
COGNITIVE SCIENCE 11, 201-258 (1987)

An Incremental Proceduml Grammar for

Sentence Formulation

GERARD KEMPEN AND EDWARD HOENKAMP
Department of Psychology

University of Nijmegen, The Netherlands

This poper presents a theory of the syntactic aspects of humon sentence produc-

tion. An important chorocteristic of unprepared speech is that overt pronuncio-

tion of o sentence con be initioted before the speoker has completely worked out

the meaning content he or she is going to express in that sentence. Apparently,

the speaker is able to build up a syntacticolly coherent utterance out of a series of

syntactic fragments each rendering a new part of the meaning content. This in-

cremental, left-to-right mode of sentence production is the central capability of

the proposed Incremental Procedural Grammor (IPG). Certoin other properties of

spontaneous speech, OS derivable from speech errors, hesitations, self-repairs,

and language pothology. ore accounted for as well.

The psychological plausibility thus goined by the grammar appears compoti-

ble with a satisfactory level of linguistic plausibility in that sentences receive

structural descriptions which are in line with current theories of grammar. Mare

importantly. an explanation for the existence of configurational conditions on

transformations ond other linguistics rules is proposed.

The basic design feature of IPG which gives rise to these psychologically and

linguistically desiroble properties, is the “Procedures + Stack” concept. Sentences

ore built not by a central constructing agency which overlooks the whole process

but by a teom of syntactic procedures (modules) which work-in parallel-on

small parts of the sentence, have only a limited overview, and whose sole com-

munication channel is a stock.

IPG covers obiect complement constructions, interrogatives, and word order

in main ond subordinote clauses. It handles unbounded dependencies, cross-
serial dependencies ond coordination phenomena such OS gapping and conjunc-

tion reduction. It is also copoble of generating self-repairs and elliptical answers

to questions. IPG has been implemented OS an increment01 Dutch sentence gen-

erator written in LISP.

The cognitive processes underlying sentence production are usually cate-
gorized under the headings of content, form, and sound. One group of activ-

The research presented in this paper has been supported by grants from the Netherlands
Organization for Pure Scientific Research (Z.W.O.). We are indebted to William Levelt. Her-
man Kolk, Care1 van Wijk, Koenraad De Smedt, and Patrick Hudson for their comments on
earlier versions of this paper, and to Peter Desain and Henk Schotel for their coUaboration in
setting up a computer implementation of Incremental Procedural Grammar. Most of all we
thank Mary-Louise Kean for scrutinizing the prefinal manuscript.

Correspondence and requests for reprints should be addressed to Gerard Kempen at the
Department of Psychology, University of Nijmegen, Montessorilaan 3.6525 HR NIJMEGEN.

201

202 KEMPEN AND HOENKAMP

ities is concerned with planning the conceptual (semantic) content for
language utterances. They select to-be-verbalized conceptual structures in
such a way as to be “digestible” for the listener, that is, comprehensible, in-
teresting, not too redundant, and so forth. A conceptual structure is linear-
ized by splitting it up into a sequence of messages each of which is expressible
in a complete or partial sentence. These and related activities may be termed
conceptualizing. A second group of processes takes care of translating
meaning content into sentence form. This we callformulating. Finally, syn-
tactic and morphological structures built by the formulator system are
handed over to the mechanisms of speech for overt articulation (Fromkin,
1971; Kempen, 1977; Levelt, 1982).

This paper is concerned with sentence formulation. It proposes a
sentence construction device, termed “Incremental Procedural Grammar”
(IPG), which aims at both psychological and linguistic plausibility. By
psychological plausibility we mean that all sorts of psychological data on
how speakers assemble natural language utterances during spontaneous
speech are taken into account, so that the device may be said to simulate
human sentence production processes as closely as possible. The goal of lin-
guistic plausibility implies that we try to incorporate into the device gram-
matical (syntactic, lexical,.morphological) rules which a linguist would not
qualify as ad hoc, that is, which cover a range of grammatical phenomena
as broad as is possible by current standards of linguistic research. In par-
ticular, the device should incorporate an optimal solution to what has
become one of the central issues in the theory of syntax: conditions or con-
straints on the applicatioan of rules (transformational and others).

What properties are desirable or necessary for a sentence construction
device to qualify as psychologically plausible? Sections 1 and 2 provide an
answer to this question which, in contrast to extensive discussions on lin-
guistic adequacy of grammars, has not received much attention in the litera-
ture. The core of the paper is a detailed description of the formulator system
we have worked out. After an overview of the workings of IPG in Section 3,
we present analyses of some important syntactic constructions of the Dutch
language (Section 4). Finally, in Sections 5 through 7 we will return to the
issue of psychological plausibility of the proposed grammar.

1. PSYCHOLOGICAL CONSTRAINTS

A most remarkable property of the human sentence production system is
the high level of output fluency it is able to attain. The primary factor con-
ducive to fluency derives from the temporal alignment of the three sub-
processes of speaking: conceptualizing, formulating, and articulating. The
traditional view, implicitly held by many students of sentence production, is
that they are ordered strictly serially in time. First, the conceptual content is

INCREMENTAL PROCEDURAL GRAMMAR 203

fully specified by the conceptualization process. Next, the syntactic struc-
ture is built for the whole utterance. Finally, this structure is realized pho-
netically (cf. Figure la). This serial model implies that hesitations within
sentences cannot have a conceptual or syntactic origin. This is not only em-
pirically wrong (cf. Goldman-Eisler, 1968) but it is also contradicted by the
following introspective observation.

Speakers often experience situations where they initiate overt speech pro-
duction after having worked out only a fragment of the conceptual content
of the resulting utterance. They also find it very easy to take up the thread
of a broken-off sentence spoken by someone else and bring it to a syntac-
tically impeccable end. Such phenomena force us to give up the strictly serial
view in favor of the position that the three subprocesses run parallel to each
other (Kempen, 1977). As soon as a fragment of conceptual content has
been computed it is passed over to the formulator which attempts to trans-
late it into a sentence fragment that is then articulated (Figure lb). In the
meantime, work on further conceptual and syntactic fragments continues.
Figure lb also shows that the order of conceptual fragments does not
always correspond to the order of utterance fragments. This is caused by
rules of syntax which may call for a reversal. As a matter of fact, we make
the assumption that the “conceptualizer” system has no syntactic knowl-
edge whatsoever. The order in which it delivers its conceptual fragments will
therefore, in principle, be uncorrelated with the order of the corresponding
utterance fragments in the spoken sentence. In reality, however, the correla-
tion will be positive because the formulator will try to match them.

The mode of sentence production intended here we will term incremental
or piecemeal. Its usefulness undoubtedly relates to the more efficient man-
agement of the processing capacities of working memory and other mental
machinery involved in formulating and articulating. It prevents these mecha-
nisms from having to operate in a very irregular fashion, that is, according

S.XliUltiC c - - - - _ - -struct;re- - ;

F

- - - - - - - - Conceptuflizing
Fomndatmg

A‘.

F

A ~--i5Jl,un,, (b)

Figure 1. Two theoretically possible alignments of conceptualizing, formulating ond articu-

lating processes (cf=conceptual fragment, uf=utteronce fragment).

204 KEMPEN AND HOENKAhtP

to a schedule where long periods of idling (as long as the conceptualizer is
busy) alternate with bursts of hectic work (when an entire conceptual struc-
ture has to be converted into a complete sentence). A different argument for
the existence of incremental sentence production derives from the assumed
independence of conceptualizer and formulator: The former has no way of
knowing in advance whether a conceptual fragment it is about to release has
the right size to fit exactly into a sentence.

The foregoing analysis of the sentence production process in human
speakers imposes some important constraints on the shape of possible mech-
anisms for building syntactic structures (see also Kempen & Hoenkamp,
1982). Let us start out from the customary assumption that syntactic struc-
tures can be represented by tree-shaped diagrams where nodes stand for
constituents (e.g., sentence, noun phrase, and prepositional phrase) and
arcs indicate membership relationships between phrases (constituents).
Left-to-right order of nodes is immaterial for the moment.

The first constraint derives from the fact that it is conceptual structures
which serve as input to the tree formation process. In the linguistic literature
a great deal of attention is given to the problem of mapping from syntactic
structures into logical form. The converse problem-mapping from logical
into sentence form-is not a very active area of research. This situation is
paralleled in Artificial Intelligence where language parsing and understand-
ing are intensely studied, in contrast with the field of language generation
which has only recently begun to gain systematic interest (Mann, 1982). The
approach we have taken consists of designing a tree formation module
which is sensitive to

(a) properties of the input conceptual structure representing the to-be-
expressed meaning, and

(b) properties of the lexical items rendering this meaning.

That indeed both these factors must be taken into account is borne out by
examples like (1 a-e).

(la) John wanted to.hit Peter.
(lb) want(actor: John)(object: hit(actor: John)(patient: Peter))
(lc) John knew he hit Peter
(Id) know(actor: John)(object: hit(actor: John)(patient: Peter))
(W *John wanted he hit Peter.

Consider sentence (la) and its semantic representation (1 b), which expresses
the fact that “John” is actor to both “want” and “hit.” Any notational
scheme for representing sentence meanings must be capable of bringing out
such coreferentialities. Now suppose that “want” is replaced by “know,”
and look at the sentence which expresses the altered meaning (lc-d). Notice
that the two complement clauses have different shapes. The verb want cannot

INCREMENTAL PROCEDURAL GRAMMAR 205

take a finite complement under the described coreferentiality conditions (see
(le)). If the tree formation component would only have access to concep-
tual representations, so that the differing lexical properties of the English
verbs want and know were out of reach, then there would be no basis for
deciding between finite versus infinitival complement clauses. On the other
hand, if only the information stored in the lexical entries for want, hi?,
John, Peter, and so forth, could be accessed, then it would be impossible to
assign these words their correct syntactic functions (subject, direct object,
etc.) because these functions depend on conceptual roles.

However, can’t such decisions be postponed? Why couldn’t one construct
such provisional (sub)trees in parallel and throw away those which, for
whatever reason, turn out to be unsuitable? Or why not arbitrarily choose
one possibility and take the risk of having to revise that choice at a later
point in time? The answer is that both these proposals violate the Determin-
ism Hypothesis in the sense of Marcus (1980). There is no evidence-intro-
spective or behavioral-that speakers necessarily engage in backtracking or
multiple tree formation when planning utterances such as (la-b). For exam-
ple, it seems unlikely that speakers first build trees corresponding to (la)
as well as (le) and only afterwards decide that one of them is wrong, or that
they start with the alternative corresponding to (le) and subsequently trans-
form it into-or replace it by-the correct one. For reasons of parsimony
we prefer a theoretical approach that invokes the assumption of multiple
tree formation or backtracking only when empirical evidence to that effect
is conclusive (e.g., as witnessed by the introspection of speakers, by speech
errors of the “fusion” or “blending” variety, or by overt self-corrections).

Examples like (la-e) in conjunction with the Determinism Hypothesis
force us to conclude that the tree formation component is both conceptually
and lexically guided. ’ Categorial Grammar is the only linguistic model of
grammar which may be qualified as lexically guided. However, Categorial
Grammars do not generate incrementally. And tree formation systems which
do have some capacity for incremental production (Augmented Transition
Networks, McDonald’s (1980) MUMBLE program) fail to meet the require-
ments of strict determinism or lexical guidance. We are not aware of any
type of grammar which satisfies all basic criteria developed in this section.
In as much as other models of grammar have aimed at “psychological real-
ity,” they have been preoccupied with issues of learnability or parsability in
circumstances characteristic of human language learners or language users

I The idea that the sentence construction process is at least partially guided by grammatical
properties of individual lexical items, is certainly not new. For instance, see the following
quote from Miller & Chomsky (1963): “There is no reason to think that a speaker must always
select his major phrase types before the minor subphrases or his word categories before his
words” (p. 474). An empirical defence of the thesis of lexical guidance of the sentence formula-
tion process was recently given by Harley (1984).

206 KEMPEN AND HOENKAMP

(Kaplan & Bresnan’s (1982) Lexical-Functional Grammar; Gazdar’s (1981)
Generalized Phrase Structure Grammar). Whether the IPG model which we
propose here leads to parsable and learnable grammars remains to be in-
vestigated.

The two final constraints we wish to discuss in this paragraph are less
basic because they are implied by the previous ones. We have assumed that
the order of conceptual fragments delivered by the conceptualizer does not
depend on the order of the corresponding syntactic fragments. With the pos-
sible exception of languages with extremely flexible word order, grammar
rules do not always permit a new syntactic fragment to be simply appended
to the right-hand side of the current tree. Other spatial arrangements of the
new fragment with respect to the current syntactic tree are possible, depend-
ing on the word order rules of the grammar. Sometimes, these rules even re-
quire the presence of other elements between the current tree and a newly
computed syntactic fragment. A clear example is provided by the position
of verbs in main clauses of Dutch and German. Subject noun phrases and
adverbial phrases cannot follow each other at the beginning of a main clause.
The finite main verb or auxiliary is always inbetween: either NP-V-AdvP or
AdvP-V-NP, but not NP-AdvP-V or AdvP-NP-V. Grammars which use
some version of traditional phrase-structure rules capture such regularities
in a rather implicit manner. In fact, they do not keep constituent order apart
from phrase membership (constituent hierarchy). It has been proposed to
disentangle the two aspects by means of a split between rules which generate
“mobiles” and rules which impose a left-to-right order on branches. So far,
this alternative has not proven to be superior. However, the phenomenon of
incremental sentence production creates a new situation. For example, con-
sider the following phrase-structure rules which express the above word
order contingencies:

S-NP+V+AdvP

S-AdvP+V+NP

Now, suppose that the formulator is processing a conceptual fragment
which lexicalizes into a verb and applies the first rule which says, among
other things, that the verb needs an NP at its left-hand side. In the mean-
time, a new conceptual fragment has arrived which receives the syntactic
shape of an AdvP. The first rule does have an AdvP slot, but not to the
left of the verb. This implies the formulator has to wait for a third concep-
tual fragment which can be worded in the form of an NP. At that point the
formulator can deliver its first output: an NP-V-AdvP utterance. The wait-
ing time, that is, the period between onset of (conceputal) input and onset
of (syntactic) output, would have been shorter, had the formulator picked
the second phrase-structure rule. Then, output could already have begun
after the second conceptual fragment (“ AdvP-V. . . “) and closed off gram-
matically with “. . .NP”. Because the order of conceptual fragments is

INCREMENTAL PROCEDURAL GRAMMAR 207

unknown in advance, the formulator can never be sure of having made the
best choice between rules. This problem does not arise in a rule system
which allows word order to be computed independently of phrase member-
ship. We conclude, therefore, that in an incremental sentence formulator it
is desirable to have separate components for tree (or rather “mobile”) for-
mation and for word order.

The last constraint follows from the previous one. Suppose the tree for-
mation module applies the rule

VP-V NP NP

which leaves left-to-right order of constituents undefined. Some distinguish-
ing features on the two NPs will then be required in order to assign them cor-
rect word order and/or correct morphological case. An obvious possibility is
to introducefunctional notions, for example, to label them direct and indirect
object, respectively. We have opted for this solution, thereby committing
ourselves to syntactic structures which are somewhat similar to those pro-
posed within the framework of Functional Grammar (Dik, 1978), Lexical-
Functional Grammar (Bresnan, 1982), and Relational Grammar (Cole &
Sadock, 1977).

2. SENTENCE FORMULATION IN TWO STAGES

On the basis of an extensive study of speech errors, Garrett (1975, 1980) has
developed a two-stage model of the sentence formulation process. He had
made some important observations on speech errors of the exchange type:
word exchanges (2a-b) and combined-form exchanges (2c-d).

(2a) She donated the LIBRARY to the BOOK.
(2b) . . .read the newspapers, WATCH the radio, and LISTEN TO t.v.
(2~) I’m not in the READ for MOODing.
(2d) She’s already TRUNKed two PACKS.
(2e) *She’s already packs two trunkED.

The former type of exchanges affects full words, including their inflectional
morphemes (e.g., plural ending). The latter type is also termed “stranding
errors” because the inflectional morphemes are left behind. Exchanges of
inflectional morphemes, as in the hypothetical case (2e), were conspicuously
absent.

Garrett’s observations were the following. The interchanged elements in
word exchanges (2a-b)

(a) nearly always are members of the same word class,
(b) have similar syntactic functions in the sentence, and
(c) may be far apart in the surface tree, sometimes even belonging to

different clauses.

208 KEMPEN AND HOENKAMP

None of these properties apply to combined-form exchanges. Assuming
that “computational simultaneity” is a general condition for an interchange
between elements, Garrett hypothesized that word exchanges “represent in-
teractions of elements at a level of processing for which functional relations
are the determinant of ‘computational simultaneity’ “, whereas combined-
form exchanges “represent interactions at a level of processing for which
the serial order of the elements of an intended utterance is the determinant
of computational simultaneity” (1975, p. 154).

The next step was to postulate two successive processing stages, called
Functional and Positional, respectively, corresponding to the “levels of
processing.” During the first stage, the syntactic skeleton for an utterance is
constructed specifying hierarchical and functional relationships among con-
stituents. The syntactic skeleton does not contain any closed-class lexical
material (function words, inflectional morphemes), and word order is still
open. The Functional Stage works on all constituents more or less simulta-
neously. The Positional Stage assigns the constituents a left-to-right order
and enriches them with closed-class items, traversing the sequence of con-
stituents from left to right.

In our IPG model we have adopted the essentials of Garrett’s proposal.
The only deviation concerns the stage which is responsible for inserting func-
tion words (i.e., those closed-class items which have word status) and for
computing word order. We have allotted these (syntactically interrelated)
tasks to the first, Functional Stage rather than to the second, Positional
Stage. Our reason derives, among other things, from the observation that
exchanged words often carry along dependent function words. For instance,
the preposition fo in (2b) was not stranded but moved along with listen (cf.
(68) in Section 7).

In diagram (3) we summarize the resulting make-up of the sentence for-
mulation process, using our own terminology.

(3) conceptual sm~ch~re.

+

syntactic shctm

&

+
phonological structure

INCREMENTAL PROCEDURAL GRAMMAR 209

3. RULES AND MECHANISMS OF INCREMENTAL
PROCEDURAL GRAMMAR

This Section describes in detail the machinery which IPG deploys in con-
structing sentences expressing a speaker’s intention. The Lexico-Syntactic
Stage will receive most attention.’ The Morpho-Phonological Stage will be
briefly discussed at the end.

3.1 Preliminaries
In the linguistic and psycholinguistic literature it is commonly agreed that
the notions of “syntax” and “syntactic processor” should be kept carefully
apart. The difference is usually construed as an instance of the prototypical
“database” versus “processor” distinction. The database contains rules of
syntax which the syntactic processor can access and utilize for the purpose
of computing correct sentence forms. The distinction has been invoked in
attempts to explain why linguistic operations as defined in existing grammar
types have been unsuccessful in accounting for language performance data.
It encourages linguists to claim that their grammatical models only concern
the database (knowledge of the language). Psychologists can use it as an
excuse to concentrate on processing issues and loose interest in grammar.
The drawback is that we are left with two disparate partial theories of the
human language faculty whose relationship is not easy to understand.

We take a different perspective. We will describe a sentence construction
model which integrates assumptions about data (rules of syntax) with as-
sumptions about the processor manipulating the data. This combined strat-
egy offers an important additional advantage. It opens up the possibility of
accounting for linguistic phenomena not in terms of grammar rules but in
terms of structure and functioning of the syntactic processor. In Section
4.4, for example, we will argue that syntactic Locality Constraints follow
from the normal, independently motivated functioning of the syntactic pro-
cessor and need not be specified explicitly as an addition to the grammar
rules (cf. Marcus, 1980, for a similar approach in the context of syntactic
parsing). This position entails a deviation from the well-known competence
hypothesis which holds that, in language user’s cognitive system, there is a
grammar representing the (i.e., all) tacit knowledge of his/her language.
(For a recent formulation and defense of the competence hypothesis, see
Bresnan & Kaplan, 1982.) Any model which articulates-preferably empiri-
cally grounded-assumptions about both format of grammar rules and
structure and functioning of the syntactic processor, we call a procedural

’ We have worked out an IPG fragment for Dutch covering many of the constructions dis-
cussed in this paper. The grammar fragment has been implemented in a LISP program running
on a VAX1 l/780 computer (dialect Franz Lisp). A completely new Common Lisp implementa-
tion runnmg on the Symbolics Lisp Machine is being written by Koenraad De Smedt.

210 KEMPEN AND HOENKAMP

grammar. The specific variety put forward in this paper we have termed
“Incremental Procedural Grammar” or IPG because it features incremental
sentence production as explained in Section 1.

3.2 Syntactic Procedures
All procedural grammars for sentence production that exist to date have
been developed in predominantly nonpsychological contexts. Well-known
examples are artificial sentence generators such as the ones proposed by
Yngve (1960) and McDonald (1980), and those based on Augmented Transi-
tion Networks (ATNs; e.g., Simmons & Slocum, 1972). These models contain
a centrally controlled processor which grows syntactic trees in a depth-first,
left-to-right manner, at every node consulting the rules of the database.
However, this processing schedule entails temporal properties which are at
odds with the speech error phenomena discovered by Garrett (1975). He ex-
plains word exchanges as exemplified by (2a-b) in terms of “computational
simultaneity” between direct object and modifier phrases (2a) or between
the verbs in two successive coordinate clauses (2b). Production models
which operate left-to-right certainly do not process such constituents simul-
taneously since the interchanged words may be at considerable distance in
the utterance. A model operating breadth-first and left-to-right probably
fares somewhat better (see Kempen, 1978), but the ultimate solution clearly
requires machinery for growing branches of a syntactic tree in parallel. Ac-
tually, the notion of parallelism is quite congenial with the grammar rules
themselves. For example, there is nothing in the rules for generating the
direct and indirect object of a clause to suggest that either constituent
should be constructed before the other. So the motivation for choosing any
particular order must stem from somewhere else.

The basic step towards a mechanism for parallel branch construction, is to
view symbols such as NP, N, SUBJECT, OBJECT, and so forth, not as pas-
sive structural elements but as activeprocedures or modules. Each procedure
is an “expert” specialized in assembling one type of syntactic constituent.
For example, procedure NP knows how to build noun phrases; procedure
PP can deliver prepositional phrases; procedure SUBJECT is responsible
for the shape of subject phrases. Like procedures or routines in ordinary
computer programs, syntactic procedures are permitted to call on each
other as subprocedures (“subroutines”). Procedure S, for instance, may
decide to delegate portions of its sentence formation job to SUBJECT and
OBJECT as subprocedures. OBJECT need not necessarily wait for SUB-
JECT to finish: They can get started simultaneously and run in parallel.
They, too, are free to call further subprocedures, a typical candidate being
NP. Thus a hierarchy of procedure calls arises which is conveniently (and
conventionally) depicted as a tree. To illustrate, (4) is the procedure call

INCREMENTAL PROCEDURAL GRAMMAR 211

hierarchy for Dutch sentence (5). The numerical subscripts serve to distin-
guish various instuntiutions of the same syntactic procedure in a hierarchy.
We will always number instantiations consecutively in depth-first, left-to-
right order. Differences in depth as expressed by numerical subscripts will
be consequential for the tree formation process. Left-right differences never
influence tree formation. (Subscripts will be dropped if this does not lead to
confusion.)

Obj 1 2

t t t
NPl

t “l /pL 3
NPHead 1 Det1 NPHead2 4

t t
Nl Art1 f 2 5

(5) Tonnie bakt een cake.
Tony bakes a cake.

Before explaining what syntactic procedures do and why they are stacked
hierarchically, we wish to introduce a distinction between two groups of
procedures: categorial procedures (“CPROC”) and functional procedures
(“FPROC”). Informally, CPROCs are capable of building structures of
various syntactic shapes (NP, S, PP, etc.); FPROCs take care of the gram-
matical (functional) relations between such structures (e.g., subject, object,
modifier). In (6a) we have listed the most important procedures along with
indications of the constituents they deliver.

(6a) Categorial procedures (CPROCs):

S
NP
PP
AP
V
Aux
N
A
P
Art
Conj

clause
noun phrase
prepositional phrase
adjectival or adverbial phrase’
main verb
auxiliary verb
noun
adjective or adverb
preposition
article
subordinating conjunction

’ In this paper we will treat adjectival and adverbial constituents as one “family of phrases.”

212 KEMPEN AND HOENKAMP

Functional procedures (FPROCs):

VFin
VInfin
Subj
Obj
IObj
SMod
Comp
NPHead
NMod
Det
PPHead
PObj
PMod
APHead
AMod

finite verb
infinitive verb
subject
object
indirect object
sentence modifier
complementizer
head of noun phrase
noun phrase modifier
determiner
head of prepositional phrase
prepositional object
prepositional phrase modifier
head of adjectival or adverbial phrase
modifier in adjectival or adverbial phrase

Categorial procedures come in two varieties: phrasal CPROCs and lexi-
cal CPROCs. The latter correspond to the traditional parts of speech (V,
Aux, N, A, etc.), the former to major phrase types as commonly distin-
guished in current linguistic practice: S, NP, PP, and AP. The columns of
(6b) show that the functional and categorial procedures can be grouped into
four nonoverlapping families (phrase types). The rows contain listings of (a)
phrasal CPROCs, (b) functional procedures, and (c) lexical procedures for
each family.

adjectival
prepositional or adverbial

clauses noun phrases phrases phrases

(a) S NP PP AP
C’b) Subj, Obj, NPHead, NMod, PPHead, PMod, APHead, AMod

VFin, VInfin, Det PObj
IObj, SMod,
amp

(c) V, Aux, Conj N, Art P A

Procedure call hierarchy (4) illustrates the alternation of CPROCs and
FPROCs within branches. The even-numbered levels of the hierarchy are
FPROCs, the odd-numbered ones are CPROCs. The terminal nodes are lex-
ical procedures which never call any subprocedures. All other procedures
call at least one subprocedure.

INCREMENTAL PROCEDURAL GRAMMAR 213

3.3 Lexicalization
In order to convey a global idea of the tree formation process in IPG we will
sketch out how sentence (5) is generated from conceptual structure (7).

(7) bake(actor: Tony)(product: cake)

As for the conceptual structures serving as input to IPG’s tree formation
component, we use an informal case-frame notation similar to what one
tends to find in the literature on semantic representation. Such structures
contain slots or “regions” whose contents are accessible through path func-
tions. A path function traces a path through a conceptual structure and
returns the content encountered at the end of the path. When applied to
structure (lb), the path “object-patient” leads to the concept “Peter” (i.e.,
“Peter is the patient of the object of (lb)“). In Section 4 we introduce some
further notational conventions. Geurts (1984) has developed a logical calcu-
lus which is fully compatible with IPG. It appears that IPG does not thrust
many constraints upon the representational system for specifying to-be-
expressed meanings. This is an interesting consequence of the lexical guided-
ness of IPG’s tree formation component. On the basis of arguments put
forward in Section 1, we assume a lexicalization system whose task it is to
inspect conceptual structures (often using path functions) and to look up
from the mental lexicon words or expressions rendering the speaker’s inten-
tion.’ It is the “lexicalizer” which starts up the tree formation process. After
that, the conceptual structures only play a minor role, namely, when it
comes to inflectional computations and to the insertion of function words.
In this respect, IPG differs considerably from Generative Semantics, where
the semantic representation of a sentence is identified with its initial syntac-
tic tree.

The standard format of a syntactic procedure call is

PROC(cp, < synspec >)

where

PROC is the name of a categorial or functional procedure;
CP (“conceptual pointer”) a variable or an expression evaluating

to a conceptual structure; and
< synspec> (“syntactic specification”) a list of zero or more calls to special

functions which influence the shape of the constituent that
PROC will build.

’ How the lexicalization system works we will not discuss here, nor how it makes a choice
between alternative (synonymous) words or idioms. For an example of a computational lexi-
calization system which operates on &hank’s (1975) conceptual dependency structures, we
refer to Goldman (1975). In the remainder of this paper we will take successful lexicalization of
the input conceptual structure for granted.

214 KEMPEN AND HOENKAMP

Among the first actions taken by a procedure is lexicalization. The re-
trieved lexical entries are procedural in nature, that is, they consist of a list of
one or more procedure calls. We will denote such entries by the term lemma
to distinguish them from lexemes, a second type of entry to be introduced in
the next paragraph. Examples of lemmata are given in (8)-(10).

(8) V(ni1, < Lex(bake)>)
Subj(Path(actor:), < >)
Obj(Path@roduct:), < >)

(9) N(ni1, < Lex(Tony)>)

(10) N(ni1, < Lex(cake)>)

Lemma (8) represents the English active transitive verb bake. It consists of
calls to procedures V, Subj and Obj. The first argument of every procedure
call, cp, evaluates to a conceptual structure (accessed via a path function) or
to NIL (if there is nothing to lexicalize). This conceptual structure is the
meaning that the associated procedure is going to express. In (8), the paths
associated with the Subj and Obj calls lead to, respectively, actor and prod-
uct of the baking activity. We assume that all procedure calls mentioned in a
lemma are members of the same “family” in the sense of (6).

The second argument to procedure calls in lexical entries is a synspec list.
A typical function to be found there is Lex which takes as its single argu-
ment a pointer to a lexeme. Lexemes are lexical entries which specify phono-
logical shapes for words (e.g., bake, Tony, cake). Lex always occurs on the
synspec list of lexical procedures (V, Aux, N, P, etc.).

Procedure call hierarchy (4), which leads to sentence (5), is composed as
follows. The construction of main clauses is initiated by the standard pro-
cedure call

S(cp, < Main >)

where Main is a zero-argument synspec function which causes S to select
main clause word order, that is, to place the finite verb in “verb-second”
position. When called without this synspec function, S uses the default posi-
tion for finite verbs, namely, “verb-final”. (The mechanism for computing
word order rules will be discussed in Section 3.5.) S’s first argument now
points to conceptual structure (7), which lexicalizes into the Dutch transla-
tion of lemma (8). The resulting situation is depicted in snapshot (11).

(11) Lexicalizing Procedure: S(cp, <main>)

Procedures listed in lemma:
V(ni1, < Lex(bakken)>)
Subj(Path(actor:), < >)
Obj(Path@roduct:), < >)

Two procedures below the line refer to functions or roles played by major
constituents with in a clause: Subj and Obj. The third procedure, V, first

INCREMENTAL PROCEDURAL GRAMMAR 215

needs to be assigned a function within the clause. Eligible are the roles of
finite verb or infinitive verb: VFin or VInfin. In this case, S selects VFin on
the basis of so-called Appointment Rules (see Section 3.4). The partial hier-
archy depicted in (12) is the result.

(12)

Subj VFin

+

W

V

We define successful lexicalization as the retrieval of exactly one lemma
covering at least part of the to-be-expressed meaning. (When fewer or more
lemmas turn up, hesitations or speech errors such as word blending might
ensue.) Any noncovered fragments of the conceptual structure are assigned
to modifier procedures. To this purpose, the four phrasal CPROCs S, NP,
PP, and AP have at their disposal the procedures SMod, Mod, PMod, and
AMod, respectively. The cp arguments these FPROCs receive point to con-
ceptual fragments which do not fit under the looked-up lemma. Consider
sentence (13) and assume that the lexicalization process within S yields the
b&ken lemma which leaves unexpressed the meaning underlying in een
oven.

(13) Tonnie bakt een cake in een oven.
Tony bakes a cake in an oven.

This left-over conceptual fragment, let us denote it by cp2, is then passed on
to SMod:

SMod(cp2, < >)

How the SMod constituent is given the shape of a prepositional phrase is ex-
plained in Section 3.4. The relevant portion of the final procedure call hier-
archy is given in (14).

(14)

NP V NP PP

3.4 Appointment Rules and Functorization Rules
The construction of procedure call hierarchies is governed by a set of Ap-
pointment Rules. They specify possible shapes of such hierarchies by telling
each procedure call contained in a retrieved lemma which role it is going to

216 KEMPEN AND HOENKAMP

play within the context of the lexicalizing procedure. The general format of
Appointment Rules is the following:

PROCl, PROCZ, <condl, cond2,. , condn> - PROC3> > PROCZ

PROCl is the lexicalizing procedure, PROC2 is mentioned in a lemma (i.e.,
is seeking a role to play within PROCl). The third element of the left-hand
side of an Appointment Rule is a list of zero or more conditions. The right-
hand side prescribes which procedure will be PROC2’s parent in the hier-
archy. PROC3 may be identical with PROCl. The symbol “> > ” means
“is parent of.” The examples we have just met are:

S, Subj, < > - S> >Subj
S, Obj, < > - S> >Obj
S, V, < No-other-VFin> - VFin> > V
S, VFin, < > - S> >VFin

The first of these rules states that Subj is immediately acceptable as a
daughter node to S. The third rule assigns VFin as V’s parent, that is, ap-
points V in the function of the clause’s finite verb. The last rule attaches
VFin to S, thus establishing a link between lexicalization result V and lex-
icalizing procedure S.

Rather than listing a long set of Appointment Rules we present a graph
which summarizes them in a convenient manner (Figure 2). Notice that the
Appointment Rules sometimes lead to rather long chains of intercalated
nodes. See, for example, the rules for dealing with < NP, A> and c S, N>
pairs which are rendered here in abbreviated form.

NP, A, < > - NP> >NMod> >AP> >APHead> >A
S, N, < No-other-Subj > - S> >Subj> >NP> >NPHead> >N

The former rule assigns to A the role of head of an AP which is a modifier
within NP. The latter rule tells S that N can fulfill the function of head of a
subject noun phrase provided there is no other subject around. By tracing a
route, in Figure 2, from a PROCl to a PROC2, one finds the names of any
procedures to be intercalated. For instance, c S, V > pairs are handled in
the upper right-hand branch of the graph. If more than one route exists be-
tween a pair of procedure names, then select the shortest one; if several routes
of equal lengths are possible, apply the relevant rule in the bottom left-hand
corner. Some further restrictions are given in the legends to Figure 2.5

’ The Appointment Rules rendered in Figure 2 are “default” rules in the sense that they can
be superseded by more specific rules adduced from the lexicon. In Section 4.1, when discussing
object complement constructions, we will see that certain lemmas specify local exceptions to
the basic Appointment Rules. For example, the lemmas for verbs of perception (see, hem,
wunf, fhink) indicate that not only NPs (the default) but also Ss can serve as object constituent.
We implement this using an object-oriented extension of LISP with “inheritance”.

INCREMENTAL PROCEDURAL GRAMMAR 217

V/AU

f
VFinMnfm*

/&p\
AMocl* AMocl* APHead

\A \A
Special Appointment Rules

S, NP member : if no Subi then Subi, otherwise SMad.

S, V/Aux : if no VFin then VFin, otherwise Vlnfin.

S, PP member : Wad

Special Appointment Rules

S, NP member : if no Subi then Subi, otherwise SMad.

S, V/Aux : if no VFin then VFin, otherwise Vlnfin.

S, PP member : Wad

Figure 2. Appointment Rules far the syntactic procedures listed in (6). Asterisked FPROCs

are permitted la occur mare than ante in a list of subprocedure calls. Far example, S may

issue several calls la SMad and Vlnfin.

Let us now continue with the construction of the subject and object
branches of procedure call hierarchy (4). FPROCs Obj and Subj proceed by
lexicalizing their portions of the input conceptual structure, that is, actor
and product, respectively. In both cases, the lexicon suggests a lemma which
only contains a call to procedure N (lexical entries (9) and (10)). Appoint-

Those who are familiar with Marcus’s (1980) parser will have noticed that our Appointment

Rules work much the same way as his node attachment rules. What we call a lexicalizing proce-

dure is the bottom node on his active node stack, and the procedure calls in a lemma are com-

parable to the constituents which fill the slots of his buffer. For example, our way of inserting

VFin inbetween S and V is similar to the way Marcus intercalates VP between S (active node

stack) and V (buffer).

218 KEMPEN AND HOENKAMP

ment Rules know how to handle these situations: inspect Figure 2 for the
cSubj, N> and cObj, N> pairs.

The present example raises an important further issue, namely, how
function words (articles, prepositions, auxiliaries, etc.) come into play.
Their presence in an utterance is chiefly motivated on syntactic grounds, so
they cannot be supposed to originate simply from lexicalization. The same
conclusion follows from the well-known linguistic fact that function words
are often in complementary distribution with inflections. For instance, in
English as well as in Dutch, the present and past tenses of verbs are indi-
cated by inflectional morphemes, whereas the future requires an auxiliary, a
morpheme with word status. A convenient term covering both groups of
syntactic morphemes is functor, and we propose the term functorization to
denote the process of inserting functors.

Functorization is best characterized as refining the set of procedure calls
contained by a lemma. This may happen in two different ways, correspond-
ing to the distinction between inflections and function words. The refine-
ment either affects the synspec list of a procedure call by inserting a new
function there, or it supplements the current set of subprocedure calls with
an additional member. In the former case, the synspec function will influ-
ence the inflectional shape of the resulting constituent; in the latter, a
separate function word will emerge.

The notation we use for functorization rules is similar to the one we pro-
posed above for Appointment Rules. Consider the following Functorization
Rules:

S, V, <Time-past.. > - V(ni1, < . . Tense-imperfect. . . >)
S, V, <Time-future. . . > - V(. . .) “Aux(ni1, < Lex(will),Tense-present >)

The triples at the left-hand side are

(a) the name of the lexicalizing procedure,
(b) the name of a procedure mentioned in the lemma,
(c) a list of one or more conditions; in particular, conditions relating

to the conceptual structure which the lexicalizing procedure is try-
ing to express.

The right-hand side specifies the refinement. The first rule drops a Tense
function into V’s synspec list. The second rule leaves V untouched but adds
a call to Aux complete with two synspec functions. The symbol “*” denotes
the “sister procedure” relation. Functorization has to take place prior to
application of any Appointment Rules because it sometimes leads to addi-
tional subprocedure calls which need to be assigned a role within the lexical-
izing procedure.

We can now take up sentence (13) again. The conceptual structure bound
to cp2 lexicalizes into noun lemma

INCREMENTAL PROCEDURAL GRAMMAR 219

N(ni1, < Lex(oven) >)

The Appointment Rules of Figure 2 reveal that a fairly long chain of proce-
dure calls needs to be intercalated between SMod and N:

SMod> >PP> >PObj> >NP> >NPHead> >N,

telling SMod to call in the help of subprocedure PP. How does PP deal with
the N lemma? First of all, Functorization Rule (15) triggers in response to
certain locative information present in cp2.

(15) PP, N, <Lot-inside> - N(. . .) A P(ni1, < Lex(in)>)

Two Appointment Rules are applicable now for < PP, N > and < PP, P > ,
respectively. On the basis of Figure 2, P and N are given the roles of PPHead
and PObj. This entails procedure call hierarchy (16).

(16) SMOd

+

HP&
PPHead FObj

PPHead is permitted to call lexical procedure P, which will terminate one
branch of (16). Within the other branch, one further Functorization Rule
triggers at the level of NP:

(17) NP, N, < Ref-indefinite, Number-singular>

N(. . .) A Art(nil, < Lex(een)>)

It inserts the indefinite article in case the conceptual structure refers to an
indefinite singular entity. NP proceeds by applying Appointment Rules
< NP, N > and c NP, Art > . The complete procedure call hierarchy domi-
nated by SMod finally looks like (18).

(18) SMod

+

ipw
PPHead

t T
P NP
in

b4

T Nprad
Art N
een OWn

220 KEMPEN AND HOENKAMP

Although functorization clearly is a different kind of process than lexi-
calization, the division of labor between them-activation of function
words and of content words, respectively-is less clear. Both English and
Dutch have many words which according to their grammatical class are to
be regarded as function words but whose meaning is so salient that they
could justifiably be labeled content word. An example is the preposition
zonder (Eng. without). The converse case occurs as well: words whose gram-
matical class grants them the status of content word although they are inter-
changeable with a function word in many syntactic contexts, for example,
the Dutch adjective zeker (Eng. certain). Such observations on the vague-
ness of the boundary between function and content words force us to devise
normal lexical entries (i.e., lemmata) for prepositions like without on one
hand, and Functorization Rules which lead to inserting adjectives like zeker
on the other.

(19) P(ni1, < Lex(without)>)
PObj (Path(. . .), < >)

(20) Tony baked a cake without an oven.

The construction of sentence (20) differs from that of (13) in the way PP
gets hold of its preposition. The lexicalization process provides SMod with
lemma (19). The procedure calls listed there lead to intercalating subpro-
cedure PP which assigns P the role of PPHead via an Appointment Rule.
So, P is placed in position through lexicalization rather than through func-
torization. The noun lemma oven is retrieved by PObj rather than by SMod
as was the case in sentence (13). Notice, however, that the eventual proce-
dure call hierarchies for both sentences are identical. The proposed “mixed”
treatment of prepositions corresponds to the distinction between preposi-
tions which are clitics (of, by, on, in) and those which aren’t (without,
under, after).

3.5 Combining and Communicating Subtrees
Apart from assembling a list of zero or more subprocedure calls and putting
all of them to work simultaneously, a syntactic procedure also has the duty
of processing the subtrees they return as their values. Top procedure Sl in
example (4) receives values representing the subject, finite verb, and object
constituents. How does Sl combine these subtrees into a single, grammati-
cal clause? A procedure, we assume, creates a data structure, called holder,
containing a sequence of numbered positions Pl, P2,. . . Pn. Each of these
slots can serve as a receptacle for subtrees delivered by a subprocedure.
Most types of holder have just one slot. Only holders created by procedures
S, NP, PP and AP (the four phrasal CPROCs) contain more than one slot,
namely 6, 4, 3, and 2, respectively. Upon receipt of a value (subtree) com-
puted by one of its daughters, a procedure deposits it into a holder slot.
(This operation is the IPG version of what is usually called node attach-

INCREMENTAL PROCEDURAL GRAMMAR 221

ment.) For example, S deposits the subject-np subtree into Pl of the holder
it created, the finite verb into P2 and the object-np into P4. These slots are
chosen on the basis of a set of Word Order Rules which we explain now in
terms of the value return hierarchy shown in (21).

(21)

Subjl

t I
NPl t 3

NPHead 1

t
N:.

Tonnie

VFin 1

t

Obj 1

1 t

b:en yNA\

Det1 NPHead2

1 t t 1
Art1 N2
een Cake

The upward arrows denote the operation of returning a value. Their numer-
ical labels refer to slots. For example, the subject-np has been deposited into
slot P 1 of the holder created by S 1 and VFin was assigned second position in
the sentence.

For ease of survey we have organized the essential Word Order Rules of
Dutch into one large decision tree. The nonterminal nodes of Figure 3 spe-

Adnation

PIB \
cccupied P2
A

trar ia
Pi

co
bolder contains
Cod& 7 0~ Q P..L: \A,

Pl lz F3 P4 P5 P6

Figure 3. Word Order Rules for cotegoriol procedures S. NP, PP and AP.

222 KEMPEN AND HOENKAMP

cify decisions which relate to properties of the procedure receiving a value
(“destination”), or of the value itself (“source”). Arc labels refer to possi-
ble outcomes of such decisions. Terminal nodes stand for positions (slots) to
be selected by the receiving procedure.

VFin’s position was determined through the following sequence of deci-
sions:

type of destination: S
main clause: +
source is VFin: +

which leads to terminal node P2. The subject branch received initial posi-
tion Pl because, presumably, Subj was the first subprocedure within Sl to
return a value.

type of destination: S
main clause: +
source is VFin: - (because it was Subj)
Pl is occupied: - (no other value has occupied PI yet).

The object branch went to P4 as follows:

type of destination: S
main clause: +
source is VFin: - (Obj instead)
Pl is occupied: + (namely, by the subject-np)
value is of type S: - (NP instead)
source: Obj.

In the foregoing, we have taken for granted that the output value delivered
by a procedure consists of the holder created by that procedure together
with its contents. Like in ordinary hierarchical computer programs, it is the
lowest (innermost, deepest) subprocedure which is first to deliver its output
value. In our procedure call hierarchies this is always a lexical procedure. It
delivers its one-slot holder after filling it with a pointer to a lexeme. (In Sec-
tion 3.6 we explain how such pointers are processed by the Morpho-Phono-
logical Stage. In value return hierarchy (21) we have simply substituted
Dutch words for them.) The destination selected by all lexical procedures is
the parent. For instance, V sends its output value to VFin, N to NPHead, as
shown in (21). Actually, all categorial procedures return their value to their
parent. This is not true of functional procedures, though.

In Section 4 we will heavily exploit the IPG equivalent of “movement
transformations.” This is a mechanism which causes procedure call hier-
archies to build nonisomorphic value return hierarchies. The resulting syn-
tactic trees are less deep than the procedure call hierarchies which put them
together. The mechanism is essentially a set of rules for FPROCs to choose
a destination other than their parent (and usually located higher up in the
procedure call hierarchy). When computing destinations for their output

INCREMENTAL PROCEDURAL GRAMMAR 223

values, FPROCs utilize the following system for referencing holders created
by other procedures. Immediately upon being called, syntactic procedures
(both functional and categorial ones) declare a variable whose name con-
sists of the character string “var” prefixed with the procedure’s own name.
For instance, the variables declared by S, NP and V are s-var, np-var, and
v-var, respectively. The value assigned to such a variable is the name of an
instantiated procedure (e.g., Sl, NP2). The Destination Rules used by
FPROCs are phrased in terms of such variables. For example, Obj seeks
s-var as its destination. This means it climbs the procedure call hierarchy
until it hits upon an occurrence of “s-var.” Obj then ascertains the name of
the instantiated procedure bound to that variable, and sends its value to that
address.

In (22) we summarize the Destination Rules discussed so far. We will in-
troduce a few more in Section 4.2.

Source Destination

CPROC: Parent procedure
FPROC Instantiated procedure bound to:

of S-family: s-var
of NP-family: np-var
of PP-family: PP-v=
of AP-family: an-var

Under the influence of lexical information, s-var is sometimes given a dif-
ferent value than the name of the S instantiation which declared the variable
(see Section 4.1).

We conclude this Section with an overview of the main activities syntactic
procedures have to perform:

(23) A. Declare and initialize variables.
B. Create a holder.
C. Evaluate cp and synspec arguments.
D. Lexicalize cp.
E. Apply Functorization Rules.
F. Apply Appointment Rules.
G. Run subprocedures in parallel.
H. Apply Word Order Rules to receive subtrees.
I. Apply Destination Rules.
J. Return holder with contents to destination.
K. Exit.

Terminal (lexical) procedures skip steps D through I.

224 KEMPEN AND HOENKAMP

3.6 The Morpho-Phonological Stage
The output value computed by a terminal procedure contains a “lexical
pointer” which serves to locate a lexeme in the mental lexicon. A lexeme is a
phonological specification of a to-be-uttered word. However, the final
shape of the word still awaits the application of inflection rules and of
various sound rules which belong to the domain of articulation rather than
formulation. The Morpho-Phonological Stage converts syntactic trees
delivered by the Lexico-syntactic Stage (more precisely, trees returned by
the top member of a procedure call hierarchy) into phonological structures.

As part of their normal work, syntactic procedures compute all informa-
tion needed by rules of inflection. In Section 3.4 we introduced some of the
relevant computations in the context of Functorization Rules. Remember
that some of these rules enrich a procedure call with special synspec func-
tions (e.g., “Tense(present)“). Without going into computational details we
assume that these functions fit holders with special instructions to be exe-
cuted by the Morpho-Phonological Stage. During the construction of noun
phrases, for instance, information about number and gender is transferred
from head to modifiers and article. Synspec functions activated within pro-
cedures NP, NPHead, Det, NMod, and so forth, take up this duty. And
after NP has passed its output on to, say, procedure Subj. the latter will add
instructions to select nominative case. Subj’s output value is finally delivered
at the holder created by S and thus made accessible to VFin: subject-verb
agreement.

Nonstandard case can be assigned to noun phrases by means of synspec
functions. A good example is the indirect object of the German verb fragen
(ask) which does not govern dative but accusative case. We could devise a
function “Act” to be put on the synspec list of IObj in thefragen-lemma:

IObj(Path(. . .), <Act>)

Act will mark the NP-subtree returned to IObj for accusative case. The
Morpho-Phonological Stage will then attach accusative rather than dative
inflectional endings to the indirect object noun phrase.

These brief remarks about the workings of the Morpho-Phonological
Stage suffice in the present context. In various other papers we have worked
out further details on the basis of new experimental psycholinguistic evi-
dence (Kempen & Huijbers, 1983; van Wijk & Kempen, 1987). We also have
considered the problem how intonation contours get woven into an utter-
ance. Van Wijk & Kempen (1985) argue that the Morpho-Phonological Stage
has an important role to play there and describe the computational system
they developed for automatically generating Dutch intonation contours for
syntactic structures delivered by the Lexico-Syntactic Stage.

INCREMENTAL PROCEDURAL GRAMMAR 225

4. AN IPG ANALYSIS OF SOME SYNTACHC STRUCI’URES

In order to illustrate the capabilities of the machinery developed in the pre-
vious section, we will present an account of three complex constructions in
Dutch: object complement clauses, interrogatives, and coordinate structures.

4.1 Object Complement Clauses
Sentences (24)-(27) contain verbs which take object complements: wilfen
(want) and zien (see). Their lemmata are shown in (28).

W)

(25)

(26)

(27)

Tonnie wil een cake bakken.
(Tony wants a cake bake)
Tony want to bake a cake.
want(actor: Tony)(object: bake(actor: Tony)(product: cake))

Tonnie wil dat Marietje een cake bakt.
(Tony wants that Mary a cake bakes)
Tony wants Mary to bake a cake.
want(actor: Tony)(object: bake(actor: Mary)(product: cake))

Tonnie ziet Marietje een cake bakken.
(Tony sees Mary a cake bake)
Tony sees Mary bake a cake.
see(actor: Tony)(object: bake(actor: Mary)(product: cake))

Tonnie ziet dat Marietje een cake bakt.
(Tony sees that Mary a cake bakes)
Tony sees that Mary bakes a cake.
see(actor: Tony)(object: bake(actor: Mary)(product: cake))

(28a) V(ni1, < Lex(willen)>)
Subj(Path(actor:), < >)
Obj(Path(object:), < >)
ObjCompl

(28b) V(ni1, < Lex(zien) >)
Subj(Path(actor:), < >)
Obj(Path(object:), < >)
ObjComp2

New elements in these lemmata are Lemma Functions whose duty it is to
reline the list of procedure calls contained by the lemma. In fact, ObjCompl
and ObjComp2 serve to build object complement clauses in two slightly dif-
ferent ways. They do so, given that Obj’s cp argument is lexicalized into a
V-type lemma like (8). In such a case the standard Appointment Rules of Fig-
ure 2 fail to apply since they only provide for NP-shaped object constituents.

226 KEMPEN AND HOENKAMP

(8) V(nil. c Lex(bake) >)
Subj(Path(actor:), < >)
Obj(Path(product:), < >)

ObjCompl overrules this limitation and allows Obj to call S as a subpro-
cedure. Moreover, ObjCompl tells the new S-instantiation (labeled S2 in
Figure 4) to carry out three synspec functions listed in (29). These cause S2
to behave in a somewhat anomalous fashion:

(29) ObjCompZ (infinitival clause):
(a) the V-lemma is stripped of its call to Subj;
(b) V is assigned the role of VInfin instead of VFin;
(c) the s-var declared by the Obj-S is given a nonstandard value:

s-var is initialized not to the procedure’s own name but to
the value of the other s-var that is within reach (by climbing
the procedure call hierarchy).

The relevant portion of the computational process is shown in Figure 4.
Both s-var variables point to “Sl .” Accessing its destination address “S-KU,”
VInfin therefore skips the embedded S2 and is “raised” to the level of Sl,
the matrix S. The same is true of the deepest instantiation of Obj. The value
return hierarchy consequently is less deep than the procedure call hierarchy.
See Figure 5 for the complete hierarchies underlying sentence (24). Also
notice that the (a)- and (c)-parts of ObjCompl accomplish effects that are
usually termed Equi-NP-Deletion and Clause Union, respectively.

In (2% ObjCompl has chosen to develop the object clause into a full-
blown subordinate clause. That is, Obj called S without the three synspec
functions that are responsible for infinitival clauses. The subprocedures
within S2 (see Figure 6) are the result of lexicalization and of the application

NP2
eencake

Figure 4. Value return within the OBJ branch of (24).

INCREMENTAL PROCEDURAL GRAMMAR 227

NPHead 1 Vlnfinl

Nl
&‘\

V2
Tonnie

3
bakken

NPHead2

+t +t
Art1 N2
a??i cake

Figure 5. Construction of sentence (24).

N2 Art N3
Marietje een

Figure 6. Construction of sentence (25).

of standard Appointment Rules. Subprocedures Comp and Conj were stuck
in by a Functorization Rule (whose details we will not go into). Procedures
Comp, Subj. Obj, and VFin running within the embedded S2 deliver their
values at the holder created by S2 because this is the value of “S-KU” from
their point of view. The topmost s-var is beyond their scope and therefore

228 KEMPEN AND HOENKAMP

inaccessible as a destination. On the other hand, the top-level instantiations
of Subj. VFin and even Obj are completely screened off from what happens
inside of the embedded S and therefore could never select the value of the
deeper token of “s-var” as their destination.

Lemma functions ObjCompl and ObjComp2 differ in two respects.
First of all, they choose between infinitival and finite object clauses on dif-
ferent grounds. ObjCompl (for willen) selects the infinitival variety if the cp
arguments of the top-level Subj and of the embedded (deleted) Subj point to
the same conceptual structure. In terms of (24), since the path functions in
the Subj calls to lexical entries (28a) and (8) delivered the same conceptual
structure as to-be-expressed meaning, ObjCompl chose an infinitival object
complement. This condition of “coreferentiality” being violated in (29,
ObjCompl decided to construct a finite complement clause. (Checking the
coreferentiality of two “subject contents” makes part of ObjCompl’s
duties, we assume.) ObjComp2 (for zien) certainly does not use a coreferen-
tiality check. In fact, we do not know which criteria ObjComp2 applies
when deciding between finite and infinitival complement clauses. Very
often, though, this choice seems rather arbitrary: (26) and (27) are virtually
synonymous.

The second difference between ObjCompl and ObjComp2 lies in the way
they treat the V-lemma to be used within the Obj branch. This lemma-(8)
is an example-always specifies a call to Subj including a cp argument in the
form of a Path function. ObjComp2 composes an additional call to Obj
which contains a copy of this Path function as its cp argument, and adds it
to the procedure calls which are already listed on the lemma of the comple-
ment taking verb. The consequence is that two Obj procedures will run in
parallel. The effect of the whole operation, shown in Figure 7, is compara-
ble with Subject-to-Object Raising. The main actions of ObjComp2 are
summarized in (30).

(30) ObjComp2 (infinitival clause):
(a) the V lemma is stripped of its call to Subj; the Path function occur-

ring therein is copied into a new call to Obj which is added to the
procedure calls listed in the lemma of the complement taking verb;

(b) see the (b)-part of (29);
(c) see the (c)-part of (29).

What needs an explanation yet is the left-to-right order of the two object
NPs that end up in position P4 of the holder of the matrix S. The Word
Order Rules of Figure 3 provide no basis for ordering them. The extra rule
in (31) makes NP3 follow NP2.

(31) An object NP which stems from a more deeply embedded instantiation
of Obj is lined up to the right of a less deep object NP.

In Section 3.2 we introduced a top-down system for numbering instantiations
of syntactic procedures (cf. (4)). The system guarantees that, within the

INCREMENTAL PROCEDURAL GRAMMAR 229

Obj3 VII If ill1

Tonnk zien

Figure 7. Construction of sentence (26)

same branch of a procedure call hierarchy, the procedure with the highest
instantiation number always refers to deepest one. Mutatis mutandis, (31)
also applies to the finite and infinitive verbs which occupy position PS of an
S-holder: Deeper verbs trail behind less deep ones.6 These extra Word Order
Rules enable a complete analysis of the more complicated cases (32) and (33)
containing both a willen and a zien verb, as the reader may work out for
himself.

(32) P4 PS
-0

Tonnie wil Marietje een cake zien bakken.
Tonnie wants Mary a cake see bake)
(Tony wants to see Mary bake a cake.
want(actor: Tony)

(object: see(actor: Tony)
(object: bake(actor: Mary)

(product: cake)))

(33) P4 P5
-0

Tonnie ziet Marietje een cake willen bakken.
(Tony sees Mary a cake want bake)
(Tony sees Mary want(ing) to bake a cake.
see(actor: Tony)

(object: want(actor: Mary)
(object: baketactor: Mary)

(product: cake)))

L This vinfin variant of (31) is too strict, though, because it rules out certain orders of in-

finitive verbs which are (marginally) acceptable, for example,

Tonnie heeft een cake bakken willen.
(Tony has a cake bake want).
Tony has wanted to bake a cake.

230 KEMPEN AND HOENKAMP

Our analysis provides a complete account of the Cross-serial Dependencies
in Dutch as described by Bresnan, Kaplan, Peters, & Zaenen (1982). Example
(34a) has been taken from their paper. The horizontal brackets indicate de-
pendency relationsips between NPs and main verbs. We have added German
and English translation equivalents because, despite their widely different
dependency configurations, they will receive very similar IPG analyses.

CW . dat Jan Piet Marie zag he
I 1 1 I

,

(Mb) . dass Jan Piet Map schwiyune.n helfen sah

I 1 1 I

(34c) that JaEw Pietip Mmsw;lm

All three structures are generated by the procedure call hierarchy depicted in
Figure 8 (downward arrows). The differences between Dutch and German
derive solely from the Word Order Rules which control the sequencing of
finite and infinitive verbs in position P5 of S-holders. As explained in the
context of (31) above, the Dutch rule tells deeper verbs to follow less deep
ones. The German rule prescribes just the opposite: deeper verbs have to
precede less deep ones. The nested dependency configuration of (34b) is the
result. The contrasts between Dutch and English relate to basic Word Order
Rules (English is treated as an SVO rather than as an SOV language) on one
hand, and to the absence of Clause Union on the other. The latter boils
down to the assumption that the lemmata of English complement taking
verbs such as see, want, and help do not contain lemma functions ObjCompl

Compl Subj 1 Obj 1 Obj2 VFiil
dar JCVI Pier I if?n

Obj%
iuarie

0 j4

P

VInftn 1
helpen

s3

Figure 8. Construction of sentence (34a).

INCREMENTAL PROCEDURAL GRAMMAR 231

or ObjComp2, but a simpler variant which is lacking the (c)-part of (29).
Then, the value of an s-var variable declared by an S-instantiation will
always be initialized to the name of that instantiation itself rather than to
the name of a higher instantiation. This, in turn, causes the destination
selected by Subj, Obj. VFin, VInfin, etc., to be their parent S-instantiation
(rather than one higher up in the procedure call hierarchy).

4.2 Interrogatives
The analysis of interrogatives we are going to present concentrates on word
order phenomena as observable in Dutch (and, for that matter, German).
We will first consider yes/no questions, then wh-questions.

As explained in Section 3.3, main sentences are constructed by executing
procedure call

S(cp, <Main>).

Main is a synspec function which puts up a flag signaling S to select main
clause word order. It causes the finite verb to be deposited into slot P2 of
the S-holder. We assume that S will deliver a yes/no-question if cp points to
a conceptual structure tagged with the symbol Q (“Query”). The presence
of Q can be detected by Main which responds by putting a question mark
(“?“) into Pl of S-holder. From the point of view of the Word Order Rules
of Figure 3, slot Pl henceforth counts as occupied and can no longer receive
any output values returned by procedures lower in the hierarchy (except for
wh-constituents, as we will see below). In particular, the subject constituent
delivered by Subj is diverted to P3 instead of Pl. This causes inversion of
subject and finite verb, typical of Dutch and German interrogative main
clauses (but not of interrogative subordinate clauses which are constructed
without the intervention of Main). A call to S without synspec function
Main yields word order of subordinate clauses. That is, the finite verb will
be located at P5 of S-holder (“verb final”).

A simple example of subject-verb inversion is sentence (35) which comes
about as depicted in Figure 9.

(35) Bakt Tonnie een cake?
(Bakes Tony a cake)
Does Tony bake a cake?
Q< bake(actor: Tony)(product: cake)>

Subjl VFinl Obj 1
Tonnie bakken een cak.e

Figure 9. Construction of sentence (35).

232 KEMPEN AND HOENKAMP

Another effect of the Q tag is to trigger certain Functorization Rules. In
(36a), the conceptual structure underlying (35) has been worded as object
complement of zien. (3W

Marietje wil zien Tonnie een cake bakt

(36b)

Mary wants to see Tony bakes a cake.

We hypothesize that the choice of subordinating conjunction of (if) instead
of dut (that) has resulted from a functorization rule which is sensitive to the
2 tag.

We now proceed to wh-questions which come into play when S is given a
conceptual argument of the following shape:

?X< . ..x...>.

For example, (37a) is an informal notation for the meaning that underlies
(37b): for which X is it the case that X bakes a cake?

(37a) ?X< bake (actor: X) (product: a cake)>
(37b) Wie bakt een cake?

Who bakes a cake?

The discovery of an ?X tag attached to the conceptual structure it is try-
ing to express, causes procedure S to engage in several special actions. First
of all, S deposits a question mark within the Pl slot of the holder it created.
(Remember the Q tag engenders the same effect.) This measure secures sub-
ject-verb inversion in main wh-clauses. The second action prepares for wh-
movement. We assume that every S declares a variable whdest (“special
destination for wh-constituents”). The default initialization value for whdest
is NIL, but in the presence of the ?X tag it receives the same value as s-var,
so that s-var and whdest both refer to the name of an S-instantiation. A
conceptual structure tagged with ?X contains a gap where some piece of in-
formation is missing, at the location marked by X. The lexicalization process
responds to a gap by activating a lemma whose only procedure call is one to
lexical procedure Wh. We leave aside the details of how Appointment and
Functorization Rules can fit Wh into the prevailing syntactic context. For
instance, if NP hits upon the gap, then a functorization rule may reveal that
the interrogative pronoun who is appropriate, and Wh will be enveloped in
NPHead by an Appointment Rule:

NPHead(nil, < Wh(ni1, < Lex(who) >) >).

INCREMENTAL PROCEDURAL GRAMMAR 233

Alternatively, X may be localized within the “specifier” region of a concep-
tual structure given to NP. Then, NP will accommodate Wh under Det:

Det(nil, < Wh(ni1, < Lex(which) >) >)

Wh-fronting is accomplished through Destination Rule (38a) in conjunc-
tion with Word Order Rule (38b), which are to be added to (22) and Figure
3, respectively.

(38a) Destination Rule for FPROCs whose standard destination (as specified
in (22)) is s-var:

Select whdest as destination if the following four conditions are ful-
filled:
(1) the current value of whdest is not NIL (but the name of an S-

instantiation);
(2) FPROC’s own output value is not a clause (but an AP, NP or PP);
(3) FROC’s own output value is a wh-constituent (i.e., contains a

subtree delivered by procedure Wh);
(4) position of Pl of whdest is empty (no other constituent has yet

been deposited there).

Otherwise, apply FPROC’s standard Destination Rule.

(38b) Word Order Rule for FPROCs who have selected “whdest” as their
destination:

Deposit the output value into slot Pl of the holder created by the
S-instantiation whdest is referring to.

Wh-constituents will be fronted only in the presence of the ?X tag. Without
this tag, the standard Word Order Rules of Figure 3 are applied, as in (39).

(39) Tonnie bakt wat?
Tony bakes what?
bake(actor: Tony)(product: X)

The construction of sentences (37b) and (40) is illustrated in Figures 10 and 11.

(40) Welke cake bakt Tonnie?
Which cake does Tony bake?

Variable whdest may look superfluous because its value is either NIL or
identical to that of s-var: so why should FPROCs use whdest instead of
s-var for destination? The answer has to do with embedded clauses.

In the context of certain verbs, a wh-constituent is allowed to escape
from the confines of the S-instantiation it was constructed by. A case in
point is (41), where the interrogative pronoun wat has moved out of zien’s
object complement clause and occupied initial position in the main clause,
thus also leaving wiflen’s complement behind.

234 KEMPEN AND HOENKAMP

whdest = Sl

NPl Vl
bakken

NPHead 1

Whl
wie

Figure 10. Construction of sentence (37b). Subi selects Pl of whdest through rules (380-b).

Sl
whdest = Sl

Subj 1 VFin1
Tonnie b&ken

Obj 1

Figure 11. Construction of sentence (40). Obj selects Pl of whdest through rules (380-b)

and pushes Subi into P3 of S-holder.

(41) Wat will Marietje dat Tonnie ziet dat zij bakt?
(What wants Mary that Tony sees that she bakes)
What does Mary want Tony to see that she bakes?
?X< want(actor: Mary)

(object: (see(actor: Tony)
(object: (bake(actor: Mary)

(product: X)))))>
For which X is it true that Mary wants Tony to see that she bakes X?

In fact, both willen and zien belong to the fairly small class of complement
taking verbs which, under certain conditions, permit wh-movement across

INCREMENTAL PROCEDURAL GRAMMAR 235

clauses. The conditions include, among other things, that the wh-constituent
was constructed within the complement clause, not within a relative clause
belonging to subject or object NP, for example.

Our treatment of cross-clause wh-movement involves a new synspec whose
action overrules the standard initialization of whdest. Rather than being set
to NIL or to the current value of S-KU, whdest is given the same value as the
other whdest that is within reach (i.e., is hit upon by climbing the procedure
call hierarchy). The effect of this synspec function-let us call it Cop~whde.st
-is exemplified by Figure 12 and (41). The lexical entries for willen and
zien have to be adapted in such a way that Copywhdest will turn up on the
synspec list of the correct S-instantiation. But we will skip these bookkeep-
ing details.

An object complement verb which does not allow of cross-clause wh-
fronting is weten (know). See (42a) and the snapshot of the computational
process in Figure 13.

(42a) +Wie weet Tonnie dat een cake bakt?
(Who knows Tony that a cake bakes)
Who does Tony know that bakes a cake?

(42b) Tonnie weet dat wie een cake bakt?
Tonnie knows that who bakes a cake?
?X< know(actor: Tony)

(object: (bake(actor: X)
(product: cake)))>

For which X is it the case that Tony knows that X bakes a cake?

Sl
whdest = Sl
S-holder: 1 2 6

A&9-
VFinl Ob’l
wilkn

tt

whde!?= Sl
S-holder: 5 6

M vFin2
ZieJt

Obj2

+t

whde,s,3= S 1

bukken

Flgure 12. Partial

.,

WUt

construction sentence (41

KEMPEN AND HOENKAMP

wie een cake bakken

Figure 13. Construction of sentence (420).

We assume the weten-lemma does not mention Copywhdest as a synspec
function to be applied by Obj. This makes (42b) the grammatical version of
(42a). Wie (who) is occupying its normal subject position, that is, P3,
because it found the first condition in rule (38a) violated: whdest =NIL.

The machinery developed so far works for direct as well as indirect wh-
questions. Sentence (43) is generated when the ?X tag is discovered by the
embedded object clause. Wie goes to Pl of the holder created by the em-
bedded S2. See Figure 14.

(43) Tonnie weet wie een cake bakt.
Tony sees who bakes a cake.
Know(actor: Tony)

(object: ?X< bake(actor: X)
(product: cake) >)

Tony knows for which X it is true that X bakes a cake.

whdest = NIL
S-holder: 2 6

VFin 1
weten

Obj 1

+t

whdest = S2

Subj2 Win2 Obj2
wie bakken een cake

Figure 14. Partial construction of sentence (43).

INCREMENTAL PROCEWRAL GRAMMAR 237

(44) Tonnie ziet wie een cake bakt.
Tony sees who bakes a cake.

Example (44), however, proves that Copywhdest contains a bug. Since zien
is one of the verbs injecting Copywhdest into its complement clause, the inter-
rogative pronoun wie finds the topmost rather than the embedded S-instan-
tiation as the value of whdest. The fact that wie is left within the embedded
S2 implies that Copywhdest remains inactive when the complement clause is
a wh-question. The following refinement of Copywhdest’s operation will do
the job:

Copy into whdest the value of the first whdest up the procedure call
hierarchy, unless the cp-argument of the current S-instantiation (i.e.,
the object clause) is tagged with ?X.

A point of similarity between our IPG analysis of wh-movement and
Gazdar’s (1981) treatment within the framework of Generalized Phrase
Structure Grammar (GPSG) should not go unnoticed. Gazdar assigns inter-
rogatives such as (46) a structure like (47).

(46) Wat bakt Tonnie?
What does Tony bake?

(47)

NP
I+whl

A?\
V NP vP/NP

I I I
War b& Tonnie t

The derived categories Q/NP and VP/NP serve to remember, in a sense, that
near the root of the tree an NP has been generated (the one marked “ + wh”)
which later on must be left out (the empty constituent “t”). This resembles
the IPG mechanism by which, through the values of whdest variables, poss-
ible attachment points for wh-constituents are carried down a procedure
call hierarchy. One might wonder why IPG does not follow the GPSG solu-
tion to the end, that is, generate the wh-constituent immediately at the node
where it will be attached rather than moving it there from a lower position.
A proposal along these lines would be doomed to failure, though, being in
conflict with the basic principle of lexically guided tree formation which we
postulated in Section 1. This is so because the final place of a wh-constituent

238 KEMPEN AND HOENKAMP

depends on properties of other lemmata figuring in the procedure call hier-
archy. Remember, for example, the difference between zien and weten with
respect to cross-clause extraction of wh-constituents. It is for this reason
that we opt for a “movement” solution which is reminiscent of certain ver-
sions of Transformational Grammar.

4.3 Coordinate Structures
In this Section we outline our treatment of Coordination and two related
phenomena: Conjunction Reduction and Gapping. (For a more detailed ac-
count of Coordination in Dutch, also including Right Node Raising, see Pijls
& Kempen, 1986.) We start with some assumptions about the shape of con-
ceptual structures underlying coordinate structures.

At the conceptual level, we assume, logical conjunction is expressed by
the presence of AND, OR, BUT, and so forth, inbetween “conjuncts” (i.e.,
conjoined concepts or conceptual structures). In some of the examples in
(48) we use square brackets to highlight conjoined structures.

Wa)
Wb)

(48~)

(484

We)

(480

(488)

W-W

(48i)

bake (actor: Tony AND Mary AND Peter)(product: cake)
Tonnie, Marietje en Peter bakken een cake.
Tony, Mary and Peter bake a cake.
[bake (actor: Tony)(product: cake)] AND
[bake (actor: Mary)(product: tart)]
Tonnie bakt een cake en Marietje bakt een taart.
Ibake (actor: Tony)(product: cake)] AND
[n (actor: Mary)(product: tart)]
Tonnie bakt een cake en Marietje een taart. (Gapping)
Tony bakes a cake and Mary a tart.
[bake (actor: Tony)(product: cake)] AND
[sell (actor: ”) (possession: ’)]
Tonnie bakt een cake en verkoopt hem. (Conjunction Reduction)
Tony bakes a cake and sells it.
. . dat Tonnie een cake bakt en verkoopt. (idem)
. . . that Tony bakes a cake and sells it.

In the context of Gapping and Conjunction Reduction we introduce a spe-
cial “quotation mark convention.” Many concepts mentioned in conjoined
structures are repetitions of a concept which already figured in an earlier
conjunct. For example, in (48~) there are two tokens of the element “bake.”
Following a well-known typographical convention, we will not spell out sec-
ond and subsequent tokens but use double quotes instead, as in (48e) and
(48g). Intuitively, quoted concepts are meant by the speaker to be less prom-
inent (salient, foregrounded) than the ones that are spelled out in full.

What happens to a syntactic procedure when its cp argument is a con-
junction of two or more conceptual structures? The basic idea behind the

INCREMENTAL PROCEDURAL GRAMMAR 239

IPG approach to coordination is that of iteration. At the end of Section 3.5
we summarized the activities of syntactic procedures in schedule (23). The
sequence of steps listed therein is repeated here as (49). However, we have
added provisions for dealing with conjoined conceptual structures as cp
value. In particular, note that step D attempts to lexicalize the various con-
juncts of a cp one by one, and that step K instructs the procedure to resume
step D as long as any conjuncts are waiting to be lexicalized. Thus an itera-
tive loop is created spanning steps D through K. For each conjunct, the loop
is traversed exactly once.

(49) A.
B.
C.
D.
E.
F.
G.
H.
I.
J.
K.

Declare and initialize variables.
Create a holder.
Evaluate cp and synspec arguments.
Lexicalize (the next conjunct of) cp.
Apply Functorization Rules.
Apply Appointment Rules.
Run subprocedures in parallel.
Apply Word Order Rules to received subtrees.
Apply Destination Rules.
Return holder with contents to destination.
Exit if cp has been lexicalized exhaustively; otherwise go to D.

In (50a-b) we depict the construction of sentences (48b) and (48d). The
horizontal dashed lines connect syntactic (sub)trees construced during suc-
cessive traversals of the loop. Notice that the lemma which corresponds to
the logical conjunction (en, and the comma between Tonnie en Marietje) are
not supposed to make part of the syntactic tree proper.’

(50a) s”bjl /b VPinl

*

Obj 1

* *
NPl

A zx’“2 A x
Tonnie Marietje Peter bakkm een cake

’ Notice furthermore that tree diagrams like (50a-b) were drawn on the assumption that
only cutegorial procedures engage in the iterative coordination loop. This assumption is some-
what ad hoc because there is no technical reason such loops could not be located within
FPROCs. There is an empirical advantage, though. Limiting iteration to CPROCs precludes
coordination of phrases which belong to different families. For example, it will no longer be
possible to generate a clause whose object consists of an NP coordinated with an S:

l Tony saw [Obj [NP Mary] and [S that she baked a cake]].

240 KEMPEN AND HOENKAMP

Subj 1 VFinl -0bjl

/\/\A

Subj2 VFin2 Obj2

/\A/\
Ton& bakl een coke MorieQe bakt een roar1

Multiple traversals of the iterative loop create an access problem to destina-
tion holders. For example, after Subjl has deposited its output “Tonnie”
into position PI of S-holder, this position is no longer available to Subj2.
There are various possibilities of avoiding such conflicts. We have chosen to
redefine holders as two-dimensional arrays with as many columns as there
were positions in the original one-dimensional holders, and a sufficiently
large number of rows. During the nth iteration of the loop, syntactic proce-
dures deposit their values in the nth row of the destination holder. For in-
stance, (Xk) shows the contents of S-holder after completion of the FPROCs
in (50b).

ww Pl P2 P3 P4 PS P6

Subj 1 VFiil Objl 1
&lb een cake

at
TCWlit?

2 Subj2 vFii2 Obj2
Mod. tnb eenmm

3

We propose to treat Gapping and Conjunction Reduction as a complica-
tion of step G in schedule (49). The standard action taken at that point is for
a procedure to activate all subprocedures in the list that was compiled dur-
ing previous steps. However, instantiations of a procedure are sometimes
free to run only a subset of the list. This applies exclusively to second or
subsequent traversals of the iterative loop, and only if the current conjunct
and the current list of subprocedure calls that has been compiled show cer-
tain similarities to the preceding conjunct/list. Then, only such subproce-
dures are discarded which would have delivered the same output value as
during the preceding iteration. Not actually instantiating and running them
helps reduce the computational load of the syntactic processor. Neverthe-
less, we assume that the decision to consider discarding some of the subpro-
cedure calls is optional. That is, instantiating and running the complete list
of subprocedure calls will not violate grammaticality (although it does often
lead to awkward sentences).

The algorithm for selecting subprocedures for actual instantiation is
summarized in flow diagram (5la) and the associated rules (51b-c).

INCREMENTAL PROCEDURAL GRAMMAR 241

(514

Do the cmnt and the preceding
list of subprocedure calls contain
calls to VFin with unequal synspecs?

Apply the Apply the
Conjunction Reduction Rule Gapping Rule

Instantiate
all subprocedures

(51b) Gapping Rule.
(1) For subprocedure calls whose cp argument is non-NIL: instantiate

them if their cp argument is not quoted (but “prominent”).
(2) For subprocedure calls whose cp argument is NIL: instantiate

them if their synspec mentions a call to Lex(lm), where Im is a
lemma which resulted from lexicalization of a nonquoted
(“prominent”) cp.

(3) The output values of the subprocedure which are actually instan-
tiated and run must be ordered as the output values of their
counterparts in the preceding iteration.

(51~) Conjunction Reduction Rule.
(1) Line the current list of subprocedure calls up with the contents of

S-holder which were deposited during the preceding iteration.
(The new call to Subj is paired with the value of the preceding
Subj, the new VFin with the old VFin value, etc. In case of muhi-
ple SMods, also take into account the Path specified in the cp
argument.)

(2) Instantiate all subprocedure calls starting from the first one hav-
ing a cp or synspec argument which is “prominent” in the sense
of steps (1) and (2) of (51b).

In flow diagram (5la) there is mention of “parallel structure” of two
conjuncts. We will say that two conjun& have a parallel structure if they
can be lexicalized by the same lemma and, in case supplementary SMods are
needed to cover all meaning aspects, if these SMods receive the same path
functions. As to the VFin calls mentioned in the second node of the dia-
gram, their synspecs always reference the Lex function with an auxiliary or
a main verb as its argument. We will consider two such synspecs to be equal
if the same V or Aux is involved in the same tense. We are now ready to
discuss some examples.

242 KEMPEN AND HOENKAhtP

Sentence (48f), a case of gapping, is generated from conceptualization
(48e) through the following sequence of decisions:

A. Decision tree.
reduction of list of subprocedure calls is attempted;
two identical VFms: Wm(nil. < Lex(bakken) >);
conceptualization consists of two parallel conjuncts;

B. Capping Rule.
Subj and Obj having “prominent” cp arguments will be instantiated;
VFin has a nonprominent synspec argument, so it must be discarded;
Subj and Obj values are ordered as in previous iteration.

The two cases of Conjunction Reduction in (48h-i) are constructed as
follows:

A. Decision tree.
reduction of list of subprocedure calls is attempted;
unequal VFins (different lemmas);

B. Conjunction Reduction Rule.
Subj having a nonprominent cp argument is discarded;
VFin having a “prominent” synspec is instantiated;
in main clause (48h): Obj being located at the right-hand side of VFin

is instantiated and delivers the accusative personal pronoun hem;
in subordinate clause (48i): Obj being located at the left-hand side of

VFin and having a “nonprominent” cp argument must be discarded.

The ungrammaticality of (52b) is accounted for in terms of failing
parallelism.

(52a) [bake (actor: Tony) (product: cake)] AND
[” (actor: ”) (product: ’) (time: tomorrow)]

(52b) l Tonnie bakt een cake en morgen.
*Tony bakes a cake and tomorrow.

(52c) Tonnie bakt een cake en hij bakt hem morgen.
Tony bakes a cake and he bakes it tommorow.

Since the conceptual conjuncts are not exactly parallel, the rightmost bottom
node of the Decision tree is selected, that is, to run the complete list of sub-
procedures:

reduction attempted;
VFins equal;
no parallelism.

The resulting sentence is (52~). Leaving out any of the constituents hij, bakt
and hem indeed makes the sentence ungrammatical or changes the inter-
pretation.

The algorithm presented here cannot only handle most cases of coordina-
tion (for details see Pijls & Kempen, 1986) but it also accounts for the shape

INCREMENTAL PROCEDURAL GRAMMAR 243

of self-corrections made during spontaneous speech. This will be the topic
of Section 5.

4.4 Conditions on Transformations
One of the main objectives of transformational-linguistic research has
always been “to narrow down the ‘variation space’ of human languages,”
as Koster (1978, p. 1) puts it. One attempts to define a set of possible gram-
mars which is as small as possible and, within this set, to impose further
restrictions, for example, to limit down the domain where free rule applica-
tion is permitted, or to filter out certain structures produced by rules. The
restrictions are typically formulated in terms of configurations of symbols
occurring on the nodes of phrase-structure trees. An oft-used tool in defin-
ing such configurations is the relation of “command” between nodes. One
version thereof, c-command, is defined as follows (Koster, 1978, p. 65): “A
node A c-commands a node C, if the first branching node dominating A,
dominates C, and A does not dominate C.” Well-known examples of restric-
tions defined in configurational terms are the A-over-A principle, Subja-
cency, and various Island Constraints.

Koster (1978) has made a comparative study of about ten such restrictions
proposed in the literature and convincingly argued that they are reducible to
two very general principles. One of them he terms the Locality Principle.
The notion of c-command is the main ingredient in the definition. Informally
(and simplified), if a node A c-commands another node B, and B simulta-
neously c-commands a third node C, whereas A, B, and C are all of the
same category (e.g., NP), then there is no syntactic rule which involves A
and C. For example, there is no movement transformation which has A as
target and C as Source; or, no rule which assigns an anaphoric relationship
between A (antecedent) and C (consequent). In other words, no rule is
allowed to “skip” middle term B; only A and B, or B and C, may be linked
in a rule. Typical examples are (53) and (54).

(53) * John says Mary tried e to like himself.
[S NPl V [S NP2 V [S NP3 NP4111

(54) l What do you know who said that Peter saw e ?
[S Whl (S Wh2 [S m3111

The symbol “e” represents an empty node which is to be linked with one of
the other nodes. (53) is ungrammatical because a link is attempted between
NP3 and NP 1, thus violating the Locality Principle because the middle term
of a c-command triplet is skipped. Only Mary is allowed to be the subject of
like, and himsdf should change to herself. (541 violates the principle
because Wh2 prohibits a link between the empty Wh3 and Whl.

In IPG both examples are easy to handle. Their ungrammaticality follows
from the fact that they attempt to access a variable which is out of scope,

244 KEMPEN AND HOENKAMP

that is, unreachable by means of the search rule: “Go up the tree and halt at
the first occurrence of the varable’s name.” As for (54), the only whdest
variable which is visible from the point of view of Obj2-the Obj instantia-
tion running in the deepest S-is the one declared by the middle S. Obj2
simply doesn’t see the topmost whdest and cannot send what off to Sl, the
S-instantiation this whdest is pointing to.

Case (53) presupposes a way of handling reflexive pronouns. Let us first
sketch out how this could be done. The problem here is for one procedure
(e.g., Obj) to get to know the conceptual content that is being expressed by
another one (e.g, Subj) which is running in parallel. As a rule, procedures
other than Subj (e.g., Obj, IObj, SMod) use a reflexive pronoun if their
own content is coreferential with the “subject content.” Because reflexivi-
zation is generally admissible within clauses, we propose to let every S
declare a variable subjcontent whose value is the conceptual content
associated with Subj in the V-lemma S has looked up. Figure 15 shows the
resulting configuration of variables and their values. Again, the deepest Obj
was no way of knowing that there is a subjcontent pointing to “John.”

What has struck us in these and other constructions discussed by Koster,
is that the restrictions on rule applicability that follow from the Locality
Principle often come remarkably close to those imposed by the limited
range of vision that syntactic procedures have.

subjc&.kt = JOHN

L&e%/
Subj 1 VFinl

John say

s2
subjcontent = MARY

subjcontent = MARY
z&v(.

Compl Vhfiil Obj3
?O like herself

Figure 15. Construction of the grammatical voriont of (53). The lowest instontiotion of Obi

selects herself rather than himself because of referentiol identity of its cp with (the lowest

occurrence of) subicontent. We hove ossumed that soy and try make use of synspec function

(copywhdest).

INCREMENTAL PROCEDURAL GRAMMAR 245

The second principle proposed by Koster is the Bounding Condition. In
essence, it states that all major phrase types-S, NP, PP, and AP-are
islands from which no elements can escape. The Bounding Condition is sup-
posed to belong to the core grammar of a language: It can only be violated
by noncore or peripheral rules (“markedness”). There are independent
criteria, of course, for assigning a rule to the core or to the periphery of the
grammar. For example, wh-movement across clauses is a peripheral phe-
nomenon since it is only permitted in a relatively small group of languages
and, even there, often restricted to special lexical entries. The Bounding
Condition is needed to prevent cases such as (55) and (56) where preposi-
tional phrases have been moved out of an NP and an AP, respectively
(Koster, p. 72 and 82).

(55) *About what did Einstein attack a theory?

(56) *By Nixon, all books written are sold out. (Instead of
‘1 . . . written by Nixon. . . “)

Again we observe that IPG embodies the principle without having to
state it explicitly. The four major phrase types correspond to the four fami-
lies of syntactic procedures in (6b). FPROCs always seek as their destina-
tion an instantiation of the phrasal procedure of the family they belong to.
Subj seeks s-var; any NMod constituent goes to np-var, and so forth. It is
clearly this convention which causes the “island” character of major
phrases. We have seen that special gadgets are needed to break through
phrase boundaries (e.g, whdest in Section 4.2). Examples (55) and (56) are
ungrammatical because they presuppose NMod and AMod to have sent off
their values to s-var rather than to np-var and ap-var, respectively.

The conclusion that IPG globally behaves in accordance with the two
principles proposed by Koster, raises the question why these principles seem
to follow from the inner workings of this grammar and need not be added
as supplementary restrictions. The design feature from which the unexpected
but desirable behavior originates is the “stack” which IPG operates. In our
case the stack has a tree-like structure isomorphic with the procedure call
hierarchy. The stack is a repository for all information a procedure wishes
to share with other procedures. Among other things, it contains declared
variables with their values, and instructions signaling which procedures are
working for which other procedures. Every new piece of information is put
on top of all old information, and searching the stack proceeds from top to
bottom. (This corresponds with bottom-up search through the trees.) This
way of setting up the stack and using it makes possible a pattern of commu-
nication between procedures which

(a) shows a strictly hierarchical organization,
(h) has facilities for recursion, and
(c) is subject to limitations of scope.

246 KEMPEN AND HOENKAMP

These properties are also exhibited by ALGOL-like programming languages
using a stack in their implementation. It is highly remarkable, though, that
these properties also characterize the design of grammars for natural lan-
guages. The features of hierarchy and recursion are usually embodied in
phrase-structure rules which in some form make part of any serious gram-
mar type. (Within IPG they can be discerned in the Appointment and Func-
torization Rules.) And, as we have argued earlier in this Section, the scope
limitations correspond closely to the configurational conditions on trans-
formational and other linguistic rules.

The idea that constraints on grammar rules arise from the use of a stack
is not new. Marcus (1980), for example, has proposed such an account for
the Complex NP constraint-one of the rules covered by Koster’s Locality
and Bounding principles. What we think is new in the present account is an
answer to the deeper question why constraints of a configurational nature
exist at all. IPG interprets syntax trees as a computational environment in-
habited by active units which have specialized and limited syntactic knowl-
edge, operate in parallel, and are relatively autonomous. There is no central
construction agency which at all times has a complete overview of what it
has built so far and is in full command of what it will do next. Each special-
ist (syntactic procedure) is aware of only a part of the total computational
environment-the segment which it can access through given communica-
tion channels. The configurational constraints mirror’these channels (in this
case: the stack). Beyond that, no contact between procedures in the compu-
tational environment (no interaction between nodes of the syntax tree) is
possible. Within a sentence construction mechanism controlled by a single
processing unit (as is typically assumed in “direct realization models” of
Transformational Grammar), constraints of a nonconfigurational nature
are quite conceivable, such as constraints referring to the identity or the
number of nodes. Imaginary examples are “A transformational rule never
relates two or more NP nodes” or “No transformation may lead to a node
with more than 4 sister nodes.” The configurational constraints on the
other hand are a natural consequence of the basic assumption of the limited
scope of syntactic procedures or modules. Constraints of a different nature
are impossible or, at best, can only be achieved at high computational cost.
This is why we venture the claim that Incremental Procedural Grammar is
potentially superior to Transformational Grammar in terms of explanatory
adequacy. Potentially-because many syntactic constructions are still
awaiting treatment in IPG terms.”

5. INCREMENTAL SENTENCE PRODUCTION

In the remaining Sections we will concentrate on psychological issues. First
of all, how can the formulator build sentences which dovetail into the evolv-
ing conceptual structures delivered by the conceptualizer?

’ For a more formal approach to the issues raised in this Section, see Hoenkamp (1983).

INCREMENTAL PROCEDURAL GRAMMAR 247

Let us assume the conceptualizer delivers the conceptual structure for a
sentence as a cumulative sequence of expansions e(l), e(2), . . . e(n). Each ex-
pansion e(i) is a proper subset of its successor e(i + 1) in the sense that e(i + 1)
contains concepts and/or conceptual relations which were not yet present in
e(i).

The computational principle we employ for dealing with incremental sen-
tence production is, again, iteration. Into every syntactic procedure we
build an iterative loop spanning steps G through K, very much like in our
treatment of coordination. (See Section 4.3. In Section 5.2 we shall explain
that the “incrementation loop” is nested within the “coordination loop.“)
During each new iteration of the loop, the next expansion in the sequence is
processed. Special measures should prevent such iterations from merely
leading to a succession of disconnected utterances, the last of which is the
final sentence, as in (57a). Instead, one integrated utterance should result
which is syntactically coherent as a whole (57b).

(57a) Gister .
Tonnie bakte gister . . .
Gister bakte Tonnie een cake.
(Yesterday baked Tony a cake)

(57b) Gister . . . bakte Tonnie . . . een cake.
Yesterday Tony baked a cake.

(57~) Tonnie bakte . . gister . . een cake.
Tony baked a cake yesterday.

(58) De cake . is door Tonnie gebakken . gister.
(The cake has-been by Tony baked yesterday)

Examples (57b-c) and (58), moreover, demonstrate that the syntactic shape
of the integrated utterance is dependent on the order in which the various
parts of the conceptual structure are expanded, that is, from their concep-
tualization order. We have assumed a “first in, first out” schedule which-
within limits of grammaticality-attempts to assign to new parts of the utter-
ance a position as much to the left as is possible. The Word Order Rules
of Figure 3 reflect this schedule. For example, if SMod outwins all other
FPROCs running under S, it will occupy the leftmost position Pl . This has
happened in (57b). (Cider is an adverb which via application of Appoint-
ment Rules is allotted the role of SMod.) The point of (58) is that the choice
between active and passive voice may be determined by order of concep-
tualization.

We will clarify the incrementation loop in terms of sentence (58). Let us
imagine the conceptualizer delivers the meaning underlying this sentence as
a sequence of four expansions:

e(1) the cake
e(2) the cake, Tony
e(3) Tony having baked the cake
e(4) Tony having baked the cake yesterday.

248 KEMPEN AND HOENKAMP

The four columns of Figure 16 show how the hierarchy of procedure calls
grows in response to the meaning expansions. Procedure Sl goes through
four iterations; the corresponding lists of subprocedures calls are given in
Table 1.

e(l) ! e(2) e(3) I e(4)

Sl

Sub’1
aid c&c .

NPl
Ton12

De cake 1

2

*t
PPHead 1

u
PI

VFin 1 Vlnfinl SMod2

u u u
Auxl
zijn bak2

API

2

Al
giwr

..__. is door Tonnie Rebakken I___.__ Risrer

Figure 16. Construction of sentence (58) out of four conceptual fragments. Downward (pro-

cedure coil arrows descending from S hove been omitted. The auxiliary is (a form of zijn)

replaces worden because of perfect tense (cf. lemma (60)).

TABLE 1

Lists of subprocedure calls composed during the incremental production of sentence (Se).

Cpl, cp2 and cp3 refer to the meanings underlying coke. Tony and yesterday, respectively.

Arrow] indicates which procedures are actually run. See olso Figure 16.

e(1) old: ---

new: -Sub](cpl, < >)

e(2) old: Sub](cpl, < >)

new: -SSMod(cpl. < >)

e(3) after first lexicolizotion attempt:

old: ‘Subj(Path(actor.. .), < >)

new: VFin(nil, <V(nil, < Lex(bakken) >) >)

Obi(Path(product.. .). < >)

after second lexicalization attempt:

old: Subj(path(product.. .). < >)

--‘SMod(Path(octor.. .). <P(nil, <Lex(door)>)>)

new: -VFin(nil, <Aux(nil. <Lex(worden)>)>)

-Vlnfin(nil, <Lex(gebakken)>)>)

e(4) old: see the list after second lexicolizotion of e(3)

new: -SMod(cp3, < >)

INCREMENTAL PROCEDURAL GRAMMAR 249

Iteration I. After having lexicalized and applied Appointment Rules to
noun lemma cake, Sl assigns it the role of syntactic subject. Subj deposits
its value into slot Pl of S-holder and exits. The contents of Pl are passed
down to the Morpho-Phonological Stage and pronounced as de cake.

Iteration 2. There is no reason for the lexicalization process within Sl to
reconsider its decision to select the noun cake. It deals with the meaning in-
crement simply by handing it over to SMod. Within SMod, Appointment
Rules force the noun lemma Tonnie into the role of prepositional object,
with the preposition left undecided yet. The new contents of S-holder’s P3
slot cannot be processed by the Morpho-Phonological Stage for reasons to
be explained below.

Zferution 3. Lexicalization within Sl during its third iteration yields the
active verb lemma bukken. However, the path function associated with the
Subj call in this lemma evaluates to Tony, that is, the content of the actor
region of e(3), and is not coreferential with cpl (see Table 1). This implies
the lemma cannot lead to a proper continuation of the fragmentary sentence
uttered so far. What is needed is a facility for examining whether a new
iteration will lead to a continuation which is in keeping with the syntactic
commitments made during earlier iterations. To this purpose, we introduce
a Compatibility Check which is carried out as follows. For each subproce-
dure call in the list composed during the preceding iteration it is determined
whether there is a compatible counterpart in the current list of subprocedure
calls. The notion of compatibility is defined in (59).

(59) Procedure call PROC2(cp2, < synspec2>) is compatible with procedure
call PROCl(cp1, < synspecl>) if
(a) PROCZ and PROCl are identical procedure names, and
(b) cp2 and synspec2 are identical to or expansions of cpl and synspecl,

respectively.
(The term expansion was defined above; here we add that anything non-
NIL is considered an expansion of NIL.)

The Compatibility Check discloses that the new Subj call is incompatible with
the call to Subj in iteration 2. (This is indicated in Table 1 by an asterisk.)
Another problem concerns the SMod call which has no counterpart in the
current list.

A second consultation of the lexicon yields the passive bukken lemma
which is less incompatible: see (60).

(60) VInfin(ni1, < V(ni1, < Lex(gebakken)>)>)
Aux(ni1, < Lex(worden) >)
Subj(Path(. . .), < >)
SMod(Path(. .), < P(ni1, < Lex(door)>) >)

250 KEMPEN AND HOENKAMP

The path functions associated with Subj and SMod single out the product
and the actor of the baking event, respectively. These happen to coincide
with the contents expressed by Subj and SMod during the fist two itera-
tions. The synspec arguments presenting no compatibility problems, lemma
(60) is accepted.

Iteration 4. Sl adds a second call to SMod with the new temporal infor-
mation as to-be-expressed meaning content. This SMod retrieves the adverb
gister (Eng. yesterday) and attempts to deposit its output value into P3 of
S-holder-in accordance with the word order rules of Figure 3. This pre-
sents a little problem. After e(3), the Morpho-Phonological Stage has got as
far as position PS of S-holder: the VInfin participle gebakken has already
been pronounced. Rather than dropping the adverb at P3, SMod now selects
P6-a possibility having low priority and not mentioned in Figure 3. Posi-
tion P6 is still open, that is, no output values deposited there have yet been
processed by the Morpho-Phonological Stage. We assume that syntactic
procedures try to avoid incursions into positions within a holder which have
already undergone morpho-phonological processing.9

We owe an explanation yet for the fact that the Morpho-Phonological
Stage could not accomplish anything after the second iteration. A problem
incremental sentence production runs into, is that the slots of holders are
not getting filled in an orderly left-to-right fashion. Moreover, slots often
remain empty during the construction of a sentence. The Morpho-Phono-
logical Stage could, in theory, follow an extremely conservative strategy:
waiting until the utterance is complete and then process it in one go. This
solution is highly unsatisfactory, though, because it would obviate the need
of generating sentences incrementally in the first place. The conservative
strategy is in perfect harmony with traditional grammatical systems which
only generate full sentences. However, the advantages of incremental pro-
duction in terms of a more regular and fluent speech output would vanish
completely. A maximally progressive strategy is out of the picture altogether.
The Morpho-Phonological Stage would often jump too quickly to the right
and skip slots intended for obligatory constituents. Figure 16 is a case in
point. Since Sl is building a main clause, there will ultimately have to be a
finite verb occupying P2. This means the Morpho-Phonological Stage should
not be permitted to jump over P2 before having processed a VFin constituent
there. Similarly, position P3 of an NP-holder can never be passed by with-
out having processed an NPHead value.

What we need is a device for marking the slots which are going to be oc-
cupied by obligatory constituents. A fairly straightforward way of doing
this is to launch obligatory procedures at the earliest possible moment, as
soon as they are dictated by the syntactic constellation. In terms of the pres-

’ Such a strategy eliminates at least some retracings. It is bought at a price, though: sen-
tence (58) sounds rather colloquial and is only marginally acceptable.

INCREMENTAL PROCEDURAL GRAMMAR 251

ent example, we could insert a call to VPin already during the first iteration.
Since no proper cp and synspec arguments are available at this point, we
propose the convention that a procedure which is running with NIL argu-
ments also delivers NIL as its output value and deposits it at the standard
destination. This symbol, then, is interpreted by the Morpho-Phonological
Stage as a halt signal. Later on, such a dummy obligatory procedure will be
replaced by a new instantiation with adequate cp and synspec arguments. It
computes a non-empty holder as its output value overwriting the NIL symbol.
We wish to remark, however, that this solution is tentative and ad hoc.
Speakers probably engage in much richer varieties of forward syntactic in-
ferencing than is made possible by the strategy proposed here.

6. REPAIRS AND ELLIPSIS

A speaker who decides to repair part of the utterance he/she is pronouncing,
often backtracks to the beginning of the last constituent, thus restoring the
integrity of the interrupted syntactic unit (a classic reference is Maclay &
Osgood, 1959). Recently, Levelt (1983) has observed that speakers obey a
much stricter rule when deciding how far they should backtrack. Example
(61) shows that going back to the beginning of a constituent (here, the prep-
ositional object NP) is not a sufficient condition for a repair to be successful

(61) *With his sister he talked frequently, uh, his mother he talked frequently.

Levelt proposes the following well-formedness rule for repairs (quoted here
in a slightly simplified form):

(62) A repair < A,C> is well-formed if there is a string B such that the string
< AB and C > is well-formed, where B is a completion of the constituent
directly dominating the last element of A.

A and C designate the original utterance and the repair, respectively; editing
expressions (“uh”) are ignored. The rule predicts that (63a) is an ill-formed
repair because (63b) is not a well-formed coordination.

Wa) *Did you see a green, uh, you see a blue circle?
(63b) Did you see a green circle and you see a blue circle?

-vv
A B C

(64a) With his sister he talked frequently and
\ /

A B
with his mother he talked frequently.
\ /

(64b) With his sister he talked frequently, uh,
with his mother he talked frequently.

252 KEMPEN AND HOENKAMP

Since (64a) is a grammatical coordination, it follows that (64b) is a “gram-
matical” version of (61). Sentence (64a) also serves to illustrate a special
case of Levelt’s rule where part B is empty.

IPG accounts for the well-formedness rule in a very straightforward man-
ner. It assigns the duty of carrying out self-corrections to the mechanism
which is also responsible for computing the shape of coordinate structures.
As a matter of fact, some of the assumptions we made in Section 4.3, particu-
larly the idea of an iterative loop and the distinction between new/prominent
versus quoted/nonprominent parts of a conceptual structure, were inspired
by-and become intuitively more acceptable in-the situation of speakers
correcting their own speech. The examples in (65) show that indeed repairs
can be treated on a par with coordinate structures.

(65a) Tonnie bakt een lekkere cake . eh . .een lekkere taart.
Tonny bakes a delicious cake . . . uh . a delicious tart.

(65b) [bake(actor: Tony)(product: cake(mod: delicious))] CORR
[” (actor: N)(product: tart (mod: ’))I

(65~) Tonnie bakt een lekkere cake en een lekkere taart.
Tonny bakes a delicious cake and a delicious tart.

(65d) Tonnie bakt een lekkere . eh . . een lekkere taart.
Tonny bakes a delicious . . uh . . a delicious tart.

The symbol CORR(ection) in conceptual structure (65b) signals a “change
of mind”: the conceptualizer replaces the left-hand side by the right-hand
side. CORR lexicalizes into a correction phrase such as “uh” or into a
pause. When detected by syntactic procedures, CORR causes them to start a
new iteration in a way comparable to the logical conjunctions AND, OR, and
so forth (see Section 4.3). In terms of the example, CORR induces within S
a second iteration which leads to a new instantiation of Obj-the call to Obj
being the only one having a (partly) prominent argument. Sentence (65~) will
be composed in case AND is substituted for the correction symbol CORR.
Utterance (65d) differs from (65a) in that the object constituent was not
fully realized. We might assume that morpho-phonological or articulatory
processing was interrupted just before the word cake could surface. Appar-
ently there exist (conceptualizing, monitoring?) processes having the author-
ity to interrupt ongoing speech production activity at any point in time (cf.
Van Wijk & Kempen, 1987, for some supporting experimental evidence).

It is a well-known observation that the members of a self-correction (i.e.,
reparandum and repair) and of a coordination (i.e., the various conjuncts)
obey certain structural -onstraints. See (52) for an example violating such
constraints. In his 1983 paper, Levelt points out that there exists a third
group of language production phenomena displaying a very similar type of
structural transfer between members, namely, wh-questions and their (ellip-
tical) answers. For instance, (66b) is alright as an answer to (66a) as long as
the preposition with is not deleted.

INCREMENTAL PROCEDURAL GRAMMAR 253

(66a) With whom did he talk frequently?
(66b) With his mother he talked frequently.
(66~) With his mother.

Suppose we would have S express the meanings underlying (66a) and (66b)
in two successive iterations. The utterance after the second iteration would
be the elliptical answer (66~) because SMod is the only procedure that is
assigned a prominent cp argument during the second iteration: the gap
marked by dummy symbol X (cf. (37) in Section 4.2) has been filled. None
of the other subprocedures within S need be instantiated anymore.

An important implication of our proposal to handle coordination, self-
repairs as well as elliptical question-answering in terms of an iterative loop
within syntactic procedures, is that the structural transfer must be very
similar in the three cases. Moreover, no special mechanism is needed for
realizing the structural transfer (except for the parallelism check in @la), of
course; see also footnote 7). In contrast to Levelt’s proposal, it will not be
necessary to invoke some external parsing process which analyses the struc-
tural properties of one member (conjunct, reparandum, wh-question) and
transfers these to the other one (a second conjunct, the repair, the answer).

The last issue we wish to raise in this Section concerns the relationship
between incremental production and self-correction. More specifically, how
does the incrementation loop introduced in the preceding Section interact
with the coordination/correction loop? Formula (67) gives the general form
of the cp argument of syntactic procedures.

(67) [e(l,l), e(1,2), . ., e(l,m)] C [eQ,l), e(2,2) . . ., e(2,n)] C . . .

The symbol C indicates a logical conjunction or CORR and separates the
members of a coordination or a self-correction. A conceptual structure con-
tains at least one member. Each member (between square brackets) consists
of a cumulative sequence of one or more expansions as defined in the pre-
vious Section.’ Syntactic procedures go through the coordination/correction
loop once for every new member; within a member, the incrementation loop
is traversed once for every new expansion. Therefore, the incrementation
loop is nested within the coordination/correction loop.

7. FURTHER PSYCHOLOGICAL ISSUES

The last Section of this paper is devoted to some miscellaneous issues that
models of the speaker have tried to tackle.

Speech Errors. In Section 2 we summarized Garrett’s (1975) observations
on two classes of speech errors: word exchanges and combined-form ex-
changes (“stranding errors”). Exchanged words are very often members of
the same part of speech, fulfill similar syntactic functions in the sentence,

254 KEMPEN AND HOENKAMP

and may be far apart in the utterance. None of these regularities hold for
stranding errors. We propose to view a word exchange as a lemma exchange
between two syntactic procedures which are running in parallel and consult
the lexicon at approximately the same time. Such procedures typically serve
similar syntactic functions (e.g., Subj and Obj within S) and use lexical
material of the same grammatical category, but their values may end up at
remote positions in the sentence. Stranding errors, on the other hand, involve
an exchange between lexemes during the Morpho-Phonological Stage. The
rules of inflection, however, are executed in the normal way as if no inter-
change had taken place. Only lexemes at nearby positions in the utterance can
get involved in such interchanges because they are looked up in close tem-
poral succession (Van Wijk & Kempen, 1987). Similarity between lexemes
in terms of word class membership or syntactic function is uncorrelated
with their distance in the utterance.

Notice that a lemma exchange will indirectly cause an exchange of depen-
dent function words as well. For instance, suppose a speaker has inter-
changed two noun lemmas as in (68).

(68) Tonnie deed DE BAKVORM in HET DEEG.
Tony put the baking tin into the dough.

Since Functorization Rules, which are applied after lexicalization, are
unaware of the exchange, they will insert the articles at the wrong places.
(Deeg is a he?-woord (neuter), bakvorm a de-woord.) Exchanged lexemes,
on the other hand, cannot carry along dependent function elements simply
because their dependence is not specified at the morpho-phonological level.
There is more to Garrett’s findings and analyses than we can mention here,
but we believe that the essentials are within reach of IPG.

Clitic Omission in Agrammatism. Kean (1977, 1979) has observed that
the most pervasive phenomenon in the speech of agrammatic patients is their
tendency to leave out words and morphemes best characterized as belonging
to the class of clitics, that is, inflections, articles, pronouns, auxiliaries, sub-
ordinating conjunctions, and small prepositions (especially monosyllabic).
Of special importance is the fact that the class of clitics cuts across the class
of prepositions. At the end of Section 3.4 we have already indicated that
non-clitical prepositions are activated via lexicalization in direct response to
conceptual input. Clitical prepositions, on the other hand, come into play as
a result of the application of Functorization Rules, that is, primarily in
response to the configuration of syntactic procedures and other aspects of
the current computational environment.

Kolk, Van Grunsven, & Keyser (1985) argue convincingly that agram-
matic speech is caused by a simplified conceptual input which is detailed
enough to enable the patient to find the communicatively important content
words (through lexicalization) but lacks information triggering the insertion

INCREMENTAL PROCEDURAL GRAMMAR 255

of clitics. Thus, the patient obviates the necessity of maintaining the com-
plex computational environment presupposed by correct application of
Functorization Rules while minimizing communicative losses. IPG appears
compatible both with Kean’s observations and with Kolk’s theory.

Speech Formulae. Fluency profits from the ease with which speakers
avail themselves of all sorts of idiomatic expressions which may range over
a fair number of words. It should be unproblematic for the formulator to
look up and retrieve such speech formulae from the lexicon and to fit them
into the grammatical structure it is working on. Lexical entries which corre-
spond to idiomatic expressions spanning more than a single word, have no
special status in IPG. For instance, (69) is the lemma for een poets bakken
(to hoau).

(69) V(ni1, < Lex(bakken) >)
Subj(Path(. . .), < >)
Obj(ni1, < Art(ni1, < Lex(een) >)

N(ni1, < Lex(poets) >) >)
IObj(Path(. . .), < >)

The path functions are supposed to lead to the “joker” (subject) and the
“victim” (indirect object). Notice that the shape of the object phrase is
determined not by its cp argument, which is NIL, but by synspec (in con-
junction with Appointment Rules which make a noun phrase out of it).

Formulating as Automatic Activity. The numerous syntactic computations
which are carried out during language production hardly require conscious
attention on the part of the speaker (Kempen, 1981; Bock, 1982). Whole sen-
tences may “spring to mind” even if they have never been heard or used
before. (Exceptions, of course, are speakers with insufficient mastery of the
language.) This tallies with the idea, embodied in IPG, of sentence formula-
tion by a team of syntactic experts rather than by a single processor. It also
helps to understand that sometimes several formulations of the same con-
ceptual structure seem to be developing simultaneously, as witnessed by
“syntactic fusion errors.” We observed a speaker of Dutch who produced a
blend of the two synonymous sentences (70a) and (70b).

(70a) AIles moet morgen klaar zijn.
(Everything must tomorrow ready be)
Everything must be ready tomorrow.

(70b) Morgen moet aIles klaar zijn
Tomorrow everything must be ready.

What the speaker said was “Argen. . . ,” a mixture of alles and morgen,
after which he stopped immediately. Apparently, two constructions were
being prepared in parallel, with different orders, both grammatical, of sub-

256 KEMPEN AND HOENKAMP

ject (al/es) and adverbial modifier (morgen). The speaker’s introspection
right after he produced the speech error were in agreement with this analysis.

One Grammar for Perception and Production? The idea that one and the
same grammar is utilized for both sentence production and sentence per-
ception has always appealed to the minds of linguists and psycholinguists.
Theoretical proposals for a grammar that can do both jobs are conspicuously
absent from the psycholinguistic literature, though, and discussions of the
attainability of such a grammar tend to end with discouraging conclusions
(Fodor, Bever, & Garrett, 1974). Unificational Grammar (Kay, 1984) is the
first linguistic formalism which is truly bidirectional. However, most of the
psycholinguistically desirable features which we described in Section 1 (e.g.,
incremental generation) seem to be lacking.

Without claiming to have a workable plan, we wish to draw attention to
the fact that, from the point of view of IPG, syntactic parsing (as part of the
language perception process) is remarkably similar to syntactic formulating
(as part of the language production process). (1) Parsing and formulating
are both lexically driven, that is, operate on the basis of syntactic informa-
tion stored with individual words of the lexicon. (2) Both processes use that
information for the purpose of constructing a syntactic tree with these words
as terminal elements. (3) They both have facilities for growing syntactic
trees from left to right. The parser needs them for attaching new words to
the current syntactic tree, the formulator for computing a continuation (in-
cremental production). The origin of the words is different, of course: They
stem from speech recognition in case of parsing, but from lexicalization in
case of formulating. We hope that exploring these unexpected parallels will
stimulate the study of both human language perception and language pro-
duction, and bring us to the attractive situation of having one device which
is a syntactic parser and a syntactic formulator at the same time.

REFERENCES

Bock, J.K. (1982). Toward a cognitive psychology of syntax: Information processing contribu-
tions to sentence formulation. Psychologicul Review, 89, l-47.

Bresnan, J. (Ed.). (1982). The mental representation of grammatical relations. Cambridge,
MA: MIT Press.

Bresnan, J., & Kaplan, R.M. (1982). Introduction: Grammars and mental representations of

language. In J. Bresnan (Ed.), The mental representation of grammatical relations.

Cambridge, MA: MIT Press.
Bresnan, J., Kaplan, R.M., Peters, S., & Zaenen, A. (1982). Cross-serial dependencies in

Dutch. Linguistic Inquiry, 13, 613-635.

Cole, P., & Sadock, J. (Eds.). (1977). Grammatical relations. Syniax and semantics. Vol. 8.

New York: Academic.
Dik, SC. (1978). Funcfional grammar. Amsterdam: North-Holland.
Fodor, J., Bever, T., &Garrett, M. (1974). Thepsychologv of language. New York: McGraw-

Hill.

INCREMENTAL PROCEDURAL GRAMMAR 257

Fromkin, V. (1971). The non-anomalous nature of anomalous utterances. Language, 47,

27-52.
Garrett, M. (1975). The analysis of sentence production. In G. Bower (Ed.), Thepsychology of

learning and motivation, Vol. 9. New York: Academic.
Garrett, M. (1980). Levels of processing in sentence production. In B. Butterworth (Ed.),

Language production (Vol. 1 Speech and Talk). New York: Academic.
Gazdar, G. (1981). Unbounded dependencies and coordinate structure. Linguistic Inquiry, 12,

155-184.

Geurts, B. (1985). Semantics for IPG. Paper, University of Nijmegen.
Goldman, N. (1975). Conceptual generation. In R. Schank (Ed.), Conceptual information

processing. Amsterdam: North-Holland.
Goldman-Eisler, F. (1968). Psycholinguistics: Experiments in spontaneousspeech. New York:

Academic
Harley, T.A. (1984). A critique of top-down independent levels models of speech production:

Evidence from non-plan-internal speech errors. Cognitive Science, 8, 191-219.
Hoenkamp, E. (1983). Een computermodel van de spreker: psychologische en linguist&he

aspecten. Doctoral dissertation, University of Nijmegen.
Kaplan, R., & Bresnan, J. (1982). Lexical-functional grammar: A formal system for grammati-

cal representation. In J. Bresnan (Ed.), The mental representation of grammatico/ rela-

tions. Cambridge, MA: MIT Press.
Kay, M. (1984). Functional Unification Grammar: A formalism for machine translation. Pro-

ceedings of COLING84. Stanford.
Kean, M.-L. (1977). The linguistic interpretation of aphasic syndromes: Agrammatism in

Broca’s aphasia, an example. Cognition, 5, 9-46.

Kean. M.-L. (1979). Agrammatism: a phonological deficit? Cognition, 7, 69-83.

Kempen. G. (1977). Conceptualizing and formulating in sentence production. In S. Rosenberg
(Ed.), Sentence production: Developments in research and theory. Hillsdale, NJ: Erl-
baum.

Kempen, G. (1978). Sentence construction by a psychologically plausible formulator. In R.N.
Campbell & P.T. Smith (Eds.), Recent advances in thepsychology of language. Formal

and experimental approaches. New York: Plenum.
Kempen, G. (1981). De architektuur van het spreken. Tijdschrift voor Tool- en Tekstweten-

schap, 1, 110-123.

Kempen, G., & Hoenkamp, E. (1982). Incremental sentence generation: Implications for the
structure of a syntactic processor. Proceedings of the Ninth International Conference

on Computational Linguistics. Prague.
Kempen, G., & Huijbers, P. (1983). The lexicalization process in sentence production and

naming: Indirect election of words. Cognition, 14, 185-209.

Kolk, H., van Grunsven, M., & Keyser, A. (1985). On parallelism between production and
comprehension in agrammatism. In M.-L. Kean (Ed.), Agrammatism. New York:
Academic.

Koster, J. (1978). Locality principles in syntax. Dordrecht: Foris.
Levelt, W. (1982). Linearization in describing spatial networks. In S. Peters & E. Saarinen

(Eds.), Processes, beliefs, and questions. Dordrecht: Reidel.
Levelt, W. (1983). Monitoring and self-repair in speech. Cognition, 14, 41-104.
Maclay, H., & Osgood, C. (1959). Hesitation phenomena in spontaneous English speech.

Word, 15, 19-44.

Mann, W. (1982). Text generation. American Journal of Computational Linguistics, 8, 62-69.

Marcus, M. (1980). A theory of syntactic recognition for natural language. Cambridge, MA:
MIT Press.

McDonald, D. (1980). Natural language production as a process of decision-making under

constraint. Doctoral dissertation, MIT, Cambridge, MA.

258 KEMPEN AND HOENKAMP

Miller. G., & Chomsky, N. (1963). Finitary models of language users. In R. Lute, R. Bush,
& E. Galanter (Eds.), Nundbook o~mofhemariculpsycho/ogv. New York: Wiley.

Pijls, F., & Kempen. G. (1986). Eenpsycholinguistisch model voor syntuctischesumentrekking
De Nieuwe Tuulgids, 79, 217-234. (English translation available as a report of the
Department of Experimental Psychology, University of Nijmegen, The Netherlands.)

Schank, R.C. (1975). Concepfuul informufion processing. Amsterdam: North-Holland.
Simmons, R., & Slocum, J. (1972). Generating English from semantic networks. Communicu-

lions of the ACM, IS, 891-905.
Van Wijk, C., & Kempen, G. (1985). From sentence structure to intonation contour: An

algorithm for computing intonation contours on the basis of sentence accents and syn-
tactic structure. In B.S. Mueller (Ed.), Spruchsynfhese. Hildesheim: Olms.

Van Wijk. C., & Kempen, G. (1987). A dual system for producing self-repairs in spontaneous
speech: Evidence from experimentally elicited repairs. Cognifive Psychology, 19.

Yngve, V. (1960). A model and a hypothesis for language structure. Proceedings ojthe Ameri-
cun Philosophical Society. 104, 444466.

