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are in 1 to 1 correspondence with massless gauge-neutral scalars in the spacetime theory. Working at
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linear sigma model description. Our results clarify the structure of deformations of heterotic Calabi–Yau
compactifications and more general heterotic flux vacua.
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1. Introduction

A perturbative heterotic string compactification that preserves
N = 1 super-Poincaré invariance in four dimensions has a world-
sheet description as a unitary (0,2) superconformal field theory
(SCFT) with integral R-charges [1] orbifolded by a heterotic GSO
projection. The resulting massless spectrum consists of the mini-
mal supergravity multiplet, the axio-dilaton chiral multiplet, vector
multiplets for the spacetime gauge group G , “matter” chiral mul-
tiplets charged under G , as well as a number of G-neutral chiral
multiplets. The latter parametrize V — the space of first order
deformations of the (0,2) SCFT, which consists of right-chiral pri-
mary SCFT states with conformal weights (h, h̄) = (1, 1

2 ).
A well-understood example is offered by a theory with (2,2)

worldsheet supersymmetry [2,3], in which case V has a decom-
position into three types of states with respect to the (2,0)

superconformal algebra: V(a,c) , V(c,c) , and V ′ . The first two are
N = 2 descendants of elements of the (a, c) and (c, c) rings of the
(2,2) SCFT, while V ′ denotes any additional (0,2) chiral primaries.
When the (2,2) theory is well-approximated by a non-linear sigma
model (NLSM) with a Calabi–Yau target-space M , the decomposi-
tion has a geometric interpretation in terms of certain cohomology
groups, leading to the familiar terminology of “Kähler, complex
structure, and bundle moduli”. While useful on the (2,2) locus,
the decomposition relies on the accidental (2,0) supersymmetry,
and in generic (0,2) theories the familiar terminology becomes a
less than useful misnomer. This can be clearly seen in F-theory
constructions, where the “bundle” and “complex structure” defor-
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mations enter on a more symmetric footing [4]. In the heterotic
context, first order deformations have been recently explored from
the supergravity point of view in heterotic flux vacua [5], as well
as in compactifications involving a choice of a stable holomorphic
bundle over a Calabi–Yau manifold [6].

The aim of this Letter is to examine the space of first order de-
formations V from the worldsheet point of view in the context of
a (0,2) NLSM. Working at tree-level in α′ and using some simple
(0,2) superspace techniques, we will find a hands-on description
of V . While involving ingredients familiar from the usual “Kähler,
complex structure, bundle” decomposition, and reducing to known
results on the (2,2) locus, we will see that in general V differs
markedly from its (2,2) form.

Our results agree with and generalize the supergravity analysis
of heterotic Calabi–Yau compactifications. Formally they also ap-
ply to heterotic flux vacua without a large radius Calabi–Yau limit.
To the extent that the NLSM and geometry are good guides to such
vacua,1 our results provide a starting point for describing the mod-
uli space of heterotic flux compactifications.

The rest of the Letter is organized as follows: in Section 2 we
set up the tree-level (0,2) NLSM; in Section 3 we describe the first
order deformations; Section 4 is devoted to checking the analysis
by comparing to known cases, and we end with some concluding
remarks in Section 5.

2. The (0,2) NLSM

In this section we will review some basic properties of (0,2)

NLSMs relevant for heterotic compactification. Throughout, the

1 One might expect this to hold in vacua with extended spacetime supersymme-
try.
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geometric setup will be a stable holomorphic bundle E → M satis-
fying the usual anomaly cancellation conditions ch2(E) = ch2(T M),
where M is a Hermitian 3-fold with trivial canonical bundle. To be
concrete, we will restrict attention to models with G = G ′ × E8 and
c1(E) = 0. These theories possess an additional structure on the
worldsheet: a non-anomalous left-moving U(1) symmetry U(1)L,
and as in Gepner’s original construction [7], the GSO projection
ensures that the SO(k) gauge symmetry associated to k free left-
moving fermions combines with U(1)L to form G ′ .2 Since we will
be interested in the gauge-neutral sector, we will from now on
focus on the internal theory. Apart from a few small details of con-
ventions, we are following the standard treatment, as reviewed in,
e.g. [8].

2.1. (0,2) Superspace and the NLSM Lagrangian

We work in Euclidean signature with (0,2) superspace coordi-
nates (z, z̄, θ, θ̄ ), with covariant derivatives D, D̄ and supercharges
Q, Q̄ given by3

D = ∂

∂θ
+ θ̄ ∂̄, D̄ = ∂

∂θ̄
+ θ∂̄,

Q = − ∂

∂θ
+ θ̄ ∂̄, Q̄ = − ∂

∂θ̄
+ θ∂̄,

where ∂̄ ≡ ∂/∂ z̄. The non-trivial anti-commutators are

{D, D̄} = +2∂̄ and {Q, Q̄} = −2∂̄ .

Note that D and Q have U(1)R charge q̄ = −1, while D̄ and Q̄
have q̄ = +1. Our basic fields are the chiral matter and chiral Fermi
fields

Φ = φ + √
2θψ + θ θ̄ ∂̄φ, Γ = γ + √

2θG + θ θ̄ ∂̄γ ,

as well as the anti-chiral conjugate fields

Φ̄ = φ̄ − √
2θ̄ ψ̄ − θ θ̄ ∂̄φ̄, Γ̄ = γ̄ + √

2θ̄ Ḡ − θ θ̄ ∂̄γ̄ .

By construction, D̄ (D) annihilates the chiral (anti-chiral) fields.
To build the NLSM Lagrangian, we take 3 chiral multiplets Φ i ,

r Fermi multiplets Γ β and their conjugates. Assuming the NLSM
will describe a superconformal theory, each Φ (Γ ) multiplet con-
tributes (2,3) ((1,0)) to the central charge (c, c̄); furthermore the
U(1)L symmetry can be taken to act just on Γ and Γ̄ , assign-
ing charges 1 and −1, respectively, while U(1)R symmetry leaves
both Γ and Φ invariant. With these assumptions, the most general
(0,2) supersymmetric Lagrangian is

4πα′L = D D̄
[

1

2

(
Ki(Φ, Φ̄)∂Φ i − K̄ı̄ (Φ, Φ̄)∂Φ̄ı̄

)

− Hβᾱ(Φ, Φ̄)Γ̄ ᾱΓ β

]
. (2.1)

Here Hαβ̄ (Φ, Φ̄) is a Hermitian metric on the fibers of the bundle

E → X , while Ki and K̄ı̄ satisfy a reality condition (K̄ı̄ )
∗ = Kı̄ .

The Ki should be thought of as a locally defined (1,0) form
K = Ki dφi , and the action is invariant under shifts δK = ω for
any holomorphic (1,0) form ω, as well as under δK = i∂ f for
some real function f (φ, φ̄). In addition, setting H′ = U HU † for any

2 The k free fermions and the “hidden” E8 current lead to a modular-invariant
critical string.

3 Our conventions have the advantage of not being cluttered by factors of i; how-
ever, the price to pay is a non-standard charge conjugation action on the fermions:
C(γ ) = γ̄ , and C(γ̄ ) = −γ .
unitary transformation U leads to an equivalent theory. The free
action with canonically normalized fields corresponds to Ki = Φ̄ i

and Hβᾱ = δβᾱ .

2.2. Equations of motion and component expansion

The equations of motion following from (2.1) can be derived by
two well-known results: first, if X is a general (0,2) superfield,
then

D D̄(A X)|θ,θ̄=0 = 0 ∀X ⇒ A = 0;
second, any chiral (anti-chiral) superfield, say δΦ i (δΦ̄ i ), can be
expressed as D̄ X (D X ) for some general superfield X . Varying the
action in (2.1), we obtain, up to total derivatives,

8πα′δL = D D̄
[{

Ki, j∂Φ i − ∂K j − K̄ı̄, j∂Φ̄ı̄

− 2Hβᾱ, jΓ̄
ᾱΓ β

}
δΦ j − 2Γ̄ ᾱ HβᾱδΓ β

] + h.c.,

which leads to the equations of motion

0 = EΦ
j = D̄

[
(K j,ı̄ + K̄ı̄, j)∂Φ̄ı̄

] + (K j,ik̄ − Ki, jk̄)∂Φ i D̄Φ̄k̄

+ 2D̄
(

Hβᾱ, jΓ̄
ᾱ
)
Γ β,

0 = EΓ
β = D̄

[
HβᾱΓ̄ ᾱ

]
. (2.2)

The lowest component of EΓ
β and its conjugate yield the equations

of motion for the auxiliary fields G and Ḡ:

Ḡᾱ = −Āᾱ
β̄j̄

γ̄ β̄ ψ̄ j̄ , Gα = Aα
β jγ

βψ j,

where A and Ā denote components of the Hermitian connection
on E constructed from the metric H and its inverse:

Aα
β j = Hβ̄α Hββ̄, j, Āᾱ

β̄j̄
= Hᾱβ Hββ̄,j̄ .

With a little work we can also obtain the component expansion
of the Lagrangian. Up to boundary terms, we find

2πα′L = 1

2
gij̄

(
∂φi ∂̄ φ̄j̄ + ∂φ̄j̄ ∂̄φi) + 1

2
Bij̄

(
∂φi ∂̄ φ̄j̄ − ∂φ̄j̄ ∂̄φi)

+ gij̄ ψ̄
j̄ ∂ψ i + ψ̄ ı̄

[
∂φkΩ−

ı̄kj + ∂φ̄k̄Ω−
ı̄k̄ j

]
ψ j

+ γ̄μ

(
∂̄γ μ + ∂̄φ j Aμ

β jγ
β
) + γ̄μF μ

βj̄kγ
βψkψ̄ j̄ , (2.3)

where γ̄μ ≡ Hμβ̄ γ̄ β̄ , and F μ
βj̄k = Aμ

βk,j̄
is the (1,1) component of

the curvature for the connection A; the metric g and B-field are
given by

gij̄ = 1

2
(Ki,j̄ + K̄j̄ ,i), Bij̄ = 1

2
(Ki,j̄ − K̄j̄ ,i),

and Ω− denotes the H-twisted connection

Ω−
ı̄kj = Γı̄kj − 1

2
H ı̄kj, Ω−

ı̄k̄ j
= Γı̄k̄ j − 1

2
H ı̄k̄ j, (2.4)

where H = dB is the tree-level torsion and Γ is the Hermitian
Christoffel connection for g . As expected from the spacetime anal-
ysis [9], the torsion is determined by the Hermitian form: Hijk̄ =
gk̄ j,i − gk̄i, j . For what follows it will be useful to recast the super-

space equations of motion in terms of g and Ω−:

gij̄ D̄∂Φ̄j̄ = −Ω−
ij̄ k̄

∂Φ̄j̄ D̄Φ̄k̄ − Ω−
i jk̄

∂Φ j D̄Φ̄k̄ − F α
βk̄i

D̄Φ̄k̄Γ̄αΓ β,

D̄Γ̄α = 0, Γ̄α ≡ HαᾱΓ̄ ᾱ . (2.5)
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2.3. Symmetries of the classical action

By construction the action is (0,2)-supersymmetric. The action
of the supercharges Q and Q on any superfield X is defined by

√
2(ξ Q + ξ̄ Q̄ ) · X ≡ −ξ Q X − ξ̄ Q̄ X,

where ξ and ξ̄ denote constant Grassmann parameters. After elim-
inating the auxiliary fields, the non-trivial transformations are as
follows:

Q̄ · φ̄ı̄ = −ψ̄ ı̄ , Q̄ · ψ i = ∂̄φi;
Q · φi = ψ i, Q · ψ̄ ı̄ = −∂̄ φ̄ı̄ ,

Q · γ β = −Aβ

ν jψ
jγ ν, Q · γ̄α = Aν

α jψ
jγ̄ν .

It is not hard to see that Q 2 = Q̄
2 = 0 and { Q , Q̄ } = ∂̄; the latter

relation requires the use of the γ equations of motion, while the
former hold off-shell.

It is also easy to see that corresponding to the U(1)L ×
U(1)R symmetries we have the conserved currents J L = γ αγ̄α ,
J R = gij̄ ψ

iψ̄ j̄ , satisfying ∂̄ J L = 0 and ∂ J R = 0 up to equations
of motion. Similarly, we have the classical left-moving energy–
momentum tensor

T = − 1

α′

{
gij̄ ∂φi∂φ̄j̄ + 1

2

(
γ̄β∂γ β + γ β∂γ̄β

)

+ Aμ
β j∂φ jγ̄μγ β

}
. (2.6)

T , like J L , is annihilated by both Q and Q̄ and hence conserved:
∂̄T = 0.

3. Massless G-neutral states via the (0,2) NLSM

If we assume that the NLSM describes a (0,2) SCFT, then we
have all of the tools necessary for constructing the massless spec-
trum of the corresponding heterotic vacuum. A typical approach is
to determine the massless fermions and infer the rest of the spec-
trum via supersymmetry. That is, we work in the (NS,R) and (R,R)

sectors of the theory and identify right-moving ground states with
L0 eigenvalue of +1 for (NS,R) states and L0 = 0 for (R,R) states.
When working at tree-level in the NLSM, it is possible to con-
struct the states in the Born–Oppenheimer approximation, where
the mode expansion of the fields is truncated to right-moving zero
modes and first excited modes on the left [10]. Working in this
truncated Fock space, we can then classify the states annihilated
by Q and Q̄ and having L0 = +1. Imposing the GSO projection,
we will obtain the tree-level spectrum of massless fermions.

The procedure sounds straightforward, and it would be surpris-
ing if it had not already been applied to the (0,2) NLSM some
time ago. Indeed, the computation is presented in [11], where the
massless spectrum is determined with one caveat: “To be consistent,
we should include the first excited modes of [φ], but as we are pri-
marily interested in the gauge degrees of freedom, we will omit them.”
That the excited modes of φ should contribute to the analysis is
reasonably clear, for instance from the last term in the classical
energy–momentum tensor in (2.6). While this mixing is indeed
unimportant in the charged matter sector,4 it does affect the spec-
trum of neutral massless scalars arising from the (NS,R) sector.

4 The (NS,R) charged matter states involve a free left-moving fermion tensored
with γ or γ̄ and a wavefunction of the bosonic zero modes; there are no additional
φ excitations.
Table 1
The classical charges and weights of NLSM fields.

X Γ Γ̄ DΦ D̄Φ̄ ∂Φ ∂Φ̄

q̄ 1 0 0 −1 +1 0 0
q 0 1 −1 0 0 0 0
h̄ 1/2 0 0 1/2 1/2 0 0
h 1 1/2 1/2 0 0 1 1

Our goal is to determine the neutral massless spectrum, keep-
ing track of all the necessary left-moving excitations. However, in-
stead of pursuing the Born–Oppenheimer approach, we will attack
the problem in a slightly different fashion by studying equivalence
classes of chiral operators in the NLSM.

3.1. First order deformations of a (0,2) SCFT

The G-neutral massless scalars of the four-dimensional effec-
tive theory have a simple interpretation in the internal (0,2) SCFT
as marginal U(1)L-preserving first order deformations: in the lan-
guage of conformal perturbation theory, the action is deformed by
the integrated zero-momentum vertex operator for the emission
of the scalar. The form of marginal supersymmetric deformations
of a unitary SCFT is tightly constrained. For instance, in [12] it is
shown that in an N = 1, d = 4 superconformal theory the defor-
mation must be an F-term

�S =
∫

d4x d2θ O + h.c.,

where O is a chiral primary operator with R-charge 2; there are no
non-trivial marginal D-term deformations. A similar result holds in
unitary (0,2) SCFTs in two dimensions5: a marginal supersymmet-
ric deformation must take the form

�S =
∫

d2z D X + h.c.,

where X is a (0,2) chiral primary operator with h = 1 and
right-moving R-charge q̄ = +1; as in the four-dimensional case, a
marginal deformation that is expressed as an integral over all of
superspace is necessarily trivial.

3.2. Marginal superpotential deformations of the NLSM

We will now assume that the (0,2) SCFT in question is well ap-
proximated by a weakly coupled (0,2) NLSM. Let X be an operator
in the SCFT of the type we just described. Then in a classical (i.e.
large radius) limit, X must reduce to Xc — a chiral superfield con-
structed from the NLSM fields with their classical dimensions and
charges listed in Table 1. In other words, Xc must be of the form

Xc = [
Γ̄αΓ βΛα

βı̄(Φ, Φ̄) + ∂Φ i Y iı̄ (Φ, Φ̄)

+ ∂Φ̄j̄ gij̄ Z i
ı̄ (Φ, Φ̄)

]
D̄Φ̄ı̄ .

The NLSM fields are of course only defined in local coordinate
patches, with transition functions relating the fields in different
patches. X will be well-defined across the patches if Λ, Y , and Z
take values in sections of certain bundles:

Λ ∈ Γ
(
End E ⊗ Ω

0,1
M

)
, Y ∈ Γ

(
Ω

1,1
M

)
,

Z ∈ Γ
(
T M ⊗ Ω

0,1
M

)
,

where Ω
p,q
M denotes the (p,q) forms on the target-space M .

5 This is a consequence of the (0,2) SCFT unitarity bounds [13].
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We have yet to impose that Xc is chiral, i.e. D̄ Xc = 0. We need
not require Xc to be chiral off-shell — indeed, such a require-
ment would be too strong; instead, as in [14,15], we only require
D̄ Xc = 0 up to the equations of motion of the unperturbed NLSM.
Computing D̄ Xc and using (2.5) to eliminate D̄Γ̄ and ∂D̄Φ̄ terms,
we obtain

D̄ Xc = gij̄ ∂Φ̄j̄ D̄Φ̄k̄ D̄Φ̄ı̄ Z i
ı̄,k̄

+ ∂Φ i D̄Φ̄k̄ D̄Φ̄ı̄
(
Yiı̄,k̄ − H jik̄ Z j

ı̄

)
+ Γ̄αΓ β D̄Φ̄k̄ D̄Φ̄ı̄

(
Λα

βı̄,k̄
− F α

βk̄i
Z i

ı̄

)
.

As there cannot be cancellations between the three terms, D̄ Xc = 0
requires

Z i
ı̄,k̄

− Z i
k̄,ı̄

= 0,

Yiı̄,k̄ − Yik̄,ı̄ = Z j
k̄

H jiı̄ − Z j
ı̄ H jik̄,

Λα
βı̄,k̄

− Λα
βk̄,ı̄

= F α
βk̄i

Z i
ı̄ − F α

βı̄i Z i
k̄
. (3.1)

Of course not all solutions to (3.1) correspond to distinct first order
deformation of the SCFT — a good thing, since the solution space
is infinite dimensional; instead, only certain equivalence classes of
solutions correspond to deformations.

To identify the equivalence relations, we first consider another
SCFT operator X ′ with classical limit X ′

c = Xc + D̄ Wc for some
well-defined superfield Wc . If X ′ and X are distinct deformations
of the theory, then their difference is a non-trivial deformation;
however, the latter would be a marginal deformation given as an
integral over the full (0,2) superspace. Since such deformations do
not exist in the SCFT, we conclude that X and X ′ define isomorphic
deformations of the theory. Conversely, if a classical chiral super-
field Xc corresponds to a chiral primary operator X in the SCFT,
then Xc + D̄ Wc must correspond to the same first order deforma-
tion.

Thus, to count the first order deformations in the classical limit,
we must consider chiral superfields Xc modulo the equivalence re-
lation Xc ∼ Xc + D̄ Wc . In fact, there is another manner in which
we can shift Xc without affecting the deformation: Xc → Xc +∂W ′

c
for some chiral superfield ∂W ′

c leaves �S invariant. As we will
see, this additional equivalence will be trivial in most cases of in-
terest. So, to summarize, in the classical limit we expect the first
order deformations to correspond to Xc that solve (3.1), modulo
the equivalence relation

Xc ∼ Xc + D̄ Wc + ∂W ′
c, D̄∂W ′ = 0.

It is not difficult to make the equivalence more explicit — we sim-
ply need to expand Wc and W ′

c in terms of the component fields.
Since we will now just work with the classical NLSM Lagrangian,
we will drop the c subscripts on the fields. Dimensional analysis
and the U(1)L × U(1)R symmetry constrain W and W ′ to be

W = Γ̄αΓ βλα
β + ∂Φ iμi + ∂Φ̄ı̄ giı̄ ζ

i, W ′ = D̄Φ̄ı̄ξı̄ ,

where

λ ∈ Γ (End E), μ ∈ Ω
1,0
M , ζ ∈ Γ (T M), ξ ∈ Ω

0,1
M .

∂W ′ will be chiral up to the NLSM equations of motion provided
that ξı̄ satisfies

∇−
k ξ[ı̄,j̄ ] = 0, ∇−

k̄
ξ[ı̄,j̄ ] = 0,

g j̄ i(F α
βm̄iξ[ı̄,j̄ ] − F α

βı̄iξ[m̄,j̄ ]
) = 0,

where the ∇− connection is defined with the twisted connection
Ω− given in (2.4). These conditions are solved by any ∂̄-closed ξ ;
this is the most general solution for an SU(3) structure target-
space (see, e.g. [16]). Otherwise ∂̄ξ would be a non-trivial ∇−-
constant form, in addition to the Hermitian form and the (3,0)

form that define the SU(3) structure; this would lead to a further
reduction of structure. Thus, we must have ξ ∈ H0,1

∂̄
(M). It is easy

to see that when ξ is cohomologically trivial, it can be eliminated
by redefining μ and ζ .

Expanding out D̄ W + ∂W ′ , we find the equivalence relation on
(Λ, Y , Z):

Z i
ı̄ ∼ Z i

ı̄ + (
ζ i + gij̄ ξj̄

)
,ı̄

+ gik̄(ξı̄,k̄ − ξk̄,ı̄ ),

Yiı̄ ∼ Yiı̄ + μi,ı̄ + ξı̄,i + Hiı̄ j
(
ζ j + g jj̄ ξj̄

)
,

Λα
βı̄ ∼ Λα

βı̄ + λα
β,ı̄ − F α

βı̄i

(
ζ i + gij̄ ξj̄

)
. (3.2)

Eqs. (3.1) and (3.2) constitute our main result: in a large radius
limit the G-neutral first order deformations of a supersymmet-
ric heterotic vacuum correspond to solutions of (3.1) modulo the
equivalence relations in (3.2). The Z , Y and Λ are familiar from
the textbook treatment of (2,2) compactifications and their defor-
mations. For instance, setting the right-hand sides of (3.1) to zero,
we see that (Z , Y ,Λ) define cohomology classes

Z ∈ H1(M, T M), Y ∈ H1(M, T ∗
M

)
, Z ∈ H1(M,End T M).

However, the non-trivial right-hand sides indicate that for generic
(0,2) theories the notion of splitting the deformations into “com-
plex structure, Kähler, and bundle” is misleading.

4. Examples

Having obtained the general conditions, we can now check that
they lead to the expected structure in familiar limits of (2,2) the-
ories and more general Calabi–Yau compactifications. Having veri-
fied this, we will be in a better position to discuss the implications
for the general heterotic flux compactification.

4.1. The (2,2) locus

On the (2,2) locus, E = T M , H = 0 and g is Kähler. More-
over, since H0,1

∂̄
(M) is trivial (we assume M has the full SU(3)

holonomy), we can set ξ = 0 without loss of generality. Thus, the
equations reduce to

∂̄ Z = 0, Z i
ı̄ ∼ Z i

ı̄ + ζ i
,ı̄;

∂̄Y = 0, Yiı̄ ∼ Yiı̄ + μi,ı̄;
Λm

nı̄,k̄
− Λm

nk̄,ı̄
= Rm

nk̄i
Z i

ı̄ − Rm
nı̄i Z i

k̄
,

Λm
nı̄ ∼ Λm

nı̄ + λm
n,ı̄ − Rm

nı̄iζ
i, (4.1)

where Rm̄nk̄i is the Riemann tensor for the Kähler metric g .
As expected, deformations correspond to Z ∈ H1(M, T M), Y ∈

H1(M, T ∗
M); however, the conditions on Λ still appear a little bit

puzzling. The puzzle is easily resolved. Let

Λ̃m
nı̄ ≡ Λm

nı̄ − ∇n Zm
ı̄ , λ̃m

n ≡ λm
n − ∇nζ

m.

Recasting the last line of (4.1) in terms of Λ̃ and λ̃, we obtain

Λ̃m
nı̄,k̄

− Λ̃m
nk̄,ı̄

= Rm
nk̄i

Z i
ı̄ − Rm

nı̄i Z i
k̄
− (∇n Zm

ı̄

)
,k̄ + (∇n Zm

k̄

)
,ı̄
, (4.2)

Λ̃m
nı̄ ∼ Λ̃m

nı̄ + λ̃m
n,ı̄ + gmm̄[∇ı̄∇nζm̄ − ∇n∇ı̄ ζm̄ − Rm̄nı̄iζ

i]. (4.3)

The square bracket in (4.3) is

[∇ı̄ ,∇n]ζm̄ − Rm̄nı̄iζ
i = (R ı̄nm̄i − Rm̄nı̄i)ζ

i = 0,
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where the last equality follows from the symmetry R ı̄nm̄i = Rm̄nı̄i
enjoyed by the Riemann tensor for a Kähler metric. The vanishing
of the right-hand side of (4.2) follows from similar manipulations
and ∂̄ Z = 0. Thus, in terms of the Λ̃ and λ̃ variables, we recover
the expected result:

∂̄Λ̃ = 0, Λ̃ ∼ Λ̃ + ∂̄ λ̃.

The first order deformations for a (2,2) compactification do have
the canonical split

(Z , Y , Λ̃) ∈ H1(M, T M) ⊕ H1(M, T ∗
M

) ⊕ H1(M,End T M).

4.2. Calabi–Yau compactifications

A more generic (0,2) vacuum is obtained by taking E → M to
be a stable holomorphic bundle over a (conformally) Calabi–Yau
manifold. In this case, the deformation space still has a familiar
description. Working at tree-level we still have H = 0, and as in
the (2,2) case ξ must be ∂̄-exact and hence can be absorbed into
ζ and μ. Thus, Z ∈ H1(M, T M), Y ∈ H1(M, T ∗

M), and the remaining
non-trivial condition is

Λα
βı̄,k̄

− Λα
βk̄,ı̄

= F α
βk̄i

Z i
ı̄ − F α

βı̄i Z i
k̄
.

Since Z ∈ H1(M, T M) and F is the (1,1) curvature for the
holomorphic connection, the right-hand side defines a class in
H2(M,End E). If this class is trivial, then the equation can be
solved for Λ; otherwise, the deformation is obstructed. As dis-
cussed at length in [6], this is encoded in a long exact sequence in
cohomology [17], associated to the short exact sequence

0 E ⊗ E∗ Q π T M 0 ,

· · · H1(M, Q )
dπ

H1(M, T M)
α

H2(M, E ⊗ E∗) · · · ,
where the map α is given by contracting Z ∈ H1(M, T M) with F .

4.3. Application to heterotic flux vacua

More generally, we hope to apply our results to heterotic com-
pactifications on non-Kähler manifolds. These backgrounds are
characterized by a tree-level H background, the most studied ex-
amples being T 2 bundles over K3 [18–20]. The NLSM α′ expansion
is rather formal for these backgrounds, as they generically contain
string-scale cycles. However, to the extent to which an α′ expan-
sion can be used, our tree-level analysis describes the infinitesimal
moduli of heterotic flux vacua. The qualitative structure is quite
sensible: for instance, the deformations of the complexified Hermi-
tian form (the Yiı̄ ) now have a non-trivial mixing with the complex
structure deformations, and the “breathing mode,” corresponding
to taking Y proportional to the Hermitian form appears to be ob-
structed.

It would be useful to clarify the geometry behind (3.1) and (3.2).
For instance, is it possible to prove that the space of these first or-
der deformations is finite dimensional for a smooth and compact
flux background? Do SU(3) structure examples admit non-trivial ξ

equivalences?6 How is this presentation of deformations related to
the infinitesimal perturbations of solutions to the one-loop super-
gravity equations examined in [5]?

6 Examples with extended spacetime supersymmetry and hence reduced struc-
ture certainly possess non-trivial ξ , see e.g. [21].
5. Concluding remarks

We have carried out the tree-level analysis of gauge-neutral
massless scalars in a perturbative heterotic vacuum based on a
(0,2) NLSM. Of course this is a far cry from providing a complete
analysis of even first order deformations, let alone a picture of the
(0,2) moduli space, and it is worthwhile to review the limitations
of our results.

First, our analysis has been carried out for compactifications
based on SU(n) bundles over M — this is the source of the U(1)L
symmetry of the internal theory. While this covers many vacua,
it is certainly not the most general situation, and there are cer-
tainly interesting compactifications based on U(n) bundles, as well
as more general constructions, e.g. [22,23]. Second, while it is nat-
ural (even technically so) to restrict to gauge-neutral scalars, at
least as far as the string perturbative limit is concerned, the Higgs
deformations where G is broken to some sub-group should be con-
sidered on par with the neutral scalars we described. Fortunately,
at least the massless charged spectrum has already been described
in [11].

Modifications are also expected in going beyond tree-level in
the α′ expansion. In heterotic Calabi–Yau compactifications the
possible lifting of states is constrained by the axionic symmetries
associated to shifts of the NLSM B-field [2,3]; in more general
heterotic flux compactifications analogous constraints are not well
understood. At any rate, we certainly expect additional G-neutral
massless scalars associated to stringy enhanced symmetries, as
well as lifting of states by world-sheet non-perturbative effects.7

Although the general structure of deformations is complicated,
since our analysis is just a simple application of (0,2) supersym-
metry, it should be a good starting point for a systematic expan-
sion in α′ away from the large radius limit. For instance, it is
reasonable to expect that at one loop in α′ the conditions will be
modified by replacing H with its gauge-invariant form. It would
be interesting to see whether this expectation is borne out and to
attempt to extend it to an all orders result.

Other fruitful directions include applying these results to het-
erotic vacua with extended spacetime supersymmetry (their NLSM
description has been recently explored in [26]), as well relating
them to gauged linear sigma model constructions. The latter would
be especially interesting for the linear sigma models appropriate
for flux backgrounds [27–29].
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