
ESPRIT '84: Status Report of Ongoing Work 
J. Roukens and J.F. Renuart (Editors) 
Elsevier Science Publishers B.V. (North-Holland) 365 
© Commission of the European Communities, 1985 

INTELLIGENT WORKSTATION IN THE OFFICE 
State of the Art and future perspectives 

N. NAFFAH - BULL TRANSAC - France 

G. KEMPEN - Katholieke Oniversiteit Nijmegen - Netherlands 

J. ROHMER - BOLL Centre de Recherche - France 

L. STEELS - Vrije Universiteit Brussel - Belgium 

D. TSICHRITZIS - Crete Research Centre - Greece 

G. WHITE - INRIA - France 

The Intelligent Workstation project aims at the implementation of a 
complete office system including workstations and servers interconnec
ted through a local network. The workstation itself will have a power
ful architecture based on standard VLSI chips and will provided a 
highly interactive interface. 
On top of its distributed operating system, an office information sys
tem will be designed helping the user to realize his tasks. Natural 
language processing will be used for document elaboration and an audio 
package will provide a powerful multimedia interface. On servers, de
dicated hardware such as the SCHUSS filter will accelerate the access 
to large knowledge bases. 

INTRODUCTION 

The Intelligent Workstation will have to be supported by and give support to a 
variety of information transfer and storage facilities. These include such 
things as file and object servers, local area networks, the telephone network, 
commercial large scale computer networks and other specialized devices for data 
Capture and manipulation. 

Experience gathered with the buroviseur, created by the Kayak group, and obser
vation of other systems now being marketed in world markets has been used to 
formulate functional specifications for the next generation of office 
workstation. It is evident that the system will have to support a wide spectrum 
of tasks being performed in contemporary offices and will therefore have to have 
a wide spectrum of facilities such as i/o devices, speed, memory and the like. 

This, in turn, requires certain specific engineering specifications which, in 
the large, can be listed as follows : 

- a powerful CPU which is capable of using a large logical address space 
and high speed RAM chips and which can support a high resolution screen. 

- a large random access memory which is not too expensive but which can 
reduce the number of relatively slow accesses to secondary storage. 

- a high resolution, not too expensive, bit mapped display screen. 



366 N. Naffah et al. 

- a variety of i/o devices such as mouse, speech recognizer, speech and 
sound generator as veil as a veil designed, ergoncmic keyboard. 

- a high-speed local area network interface. 

To realize these requirements and at the same time to produce a product which is 
competitive in world markets it is desireable to integrate as many circuits as 
possible and place all the circuits required on a single board. Usage of VLSI 
for accelerating the execution of seme functions (e.g. rasterop) is envisaged. 
Those devices which are considered optional can be located on standarized 
plug-in boards. 

Seme of these aspects are discussed further in the following paragraphs. 

THE PROCESSOR 

The processor must offer the best ratio of price to performance when all factors 
are taken into account. These include the cost and complexity of the other 
supporting chips, the availability and possibilities of second-sourcing 
everything required to support this chip and the cost of producing software. At 
this time, the available candidates are the INTEL 80286 (16 bits), the 
MOTOROLA 68020 (16/32bits) and the NS 32016 (16/32 bits). 

The 80286 driven by a 8 MHZ clock is equivalent to a 16 MHz chip since a minor 
cycle uses 2 clock pulses rather than 4. Of the three chips, this is the most 
powerful. Unfortunately, to exploit this power, other complex circuitry is 
required, interlaced memory, a special memory controler chip, the 8207 and very 
fast memory (100 ns) which is presently very expensive. Furthermore its 
internal architecture is relatively weak (4 data registers and 2 index 
registers) and memory is logically segmented into 64 kbyte blocks. This implies 
instruction sequences which are more complex and longer than would otherwise be 
necessary. 

The 68010 and 32016 can be driven at 11 MHz (4 clocks per minor cycle) without 
wait states, using the more common, 120 ns RAM chips and without interlaced 
memory. The two have a similar architecture, however the 68010 has more 
registers, more addressing modes and an accelerated "loop" mode. There are 
several second sources for the 68010, including an european company (Thomson, 
beginning 1st quarter 1985) and there are presently complete evaluation cards 
and several operational systems. A 68010 driven at 11 MHz is equivalent to a 0.8 
or 0.9 Mip machine or about 4 times faster than the present buroviseur. The code 
developped on the 68010 can be run also on the downwardly compatible 68020 (32 
bits) when it appears in 1985. 

The 68020 has therefore been chosen as the target chip of choice. This should 
not be considered as absolutely final as things change very rapidly in this 
business. 

THE SCREEN 

At the present time, there is a significant price break for screens having a 
sweep rate of about 30 kHz. Below this value screens are available for about 150 
Ecu. To exploit this advantage, it is proposed to use a screen with a resolution 
limited to about 600 x 800 pixels requiring about 64 kbytes of bit-mapped 
memory. It is, however, perfectly possible to use a higher resolution screen 
with a resolution of 1024 x 768 requiring a memory of 96 kbytes for a cost of 
about 600 Ecu. The size of the screen will be 15 inches in diagonal measurement 
and be capable of generating from 50 to 60 images per second. 



Intelligent Workstation in the Office 367 

THE MEMORY 

Experience with the buroviseur has demonstrated the necessity of a large memory, 
at least 1 megabyte. Such a memory can be realized with 32 memory chips of the 
presently available 256 K x 1 bit configuration. 4 additional chips can be 
provided by replication. For simplicity, the memory will be refreshed directly 
by the CPU thus eliminating a specialized memory controller. This task will 
occupy the CPU for 80 us every 2 ms, effectively wasting 2,5 % of the available 
cycles. The memory will be able to function at 11 MHz without wait states with 
120 ns RAM and if necessary, at 12.5 MHz (1 Mip) with 100 ns RAM. 

The screen memory will be implemented with special chips, 64 or 126 Kbytes of 
Texas Inst. 4161 i.e. 8 or 16 chips. 

The 68010 can manage virtual memory. The memory management controllers presently 
available require the wasting of 1 cycle per access, therefore we propose to use 
a translation table resident in RAM with a paging mechanism operation on blocks 
of 4 kbytes. This system permits the efficient use of the entire memory space 
seen as 1 continuous block, even if it is partly discontinuous. The architecture 
of the system will permit the physical memory to achieve a size of 8 Mbytes. 

THE LOCAL AREA NETWORK 

The local area network will be of the ETHERNET type using available chips 
compatible with the selected CPU. This permits the transfer of data at a maximum 
rate of 10 Mbps. To reduce costs, a version of this system called "Cheapermet" 
is proposed. This version uses cheaper cables and standard BMC connectors to be 
used and avoids the use of the expensive couplers required by the XEROX system. 

THE DISKS 

We propose to use one integrated circuit which controls both a floppy disk and a 
Winchester (with a minimum of 10 Mbytes capacity), compatible with the CPU, 
which can also control the DMA (thus there is no need of a special 
controller). Presently there are 10 Mbytes Winchester disks available with 
average access time of 50 ms, about half that of the buroviseur disks. Other 
types of disks, such as numerical optical disks may be used by some of the 
workstations, according to their specific requirements. 

I/O MANAGEMENT 

For greater processor efficiency, we propose to use a processor to handle the 
keyboard and the mouse. 

TELEPHONE INTERFACE 

It will be based on new available circuits. 

AUDIO HARDWARE 

Specialized devices are to be used for the recognition and generation ef human 
speech and possibility for the sampling and compression of audio signals. 

EXTENSION BUS 

To facilitate the connection of peripheral devices to the buroviseur, a standard 
bus (e.g. VME) may be used. 



368 N. Naffah et al. 

THE SCHOSS FILTER 

Here we describe the basic principles, the architecture and some possible 
applications of a processor called the SCHUSS filter. The SCHOSS filter can be 
seen as a device with two inputs and one output ; the first input is the 
filtering criterion (a program) ; the second input is the data to be filtered 
(in a sequential way). The output is the data which fulfills the filter 
criterion. Under the architectural point of view the SCHUSS processor can be as 
specialized processor (in filtering) but also as a general purpose processor. 
Working as a specialized processor, it can process "on the fly" data coming frcm 
a disk where "on the fly" means at the normal disk transfer rate. Even if disks 
transfer rates are now up to 3 Mbyte/sec, SCHUSS can execute searches of 
reasonable cctnplexity in one pass. The idea is to off-load the host processor of 
search tasks and other kinds of processing. 

The SCHUSS filter was designed to work with the Buroviseur ; 

The strategy to filter data is to use automate technique as described in (Rohmer 
80 and Rohmer 81) The basic idea is to consider sequential data to be processed 
(files, messages) as a language and queries as a grammar. This technique is very 
general and allows treatment of complex data structures (flat, hierarchical and 
texts as well as numerical values). 

The SCHUSS filter is a processor. Externally it has two busses, one to access a 
memory and an I/O space (16 bits data 16 bits address), and the second one to 
get data to be filtered (8 bit data and 10 bit address). 

Internally it is a microprogrammable processor. Many of the possibilities of 
adaptation to different data formats come from this feature. The 
microinstructions have a horizontal format of 112 bit, this allows gains in 
speed, making treatments in parallel in the two ALUS. 

An instruction set is microprogrammed. For each new application, this set will 
be enriched to deal with specific problems. 

The filter installed in the Buroviseur consists of two boards 

- a processor board 
- memory and interface board 

The operating system in the Buroviseur is modified in order to offer the 
necessary entry points to establish the transfers between the host and the 
SCHUSS processor. 

A typical application for the SCHUSS filter is to accelerate the response time 
in a data base. 

Four steps are needed for a filter operation in this application. 

- a query is compiled the host, the target language is the 
instruction set of SCHUSS tailored for this application. 

- compilation results are loaded into the filter memory. This is 
the filter criterium. 

- the filter executes this program, processing data coming from a 
disk 'on the fly". Only one pass is needed. 

- the filter sends back the results of the filter operation to the 
host memory 



Intelligent Workstation in the Office 369 

The response time for a given query is almost the time to read the file from the 
disk. The time for compilation and communications is very short. 

Others applications are described in (GONZALEZ - 84) 

THE OPERATING SYSTEM 

Basic software develoment 

Basic software for the multimedia workstation should have state of the art 
distributed systems and artificial intelligence support. The problem is to 
combine both things in a single kernel. 

Our experience leads us to : 

- port an existing distributed system : CHORUS 

- modify and extend it to this project requirement 

This allows simultaneous work, as described below. 

Preliminary studies 
These studies must define the underlying software required by an artificial 
intelligence system : 

- which features could be supported at the application level ? 

- which ones should be implemented at the kernel level ? 

Sane of them may be found in existing expert systans but distribution introduces 
extra complexity and needs : distributed synchronization etc 

For all these reasons these studies will be undertaken at the very beginning of 
the project, in parallel with the first implementation of CHORUS : 

Implementat ion 

1) Transport and adaptation of an existing distributed kernel (CHORUS) 
including : 

. Installation of a developement environment (Software Factory) 
compilers and assembler, linker, source code and documentation 
management tools. 

. Adaptation of CHORUS to the new hardware (memory and CPU 
management, basic controllers, networking devices). 

. Debugging and bench marking of CHORUS. 

2) Adaptation, extension and optimization in accordance with supported software 
characteristics : 

a. Real time mechanisms ; Resource allocation strategy 
b. support of Multi Media devices : specific handlers, filter 
c. Introduction of object management primitives and distributed 

synchronization functions 



370 N. Naffah et al. 

Delivery of a configuration and generation toolkit for further extension 

Part 2 may vary, depending on other participants'experience and specifications 
(mainly point c ) . It nay also include some "system applications" as maintenance 
tools. That is why a two step transportation was choosen in order to provide as 
soon as possible a reliable operating system kernel. Part 2 realisation could 
therefore be influenced by first user's experience. 

THE INTELLIGENT OFFICE SYSTEM 

The goal of this module is to demonstrate the feasibility of a knowledge based 
Office System. Such a System can be used to embed knowledge about office 
processes and office problem solving activities. Thus, the office workstation 
becomes a truly powerful tool in the performance of office work. 

In the first year of the project, the work concentrated on the development of an 
efficient reasoning mechanisms for using this knowledge. In the following years 
of the project, the focus of research will switch from knowledge representation 
to the use of a knowledge Representations Systems (KRS) in an office 
environment : An Intelligent Office Information System will be built given the 
tools and features of the Knowledge Representation System designed and 
implemented in the first year. 

Building an Office Information System involves 3 tasks : 

1) The analysis and implementation of the structure of 
office into a working model 

2) The construction of a user model so that novices can 
use and change these structures 

3) The integration into an actual office, including 
connections to printers, mailsystem, etc. 

The first task includes the study of Office Semantics in order to develop a 
technology for the proper representation of an office and the construction of 
expert decision aids. A model of the office will be constructed, which will be 
capable of representing and reasoning about tasks and procedures in the office. 
Not only documents and forms but also concepts such as tasks, goals, procedures, 
plans office workers, their roles and responsabilities will be represented. This 
konowledge about the office will be structured in an open-ended knowledge base, 
which will allow the office workers to access and process information easily and 
will helps them in understanding their work environment better. The description 
of office tasks in terms of explicit goals and hierarchical planning trees will 
make it possible to computerize office procedures in a very flexible way. The 
system will primarity play a role in supporting the planning being done by the 
user by helping represent, manage and communicate the resulting plans. 
Once a satisfying model for Office Semantics will be found, an Integrated Office 
System will be constructed. This OIS will use the representation of the office 
in order to support various knowledge intensive office activities : 



Intelligent Workstation in the Office 371 

it serves as an information source by providing a descrip
tive framework in which to express the specifications of 
what tasks are to be done, who is responsible for doing 
them, and how they are to be done. 

it provides a terminology of describing office work in 
uniform way, 

it helps in analysing and monitoring the carrying out of 
tasks, tracking the process of execution and does sane 
of the procedural steps itself. 

it provides automatic planning and problem solving to determine 
what actions must be taken to acomplish a given goal, 

it serves a communication device for supporting interaction 
between people carrying out large, interdependent tasks 

it assists the manager in organising and scheduling 
the work within the limits of time, and the constraints 
of manpower and budget. 

it allows the office worker to access and process the 
computerised data in a very flexible way. 

Ideally, the office system is totally integrated in all the functions of the 
office : all flow and processing of information takes place through the system. 
The system constantly looks at the activity taking place and takes the 
initiative of cooperating at every possibility. 

The second task involves the design and construction of a user-model of the 
Office Information System. This model will shadow the underlying implementation 
and will provide a simple and natural interface. 

Very often users complain that interactive office systems are not flexible 
enough : flows in the initial design are difficult to correct, and when new 
demands from the users arise during the systems lifecycle, they are supported 
too late or not at all. Especially in an office environment, which is constantly 
evolving and changing, the office workers should be orovided with the ability 
and the tools for programming their workstations. We plan to support the office 
worker in this communication with the Office Information System by placing a 
high level, intelligent user interface at his disposal. For the construction of 
this 'carvnunications language1 several approaches will be investigated : 



372 N. Naffah et al. 

- Progranming by example is one the methodologies that has been proposed 
for supporting the development of office applications by non computer 
scientists. Programs are built by performing direct manipulations on 
visually presented on display, simulating the execution of the program 
on exemplary data items. Several systems have been proposed that 
provide programming facilities by means of examples : SBA 
DeJong,Zloof,77), TINKER (Lieberman, Hewitt, 80), and others. These 
different approaches will be studied and elaborated in the context of a 
knowledge-based office system. 

- Progranming by d e s c r i p t i o n s 
In this case the conversation between the user and the 
system occurs on a higher level : it is based on semantic 
terms. This means that objects are identified in terms of their 
attributes, properties or relationship with other objects. The 
communication occurs by means of a description language 
such as CMEGA (Attardi,81) or XPRT (Steels,79). 

- Graphical programming 
This means programming language which have a graphical 
syntax. E.g. programming with boxes (Cardelli,82) or 
(Knuth,79) or (Lakin,80), the use of successive menus to 
guide users etc. 

Concerning the last part of the project, our objective is to do a complete 
case-duty. An actual office will be studied. A Knowledge Based Office System 
will be designed, built and integrated into that office. Concrete experiments 
will be performed not only to see whether it is technically feasible to 
implement office knowledge, but also to test the interface with novice users and 
to see if there are any gains in the productivity and the effectiveness of the 
office. 

NATURAL LANGUAGE PROCESSING 

Desired functionality of the Author System 

This section outlines the new functions that we plan to build into the author 
system in the course of the project. This first example deals with text 
modifications at the work level. If you want to pluralize a noun which occurs 
frequently in a text, then current wordprocessors allow changing this noun to 
its plural form by issuing a single command. However, the linguistic changes 
which this modification entails with respect to other parts of sentences cannot 
be computed automatically. For example, "this document" would have to change 
into "these documents". Also in each sentence where this pluralized noun phrase 
olays the role of grammatical subject, finite verbs need to be pluralized as 
well in order to maintain subject-verb agreement. 



Intelligent Workstation in the Office 373 

Furthermore, all pronominal references ("it") to the plural noun have to be 
replaced ("they" or "them", depending on syntactic function). In current 
wordprocessors this is done by hand. Especially in languages having a rich 
morphology like French, German and Dutch this is a time consuming and 
error-prone process. In an author system as we envisage such changes propagate 
automatically. 

At the sentence level, an author wishes simple means of altering the order of 
words and phrases in accordance with rules of the language (cf. the differing 
obligatory word orders in main and subordinate clauses in German and Dutch), for 
active/passive transformation, for adding coordinating constituents, and for 
suggesting paraphrases. Such facilities will necessitate a sophisticated user 
interface which enables easy access to the linguistic structure of each 
sentence. For instance, writers should have the possibility of viewing 
"syntactic trees" on a high-resolution screen and to address not only letters, 
words and lines as in current wordprocessors, but also syntactic units such as 
parts of speech, noun phrases, clauses, etc. 

Author systems will be particulary useful at the discourse level . A relatively 
simple application is the automatic generation of large numbers of 
individualized documents (e.g. business letters) which need more linguistic 
variation than can be handled by current menu-based report generators using 
templates. Consider the following template : Following your order "invoice" 
which was placed on "date" we have sent you number" copies of "itemname". Now 
suppose a costumer has sent two invoices that came in on two consecutive days. 
The expanded form needed in this case could be a sentence like 

Following your orders Z012145 and Z01246 placed on May 12 and 13 respectivily, 
we have sent you 10 copies of Manual A and 1 copy of Manual B. 

In the author System, we envisage this amount of linguistic variation can be 
handled easily. More difficult applications concern the fully automatic 
composition of non-standard texts on the basis of a set of data. A recent 
example is provided by a project of Bell Laboratories and Carnegie-Mellon 
University. Kukich (1983) wrote a program which analyzes trends of share prices 
at the New York Stock Exchange and reports these in the form of written texts. 

At the discourse level, our goals will be very modest. We do not aim at anything 
more sophisticated than generating natural souding descriptions of KRS objects 
which are fully specified in a databank. An example in the area of document 
tracking might be the automatic generation of reports listing the history and 
current status of documents processed within the office. In this manner we can 
avoid complex reasoning about "world knowledge". 

Integration of Dialogue and Author Systems 

The linguistic module and author systems overlap to a considerable extent. For 
instance, both systems need quick access to an on-line lexicon and a grammar as 
well as to word and sentence parsers and generators. In the accompanying figure 
we therefore present the rough design for an integrated-dialogue and author 
system as part of an office workstations's software tools. Through the dialogue 
components, the user can consult domain knowledge which is relevant to the goals 
and procedures of the office. One such domain concerns stored text documents 
which have been processed (written, edited, criticized, authorized, mailed, 
received, translated, updated, etc.) by office workers. A typical user question 
might be : "Did I finish and mail the letter to Mrs.X ? 

After having located and retrieved the document, the dialogue system hands it 
over to the author system, which proceeds by displaying the text in a window on 
a screen. 



374 N. Naffah et al. 

An important assumption underlying our design is that the author system can 
treat a text as a sequence of characters (stored in a file, displayed on the 
screen) and as a linguistically structured object. Both representations 
("orthographic" and "linguistic") of texts are maintained an operated upon 
interdependently. For example suppose the user instructs the author system to 
put a passive sentence into active voice (by late linguistic structures, in 
particular syntactic trees). The author system then responds by modifying not 
only the linguistic structure of the sentence directly, e.g. by inserting the 
plural ending of a noun, then the author system will automatically adapt the 
corresponding linguistic structure and carry out any implied alterations to 
other parts of the sentence. 

Thus users have two ways of editing a text. They can directly modify its 
orthographic representation by typing into a diplayed text file. (This is the 
procedure followed in present-day word processors). In addition they can call 
the Tree Editor and propose alteractions to the underlying structural 
(linguistic) representation. In the former case, the parser components will take 
care of adapting the corresponding linguistic structures , in the latter case, 
the word and sentence generator will reconfigure the linguistic structure. Both 
procedures will cause text file and screen image to contain not only the 
writer's explicit edits but also the ones that are entailed on linguistic 
grounds. 

Components tasks 

The work leading to implementation of the system described in the previous 
section can be divided into the following six component tasks 

A) Specification of the linguistic knowledge (Dutch morphology, 
syntax and semantics, context knowledge needed by the linguistic 
modules ; 

B) Implementing flexible and robust linguistic processors (parsers 
and generators at the level of morphology, syntax and semantics) 
which can recognize and correct grammatically deviant input. 

C) Implementing the Author System (i.e., the interfaces between 
user, Tree Editor and Text Editor), and the editors themselves 

D) Implementing the Dialogue System (i.e the interfaces between 
user and linguistic processors) for natural-language interaction 
with intelligent office application provided by other 
contractors ; 

E) Transport of a complete system to workstation built in the 
project ; 

F) Representing and programming the linguistic knowledge for the 
second target language (French of English). 

The partner in charge of this subtask already spent in the order of 25 man years 
on tasks A through D. On the basis of what we have accomplished in that amount 
of time, and considering that we will work in advanced LISP programming 
environment (Symbolics Lisp Machine, we estimate that 10 additional manyears 
will be minimally necessary to complete tasks A through F, i.e., to put a 
prototype of a dialogue/author system on the new workstatin. We presuppose that 
several partners help in designing and testing the user interfaces for author 
and dialogue systems, and that transport of software from Symbolics/VAX machines 
to the workstation will be relatively easy. 



Intelligent Workstation in the Office 375 

MUUTIMEDIA INTERFACES 

A preliminary step in the implementation of a multimedia interface is to augment 
the programming environment of the prototype workstation with mechanisms that 
give flexible software control over the devices attached to the workstation. We 
assume an environment base on object oriented languages (i.e, classes and 
methods), a programming methodology known for its flexibility and ease in 
implementing prototypes. Windowing packages that support the screen keyboard and 
mouse are now available on many workstations. There is no support though for the 
remaining devices we expect to be connected to prototype multimedia workstation. 
In particular audio devices have received little attention. Thus we have begun 
the design of an "audio package", analogous to the present windowing and 
graphics package, for handling the audio devices. 

To describe the audio package in more detail it is necessary to describe the 
various representations for audio information and the hardware we wish to 
support. Concerning the problem of representation, we will assume that two 
formats are used. The first format is simple digitization of the audio waveform 
leading to data rates of the order of 64 kilobits per second. The second format 
uses linear predictive coding (LPC) to compress speech waveforms to a few 
kilobits per second. We will call these two representations audio 1 and audio 2 

The difficulty with audio data is that there are often strict real-time 
constraints. For example, when playing back stored voice one must take care to 
keep the digital-to-analog converter supplied with data from the disk. Thus we 
have chosen to base the audio package on groups of realtime processes that are 
activated and "configured" (this will be explained shortly) by a parent process 
and then executed concurrently. 

There are two objects classes found in object-oriented programming environments 
that are useful for constructing the audio package. These are processes and 
streams. Our approach is to include the workstation's audio devices as part of 
the programming environment by representing them with special objects that 
produce and consume streams. In general these objects will deal with streams of 
audiol and audio2, however we will also use text (i.e. character) streams and 
streams of uninterpreted digital data. In addition, a set of real-time processes 
are used to aid in linking (i.e., configuring) the streams used by these 
objects. The special objects and processes are : 

Special Objects 

analog-to-digital converter 
digital-to-analog converter 
LPC analyzer 

LPC synthesizer 

voice recognizer 

voice synthesizer 

digital telephone 

- produces an audiol stream 
- consumes an audiol stream 
- consumes an audiol stream 
- produces an audio2 stream 
- consumes an audio2 stream 
- produces an audiol stream 
- consumes an audiol stream 
- produces a character stream 
- consumes a character stream 
- produces an audiol stream 
- consumes a digital stream 
- produces a digital stream 



376 N. Naffah et al. 

Processes 

diskwriter - consumes a digital 
stream 

diskreader - produces a digital 
stream 

tee - consumes a digital 
stream 

- produces two digital 
streams 

- consumes two audiol 
streams 

mix - produces an audiol 
system 

The above objects (processes are also objects) respond to messages which control 
their state and behavior. The general operation of these objects should be 
apparent from their name with the possible exception of the tee and mix 
processes. A tee process is very simple - it merely duplicates its input on two 
output streams. A mix process superimposes two audiol streams (this may not be 
feasible for audio 2 streams). 

The audio package gives the interface implementor the ability to activate and 
interconnect the above objects. For example, a telephone conversation requires 
using the output stream of the analog-to-digital converter as the input stream 
to the telephone and using the output stream of the telephone as the input 
stream of the digital-to-analog converter. If compression is used the LPC 
devices can be added to the "circuit", to store the conversation one uses the 
tee and diskwriter processes, and so on. 

In the long term we plan to develop tools for interface design and 
implementation and so avoid the ad hoc addition of the user interface on top of 
existing hardware. A collection of such tools is commonly referred to as a user 
interface management system (UIMS). 

The choice of high-level buiding blocks for the interface has centered on 
templates. A template is an encapsulation mechanism for interface objects 
(menus, windows, icons etc ;) - the information appearing within a template 
definition includes, the formating environment within the template, the system 
events that template responds to, and the actions invoked by the template. As a 
specific example, suppose one decided on, as part of the user interface, a 
graphic symbol to represent the station's mailtray. The template definition 
would then describe the form of the symbol and indicate that it is associated 
with the mailtray. If one wanted the symbol to change colour or intensity, or to 
be altered in some other manner when mail is received, then this information 
would be added to the template definition. Note that it is the template 
definition that is altered rather than the mail system. This example illustrates 
how templates divorce the user interface from the functional components of the 
office system. 

Templates are medium specific. There are audio templates for audio devices, 
images templates for image devices and text templates for character devices. A 
particular data structure may be displayed in a variety of templates, not 
neccessarily all for the same medium. For example displaying a text letter in a 
text template one can only use the standard ascii character set. Using an image 
template one would have access to arbitrary soft fonts. 



Intelligent Workstation in the Office 377 

One of the most important issues regarding a user interface management system is 
to fully utilize the workstation's i/o devices. Thus work carried out on the 
multimedia interface will require identifying a rich set of template operations 
that involve the station's audio and image devices. A snail set of powerful 
template operations has already been proposed. These operations (known as the 
embed, present, assign, and extract operations) allow high-level manipulation of 
structured audio, image and text data values. For instance, extracting text from 
an audio template corresponds to speech recognition, while embedding text in 
such a template would involve speech synthesis, representing the template 
corresponds to speech output and assigning the template to speech storage. 

Once the user interface management system is available, providing the system 
implementor with a flexible tool for experimenting with the user interface, it 
will be possible to explore more fully the interplay between sound and images 
(and other forms of data) and their affect on the dynamics of user interaction. 



378 N. Naff ah et al. 

REFERENCES 

(Attardi, 81) Attardi G. and Simi M., Consistency and completeness of 
CMEGA, a logic for Knowledge Representation. 
Seventh International Joint Conference on 
Artificial Intelligence, Vancouver, 1981 

(Cardelli,82) Cardelli L., "Two dimensional syntax for Functional 
Languages", Proceeding of the European Conference on 
Integrated Interactive Computing Systems, 1982 Stresa, 
Italy, 1982 

(DeJong, DeJong P., Zloof M., "The System for Business Automation 
Zloof, 77) (SBA) : A Programming Language", Carmunications of the 

ACM, Vol. 20 No 6 (June 1977), pp. 385-396 

(Gonzalez 84) Gonzales Rubio R., Rohmer J. and Terral D. 
The SCHOSS filter : a processor for Non-Numerical Data 
Processing, 11th Ann. Symp. on computer architecture 
ann arbor 1984, 

(Knuth, 79) Knuth, D 79 TEX and Metafont, Digital Press. 

(LaJcin, 80) Lakin F., "Computing with text-graphic forms" 
Proceeding Lisp-conference, Stanford, 1980 

(Lieberman, Lieberman H., Hewitt C., A Session with TINKER : 
Hewitt, 80) "Interleaving program testing with program writing". 

Conference Record for the 1980 LISP-Conference, Stanford, 
1980. 

Rohmer J. Machines et langages pour traiter les ensembles de donn^es 
(textes tableaux et fichiers). These d'Etat. University 
de Grenoble 1980. 

Rohmer J. Associative filtering by Automata a Key operator for 
Database Machines. Proc 6th Workshop on Camp. Arch, for 
Non-Numerial Processing; Hyers. 1981 

(Steels,79) Steels L., "Reasoning modeled as a Society of Communicating 
Experts", M.I.T., Artificial Intelligence Lab. TR 542, 
June 1979 


