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FIG. 1. (Color online) Schematic of a KNLC. Ein is the driving
field coupled to the cavity, E is the intracavity field, lrt is the fraction
of E that is lost per round-trip at the imperfect end mirror, and v is
the vacuum field that couples in at the end mirror. The reflected field
is denoted as R. We investigated the regime where ρc < ρend � 1.

numerical calculations have a great potential to easily model
and to understand experimental results, e.g., those reported in
Ref. [9].

In the following, the noise distribution in phase space is
analyzed for a quantum-noise-limited driving field as well as
for a field that shows (unbalanced and possibly correlated)
classical noise in its amplitude and phase quadratures. In both
cases, several values for the internal cavity loss are considered,
and for certain operating points, the noise transformation is
illustrated by the corresponding Wigner functions [19]. We
focus on the noise reduction in the amplitude quadrature
of the mean field that is reflected off the KNLC. This
is essential in view of a potential passive purely optical
reduction of laser-power noise. We show that the presence
of intracavity loss strongly influences the phase-space rotation
and, thus, the quadrature yielding the optimal noise reduction.
Additionally, we show that, even for a driving field with
an unbalanced (classical) noise distribution in its amplitude
and phase quadratures, strong noise reductions, even below
quantum noise, can be achieved. As already shown by Collet
and Walls [3], for a quantum-noise-limited driving field, the
lossless KNLC needs to be operated at its critical point in
order to obtain optimal squeezing (noise reduction) in the
amplitude quadrature of the reflected mean field. We show
that this condition still holds for a driving field that exhibits
classical noise in both amplitude and phase quadratures. In the
presence of intracavity loss, however, amplitude-quadrature
noise reduction can be obtained with a critical KNLC only if
operated with a detuning aside from the critical point.

II. CALCULATION OF THE LIGHT FIELDS

The nonlinear nature of a KNLC becomes evident by
looking at the analytic expression for the monochromatic
steady-state intracavity field (for zero loss) as given by

E = iτc

1 − ρcρend exp[2i(� + θ |E|2)]
Ein. (1)

Here, ρc (τc) and ρend (τend) are the amplitude reflectance
(transmittance) factors of the coupling and end mirror, re-
spectively. � denotes the geometric detuning with respect
to the carrier light frequency ω0. Furthermore, θ |E|2 is the
intensity-dependent phase shift induced by the optical Kerr
effect. In the variable θ , the nonlinear refraction index n2, the
length of the Kerr medium LKM, the cross-sectional area A of
the light field, the speed of light c, and the carrier frequency
ω0 are included according to [5]

θ = n2ω0LKM

2Ac
. (2)
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FIG. 2. (Color online) Normalized intracavity power (left) and
phase (right) without Kerr effect (black dotted curves), the so-called
critical state (red solid curves) with its critical point of infinite slope
(highlighted by the red circles), and a multistable state (blue dashed
curves) of the KNLC with half-bandwidth γ .

Figure 2 shows the intracavity power P = |E|2 depending
on the (static) cavity detuning � for three cases: the linear
case with θ = 0 (black dotted curve), the so-called critical
state with θ = θcrit (red solid curve), and a multistable
case with θ = 2θcrit (blue dashed curve). Because Eq. (1)
is a transcendental (implicit) equation, it has been solved
numerically. Figure 2 reveals that the critical state and the
multistable state exhibit particular operating points at which
the resonance curve shows an infinite slope. In the critical state,
the infinite slope occurs at the critical operating point (OP)
OPcrit (highlighted by the red circles) and in the multistable
state at the two turning points of the resonance curve. As shown
in Refs. [3] and [13], these operating points are favorable in
view of achieving high squeezing-factors. However, since in
the multistable case, perfect squeezing is not obtained in the
amplitude quadrature of the reflected field, we restrict our
investigations to the critical state.

In order to model noisy optical fields reflected off the KNLC
in the time domain, it is necessary to evaluate the light fields
(and their interference) after each round-trip. Because we are
interested in the noise transfer of a KNLC set to a certain
operating point, we assume a static detuning of the cavity, i.e.,
�(t) = � = constant. Following this line, the internal field
reads

E(ntrt) = iτcEin(ntrt) + Ert[(n − 1)trt]. (3)

Here,

Ert[(n − 1)trt] = ρendρc exp{2i� + 2iθ |E[(n − 1)trt]|2}
×E[(n − 1)trt] (4)

describes the field after one round-trip. The nonlinearity of
our approach at this stage is evident due to the exponential
function in Eq. (4) depending on the field intensity |E|2. The
round-trip time in a cavity of length L is

trt = 2L

c
. (5)

The reflected field is then given by

R(ntrt) = ρcEin(ntrt) + iτcE(ntrt). (6)

The time dependence of the input field can be described by

Ein(t) = Ein + δE(t)in, with δEin(t) = 0. (7)
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If the mean field Ein is set to be real, Eq. (7) can be written as

Ein(t) = E0 + δX1(t) + iδX2(t), (8)

giving a real-valued phase-space description of the input
laser field with δX1(t) and δX2(t) being the fluctuations in
its amplitude (X1) and phase quadratures (X2), respectively.
Then, the same description does apply to the reflected field
after n round-trips according to Eq. (6) and its converged value
for n ⇒ ∞.

Eventually, the cavity-reflected fluctuating fields of our
converged time-domain simulations need to be expressed as
normalized noise spectral densities in order to allow for a
comparison with experimental data. For this reason, we apply
a fast Fourier transformation (FFT) to the reflected field and
normalize the result such that, for a zero Kerr effect, the
vacuum noise of a coherent input field transforms into a
noise spectral density of magnitude unity (0 dB) with a white
spectrum.

In the following, we describe our time-domain simulation
in more detail. We also describe the transfer functions we used
to calculate the noise spectral densities for other than vacuum-
noise input, i.e., for classical noise inputs with unbalanced,
possibly correlated, fluctuations in the amplitude and phase
quadratures. With respect to the transfer functions, we restrict
ourselves to the regime where the noise amplitude is much
smaller than the driving field amplitude, i.e., to the regime
where a linearized approximation is valid. For all results
presented here, a fluctuation at a certain Fourier frequency
is always transformed into output noise at the same single
frequency, since the Fourier transformation does not show any
additional frequency components. Note that we indeed have
observed additional frequency components for parameters
outside the regime presented in this paper.

We consider an amplitude-modulated input field by setting
Eq. (8) to

Ein = Eam(t) = E0 + x1 cos(	t), (9)

and accordingly to

Ein = Epm(t) = E0 + ix2 cos(	t) (10)

for a phase-modulated field. Here, 	 is the angular Fourier
frequency and x1 and x2 are real-valued scaling factors with
|x1|,|x2| � |E0|. The FFT (we have used FFTW3 [20]) of
the reflected field R(ntrt) provides the relative amplitudes of
upper and lower sidebands at positive and negative frequencies
R(±	), respectively. The phases of upper and lower sidebands
determine whether an input amplitude modulation is trans-
ferred to an output amplitude or a phase modulation. The full
coupling can be described by four coefficients Tij ,

T11 = [R∗
am(−	) + Ram(	)]/(2x1), (11)

T12 = [R∗
pm(−	) + Rpm(	)]/(2x2), (12)

T21 = {i[R∗
am(−	) − Ram(	)]}/(2x1), (13)

T22 = {i[R∗
pm(−	) − Rpm(	)]}/(2x2). (14)

These coefficients can be written as a 2 × 2 matrix T(	),
which is commonly referred to as the (linearized) input-output

transfer function. The spectral density matrix (covariance
matrix) reads

S(T) = 1
2

(T · T† + T∗ · TT). (15)

The diagonal components of the 2 × 2 matrix S correspond
to the normalized power spectral densities of the field’s
amplitude (X1) and phase (X2) quadrature amplitudes. Off-
diagonal components are due to correlations between the two
quadratures. From this matrix, the spectral density of any
measured linear combination Xζ = cos(ζ )X1 + sin(ζ )X2 can
be evaluated as

Sζ = (cos ζ sin ζ ) · S(T) ·
(

cos ζ

sin ζ

)
, (16)

where ζ denotes the homodyning angle. If the noise trans-
formation is considered for other than the reference vacuum
input, the matrix T needs to be replaced by

T′ = T ·
(

cos ϑ − sin ϑ

sin ϑ cos ϑ

)
·
(

exp(2r1) 0
0 exp(2r2)

)
. (17)

The matrix on the right is the general squeezing matrix with
(r1 + r2) � 0 due to Heisenberg’s uncertainty relation. Values
r1,2 < 0 correspond to a noise level below vacuum noise
(squeezed), and r1,2 > 0 correspond to a noise level above
vacuum noise (antisqueezed), respectively. The matrix on the
left describes a rotation of the squeezing (noise) ellipse in
phase space, i.e., the squeezed quadrature is determined by the
squeezing angle ϑ . In order to constitute a driving field that
exhibits stationary classical noise (such as thermal noise) in
its amplitude and phase quadratures, both r1 and r2 need to
be greater than zero. For an extensive overview of this linear
transfer function formalism, we refer to Ref. [21].

In addition to quantum noise and classical driving noise that
enters the KNLC through the coupling mirror, vacuum-noise
contributions due to intracavity loss also need to be considered,
and the corresponding input-output relation (denoted as L
in the following) needs to be derived. For simplicity, we map
the cavity round-trip loss lrt onto the end-mirror amplitude
transmissivity τend = lrt. Hence, similar to the derivation
of the input-output relation T, we consider the transfer function
for the following light fields:

vam(t) = x1 cos(	t), (18)
vpm(t) = ix2 cos(	t), (19)

that couple in at the end mirror. The beat with the driving field
is described by setting Ein(t) to E0, and the time-dependent
loss-driven amplitude modulation inside the cavity then reads

Eam(ntrt) = iτendvam(t) + iτcE0 exp{i�opt[(n − 1)trt]}
+Ert,am[(n − 1)trt]. (20)

The contribution to the overall noise is given by the KNLC
transmitted part, which reads

T (ntrt) = iτcEam(ntrt) exp{�opt[(n − 1)trt]}. (21)

In analogy to Eqs. (11)–(14), the coefficients of the input-
output transfer function L(	) are determined from the FFT
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FIG. 4. (Color online) (Top) Amplitude-quadrature noise spectra
of the KNLC as shown in Fig. 3 but for an input field with a classical
and unbalanced noise distribution in quadrature phase space. The
noise power in the Xϑ quadrature and in the Xϑ+90◦ quadrature is
set to 20 and 10 dB, respectively, above shot noise. The quadrature
angle ϑ is set to 40◦. (Middle, bottom) The frequency-dependent
quadrature angle yielding the lowest noise level. The middle graph
shows a zoom of the bottom graph to make the origin of the dips
in the spectra obtained for ηesc 	= 1 more obvious (see text). At low
frequencies, this quadrature angle is almost the same as in Fig. 3. At
frequencies far above the half-bandwidth γ , the squeezing factors are
comparatively small, but the initial noise distribution is still rotated
in phase space due to the detuned KNLC.

Thus, an optimization with regard to the noise reduction
at low frequencies is favorable. We investigate the noise
transformation for eight OPs at certain frequencies (	 = 0.1γ

and 	 = γ , where γ is the KNLC’s half-bandwidth). The
considered OPs lie on the steep resonance slope of the KNLC
as illustrated in the left graph of Fig. 5. They correspond to
0.25–0.95 of the intracavity power Pres that is achieved on
resonance. In all cases, the critical point relates to OP6,crit
yielding an intracavity power of 0.75Pres [22].

Generally, the modulation state of a light field at Fourier
frequency 	 is fully characterized by its quasiprobability
distribution in the quadrature-amplitude phase space—the
so-called Wigner function. Plotted for several OPs, the Wigner
function nicely illustrates the different noise transformations
possible for a KNLC. Within the linearized approximation,
Gaussian input noise is generally transformed into noise, again,
with Gaussian statistics. For such states, the corresponding
Wigner function is determined by the maximal and minimal
noise levels (in the two orthogonal quadratures) and the
orientation of the noise ellipse in phase space. One obtains

W = 1
π

exp
[ − x2

1,ϑ exp(2r1) − x2
2,ϑ exp(2r2)

]
, (24)
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FIG. 5. (Color online) (Left) The graph shows eight OPs on
the steep resonance slope of a critical KNLC. The operating point
OP6,crit is the critical point. For all OPs, the noise transformations are
investigated in phase space at sideband frequencies corresponding
to 0.1γ and γ , respectively. (Right) The graph shows the Wigner
function of a vacuum state providing a reference for our analysis. Note
that all modulation fields at sideband frequencies of a monochromatic
coherent-state carrier field are, per definition, in a vacuum state. The
X1 axis corresponds to the amplitude quadrature of the carrier field,
and the X2 axis corresponds to its phase quadrature, respectively.

with

x1,ϑ = x1 cos ϑ − x2 sin ϑ, (25)
x2,ϑ = x1 sin ϑ + x2 cos ϑ. (26)

The factors exp(2r1,2) account for a squeezed (r1,2 < 0) or an
antisqueezed noise (r1,2 > 0). For r1,2 = 0, one obtains the
Wigner function of a vacuum state as shown in the right graph
of Fig. 5. The Wigner function of a pure 10-dB amplitude-
squeezed state is determined by r1 = ln(0.1)/2, r2 = ln(10)/2,
and ϑ = 0.

We note that Kitagawa and Yamamoto [1] and Reynaud
et al. [13] showed that non-Gaussian Wigner functions can be
obtained for strong Kerr nonlinearities at zero frequency. In
the frequency and Kerr nonlinearity regime investigated here,
nonlinear transfer functions and, thus, non-Gaussian Wigner
functions would also occur, but only for strongly mixed input
states with a corresponding quadrature noise many orders of
magnitude above shot noise. The result would be a mixed
non-Gaussian state with an entirely positive Wigner function.
In this paper, however, we apply our model to the regime where
the noise amplitude is much smaller than the amplitude of the
mean-driving field. For every calculation, we have verified
that the transfer functions and, thus, the noise transformation
are indeed linear, thus, the approximation of Gaussian Wigner
functions is appropriate.

Figures 6 and 7 show the noise transformation of a shot-
noise-limited driving field at two different Fourier frequencies
	 = 0.1γ and 	 = γ , respectively. For both cases, we
considered three values for the escape efficiency (ηesc = 1,
0.9, and 0.75). The left nine tiles of Fig. 6 (	 = 0.1γ )
and Fig. 7 (	 = γ ) show the Wigner functions obtained for
ηesc = 1. One can see that the squeezed quadrature (e.g., the
semiminor axis of the noise ellipse) rotates toward the X1
quadrature when approaching the critical point OP6,crit. When
the intracavity power is further increased (OP7 and OP8), it
rotates in the opposite direction back toward the X2 quadrature.
For 	 = 0.1γ (Fig. 6, left) being well inside the bandwidth of
the KNLC, the squeezed quadrature matches the X1 quadrature
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FIG. 6. (Color online) Noise transformations of a (pure) vacuum input state at sideband frequency 	 = 0.1γ for several OPs of the KNLC
in terms of Wigner functions. Note that every Wigner function is normalized to its maximum. By that, the size of the colored area increases with
the mixedness of the state. For every Wigner function, the angle and the vacuum-normalized variance of the state’s lowest noise quadrature is
given. (Left) ηesc = 1 (lossless). At OP6,crit, the squeezed quadrature matches the amplitude quadrature. (Middle) ηesc = 0.9. The loss changes
the phase-space rotation such that the squeezed quadrature matches the X1 quadrature at two OPs, one close to OP4 and another close to
OP8. (Right) ηesc = 0.75. Again, the squeezed quadrature matches the X1 quadrature at OPs that depart from the critical point OP6,crit. The
high-optical loss leads to strongly mixed states.

at the critical point (OP6,crit). Considering 	 = γ (Fig 7, left),
the squeezed quadrature only approximates the X1 quadrature
at OP6,crit. This can be explained by the phase-space rotation
caused by a detuned cavity at higher frequencies.

The Wigner functions obtained for ηesc < 1 (middle and
right blocks of Figs. 6 and 7) show a qualitatively different
behavior of the phase-space rotation. The first essential
difference is that, for 	 = 0.1γ in all considered cases, the
squeezed quadrature does not match the X1 quadrature if the
KNLC is operated at its critical point. Again, this fact explains
the enhanced noise at low frequencies in the corresponding
spectra (refer to Fig. 3). The second difference is that the
squeezed quadrature oversteps the X1 quadrature at a certain
OP and starts to rotate back again at OPs corresponding to
higher intracavity powers. That means the semiminor axis

of the noise ellipse coincides with the X1 quadrature at two
OPs that both depart from the critical point. Both potentially
yield a purely optical reduction of laser-power noise or a
bright amplitude-squeezed state, respectively. Furthermore,
from the comparison of the Wigner functions for 	 = 0.1γ

and 	 = γ , one can deduce that the squeezing level, or more
generally, the noise reduction, can be optimized for a certain
frequency by a proper choice of OP. Looking at the left block
of Fig. 6, the squeezed quadrature optimally approximates
the X1 quadrature at a frequency of 	 = 0.1γ if the KNLC
is operated at OP6,crit. In contrast, for 	 = γ (left graph of
Fig. 6), the best approach is obviously obtained at an OP being
close to OP5.

Figure 8 illustrates the noise transformation of a driving
field showing significant classical noise, i.e., being in a highly

FIG. 7. (Color online) Noise transformations for 	 = γ . (Left) ηesc = 1 (lossless). Due to the cavity dispersion at high frequencies, no OP
yields amplitude-quadrature squeezing. (Middle) ηesc = 0.9. In contrast to the lossless case, there still exist two OPs at which the squeezed
quadrature matches the X1 quadrature (one close to OP3 and another close to OP6,crit). (Right) ηesc = 0.75. Due to the high-optical loss,
the squeezing is strongly degraded. At OPs close to OP2 and OP8, the achievable amplitude-quadrature squeezing is about 3 and 4.9 dB,
respectively.
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FIG. 8. (Color online) Transformations of a driving field (upper
left graph) with an unbalanced noise distribution in phase space. The
semimajor axis of the input-noise ellipse corresponds to a noise level
of 20 dB above the shot-noise reference, the semiminor axis to 10 dB
above shot noise. Again, for every Wigner function, the angle and the
vacuum-normalized variance of the state’s lowest noise quadrature
are given. The KNLC has an escape efficiency of η = 0.90. The
considered frequency is 	 = 0.1γ .

mixed state. This field is constituted just as in the previous
section (refer to Fig. 4). The KNLC has an escape efficiency
of ηesc = 0.9. The frequency considered is 	 = 0.1γ . Again,
it can be deduced that there exist two OPs (one close to OP4
and another close to OP8) that yield a noise reduction in the X1
quadrature of the reflected mean field. Although the driving
field exhibits considerable classical noise, a reduction even
below shot noise can be achieved. From the comparison with
the middle plot of Fig. 6, one can deduce that the orientation
of the input field’s noise ellipse has a significant influence
on the squeezed quadrature of the transformed noise but
only at OPs corresponding to intracavity powers smaller than
0.5Pres. For higher intracavity powers (OP4 to OP8) where
the (anti)squeezing levels increase, the squeezed quadrature
can be found to be almost the same as in the case of a
shot-noise-limited driving field.

V. OPTIMIZATION IN THE CASE OF LOSS

From the phase-space representation of the noise transfor-
mation (Figs. 6 and 7), we also found that a critical KNLC
with internal loss can yield a noise reduction in the amplitude
quadrature of the reflected mean field if the OP is chosen
properly. By the choice of OP, the noise reduction can be
optimized at a certain frequency. Here, we focus on low-
sideband frequencies being below the cavity half-linewidth
γ . This regime is of great importance since passive filtering
with standard optical cavities can provide a noise reduction
only at frequencies above the cavity half-linewidth. Remember
that there are two potential OPs yielding a noise reduction
at low frequencies. We found that the OP that corresponds
to higher intracavity powers yields slightly better noise
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FIG. 9. (Color online) (Top) Amplitude-quadrature noise spectra
for a shot-noise-limited input field reflected off the KNLC, which
is operated at the optimum operation points, respectively, in order
to provide maximum squeezing levels for different intracavity loss
values. The squeezing levels approach the value 10 log10(1 − ηesc) at
low frequencies. (Bottom) Frequency dependence of the squeezing
angle (quadrature angle of lowest noise). The OPs are chosen such
that this angle is zero at low frequencies in all cases.

reduction. The spectra obtained at the respective optimized
OP for a shot-noise-limited driving field are shown in Fig. 9.
The lower graph shows the frequency dependence of the
quadrature angle yielding the lowest noise. As intended, at low
frequencies, it coincides with the amplitude quadrature of the
reflected mean field. The achieved squeezing levels (top graph)
are solely limited by the intracavity loss and approximate
the value 10 log10(1 − ηesc) at low frequencies. Although the
optimized OPs depart from the critical point, the degradation
of the squeezing level is solely caused by the vacuum-noise
contribution corresponding to the optical loss.

Similarly, we consider the optimization for the input field
showing classical noise as already considered for Figs. 4
and 8. The resulting spectra are shown in Fig. 10. Despite
significant driving noise, considerable squeezing levels can
still be achieved at low frequencies. In the presence of optical
loss, the squeezing level at low frequencies is still limited
to a value of 10 log10(1 − ηesc), i.e., classical noise of the
driving field does not limit the squeezing but its bandwidth.
In view of a purely optical passive reduction of laser-power
noise in the classical regime, a considerable reduction at low
frequencies is always possible, independent of the input field’s
noise distribution.

VI. COMPARISON WITH EXPERIMENTAL DATA

Finally, we model the KNLC that was used in Ref. [9]
for a passive purely optical reduction of laser-power noise.
Its coupling mirror power reflectance was Rc = 0.983. The
intracavity round-trip loss was estimated to 0.5% resulting
in an escape efficiency of ηesc ≈ 0.77. The KNLC’s half-
bandwidth was about γ ≈ 2π × 4.5 MHz. The pump beam
was guided through a mode-cleaner ring cavity acting as
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FIG. 10. (Color online) Amplitude-quadrature noise spectra with
optimized noise reduction as in Fig. 9 but here, for the input field
previously considered in Figs. 4 and 8.

a spatial and low-pass filter (refer to Fig. 2 in Ref. [9]).
The filtered beam had a power of about 750 mW and was
coupled to the KNLC. In Ref. [9], it was shown that, for
this input power, the KNLC was very close to its critical
state. The reflected beam was guided through the mode
cleaner a second time and eventually was detected with a
photodiode realizing a measurement of the reflected mean
field’s amplitude-quadrature noise.

In order to model the experimental situation of Ref. [9],
first, the characteristics of the input field need to be taken into
account. Thus, we have performed a spectral analysis of the
power noise of a free-running Nd:YAG laser identical to that
used in Ref. [9]. Additionally, we performed a tomographic
noise analysis at the frequency of the laser’s relaxation oscil-
lation using a balanced homodyne detector. The tomography
has revealed that the semimajor axis of the reconstructed noise
ellipse deviates by roughly ϑ = 10◦ from the mean field’s
amplitude quadrature (i.e., Xϑ−10◦ = X1). Furthermore, the
noise level in the Xϑ+90◦ quadrature corresponding to the
semiminor axis of the noise ellipse has been found to be
about 33 dB below the level in the Xϑ quadrature. In our
noise model, we use the appropriately scaled power-noise
measurement as a description of the noise spectrum in the
Xϑ quadrature. Also, in accordance with measurement results,
we approximated the noise in the Xϑ+90◦ quadrature by a cavity
pole function having a 1/f 2 scaling above the laser relaxation
oscillation. Furthermore, the orientation of the noise ellipse in
phase space is assumed to be ϑ = 10◦ for all frequencies. In
order to account for the mode cleaner in the experimental setup,
the input-noise data are multiplied by a another pole function
describing the mode cleaner’s low-pass behavior before the
transformation introduced by the KNLC is calculated.

Second, we have verified that the assumption of a linear
noise transformation is still appropriate for the power and
frequency regimes investigated in Ref. [9]. Although the
noise level in the Xϑ quadrature of the driving field is
at the laser relaxation oscillation frequency several orders
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FIG. 11. (Color online) Comparison of our modeled (top) with
the measured noise-reduction spectra (bottom) obtained in Ref. [9]
for different operation points of the KNLC, normalized to the peak
input noise. Our model assumes an additional intracavity 1/f phase
noise in order to achieve the qualitative agreement shown. The gray
curve in the top graph is obtained instead of the magenta curve if no
additional phase noise is considered.

above shot noise, our time-domain simulation does not show
any harmonic frequencies. Instead, we find that, for the
modeled critical KNLC (Pin = 750 mW, ηesc = 0.77, γ =
2π × 4.5 MHz), the nonlinear property of the transfer function
in the frequency regime above 	 = 0.1γ only becomes
significant for input-noise levels 5 orders of magnitude above
the experimentally found peak value. Finally, the field reflected
off the critical KNLC is multiplied by the pole function
and is attenuated to about 150 mW in order to model the
mode-cleaner low-pass filtering and the photoelectric detection
scheme, respectively, used in Ref. [9].

Figure 11 compares the modeled X1-noise-reduction spec-
tra (top) with the experimental results (bottom). As in
Ref. [9], seven exemplary OPs are considered. They are
chosen with respect to the noise reduction at the laser’s
relaxation oscillation frequency. As already stated in Ref. [9],
the experimental noise-reduction spectra show additional noise
in the midfrequency range. We have verified that this noise is
not due to the Kerr effect since it also appears when the Kerr
effect is switched off by rotating the light’s polarization by
90◦. Presumably, this excess noise is thermally driven (e.g., by
thermorefractive noise [23]) as the intracavity powers reached
values on the order of 100 W at a waist size of about 30 μm.
In our model, we assume an intracavity 1/f phase noise that
scales with the square of the intracavity power. The strength
of this phase noise is fitted such that the magenta curve is
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obtained from the spectrum yielding the best noise reduction
(gray curve in Fig. 11). This phase-noise model is used for all
other curves. Doing so, it is possible to model noise-reduction
spectra being in excellent agreement with the experimental
results.

VII. SUMMARY

We have theoretically investigated the noise transformation
of a critical KNLC based on a rigorous treatment in a
time-domain simulation. Eventually, we have aimed at the
modeling of the passive laser noise reduction with such
a cavity, as observed in Ref. [9]. The comparison of our
modeled laser-power noise-reduction spectra showed excellent
agreement with the experimental results of the work mentioned
when adding a 1/f excess phase noise. Our model revealed
that the knowledge of both, the optical loss inside the KNLC
as well as the phase-space distribution of the input laser
noise are crucial for a correct description. In our time-domain
simulation of the experimental data of Ref. [9], we have not
observed the transformation of input noise to other frequencies,
i.e., linearized equations would have been equally valid.
We, therefore, restricted our entire theoretical analysis on
the influence of optical loss and input-noise phase-space
distribution presented here to the regime of linear transfer
functions. Our analysis has shown that a KNLC is generally
able to provide a noise reduction beyond shot noise, even

in the presence of optical intracavity loss and classical
driving noise. We have found that the noise reduction in
the amplitude quadrature of the reflected mean field can be
optimized by the choice of the KNLC operating point. The
noise-reduction level at frequencies much smaller than the
KNLC’s half-bandwidth γ has not been found to be limited by
the noise of the driving field but solely by the intracavity loss.
The bandwidth in which significant squeezing levels can be
achieved, however, has turned out to be limited by the amount
of classical noise carried by the driving field. We believe that
the presented investigations and our numerical model have a
high potential to estimate parameters required in existing and
future experiments aiming at a purely optical reduction of laser
noise or at the squeezing of quantum noise based on a KNLC.
A future experiment with considerably stronger driving noise
than present in Ref. [9] may show whether our approach also
is able to correctly model nonlinear transfer functions and the
generation of non-Gaussian noise through a critical KNLC.
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