37

VOL. 2 NO. 3 . CC-AI

IPG: A COGNITIVE SCIENCE APPROACH TO SENTENCE GENERATION+

Michele Drolet Gerard Kempen
Applied Epistemology Lab Psychological Laboratory
University of Ghent University of Nijmegen
Blandijnberg 2 Postbus 9104
B-9000 Ghent, Belgium 6500 HE Ni jmegen, The Netherlands
ABSTRACT

This article describes a language production theory called Incremental
Procedural Grammar. IPG exemplifies the AI paradigm as applied within
a psycho-linguistic context.

1. Introduction: The Al Paradigm in Cognitive Psychology

The ideas and techniques made possible by the building of artificial
cognitive systems have strongly influenced the formation of theories
about natural (human) cognitive systems, giving them a new look. One
can speak of a cognitive revolution in the human sciences. At the
same time a stream of ideas moves in the opposite direction.
Psychological and linguistic knowledge serve the informatici who are
building those cognitive systems called expert systems and dialogue
systems.

Cognitive science concerns itself with cognitive systems (knowledge
representation and manipulation). Knowledge here means information
couched within a system of richly structured, heterogeneous objects.
These objects are elements of knowledge or concepts which interrelated
in complex ways. Investigations in cognitive science consist largely
in the mapping of the contents of human knowledge. Some examples:

- language behaviour (linguistic and psycholinguistic);

- medical diagnoses (expert systems);

~ naming of colours, plants etc. in diverse cultures (anthropology);

- diagnosis of systematic mistakes in calculating by children learning
arithmetic;

- understanding temporal and spatial concepts (diverse scientific
areas).

Mapping & knowledge domain in terms of its objects and their
interrelations is wususlly termed the representation of that domain.
Knowledge here is to be differentiated from the information found in
databases, which is understood as being a collection of objects with a
relatively simple, homogeneous structure,

A cognitive system must be able efficiently to handle, to manipulate,
the knowledge bases available to it; it must have the means for

38

interpreting incoming data in order to reason with knowledge already
present; it must be able to communicate knowledge outward.

Some investigators in cognitive psychology spend much of their time
attempting to write computer programs which simulate human behaviour.
This can be termed the synthetic style of theory formation. The
research method of others is more analytical. On the basis of data and
observations a list is made of those independent variables and their
interrelations which determine behaviour. The AI paradigm is a kind
of mix of the synthetic and the analytic styles. Empirical methods
complement the use of AI techniques in developing cognitive models as
in Figure 1.

formal model

theory

experimentk/”’—‘—_—~‘\\\\\\\\\\ T

computer model

;

observations

Figure 1: The AI Paradigm

A computer model is designed and implemented, a description is made of
the model, i.e. a set of propositions that specify the working of the
model (and if the theory holds, the working of the cognitive system
being investigated). The description is then converted into some
logical formalism for the sake of explicitness and precision (formal
model). Hypotheses which are derived from the formal model can be
empirically tested. Test results form new observations which may or
may not fit into the theory. The computer model and the theory stages
can also suggest hypotheses for experimental testing.

The Al paradigm, including as it does the building of & computer
model, will advance the quality and the tempo of theory formation.
Computer simulations enhance the exchange among large numbers of
richly structured and heterogeneous components and make possible the
spotting of inconsistencies and incomplete 1lines of reasoning. In
recent years the Al paradigm has been successfully applied to
psychology of language production.

39

2, Speaking as a Cognitive Process

Speaking is a cognitive process which entails the articulated
expressing of observations, thoughts and feelings. It consists of
three groups of processes which are responsible respectively for the
conceptual and semantic content, the syntactic-morphological form, and
the phonetic sound of langusge utterances. Kempen (1977a, 1977b) has
termed these processes conceptualization, formulation, and
articulation.)

2.1 The Classical Concept

Thirty years sgo, after centuries-long speculation by philosophers,
rhetoricians, linguists, psychologists and neurologists, the idea of
grammar-as-machine was given form in Noam Chomsky's Syntactic
Structure (1957). Chomsky's work and the Transformational Generative
Grammars (TGG's) which followed were based on what can be termed the
classical view of the langusge production process:

- Speaking is considered as a sequentially organized process, i.e.
first the meaning content is completely specified, then the content is
converted into a linguistic structure, followed by phonetic
realization (pronunciation).

- Sentence building is a centralized process, i.e. language utterances
are produced by a single central processor which has full oversight
over the building process and is in full command of all steps to be
taken.

- The sentence-building process is syntactically guided. The rules of
grammar are supposed to work from top to bottom. They decide the form
for the sentence before all necessary words are fitted in. Word
choice therefore is made the stepchild in the process.

~ Syntactic rules will produce complete sentences. Applying the rules
readily makes for a language utterance, delivered as a whole, which
precisely expresses the intention of the speaker. No account is taken
of the possibility that the speaker may, during the formulating
process, add new elements to his inteantion, nor is it possible to
generate an incomplete structure which on the basis of later-added
meaning-content can be continued.

2.2 The Modern Concept

The modern view of speech production pretty well does away with the
classical assumption mentioned above.

- Conceptualizing, formulating and articulating are running as
parallel subprocesses. Most speakers have experienced situations in
which they have begun to speak at & moment when the intended meaning
of their utterance was yet vague in their minds. This implies that
conceptuglizing and articulating at least are running in parsllel
(Kempen 1977a, 1977b). A fragment of the conceptual content which the
conceptualizer has delivered is handled without delay by the

40

formulator. This tries to transpose the fragmentary meaning into a
fragmentary utterance which fits well with the foregoing fragments.
If this works, then the articulator can carry on with pronouncing the
new fragment. In the meantime the conceptualizer and the formulator
continue on their work with new conceptual and syntactical fragments.
This manner of speech production is termed incremental.

~ Sentence building as a decentralized process. In an extensive
empirical study of sentence production, Kempen and Huijbers (1983)
could verify the hypothesis that the speaker is simultaneously busy
with the building of several sentence parts. If this is indeed so,
i.e. if sentence parts are built in parallel or simultaneously, even
those far apart, then this undermines the theory of the central
processor, since by definition it can be busy on only one sentence
part at a time and must plan in which sequence the different sentence
parts will be worked on. There is an explanation which suits the
conclusion of simultaneity. It is necessary that tree diagrams
showing the structure of sentences are interpreted in an unorthodox
manner.

Computer scientists use tree diagrams to show the flow of control
among procedures in a computer program. For example, procedure PROC!
has two subroutines PROC2 and PROC3 (see below). PROC2 calls on PROC4
and PROC3 calls on PROC5 and PROC6. Higher procedures trigger the
working of lower ones, which when finished return control to the
higher one.

PROC1

|1 PZERANN

PROCA4 PROCS PROCE

Now suppose that the subprocedures work independently, e.g. that
PROC3 in fulfilling its task is not dependent on the fulfilling by
PROC2 of its task, and vice versa. Suppose also that subprocedures
are triggered simultaneously by the higher procedure. This is the
heart of the sentence construction system developed by Kempen and
Hoenkamp (1984) wunder the name of Incremental Procedural Crasmar
(1PG). Figure 2 shows the hierarchy of higher and lower procedures
which taken together deliver the following sentence:

Tonnie wil een cake bakken.
Tony wants to bake a cake.

41

—

Subj VFin Obj

)| N }

NP v S

L | wil / \
NPHead Obj Vinfin

‘A)
N

N
Tonnie ‘//y NP&(\ bnzken

Det NPHead
) If
Ar N
een cake

Figure 2: Hierarchy of syntactic procedures according to Kempen and
Hoenkamp's IPG (1984). Note that control is not always returned to
the calling procedure.

The modern architecture of speaking sketched here poses the
experimental psycho~linguist with a difficult problem. The fact that
during speaking many subprocesses are running in parallel and occur
simultaneously makes it unfeasible to use the usual experimental
techniques to measure separate process durations. For example, the
cognitive psychologist who wants to test a language production model
experimentally nearly loses his most important instrument, viz. the
measurement of reaction times.

3. Incremental Procedural Grammar

The cognitive processes underlying sentence production are categorized
under the headings of content, form and sound. One group of
activities is concerned with planning the conceptual (semantic)
content for language utterances. To-be-verbalized conceptual
structures are selected in such a way as to be comprehensible. A
conceptusl structure is linearized by splitting it up into a sequence
of messages expressible in a complete or partial sentence. This is
conceptualizing. A second group of processes takes care of
translating meaning content into sentence form, i.e. formulation.
Finally, syntactic and wmorphological structures built by the
formulator system are handed over to the mechanisms of speech for
overt articulation (Fromkin, 1971; Kempen, 1977; Levelt, 1981),

We are concerned only with sentence formulation. We suppose a
sentence construction device, termed Incremental Procedural Grammar
(IPG) which aims at both psychological and linguistic plausibility.
By psychological plausibility we mean that the device may be said to

42

simulate human sentence production. The goal of linguistic
plausibility implies that we try to incorporate into the device
grammatical (syntactic, lexical, morphological) rules which a linguist
would not qualify as ad hoc. 1In particular the device should
incorporate an optimal solution to what has become one of the central
issues in the theory of syntax: conditions or constraints on the
application of rules.

3.1 Psychological Constraints

One property of the human sentence production system is its high level
of output fluency. The primary factor conducive to fluency derives
from the temporal alignment of the three subprocesses of speaking:
conceptualizing, formulating and articulating. The traditional view,
implicitly held by many students of sentence production, is that they
are ordered strictly serially in time. First the conceptual content,
next the syntactic structure for the whole utterance, and finally the
phonetic realization of the structure. This serial model is
empirically wrong (cf. Goldman-Eisler, 1968) and contradicted by the
following introspective observation.

Speakers can initiate overt speech production after ha.ing worked out
only a fragment of the conceptual content of the resulting utterance.
They can also take up the thread of a broken-off sentence spoken by
someone else and bring it to a syntactically impeccable end. We hold
that the three subprocesses run in parallel. Sentence production
occurs in fragments, and the order of conceptual fragments does not
always correspond to the order of utterance fragments. We make the
assumption that the conceptualizer system has no syntactic knowledge.
The order in which it delivers its conceptual fragments will in
principle be uncorrelated with the order of the corresponding
utterance fragments in the spoken sentence. In reality the
correlation will be positive, however, because the formulator will try
to match them.

The mode of sentence production intended here we shall term
incremental or piecemeal. 1ts usefulness undoubtedly relates to the
efficient management it enables of the processing capacities of
working wmemory and other mental machinery involved in formulating and
articulating.

This analysis imposes important constraints on the shape of possible
mechanisms for building syntactic structures. (See also Kempen &
Hoenkamp, 1982). Let us start out from the customary assumption that
syntactic structures can be represented by tree-shaped diagrams where
nodes stand for constituents. The first constraint derives from the
fact that conceptual structures serve as input to the tree formation
process. Much attention has been given by linguists to the problem of
mapping from syntactic structures into logical form. Conversely,
mapping from logical into sentence form receives 1little atteation.

43

The same happens in the field of artificial intelligence wherein
language parsing and understanding are intensely studied yet language
generation has received systematic interest only in the last few years
(Mann, 1982). The approach we have taken consists in designing a
tree-formation module which is sensitive to

- properties of the input conceptual structure representing the to-
be-expressed meaning, and

- properties of the lexical items rendering this meaning.

We have concluded that the tree formation component 1is both
conceptually and lexically guided.

Whether the IPG model leads to parsable and learnable grammars remains
to be investigated.

We have assumed that the order of conceptual fragments delivered by
the conceptualizer does not depend on the order of the corresponding
syntactic fragments. We conclude that in an incremental sentence
formulator it is desirable to have separate components for tree
formation (or rather mobile formation) and for word order,

The last constraint is correct word order and/or correct morphological
case. An obvious possibility is to introduce functional notions,
committing ourselves to syntactic structures similar to Functional
Grammar (Dik, 1978), Lexical-Functional Grammar (Bresnan, 1982) and
Relational Grammar (Cole & Sadock, 1977).

3.2 Sentence Formulation in Two Stages

Garrett (1975, 1980) has developed a two-stage model of the sentence
formulation process. Garret hypothesized that word exchanges
"represent interactions of elements at a level of processing for which
functional relations are the determinant of 'computational
simultaneity'", whereas combined-form exchanges "represent
interactions at a level of processing for which the serial order of
the elements of an intended utterance is the determinant of
computational simultaneity" (1975, p. 154).

Next was the postulating of two successive processing stages, called
Functional and Positional respectively. During the first stage, the
syntactic skeleton for an utterance is constructed specifying
hierarchical and functional relationships among constituents. The
syntactic skeleton does not contain any closed-class lexical wmaterial
(function words, inflectional morphemes) and word order is open. The
Functional Stage works on all constituents more or less
simultaneously. The Positional Stage assigns the constituents a
left-to-right order and enriches them with closed-class items,
traversing the sequence of constituents from left to right.

In the IPG model we have adopted the essentials of Garrett's proposal.
The only deviation concerns the stage which is responsible for

44

inserting function words (i.e. those closed-class items which have
word status) and for computing word order. We have allotted these
(syntactically interrelated) tasks to the first, functional stage
rather than to the second, positional stage. Our reason derives,
among other things, from the observation that exchanged words often
carry along dependent function words.

conceptual structure
¥

l Lexico-Syntactic Stage]

ayncactié’atructure

[Hotpho-Phonological Stnge]

phonologicii structure

The foregoing summarizes the resulting make-up of the sentence
formulation process, using our own terminology.

3.3 Rules and Mechanisms of Incremental Procedural Grammar

What follows is a description of the basic machinery employed by IPG
in constructing sentences that express a speaker's intention. The
lexico-syntactic stage gets most attention; the morpho-phonological
stage is briefly discussed at the end.(1)

3.3.1 Preliminaries. In the 1linguistic and psycholinguistic
literature it is commonly agreed that the notions of "syntax" and
"syntactic processor" should be kept carefully apart. The difference
is usually construed as an instance of the prototypical '"database"
versus “processor" distinction. The datsbase contains rules of syntax
which the syntactic processor can access and utilize for the purpose
of computing correct sentence forms. The distinction has been invoked
in attempts to explain why linguistic operstions as defined in
existing grammar types have been unsuccessful in accounting for
language performance dats. It encourages linguists to clsim that
their grammatical models only concern the database (knowledge of the
language). Psychologists can wuse it as an excuse to concentrate on
processing issues and lose interest in grammar. The drawback is that
we are left with two disparate partial theories of the human language
faculty the relationship of which is not easy to understand.

We take a different perspective. Our model integrates assumptions
about data (rules of syntax) with assumptions about the processor
wanipulating the data. This combined strategy gives the advantage of
making it possible to account for linguistic phenomena not in terms of
grammar rules, but rather in terms of the structure and functioning of
the syntactic processor. Any. model which articulates - preferably

.

45

empirically grounded - assumptions about both the format of grammar
rules and the structure and functioning of the syntactic processor we
call a procedural grammar.

3.3.2 Syntactic Procedures. Traditional models contain a centrally
controlled processor which grows syntactic trees in a depth-first,
left-to~right manner, st every node consulting the rules of the
- database. However this processing schedule entails temporal
properties vwhich are at odds with the speech error phenomena
discovered by Garrett (1975). He explains word exchanges as being
exemplified in terms of computational simultaneity, e.g. between
direct and indirect object phrases, or between the verbs in two
successive coordinate clauses. Production models which operate left-
to-right certainly do not process such constituents simultaneously
since the interchanged words may be at considerable distance from each
other in the utterance. Another model, operating breadth-first and
left-to-right probably fares somewhat better (see Kempen, 1978), but
the ultimate solution clearly requires machinery for growing branches
of a syntactic tree in parallel.

The basic step towards a mechanism for parallel branch construction is
to view symbols such as NP, N, SUBJECT, OBJECT etc. not as passive
structural elements but as active procedures or modules. Each
procedure is an expert specialized in assembling one type of syntactic
constituent. Like procedures or routines in ordinary computer
programs, syntactic procedures are permitted to call on each other as
subprocedures (subroutines). Procedure S, for instance, may decide to
delegate portions of its sentence formation job to SUBJECT and OBJECT
as subprocedures. OBJECT need not necessarily wait for SUBJECT to
finish: they can get started simultaneously and run in parallel.
They are free to call further subprocedures, a typical candidate being
NP. Thus a hierarchy of procedure calls arises which is conveniently
(and conventionally) depicted as a tree.

Before explaining what syntactic procedures do we must distinguish
between two groups: categorial procedures (CPROCs) and functional
procedures (FPROCs). CPROCs are capable of building structures of
various syntactic shapes (NP, S, PP etc.); FPROCs take care of the
grammatical (functional) relations between such structures (e.g.
sub ject, object, modifier).

Below we list the most important procedures along with indications of
the constituents they deliver,

46

Categorial Procedures (CPROCs)

s clause

NP noun phrase

PP prepositional phrase

AP adjectival or adverbial phrases
v main verb

Aux auxiliary verb

N ~ noun

A adjectiv- or adverb

P preposit.on

Art article

Conj subordinating conjunction

Functional Procedures (FPROCs)

VFin finite verb

Vinfin infinitive verbd

Subj subject

Obj object

10bj indirect object

SMod sentence modifier

Comp complementizer

NPHead head of noun phrase

NMod noun phrase modifier

Det determiner

PPHead head of prepositional phrase

PObj prepositional object

PMod prepositional phrase modifier

APHead head of adjectival or adverbial phrase
AMod modifier in adjectival or adverbial phrase

Categorial procedures come in two varieties: phrasal CPROCs and
lexical CPROCs. The latter correspond to the traditional parts of
speech (V, Aux, N, A etc.), the former to major phrase types as
commonly distinguished in current linguistic practice: S, NP, PP and
AP. Note below how the functional and categorial procedures can be
grouped into four non-overlapping families (phrase types). The rows
contain listings of (a) phrasal CPROCs, (b) functional procedures and
(c) lexical CPROCs.

47

clauses noun phrases prepositional adjectival
phrases or adverbial
phrases
(a) s NP PP AP
(b) Subj, Obj, NPHead, NMod, PPHead, PMod, APHead, AMod
VFin, VInfin, Det PObj
10bj, SMod,
Comp '
(e) Vv, Aux, Conj N, Art P A
3.3.3 Lexicalization. Some of the characteristics of the

lexicalization system employed by speakers in naming and sentence
production are:

- Words belonging to an overt naming or sentence production response
come about as the resultants of two lexical selection processes
connected in series. The first one yields abstract pre-phonological
items (Ll-items or lemmata), the second one adds their phonological
shapes (L2-items or lexemes) (see Kempen & Huijbers, 1983).

- The selection of several Ll-items for a multi-word utterance,
sentential or otherwise, can take place simultaneously.

- A monitoring process watches the output of Ll-lexicalization to
check 1if it is in keeping with prevailing constraints upon utterance
format. Time taken for monitoring depends on the probability of
erroneous outputs from Ll-lexicalization, the seriousness of the
consequences of overt errors etc.

- Retrieval of that L2-item which corresponds with a given Ll-item
waits until the Ll~item has been checked by the monitor and all other
Ll-items needed for the utterance under construction have become
available.

This set of operating characteristics differs from Seymour's (1979)
model of object naming, wherein the processing stage is devoted to the
elaboration of a perceptual-semantic code and immediately followed by
the retrieval of a phonologically specified lexical item. We prefer a
model which assumes parallelism of Seymour's perceptual-semantic
coding and our Ll-lexicalization. The lexical processing units are
able to watch and respond to the evolving perceptual-semantic code
while it is still being elaborated. The new assumption we are forced
to make is that there are lexical processing units corresponding to
our pre-phonological Ll-items. One must be prepared to redefine the
perceptual-gemantic stage as a combination of perceptual-semantic
coding and retrieval of pre-phonological lexical iteus.

As for the conceptual structures serving as input to IPG's tree
formation component, we use an informal case-frame notation similar to
what one,tends to find in the literature on semantic representation.
Such structures contain slots or regions the contents of which are
accessible through path functions. We assume a lexicalization system

48

the task of which consists in inspecting conceptual structures (often
using path functions) and looking up in the mental lexicon votdl. or
expressions rendering the speaker's intention. It is the lexicalizer
which starts up the tree formation process. After that, the
conceptual structures only play a minor role, namely, when it comes to
inflectional computations and to the insertion of function words.

The standard format of a syntactic procedure call is

PROC(cp, <synspec>)

where PROC is the name of a categorial or functional procedure;
cp ("conceptual pointer”) is a variable or an expression
evaluating to & conceptual structure; and
<gynspec> ("syntactic specification”) is a list of zero or more

calls to special functions which influence the
shape of the constituent that PROC will build.

The first actions taken by a procedure are those of lexicalizing. The
retrieved lexical entries are procedural in nature, i.e. they consist
of a list of one or more procedure calls, and are denoted by the term
lemma. The second argument to procedure calls in lexical entries is a
synspec list. Functions there take as their arguments pointers to
lexemes. Lexemes are lexical entries which specify phonological
shapes for words.

We define successful lexicalization as the retrieval of exactly one
lemma covering at least part of the to-be-expressed meaning. (When
fewer or more lemmata turn up, hesitations or speech errors such as
word-blending might ensue.) Any non-covered fragments of the
conceptual structure are assigned to modifier procedures. To this
purpose the four phrasal CPROCs S, NP, PP and AP have at their
disposal the procedures SMod, NMod, PMod and AMod respectively.

3.3.4 Appointment rules and functorization rules. The construction of
procedure call hierarchies is governed by a set of appointment rules.
They specify the possible shapes of such hierarchies by telling each
procedure call contained in a retrieved lemma which role it is going
to play within the context of the lexicalizing procedure. The general
format of appointment rules is the following:

PROC1, PROC2, <condl, cond2, ..., condn> ---> PROC3>>PROC2
(The symbol >> means "is parent of".)

An important further issue is how function words (articles,
prepositions, auxiliaries etc.) come into play. Their presence in an
utterance is chiefly motivated on syntactic grounds, so they cannot be
supposed to originate simply from lexicalization. The same conclusion
follows from the well-known linguistic fact that function words are

49

often in complementary distribution with inflections. For instance,
in English as well as in Dutch, the present and past tenses of verbs
are indicated by inflectional morphemes, whereas the future requires
an auxiliary, s worpheme with word status. A convenient term covering
both groups of syntsctic morphemes is functor. We propose the term
functorization to denote the process of inserting functors.

Functorization is best characterized as refining the set of procedure
calls contained by a lemms. This may happen in two ways,
corresponding to the distinction between inflections and function
words. The .refinement either affects the synspec list of a procedure
call by inserting a new function there, or it supplements the current
set of subprocedure calls with an additional member. In the case of
the former, the synspec function will influence the inflectional shape
of the resulting constituent; in the latter, a separate function word
will emerge.

Functorization must take place prior to application of any appointment
rules because it sometimes leads to additional subprocedure calls
which need to be assigned a role within the lexicalizing procedure.

Although functorization clearly is a different kind of process than
lexicalization, the division of labour between them - activation of
function words and of content words respectively - is less clear.
Both English and Dutch have many words which according to their
grammatical class are to be regarded as function words but the meaning
of which is so salient that they could justifiably be labelled content
word. An example is the preposition "without" ("zonder" in Dutch).
The converse case occurs as well: words the grammamtical class of
which grants them the status of content word, although they are
interchangeable with a function word in many syntactic contexts, e.g.
the Dutch adjective "zeker" (English: "certain"). Such observations on
the vagueness of the boundary between function and content words lead
to devising normal lexical entries (i.e. lemmata) for prepositions
like 'without” on the one hand and functorization rules which lead to
ingerting adjectives like “certain" on the other. The proposed mixed
treatment of prepositions corresponds to the distinction between those
which are clitics (of, by, on, in) and those which aren't (without,
under, after).

3.3.5 Combining and communicating subtrees. Apart from assembling a
list of subprocedure calls and putting all of them to work
simultanecusly, a syntactic procedure also has the duty of processing
the subtrees they return as their values. Top procedure S! in the

example receives values representing the subject, finite verb, and
object coustituents.

50

e A Y
Sull’u VFinl objl

Y ¥

NP1 \2! NP2

NPHead!l Djfl PHead2

N1 Artl 2

How does S1 combine these subtrees into a single grammatical clause?
A procedure creates a data structure, called a holder, containing a
sequence of numbered positions Pl, P2, ... Pn. Each of these slots
can serve as a receptacle for subtrees delivered by a subprocedure.
Most types of holder have just one slot. Only holders created by
procedures S, NP, PP and AP (the four phrasal CPROCs) contain more
than one slot, namely 6, 4, and 3 and 2 respectively. Upon receipt of
a value (subtree) computed by one of its daughters, a procedure
deposits it in a holder slot. (This operation is the IPG version of
what is usually called node attachment.) These slots are chosen on the
basis of a set of Word Order Rules which we explain now in terms of
the value return hierarchy shown hereafter:

sl
1 2 4
S::bjl VFinl obj1l
! P Tl
NP1 vl NP2
P3 bakken 1 / \3
NPHeadl Detl NPHead2
' | IT [
N1 Artl N2
Tonnie een cake

The upward arrows denote the operation of a returning value. Their
numerical labels refer to slots.

In the foregoing we have taken for granted that the output value
delivered by a procedure consists of the holder created by that
procedure together with its contents. It is the lowest (innermost,
deepest) subprocedure which is first to deliver its output value. In
our procedure call hierarchies this is always a lexical procedure. It

51

delivers its one-slot holder after filling it with a pointer to a
lexeme. The destination selected by all lexical procedures is the
parent. Actually, all categorial procedures return their value to
their parent. This is not true of functional procedures.

We can now explain the IPG equivalent of wmovement transformations.
This is a mechanism which causes procedure call hierarchies to build
differently shaped value return hierarchies. The resulting syntactic
trees are less deep than the procedure call hierarchies which put them
together. The mechanism is essentially a set of rules whereby FPROCs
choose a destination other than their parent (usually located higher
up in the procedure call hierarchy). When computing destinations for
their output values, FPROCs utilize the following system for
referencing holders created by other procedures.

Immediately upon being called, syntactic procedures (both functional
and categorial) declare a variable the name of which consists of the
character string "var" prefixed with the procedure's own name. For
instance, the variables declared by S, NP and V are s-var, np-var and
v-var respectively. The value assigned to such a variable is the name
of an instantisted procedure (e.g. Sl, NP2). The destination rules
used by FPROCs are phrased in terms of such variables. For example,
Obj seeks s~var as its destination. This means it climbs the
procedure call hierarchy until it hits upon an occurrence of s-var.
Obj then ascertains the name of the instantiated procedure bound to
that variable and sends its value to that address.

Below is a summary of the destination rules discussed thus far.

SOURCE DESTINATION
CPROC Parent procedure
FPROC Instantiated procedure bound to:
of S-family: s-var
of NP-family: np-var
of PP-family: pp-var
of AP-family: ap-var

Under the influence of lexical information, s-ver is sometimes given a
different value than the name of the S instantiation which declared
the variable.

The main activities performed by syntactic procedures are listed here:

52

A. Declare and initialize variables.

B. Create a holder.

C. Evaluate cp and synspec arguments.

D. Lexicalize cp.

E. Apply functorization rules.

F. Apply appointment rules.

G. Run subprocedures in parallel.

H. Apply word order rules to received subtrees.
I. Apply destination rules.

J. Return holder with contents to destination.
K. Exit.

Terminal (lexical) procedures corresponding to single words skip steps
D through I. .

3.3.6 The morpho-phonological stage. The output value computed by a
terminal procedure contains a lexical pointer which serves to locate a
lexeme in the mental lexicon. A lexeme is & phonological
specification of a to-be-uttered word. The final shape of the word
awaits the application of inflection rules and various sound rules
which belong to the domain of articulation. The morpho-phonological
stage converts syntactic trees delivered by the lexico-syntactic stage
(more precisely, trees returned by the top member of a procedure call
hierarchy) into phonological structures.

Syntactic procedures compute all information needed by rules of
inflection. Some of the relevant computations are within the context
of functorization rules.

3.3.7 Coordinate structures. We shall very briefly outline our
treatment of coordination and two related phenomena: conjunction
reduction and gapping. One of our assumptions about the shape of
conceptual structures underlying coordinate structures is that logical
conjunction is expressed by the presence of AND, OR, BUT etc. in
between conjuncts, 1i.e. conjoined concepts or conceptual structures.
Many concepts mentioned in conjoined structures are repetitions of a
concept which figured in an earlier conjunct.

What happens when the cp argument of & syntactic procedure is a
conjunction of two or more conceptual structures? The basic idea
behind the IPG approach to coordination is that of iteration. Above
we summarized as a sequence of steps the activities of syntactic
procedures. That sequence is repeated below, however we have added
provisions for dealing with conjoined conceptual structures as cp
value. Note that step D attempts to lexicalize the various conjuncts
of & cp one by one, and that step K instructs the procedure to resume
step D s0 long as any conjuncts must be lexicalized. Thus an
iterative loop is created spanning steps D through K. For each
conjunct, the loop is traversed exactly once.

‘

53

A. Declare and initialize variables.

B. Create a holder.

C. Evaluate cp and synspec arguments.

D. Lexicalize (the next conjunct of) cp.

E. Apply functorization rules.

F. Apply appointment rules.

G. Run subprocedures in parallel.

H. Apply word order rules to received subtrees.

1. Apply destination rules.

J. Return holder with contents to destination.

K. Exit if cp has been lexicalized exhaustively;
otherwise go to D.

3.4 Incremental Sentence Production

We shall now concentrate on psychological issues. How can the
formulator build sentences which dovetail into the evolving conceptual
structures delivered by the conceptualizer? The conceptualizer
delivers the conceptual structure for a sentence as a cumulative
sequence of expansions e(l), e(2), ... e(n). Each expansion e(l) is a
proper subset of its successor e(i+l). The computational principle we
employ is iteration. Into every syntactic procedure we build an
iterative loop spanning steps G through K, much like our treatment of
coordination. The incrementation loop is nested within the
coordination 1loop. During each new iteration of the loop, the next
expansion in the sequence is processed. One integrated utterance
should result which is syntactically coherent as a whole. The
syntactic shape of the integrated utterance is dependent on the order
in which the various parts of the conceptual structure are expanded,
i.e. from their conceptualization order. We have sassumed a "first in,
first out”" schedule which, within the limits of grammaticality,
attempts to assign to new parts of the utterance s position as wuch to
the left as is possible. We shall clarify the incrementation in terms
of the following sentence.

De cake ... is door Tonnie gebakken ... gister.
The cake has-been by Tony baked yesterday.

Imagine that the conceptualizer delivers the meaning underlying this
sentence as 2 sequence of four expansions:

e(l) the cake

e(2) the cake, Tony

e(3) Tony having baked the cake

e(4) Tony having baked the cake yesterday

Figure 3 shows how the hierarchy of procedure calls grows in response
to the meaning expansions. Procedure S1 goes through four iterations;
the corresponding lists of subprocedure calls are given in Table 1.

54

e(l) e(2) e(3) e(4)

s1

S-holder: 1 3 5 6
s VN

mcw: /mzoﬁ_ /&&z Vinfinl mzﬁﬁ

de cake ‘2‘ sz t, mw

PPl 3 2 Auxl

\,/.2 zijn bakken 2 2

w% jl PP m%ay)mﬂmmau
zwp Pl Al
Tonnie door gister

De cake.s.vecvtoseseess.sesis door Tonnie gebakken.gister
Figure 3: How the hierarchy of procedure calls grows in response to
meaning expansions. Procedure Sl goes through four iterations; the
corresponding lists of subprocedure calls are given in Table 1.

55

Table 1

Lists of subprocedure calls composed during the incremental production
of the sentence "Gister...bakte Tonnie...een cake (Yesterday Tony
baked a cake). Cpl, cp2 and ¢cp3 refer to the meanings underlying
"cake", "Tony" and '“yesterday" respectively. Arrow --> indicates
which procedures are actually run. See also Figure 3.

e(l) old: -—
new: <=->Subj(cpl, <)
e(2) old: Subj(epl, <>)

new: -->SMod(cp2, <>)
e(3) after first lexicalization attempt:

old: +Sub j(Path(actor...), <>)

new: VFin(nil, <V(nil, <Lex(bakken)>)>)

Obj(Path(product...), <>)
after second lexicalization attempt:
old: Subj(Path(product...), <>)
-->+SMod(Path(actor...), <P(nil, <Lex(door)>)>)
new: =-->VFin(nil, <Aux(nil, <Lex(worden)>)>)
-->VInfin(nil, <V(nil, <Lex{gebakken)>)>)

e(4) old: see the list after second lexicalization of e{(3)

‘new: -->SMod(cp3, <>)
Iteration 1. After having lexicalized and applied appointment rules
to noun lemma cake, S1 assigns it the role of syntactic subject. Sudbj
deposits its value into slot Pl of S-holder and exits. The contents
of Pl are passed down to the morpho-phonological stage and pronounced
as de cake.
Iteration 2. The lexicalization within Sl selects the noun cake and
deals with the meaning increment by handing it over to SMod, where
appointment rules force the noun lemma Tonnie into the role of
prepositional object, with the preposition left undecided. The new

contents of S-holder's P3 slot cannot be processed by the morpho-
phonological stage yet.

56

Iteration 3. Lexicalization within S1 during its third iterat%on
yields the active verb lemma bakken. However the path function
associated with the Subj call in this lemma evaluates to Tony, i.e.
the content of the actor region of e(2), and is not coreferential with
cpl (see Table 1). Here a compatibility check must be carried out.
The notion of compatibility is defined thusly:

Procedure call PROC2(cp2, <synspec2>) is compatible with
procedure call PROCl(cpl, <synspecl>) iff
(a) PROC2 and PROCl are identical procedure names, and
(b) c¢p2 and synspec2 are identical to or expansions of
cpl and synspecl respectively.
(Anything non-Nil is considered an expansion of Nil.)

The compatibility check discloses that the new Subj call is
incompatible with the call to Subj in iteration 2 (+-sign in Table 1).
Another problem concerns the SMod call which has no counterpart in the
current list. A seco. ' consultation of the lexicon yields the passive
lemma bakken which is less incompatible:

VIinfin(nil, <V(nil, <Lex(gebakken)>)>)
Aux(nil, <Lex(worden)>)
Sujb(Path(...), < >)

SMod(Path(...), <P(nil, <Lex(door)>)>)

The path functions associated with Subj and SMod single out the
product and the actor of the baking event respectively. These happen
to coincide with the contents expressed by Subj and SMod during the
first two iterations. The synspec arguments presenting no
compatibility problems, the lemma is accepted.

Iteration 4. Sl adds a second call to SMod with the new temporal
information as to-be-expressed meaning content. This SMod retrieves
the adverb gister (English: yesterday) and attempts to deposit its
output value into P3 of S-holder. After e(3) the morpho-phonological
stage has got as far as position P5 of S-holder: the VInfin participle
gebakken has already been pronounced. Rather than dropping the adverb
at P3, SMod now selects P6 - a possibility having low priority.
Position P6 is still open, that is, no output values deposited there
have yet been processed by the morpho-phonological stage. We assume
that syntactic procedures try to avoid incursions into positions
within a holder which have already undergone morpho-phonological
processing. :

A problem with incremental sentence production is that the slots of
holders are not filled in an orderly left~to-right fashion. Moreover,
slots often remain empty during the construction of a sentence. A
device is needed for marking the slots which are going to be occupied
by obligatory constituents. One could launch obligatory procedures as
soon as they are dictated by the syntactic constellation. We propose
the convention that a procedure which is running with Nil arguments

57

also delivers Nil as its output value and deposits it at the standard
destination. This symbol is interpreted by the morpho-phonological
stage as a halt signal. Later on, such a dummy obligatory procedure
will be replaced by a new instantiation with adequate cp and synspec
arguments. It computes a non-empty holder as its output value
overwriting the Nil symbol. This is a tentative solution and ad hoc.
It must be said though that forward syntactic inferencing is probably
of greater variety than this.

3.5 Repairs and Ellipses

A speaker who decides to repair part of the utterance he is
pronouncing often backtracks to the beginning of the last constituent,
thus restoring the integrity of am interrupted syntactic unit. Levelt
(1983) proposes the following well-formedness rule for repairs (here
in simplified form):

A repair <A,C> is well-formed if there is a string B such that the
string <AB and C> is well-formed, where B is a completion of the
constituent directly dominating the last element of A.

IPG accounts for the well-formedness rule in a very straightforward
manner. It assigns the duty of carrying out self-corrections to the
mechanism which is also responsible for computing the shape of
coordinate structures.(2)

3.6 Further Psychological Issues

3.6.1 Speech errors. A lemma exchange will indirectly cause an
exchange of dependent function words as well. Exchanged lexemes on
the other hand cannot carry along dependent function elements simply
because their dependence is not specified at the morpho-phonological
level. 1IPG is therefore able to handle two classes of Garrett's
speech errors: word exchanges and combined~form exchanges.

3.6.2 Clitic omission in agrammatism. Kean (1977, 1979) has observed
that agrammatic patients tend to leave out those words and morphemes
characterized as belonging to the class of clitics, i.e. inflections,
articles, pronouns, auxiliaries, subordinating conjunctions and small,
monosyllabic prepositions.

Kolk, van Grunsven & Keyser (in press) argue that agrammatical speech
is caused by a simplified conceptual input which is detailed enough to
enable a patient to find the communicatively important content words
(through lexicalization) but lscks information triggering the
insertion of clitics. The necessity of maintaining the complex
computational enviromment presupposed by correct application of
functorization rules 1is obviated while communication loss is

58

minimized. IPG appears compatible with both the observation and the
theory.

3.6.3 Speech formulae. Fluency profits from the ease with which
speakers avail themselves of all sorts of idiomatic expressions which
may range over a fair number of words. It should be unproblematic for
the formulator to look up and retrieve such speech formulae from the
lexicon and to fit them into the grammatical structure it is working
on. Lexical entries which correspond to idiomatic expressions
spanning more than a single word have no special status in IPG.

3.6.4 Formulating as automatic activity. The numerous syntactic
computations which are carried out during language production hardly
require conscious attention on the part of the speaker. Whole
sentences may spring to mind. This tallies with the idea, embodied in
IPG, of sentence formulation by a team of syntactic experts rather
than by a single processor. It also helps to understand that
sometimes several formulations of the same conceptual structure seem
to be developing simultaneously.

4, One Device for Parsing and Formulating?

Psychologists and linguists should be pleased to have one grammar
which could be wutilized for both sentence production and sentence
perception. Theoretical proposals for a grammar which can do both jobs
are conspicuously absent from the psycholinguistic literature, and
discussions of the attainability of such a grammar tend to end with
discouraging conclusions (Fodor, Bever & Garrett, 1974).
Unificational Grammar (Kay, 1984) is the first linguistic formalism
which is truly bidirectional. However, psycholinguistically desirable
features are lacking in it.

Without claiming to have a workable plan, we wish to draw attention to
the fact that, from the point of view of IPG, syntactic parsing (as
part of the language perception process) is remarkably similar to
syntactic formulating (as part of the language production process).
Parsing and formulating are both lexically driven, i.e. operate on the
basis of syntactic information stored with individual words of the
lexicon. Both processes use that inforwmation for the purpose of
constructing a syntax tree with these words as terminal elements.
They both have facilities for growing syntax trees from left to right.
The parser needs them for sttaching new words to the current syntax
tree, the formulator for computing a continuation (incremental
production). The origin of the words is different of course: they
stem from speech recognition in case of parsing but from
lexicalization in the case of formulating. We hope that exploring
these unexpected parallels will stimulate the study of both human
language perception snd language production, and bring us to the

59

attractive situation of having one device which is & syntactic parser
and a syntactic formulator at the same time.

+In this paper an overview of Kempen's psycho-linguistic work is
presented by Drolet. The text is based primarily on Kempen, 1981,
1984 and Kempen and Hoenkamp, forthcoming.

Notes

1. 1n various other papers we have worked out further details on the
basis of new experimental psycholinguistic evidence (Kempen &
Huijbers, 1983; van Wijk & Kempen, 1984b). We have also considered
the problem of how intonation contours become woven into an utterance.
Van Wijk & Kempen (1984a) argue that the morpho-phonological stage has
an important role to play there and describe the computational system
they developed for automatically generating Dutch intonation contours
for syntactic structures delivered by the lexico-syntactic stage.

2. Apparently there exist (conceptualizing & monitoring?) processes
having the authority to interrupt ongoing speech production activity
at any point in time (cf. van Wijk & Kempen, 1984b, for some
supporting experimental evidence).

References

Bresnan, J., ed. (1982). The Mental Representation of Grammatical
Relations. Cambridge: MIT Press.

Cole, P., Sadock, J., eds. (1977). "Grammatical relations". In Syntax
and Semantics, Vol. 8, New York: Academic Press.

Dik, S.C. (1978). Functional Grammar, Amsterdam: North-Holland.

Fodor, J., Bever, T., Garrett, M. (1974). The Psychology of Language,
New York: McGraw-Hill.

Fromkin, V. (1971), "The - non-anomalous nature of anomalous
utterances". In Language, 47, pp. 27-52.

Garrett, M. (1975). "“The analysis of sentence production”. In G.
Bower, ed., The Psychology of Learning and Motivation, Vol. 9,
New York: Academic Press.

Garrett, M. (1980). "Levels of processing in sentence production”.
In Butterworth, B., ed., Language Production (Vol. 1 Speech and
Talk), New York: Academic Press.

Goldman-Eisler, F. (1968). Psycholinguistics: Experiments in
Spontaneous Speech, New York: Academic Press.

60

Kay, M. (1984). '"Functional unification grammar: A formalism for
machine translation”. In Proceedings of COLING84, Stanford.

Kean, M-L. (1977). "The linguistic interpretation of aphasic
syndromes: Agrammatism in Broca's aphasia, an example"”. 1In
Cognition, 5, pp. 9-46.

Kean, M-L. (1979). "“Agrammatism: A phonological deficit?" In
Cognition, 7, pp. 69-83.

Kempen, G. (1977a). "Conceptualizing and formulating in sentence
production”. In S. Rosenberg, ed., Sentence Production:
Developments in Research and Theory, Hillsdale, N.J.: Lavrence
Erlbaum Associates. .

Kempen, G. (1977b). Onder Woorden Brengen. Psychologische Aspekten
van Expressief Taalgebruik. (Inaugurale rede.) Groningen:
Wolters-Noordhoff. :

Kempen, G. (1978). '"Sentence construction by a psychologically
plausible formulator". ‘In R.N. Campbell, P.T. Smith, eds.,
Recent Advances in the Psychology of Language. Formal and
Experimental Approaches, New York: Plenum Press.

Kempen, G. (1981). 'De architektuur van het spreken'". In Tijdschrift
voor Taal- en Tekstwetenschap, 1981, 1, pp. 110-123.

Kempen, G. (1984). "Inleiding"”. In Kempen, G. and Sprangers, C.,
eds., Kennis, Mens en Computers, Lisse: Swets & Zeiglinger.

Kempen, G., Hoenkamp, P. (1982). "Incremental sentence production:
Implications for the structure of a syntactic processor". In
Proceedings of the Ninth International Conference on

Computational Linguistics, Prague.

Kempen, G. Hoenkamp, P. (forthcoming). "An Incremental Procedural
Grammar for Sentence Formulation".

Kempen, G., Huijbers, P. (1983). "The lexicalization process in
sentence production and naming: Indirect election of words". 1In
Cognition, 1l4.

Kolk, H., van Grunsven, H., Keyser, A. (in press). '"On parallelism in
agrammatism: A case study". In M-L. Kean, ed., Agrammatism, New
York: Academic Press.

Levelt, W.J.M. (1983). "Monitoring and self-repair in speech". In
Cognition, 14, pp. 41-104.

Mann, W. (1982). "Text generation". In American Journal of
Computational Linguistics, 8, pp. 62-69.

61

Seymour, P.H.K. (1979). Human Visual Cognition, London: Collier
MacMillan.

van Wijk, C., Kempen, G. (1984a). "From sentence structure to
intonation contour: An algorithm for computing intonation
contours on the basis of sentence accents and syntactic

structure”. In B.S. Mueller, ed., Sprachsynthese, Hildesheim:
Olms.

van Wijk, C., Kempen, G. (1984b). "A dual system for producing self-

repairs in spontaneous speech. Evidence from experimentally
elicited corrections', in press.

	Seite 1
	Seite 2
	Seite 3
	Seite 4
	Seite 5
	Seite 6
	Seite 7
	Seite 8
	Seite 9
	Seite 10
	Seite 11
	Seite 12
	Seite 13
	Seite 14
	Seite 15
	Seite 16
	Seite 17
	Seite 18
	Seite 19
	Seite 20
	Seite 21
	Seite 22
	Seite 23
	Seite 24
	Seite 25

