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Abstract
Language acquisition involves learning nonadjacent dependen-
cies that can obtain between words in a sentence. Several arti-
ficial grammar learning studies have shown that the ability of
adults and children to detect dependencies between A and B
in frames AXB is influenced by the amount of variation in the
X element. This paper presents a model of statistical learning
which displays similar behavior on this task and generalizes
in a human-like way. The model was also used to predict hu-
man behavior for increased distance and more variation in de-
pendencies. We compare our model-based approach with the
standard invariance account of the variability effect.
Keywords: Language acquisition; statistical learning; vari-
ability; nonlocal dependencies; liquid-state machines.

Introduction
Language is more than a collection of linear sequences of
words that are independent of each other. Dependencies can
obtain between immediately adjacent words or, nonlocally,
between words at a distance. Hence, language acquisition in-
volves learning which nonadjacent dependencies are syntacti-
cally required to form grammatical sentences. For brevity, we
call a sequence of words in which the final element depends
on the identity of the initial element a frame. Frames are quite
common in natural language. In tense morphology, for exam-
ple, inflectional morphemes depend on the subject auxiliary
as in ‘X is VERB-ing Y’. The content of the category VERB
is highly variable, whereas the frame itself is rigid and highly
frequent. Furthermore, nonlocal dependencies are created by
noun-verb number agreement, e.g., in ‘the Xs on the table are
Y’ where dependent elements (plural marker and auxiliary)
can be separated by prepositional phrases or relative clauses.
It has also been argued that frequent three-word frames such
as ‘You X it’ may enable children to induce word categories
X and thus solve the bootstrapping problem (Mintz, 2003), in
particular if frame elements are function words (Leibbrandt
& Powers, 2010). In all these examples, patterns of highly
invariant nonadjacent words are separated by highly variable
lexical material (fillers).

Within the artificial grammar learning paradigm (AGL),
several recent studies have investigated how the learning of
nonadjacent dependencies is modulated by the amount of
variation in the middle slot (Gómez, 2002; Gómez & Maye,
2005; Onnis, Christiansen, Chater, & Gómez, 2003; Onnis,
Monaghan, Christiansen, & Chater, 2004). These studies
found a so-called variability effect for adults and children,
and across modalities. In Onnis et al. (2003), for instance,
adult subjects were exposed to 432 word strings of the form
AiX jBi where i ∈ {1,2,3} and X j was drawn from sets of var-
ious sizes (1, 2, 6, 12, or 24). Subsequently, subjects had
to judge the grammaticality of strings that were in the train-
ing set (e.g., A1X4B1) and of strings in which dependencies

were violated in that the final element did not match the ini-
tial element (e.g., A2X9B3). The results of this experiment
are depicted in Figure 1. In conditions of high variability (12
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Figure 1: The variability effect in learning nonadjacent de-
pendencies (data reproduced from Onnis et al. 2003).

and 24), dependency learning was significantly better than for
medium variability (6). The highest accuracy was observed
when there was no variation in the middle element. Manipu-
lating the amount of variability in the fillers thus resulted in a
U-shaped behavioral pattern.

The experiment was designed to exclude surface distribu-
tional properties as explanatory factors. In all variability con-
ditions, for example, each A..B frame occurred the same num-
ber of times in training, ruling out a frequency-based account.
Other statistical cues such as type frequencies and forward
transitional probabilities were similarly uninformative (Fig-
ure 2). This suggests that mechanisms of statistical learning
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Figure 2: Statistical cues do not support variability effects.

which rely on frequency and basic N-gram information may
not be able to account for the learning of nonadjacent depen-
dencies. The only information that is useful in this task was
the identity of the frame initial elements, so learners had to



attend to these elements and ignore the ‘noise’ in the middle
position. But why did this strategy work better in some condi-
tions than in others? Onnis et al. (2003) argued that learners
attempt to seek invariance in the input. When variability is
high, dependencies stand out as invariant against the fillers
and get noticed. When there is no variation in fillers, fillers
stand out against the variable frames and attention focuses
on dependencies in these frames. In conditions of medium
variability, neither frames nor fillers attract special attention
leading to poorer performance. Hence, the authors explained
the U-shaped behavior by means of an attentional mechanism
that tries to detect figure-ground relationships in the input.
While this explanation works well to account for the big pic-
ture, there are some more fine-grained aspects of the data that
are left unexplained. For low variability (2), for example,
the difference in the number of frames and fillers is smaller
than for variability 6, and yet performance was better. Sec-
ondly, no significant difference between variabilities 12 and
24 was found, although the invariance account would pre-
dict that more variation in fillers should facilitate dependency
learning. Thus the postulated attentional mechanism may not
fully explain behavioral differences between conditions.

In this paper we present a statistical learning model that
replicates human performance on the dependency learning
(and generalization) task. The model suggests an alternative,
similarity-based explanation of the variability effect that does
not involve the role of attention. Differences in model behav-
ior resulted from the nature of information states induced by
the input stream. Variability in the fillers exerted two oppos-
ing forces which conspired to produce the U-shaped pattern
in a single-route mechanism. The model allowed us to make
precise, quantitative predictions when the number of frames
and the dependency distance were increased. We conclude
with a discussion of our approach.

The liquid-state framework
Liquid-state machines (LSM for short) are recurrent neural
networks which are modelled on the information process-
ing characteristics of the cerebellum (Maass, Natschläger, &
Markram, 2002). Their defining characteristic is a sparsely
and randomly connected reservoir of neuron-like units (liq-
uid) which turns a time-varying input signal into a spatio-
temporal pattern of activations (Figure 3). Recurrence in the
liquid equips the model with a working memory of past inputs
which is degrading over time. During processing the internal
liquid state is updated according to the formula

z(t +1) = σ(wliqz(t)+winx) (1)

where z(t) is the liquid state at time t, wliq is the connection
matrix of the liquid, win is the connection matrix from the
input units to the liquid, x is the current input, and σ is the
activation function of units in the liquid (in our implementa-
tion tanh). The liquid consisted of 60 units and connectivity
was set to 10%. To ensure that the liquid was state-forgetting
(Jaeger, 2001), the spectral radius of wliq was clamped to 0.9
and the matrix was scaled accordingly.
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Figure 3: Schematic representation of a liquid-state machine.

Input to the model was encoded using ten units. Each sym-
bol in the language was represented by activating five ran-
domly chosen units at the input layer. The same sparse, dis-
tributed encoding was used to represent target symbols at the
output layer. A sequence of inputs to this type of model in-
duces a diverse range of nonlinear dynamics in the liquid. In
order to compute with an LSM, a set of linear output units is
calibrated to map the internal dynamics to a stable, desired
output. Calibration (or training) can be achieved by adjust-
ing wout, the weights from the liquid to the output layer, using
multiple linear regression

wout = (StS)−1StT (2)

where S is the collection of internal states during the presen-
tation of an input sequence (and St its transpose), and T is
the matrix of targets that the model is intended to produce. In
other words, all that is required to train an LSM is to pass an
input sequence through the liquid once and to subsequently
change the read-out weights so that the sum of squared resid-
uals is minimized at the output layer. All other weights in
the model remain unchanged. Regression training boils down
to matrix inversion which is polynomial and therefore com-
putationally efficient. To avoid singularity we added a small
amount of Gaussian noise (µ = 0, σ2 = 0.001) whenever an
input pattern was presented to the model. This proved suffi-
cient to ensure that the inverse always existed.

LSMs have previously been used successfully in natu-
ral language processing tasks, e.g., in speech recognition
(Triefenbach, Jalalvand, Schrauwen, & Martens, 2011) and
next-word prediction (Tong, Bickett, Christiansen, & Cot-
trell, 2007; Frank & Čerňanský, 2008). To our knowledge,
we present the first application of these models that aims at
explaining psycholinguistic data.

Learning and generalization
The model was trained on artificial languages which were
very similar to those used in the AGL studies—three frames
A..B interspersed with X elements drawn from sets of vari-
ous sizes (1, 2, 6, 12 and 24). For each level of variability,
all grammatical strings were generated, they were concate-
nated in randomized order, and these blocks were repeatedly



presented to the model for a total of 432 strings. To mimic
the 750ms pause between items in the human experiments,
each string AXB was followed by an end-of-sentence marker
P. As in the AGL studies, the model received this training set
as one continuous input stream, i.e., without being reset be-
tween items. The test procedure slightly differed from the hu-
man task of judging the grammaticality of strings. The model
rather had to predict the next element in a test sequence, and
was evaluated on how well it predicted the dependent ele-
ments (Bs). The test set consisted of all string types that the
model had encountered in training. Individual differences in
human subjects were simulated by randomizing the sparse,
distributed input representations between model runs. This
also minimized the risk of observing behavior that was an
artefact of a particular encoding. Results were averaged over
12 model subjects as in the AGL experiments.

After training, the model was ‘well-behaved’ in that it pre-
dicted both A and X elements at chance level for each variabil-
ity condition. This indicates that the training procedure was
adequate to track adjacency information in the input. Pre-
dicting the B elements in trained items, the model displayed
a U-shaped curve which was qualitatively similar to human
subjects (Figure 4), although performance was substantially
better in high variability conditions (12 and 24) and worse
for variability 6. Overall, though, the model matched the hu-
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Figure 4: The model showed U-shaped performance similar
to humans when tested on trained strings AXB.

man data on how the learning of nonadjacent dependencies is
influenced by filler variability quite well.

Onnis et al. (2004) investigated whether there was also a
variability effect when subjects had to generalize to novel
items, being tested on strings containing fillers X that did not
occur in training. The model’s generalization capacity was
measured in a similar way, by testing on 6 strings composed
of familiar frames with novel X elements (e.g., A2X31B2). On
this task, the model again closely matched human behavior
for zero and high variability, although it did not generalize
nearly as well as humans for medium variability (Figure 5).
In both test conditions—trained and novel fillers—the model
amplified human differences between variabilities but showed
remarkable qualitative similarities with the data.
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Figure 5: U-shaped performance for strings with novel fillers
X (human data not available for variability 6 and 12).

Robustness
Neural network models are often sensitive to small changes in
parameters, initialization, and training conditions. We found
that the LSM was very consistent in its behavior. Changes in
the language encoding, liquid size, percentage connectivity,
spectral radius, and amount of noise did not essentially alter
the model’s U-shaped behavior, although, of course, perfor-
mance was closer to the human data in some settings than
in others. In similar vein, varying the total number of cy-
cles through randomized blocks of stimuli or the time-scale
of updating the liquid did not lead to a qualitative change and
neither did the absence of direct input-output channels (see
Figure 3). It was almost impossible to erase the characteris-
tic differences except when the liquid was so small that the
model did not learn to predict dependencies above 10% in
any condition. This robustness suggests that the LSM has
a strong architectural propensity to differentially respond to
relevant information depending on the amount of variation in
the input.

Model analysis
The LSM was trained by adjusting the weights from the input
and liquid to the output. Channels into the liquid or the liquid
itself were not altered. All information that was used in train-
ing was contained in the states of the liquid while the input
sequence was passed through (where a ‘state’ is a vector of
liquid-size in which each position is the activation value of
one unit in the liquid). If inputs are sufficiently similar they
cause the liquid to assume similar states and eventually get
mapped to the same output; if inputs are sufficiently dissimi-
lar the liquid separates them at the output.

To analyze the model’s learning behavior, internal states
were recorded during the input phase, a principal compo-
nents analysis was conducted, and the liquid was visualized
by projection into a two-dimensional principal subspace. Af-
ter presentation of an X element, the liquid entered a state
from which a dependent element had to be predicted (B-state
for short). For zero variability, variation in B-states derived
entirely from distinct A elements whereas in the other con-



ditions also differences in X elements added variation. As
variability increased from 1 to 24, the regions from which
identical B elements had to be predicted increased in size be-
cause distinct X elements sent the liquid into distinct states.
This steady increase in state dispersion was measured as the
average Euclidean distance of a B-state region from its cen-
troid. At the same time, increasing variation in X elements
provided more and more distinct data points in each such re-
gion. Thus, variability had two opposite effects on the in-
formation states that the model used to predict B elements.
B-state regions that mapped to identical dependencies grew
larger and simultaneously became filled more densely with
relevant training data (see Figure 6). When combined, these
two forces—dispersion and density—could explain U-shaped
performance.

Since trained B-states resulted from a continuous stream of
input sentences, and tested B-states from presenting a single
test sentence, the former always slightly deviated from the lat-
ter. In testing the model could correctly predict a dependent
element if the corresponding B-state was sufficiently close to
a B-state that the model had assumed in training. For zero
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Figure 6: B-states in training (dots) and testing (crosses), sim-
plified depiction.

variability, B-states clustered in a small region of state space
that contained many data points because there were 144 cy-
cles through the training set in this condition (Figure 6, left).
B-states in testing mostly fell into this region (and the model
made a correct prediction) due to the lack of variation in the
X element. For high variability, B-states spanned a larger re-
gion of state space, with distinct data points deriving from
all trained items with a different X element. As a conse-
quence, the training algorithm adapted the entire region to
map onto the same B element (Figure 6, right). This made
the model highly fault-tolerant for variability 24, in particu-
lar when generalizing for novel X elements. When variabil-
ity was medium (Figure 6, center), states that mapped to the
same B where scattered in isolated clusters across state space
(one for each distinct X element) and these clusters contained
less data points than in the zero variability condition. When
B-states in testing fell outside these regions, the model could
not interpolate the dependent element as in the high variabil-
ity condition, and hence accuracy was lower.

To verify that this was the correct analysis, we derived
three predictions that were then tested experimentally. For
zero variability, prediction accuracy should drop if there is

only one cycle through the training set, because now there is
only a single data point in the circular region of Figure 6 (left)
to which the model is adapted in training, and B-states in test-
ing will always slightly deviate from it. High variability con-
ditions, on the other hand, should be less affected by the num-
ber of cycles. This turned out to be true, accuracy in the zero
variability condition dropped to 0% and remained above 90%
for variability 24. Secondly, imposing a large amount of noise
on the liquid’s internal states should increase the area of B-
state regions in training and thus make the model more fault-
tolerant. In conditions of medium variability, this should im-
prove prediction success, and indeed the model reached al-
most 100% accuracy on trained items for variability 6. And
third, the model should also achieve very high accuracy when
variability is increased to 48 because the critical B-state re-
gion should become even more densely filled with training
data than for variability 24. This prediction was confirmed as
well, the model reached above 90% accuracy on both trained
and novel items when variability was increased to 48.

Apart from these factors, the choice of learning algorithm
can have a strong influence on neural network behavior. Thus,
it is possible that our results were mainly due to regression
training. To determine the role that the training regime played
in creating the observed behavior, we compared the LSM
with a feed-forward network. This network had the liquid
replaced by a non-recurrent hidden layer but was identical
otherwise. Without recurrence, this model did not implement
a working memory and hence could not predict dependent
elements above chance. Nonetheless, if regression training
played a crucial role we would also expect to witness simi-
lar U-shaped accuracy in the feed-forward network (relative
to chance level performance which was identical in all con-
ditions). We found that this was not the case; model perfor-
mance peaked for variability 6, and was lowest for variability
24. For novel items, there was a steady decline in accuracy
from zero to high variability. This control experiment sug-
gests that the effect of differences in filler variability on de-
pendency learning was caused by the properties of the liquid
and not by the training algorithm that was used.

Novel predictions
Frames in natural language can be more diverse than in the
AGL experiments, and dependencies can be separated by
more than one word. We therefore tested our model in condi-
tions of increased frame variability and dependency distance.

Increased frame variability
On the received explanation of the variability effect, learners
seek to identify invariance in the input (Onnis et al., 2003,
2004). When variability in X is high, the frames A..B stand
out as invariant against the X elements. When variability in
X is zero, the focus shifts on the variation in frame depen-
dencies. In conditions of medium variability, the number of
frames and fillers is similar, which makes it difficult for the
learner to detect dependencies and this results in lower per-
formance. To assess this account in the model, the number of



A..B frames in the language was doubled. If the invariance
account is correct, we should observe improved performance
for variabilities 1 and 2 because the frame-to-filler ratio in-
creases. For variability 6, we should observe a drop in perfor-
mance because having the same number of different frames
and fillers in the input should mask frame invariance. For
high variability 12 and 24, we should also observe a drop in
performance because the difference in the number of frames
and fillers is less distinct. Figure 7 shows the model’s learning
behavior for six frames as compared to the results of Figure 4
for three frames. For high variability (12 and 24) there was no
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Figure 7: Performance increased for medium variability when
the number of frames was doubled.

performance difference and for medium variability (6) perfor-
mance improved considerably. In the zero and low variability
conditions (1 and 2), the model performed worse than before.
Thus, the U-shaped pattern persisted when dependencies in
the language were more complex and the results indicate that
the behavior of the LSM was not in accordance with the pre-
dictions of the invariance account.

Increased dependency distance
In a third experiment, the model was used to investigate per-
formance for increased distance between nonadjacent ele-
ments. The input language consisted of ‘sentences’ AXY B,
where the filler chunks XY were again drawn from sets of
cardinalities 1, 2, 6, 12 or 24. The invariance account does
not make predictions for increased distance since it does not
specify the role of working memory in learning nonlocal de-
pendencies. In our model, U-shaped behavior persisted for
trained items, and to some extent also for novel filler chunks
(Figure 8). Compared to Figure 5, however, increasing the
distance led to a breakdown in generalization. A novel com-
bination of two fillers caused the model to enter regions of
state space that could not reliably be mapped to dependent
targets by the read-out units. As in the previous experiment
of increased frame variation, the most striking change over
baseline occurred for variability 6. In both these experiments,
there was more variation in B-states resulting from either
more frames or fillers in the input language. This variation
helped the model to better predict dependencies for variabil-
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Figure 8: Learning and generalization for increased depen-
dency distance.

ity 6 in a way similar to the effect of noise in the control
condition described in the analysis section.

General discussion
Several recent AGL studies have shown that the learning
of nonadjacent dependencies is modulated by the amount
of variation in the filler elements (Gómez, 2002; Gómez &
Maye, 2005; Onnis et al., 2003, 2004). The U-shaped pattern
found in these studies can not easily be explained by recourse
to distributional properties of the language input and is dif-
ficult to reconcile with many findings indicating that the hu-
man language system is remarkably sensitive to transitional
probabilities (e.g., Saffran, Aslin, & Newport, 1996). In par-
ticular, these results pose a challenge for statistical models of
language learning that are based on exploiting adjacency or
frequency information.

To account for this data we used a liquid-state model
which is a sparsely connected, recurrent neural network that
computes over transient states. LSMs implement a working
memory to detect temporal contingencies similar to the SRN
(Elman, 1990) and they can be trained efficiently by linear
regression. This allowed us to study the model’s behavior af-
ter exposure to the same small number of training items as
in the AGL studies. The LSM was trained off-line after the
entire input sequence had been presented. One could argue
that this procedure is not faithful to the human experiments
where implicit expectations about upcoming words might be
formed during the input phase already. We have shown, how-
ever, that the training regime was not critically responsible for
the U-shaped behavior observed in the model. Nevertheless
it would be desirable to find a way of adjusting LSM read-out
units incrementally.

The liquid-state approach provides a generic neuro-com-
putational framework for sequential processing and cognitive
modelling more broadly. The liquid is general purpose and
can be used to model an indefinite number of cognitive tasks
(even in parallel). Connectivity in the liquid is not altered
during learning and hence these models make very modest as-
sumptions about the nature of mental representations. Inputs



which are sufficiently distinct are separated by the liquid, in-
puts which are sufficiently similar are mapped to similar out-
put. In such a system, differential behavior results from the
input stream filtered through the architecture of the model,
rather than the observable symbolic properties of the input it-
self. That is to say, variability in the input generates types
of statistically relevant information in the liquid, such as the
density and dispersion of information states, that are not mea-
surable in the input stream in terms of transitional probabil-
ities, N-gram frequency or the type-token ratio. The expla-
nation we propose for the variability effect is based on these
properties of information states. It is a hallmark of neural net-
work models that they represent inputs as a graded pattern of
activation distributed over a set of units. In the LSM, differ-
ences and similarities between such patterns were picked up
by the regression used to calibrate the output units. This en-
abled the model to categorize novel stimuli based on their rep-
resentational similarity with trained items. When variability
in fillers was zero, representations of test stimuli were highly
similar to those of trained items because they fell into a small
region of state space that was densely populated by train-
ing data. When variability was high, a large region of state
space was adapted to map to the same dependency in training
which again caused high similarity between trained and tested
items. For medium variability, similarity was lower because
the state space got partitioned into smaller, separate regions
and when representations of test items fell outside these re-
gions the model produced errors in predicting dependencies.

This similarity-based account differs from the invariance
account proposed in Onnis et al. (2003). Whereas the in-
variance account argues that differential learning can be ex-
plained by a mechanism of attentional shift which seeks to
find stable patterns in a noisy stream, our account is based on
similarities between information states in the learner’s work-
ing memory, induced by the training and test stimuli. What
our model suggests is that this might be a more parsimo-
nious, alternative explanation of the variability effect. Both
accounts, however, are not mutually exclusive although some
of our model predictions were not in line with the invari-
ance account. Attention as well as representations in working
memory might play a role in learning nonadjacent dependen-
cies, in particular in the implicit learning paradigm in which
all of the experimental data on the variability effect have been
gathered.

We also used the LSM to obtain novel predictions for con-
ditions in which there were more frames in the language (six
instead of three) and a larger distance between dependencies
(two fillers instead of one). We found that the model dis-
played a similar U-shaped pattern, but shifted towards lower
variabilities. The most pronounced difference occurred for
medium variability where the model’s performance improved
significantly compared to the standard condition. These pre-
cise, quantitative predictions provide a straightforward test of
whether processing in the model adequately captures the im-
plicit learning of nonadjacent dependencies in humans. In

future work we intend to assess the similarity-based, liquid-
state model account in AGL behavioral experiments.
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