am Gi Ma Ba Ku Zo LL LKB Tu Qa Az Je Qe Ar

Figure 2. Graphic representation of the FST distances (white, min; black, max).

Table 4. Fisher’s exact test for TLR4 diplotype differentiation between populations. (uncorrected P-values; no test survives Holm’s

multiple testing correction)

Pa Am Gi Ma Ba Ku Zo LL LKB Tu Qa Az Je Qe Ar

Pa NA

Am 0.984 NA

Gi 1 0.934 NA

Ma 0.982 1 1 NA

Ba 0.020 0.018 0.124 0.044 NA

Ku 0.192 0.167 0.342 0.297 0.709 NA

Zo 0.273 0.346 0.448 0.419 0.028 0.217 NA

LL 0.147 0.131 0.085 0.135 0.299 0.408 0.161 NA

LKB 1 1 1 1 0.070 0.289 0.512 0.052 NA

Tu 0.477 0.618 0.842 0.813 0.171 0.493 0.268 0.115 0.801 NA

Qa 0.819 0.731 1 0.846 0.270 0.745 0.529 0.516 0.904 0.789 NA

Az 0.108 0.068 0.242 0.078 0.071 0.446 0.436 0.535 0.143 0.060 0.425 NA

Je 0.134 0.058 0.542 0.087 0.006 0.082 0.039 0.676 0.216 0.017 0.327 0.154 NA

Qe 0.331 0.296 0.507 0.396 0.049 0.445 0.480 0.709 0.356 0.161 0.840 1 0.280 NA

Ar 0.012 0.007 0.057 0.015 0.133 0.423 0.055 1 0.023 0.015 0.146 0.350 0.109 0.206 NA
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into a single population. Using FST to create a hierar-
chical clustering of the populations resulted in the phe-
nogram represented in Figure 4. Supporting the finding
that the genetic structure of these loci does not reflect
geography was the very low and non-significant Mantel
correlation between geographic distances (great circle
distances) and FST distances between all pairs of pop-
ulations: r¼�0.014, P¼ 0.49 (9999 permutations).

TLR4 polymorphisms in different Iranian ethnic
groups with language as a grouping factor

Moreover, to investigate the possible differences
between populations speaking languages belonging to
different language families, we amalgamated all sam-
pled individuals into three ‘language groups’
(L-groups): Afro-Asiatic (107 individuals), Altaic
(148) and Indo-European (420) (the individuals from
Qeshm have been excluded from the analysis because
of their uncertain linguistic status). Comparing groups
based on linguistic affiliation can, potentially, provide
insights into processes occurring over several thousand
of years, including genetic drift and selection pressures.
Both SNPs were in HWE and strong LD in all three
L-groups, except Afro-Asiatic where the LD was less
pronounced (D’¼ 0.47, r¼ 0.25) but still highly signif-
icant (P¼ 0.0003).

Genotype frequencies for rs4986790 seemed to differ
between L-groups (Fisher’s exact test with 10,000 per-
mutations, P¼ 0.016) but not for rs4986791 (P¼ 0.21)
differentiation confirmed by the overall g-test
(P¼ 0.0126) and as a result of Afro-Asiatic being
more different than the other two L-groups, even
after Holm’s multiple testing correction (Table 5).
Haplotype frequencies showed a similar pattern of dif-
ference between L-groups (Fisher’s exact test with
10,000 permutations P¼ 0.039) with Afro-Asiatic
being the outlier, even after Holm’s correction
(supplementary Table 3). Difference was also reflected
by the greater FST distances involving this L-group
(supplementary Table 4). Conducting an AMOVA
with language as a grouping factor suggested that
there was variation within samples (P¼ 0.01699830)
and marginally between samples (P¼ 0.06109389), but
not among L-groups (P¼ 0.28547145).

Discussion

Owing to its Middle East location, Iran, the 18th largest
country in the world, has a special geographic signifi-
cance for the various human migrations on the
Eurasian landmass, from that of Homo sapiens out of
Africa,39 to the Silk Road,40 and to more recent periods
in history. Iran is a diverse country with various
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Figure 3. MDS plot of pairwise FST distances in two dimensions. Populations are classified in terms of the language family/subfamily

(for Queshm, no such classification was possible).
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geographical landforms, a wide range of climatic vari-
ation, as well as populations of different religions and
ethno-linguistic backgrounds. Iran is home to a large
number of different ethnic groups including Pars, Turk,
Kurd, Arab and Baloch,41 which have interacted during
history with many other groups, such as Macedonians,
Arabs, Turks and Mongols.42 These characteristics are
reflected in the 15 different ethno-religious groups col-
lected from different provinces across the country. In
the present study, we took advantage of the ethnic
diversity of populations that live in Iran and assessed
the prevalence and distribution of TLR4 polymor-
phisms among these diverse ethnic groups. We hypoth-
esized that if TLR4 polymorphisms would strongly
influence susceptibility to infections, the resulting infec-
tious pressure would result in a homogeneous pattern
of the ancient TLR4 polymorphisms (Asp299Gly and
Thr399Ile) in these ethnically-different populations. In
contrast, a situation in which TLR4 polymorphisms

would not have a strong effect on susceptibility to infec-
tions, thus resulting in weak selection pressures or even
genetic drift, will have, as a consequence, a diverse pat-
tern of TLR4 polymorphisms in the various
populations.

The prevalence of the Asp299Gly and Thr399Ile
TLR4 polymorphisms between Iranian subpopulations
differed, as seen in Table 2 and Figure 1. Interestingly,
the heterogeneity of TLR4 polymorphisms and haplo-
types in the Iranian subpopulations studied was greater
than on the African continent. In populations from
both East and West Africa, a homogenous pattern of
TLR4 polymorphisms was seen, characterized by the
presence of 5–15% individuals bearing the Asp299Gly
SNP, and a much smaller group of individuals bearing
Asp299Gly/Thr399Ile in linkage, while no Thr399Ile
polymorphism is present alone. It has been suggested
that this homogeneous distribution of TLR4 polymor-
phisms may be caused by the protective effect against
severe malaria.6,14 In contrast, it is less clear whether
TLR4 polymorphisms also influence susceptibility to
infections in the colder climates of Europe and Asia.
The TLR4 299Gly/399Ile haplotype comprising both
polymorphisms does not seem to modify the response
of monocytes to endotoxin and susceptibility to infec-
tions, and it has been proposed to be the result of
genetic drift in populations from Europe and Asia.14

If TLR4 polymorphisms would, indeed, not modify
susceptibility to infections in the colder climates of
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Figure 4. Hierarchical clustering of the populations based on genetic distances.

Table 5. Overall g-test values after multiple testing correction

Afro-Asiatic Altaic Indo-European

Afro-Asiatic NA

Altaic 0.034 NA

Indo-European 0.015 0.560 NA
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Eurasia, one would expect that the various ethnic pop-
ulations studied here would maintain a high heteroge-
neity of these TLR4 polymorphisms. In line with this,
the Iranian subpopulations displayed a heterogeneous
pattern of TLR4 polymorphisms, comprising various
percentages of Asp299Gly and Thr399Ile alone, or in
combination. These differences are most probably a
result of the specific geographic origin, natural borders
and/or ethnic and religion barriers between the popu-
lations studied. In this respect, particular patterns can
be observed for Baloch, Zoroastrian, Azeri, Jew, Arab,
Kurd and Lurs of Luristan (see Figure 1A). The diver-
sity of TLR4 polymorphisms in Iranian populations is
reminiscent of the mixed pattern of TLR4 haplotypes
described among Israeli subpopulations.14 The varia-
tion of the prevalence of TLR4 polymorphisms in
Iranian subpopulations living in close geographic prox-
imity suggest a weak, or absent, infectious pressure on
TLR4 SNPs in the Middle East. Evidence for the
absence of a strong infectious pressure among most of
the Iranian subpopulations included in this study was
also found in human leukocyte antigen (HLA) class II
genes.43 A few recently published studies investigated
HLA class II allele and haplotype frequencies in order
to find the genetic relationship between the major
Iranian subpopulations,43 based on the fact that HLA
data can be used to elucidate the genetic history of
human populations.44,45 Parsee, Zoroastrian and
Baloch subpopulations were found to be mainly con-
fined to intrapopulation variations, with little subdivi-
sion among studied Iranian populations.41 A closer
genetic relationship was present between Iranian
Arabs and Iranian Jews when compared with either
Iranian Arabs and Middle-Eastern Arabs or Iranian
Jews and other Jews.46 When comparing Kurds and
Azeris, another two major ethnic groups in Iran, con-
siderable similarities in HLA class II allele and haplo-
type distributions were seen, except for DQB1*0503,
which was observed with a higher frequency in Kurds
in comparison to Azeris.47

The Iranian subpopulations assessed in the present
study displayed an interesting intermediate mixed pat-
tern of TLR4 haplotypes when compared with com-
monly found patterns in Africa (higher GC, no AT,
less GT),6,14 Europe (very rare GC, lower AT, higher
GT)14,48–50 and Central/Eastern Asia14,51–55 and
Americas (no GC, no AT, no GT)14 (see Figure 1B).
The driving forces that may influence TLR4 haplotypes
frequencies in humans may be represented by local
infections for which TLR4 is important as a recognition
receptor (e.g. Gram-negative bacteria, mycobacteria).
As mentioned above, strong effects of the TLR4
SNPs on infection susceptibility would have resulted
in a homogeneous haplotype pattern for the overall
Iranian sample. However, this proves not to be the
case: all haplotypes were present in various percentages
in the Iranian populations, suggesting the absence of

strong selective forces. This is in line with Barreiro
et al.,56 who showed a weak negative and/or balancing
selection on extracellular TLRs, implicitly of TLR4. As
suggested before, a different situation may be present in
sub-Saharan Africa and additional studies involving
ethnically-different populations living in close proxim-
ity should be performed also in warm climates.

To investigate the possible differences between
Iranian subpopulations belonging to different language
families, the prevalence of TLR4 polymorphisms was
analyzed in different ethnic, groups with language as a
grouping factor. We conclude that higher-level lan-
guage classification explains a small part of the genetic
variance in TLR4 and highlights Afro-Asiatic popula-
tions as more different than the other two language-
groups; however, this may be owing to its internal
inconsistency.

TLR 4 SNPs have been associated with susceptibility
to certain infectious diseases6,7,12,13 because of its role
as a receptor for the LPS of Gram-negative bacteria,8

mannans from fungi,7 and cell wall structures of the
Plasmodium parasite6 and mycobacteria5. Innate
immune system responses to specific infectious pressure
may be reflected by important differences in the preva-
lence of TLR polymorphisms in populations, but these
differences depend on the functional consequences of
certain polymorphisms. The TLR4 299Gly allele has
been associated with an increased cytokine response
which seems to be associated with protection from
severe malaria.14 In contrast, the TLR4 haplotype con-
taining both 299Gly and 399Ile does not seem to
modify the function of the molecule.14

In conclusion, in the present study we describe
the prevalence of Asp299Gly and Thr399Ile TLR4
polymorphisms in 15 ethnically-different populations
from Iran. In contrast to the homogeneity of these
polymorphisms in other populations, such as those
from the African continent, the Iranian subpopu-
lations display a broad heterogeneity of TLR4
Asp299Gly and Thr399Ile. These findings suggest a
weak, or absent, effect of TLR4 polymorphisms on
infection susceptibility in the Middle East. However,
further studies employing an increased number of
markers that are not subject to selective pressure
are needed to more thoroughly assess these con-
clusions.
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