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The development of multicellular organisms relies on the

temporal and spatial control of cell proliferation and cell

growth. The relationship between cell-cycle progression

and development is complex and characterized by mutual

dependencies. On the level of the individual cell, this

interrelationship has implications for pattern formation

and cell morphogenesis. On a supercellular level, this

interrelationship affects meristem function and organ

growth. Often, developmental signals not only direct

cell-cycle progression but also set the frame for cell-cycle

regulation by determining cell-type-specific cell-cycle

modes. In other cases, however, cell-cycle progression

appears to be required for the further differentiation of

some cell types. There are also examples in which cell

cycle and differentiation seem to be controlled at the same

level and progress rather independently from each other

or are linked by the same regulator or pathway.

Furthermore, different relationships between cell cycle and

differentiation can be combined in a succession of events

during development, leading to complex developmental

programs.
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Introduction
The study of cell-cycle control in plants presents two

major opportunities. First, one can learn about the general

cell-cycle machinery. This has the potential not only to

reveal new, plant-specific control mechanisms but also to

contribute to the understanding of canonical cell-cycle

regulation and to provide insights relating to the evolu-

tion of cell-cycle regulation. This review, however, deals

with the second opportunity arising from cell-cycle anal-

yses in plants, that is, the chance to study cell-cycle

progression in the developmental context of a multicel-

lular eukaryote.

Throughout plant life-cycle, intensive crosstalk between

cell-cycle control and differentiation processes is required

for proper development. This interrelationship functions

at different levels. On the level of the individual cell, cell-

cycle progression has to be coordinated with pattern

formation, especially as cells are often specified in a

domain of rapid cell divisions. After a certain fate has

been adopted, cell cycle has to be dove-tailed with the

regulation of cell morphogenesis and physiology. Finally,

cell-division and cell-enlargement patterns have to be

controlled on a supercellular level (that of the tissue or

organ). Supercellular control is essential, for example, to

maintain meristem homeostasis and organ growth and to

respond to an ever-changing environment. Here, we

review recent results obtained from the study of single

cells as well as from studies of tissue or organ develop-

ment. We try to deconstruct and categorize these findings

into different classes of interactions between cell cycle

and differentiation.

Cell cycle and cell-fate specification
A very instructive example of how cell division is inter-

related with cell differentiation is the development of

stomata in Arabidopsis (Figure 1; for a detailed descrip-

tion of stomatal development see recent reviews [1,2]).

First, a meristemoid mother cell divides unequally to

give rise to a larger cell, which will develop into an

epidermal pavement cell, and a smaller cytologically

distinct meristemoid cell. The meristemoid is compar-

able to an animal transit amplifying cell, that is, a cell

with limited stem-cell character. It may divide asymme-

trically several times, each time producing a new epi-

dermal cell and regenerating the meristemoid. After a

few rounds of division, meristemoids withdraw from the

cell-division cycle and terminally differentiate into a

guard mother cell, which divides symmetrically to gen-

erate two guard cells comprising the stoma. Although

most other cells that are produced by this lineage even-

tually differentiate as pavement cells, some reinitiate a
Current Opinion in Plant Biology 2004, 7:661–669
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Figure 1
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Stomatal development. (a) On the cellular level, a single cell

differentiates into a meristemoid mother cell (MMC), the MMC then

divides unequally to give rise to a larger cell, which will develop

into an epidermal pavement cell, and a smaller meristemoid cell (M).

The meristemoid may divide asymmetrically several times, each time

producing a new epidermal cell and regenerating the meristemoid.

After a few rounds of division, meristemoids withdraw from the cell-

division cycle and terminally differentiate into a guard mother cell

(GMC) that divides symmetrically to generate two guard cells (GC)

that comprise the stoma. Although most of the other cells produced

by this lineage eventually differentiate as pavement cells, some

reinitiate a stomatal lineage by dividing asymmetrically to give rise to

satellite meristemoids. (b) On a supercellular level, the numbers of

meristemoid mother and satellite meristemoid cells are controlled

by developmental (intrinsic) as well as environmental (extrinsic)

factors to achieve an appropriate stomata density. As cell-division of

meristemoids produces the majority of epidermal cells, the number

of these cell divisions is also under the control of organ size.

Modified after del Mar Castellano et al. [4�].
stomatal lineage by dividing asymmetrically to give rise

to satellite meristemoids.

Key to the patterning of stomata is the recruitment of

meristemoid mother cells and satellite meristemoids,

which has been speculated to involve mechanisms similar

to those that regulate the formation of stem cells in the

shoot apical meristems [3]. In addition, cell-cycle regula-

tion appears to influence the formation of meristemoids,

as was reported by del Mar Castellano and co-workers [4�]
who studied the function of CELL DIVISION CYCLE

DEFECTIVE6 (CDC6) and cdc10-DEPENDENT

TRANSCRIPT1 (CDT1), two components that regulate
Current Opinion in Plant Biology 2004, 7:661–669
the licensing of origins of replication required for sub-

sequent DNA replication. Plants that misexpressed CDT1
or CDC6 from the 35S promoter showed a two-fold

increase in the density of stomata on their leaves, indicat-

ing a higher generation of satellite meristemoids and/or

meristemoid mother cells that eventually develop into

stomata. This suggests that the competence to develop

into a transit amplifying meristemoid cell might be con-

trolled directly by the potential to replicate and/or to

proceed into a G2-like state; this is an example in which

cell-cycle decisions appear to precede differentiation

(Figure 2a).

Another link between cell-division control and the for-

mation of meristemoid cells comes from the work of

Boudolf and colleagues [5��]. Their work showed that a

B-type cyclin-dependent kinase gene, CDKB1;1, is spe-

cifically expressed and required for the proper cell-divi-

sion pattern in the stomatal lineage. The misexpression

of a dominant-negative (dn) CDKB1;1 mutant protein,

CDKB1;1dn, resulted in reduced leaf size and fewer but

larger leaf cells. Strikingly, stomatal complexes were

significantly underrepresented in comparison to the total

number of leaf cells, indicating that the initiation and/

or maintenance of a stem-cell-like activity may depend on

a temporally and spatially correct execution of a cell-

division program (Figure 2a). One possibility could be

that the initial asymmetric division is inherently con-

nected with adoption of stem-cell identity. This connec-

tion might involve, for example, resetting cell fate through

the execution of mitosis, thus, allowing a new fate to be

adopted. A G2 phase might be of special importance in the

preparation for this unequal cell division.

Support for the importance of a G2 phase for cell-fate

specification in plants comes from studies of CYCB2;2.

Expression of the alfalfa CYCB2;2 gene was found to

strongly promote entry into mitosis in tobacco BY2 cells,

and root generation from leaf discs failed in transgenic

tobacco plants that misexpressed CYCB2;2 [6�]. Determi-

nation of the DNA content of leaf-disc cells confirmed

that the proportion of cells in a G2 phase in the CYCB2;2
misexpression line was strongly reduced in comparison to

wildtype [6�].

A G2 phase and a subsequent proper execution of a cell-

division program also appear to be crucial for the initiation

of lateral roots, a process that has some similarities to the

initial unequal division in the stomatal lineage. For the

generation of lateral roots, pericycle cells have to reenter a

cell-division cycle that generates founder cells. It has

been suggested that pericycle cells reside in a G2 state

before lateral root initiation [7,8], and auxin is probably

involved in establishing this state [9]. This finding has

been substantiated by recent transcript-profiling experi-

ments on initiating lateral roots, which made use of the

observation that plants treated with the auxin transport
www.sciencedirect.com
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Figure 2
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Synopsis of different relationships between cell-cycle progression and differentiation. (a) Cell-cycle progression determines further differentiation;

for example, more meristemoid cells are formed in 35S:CDT1 plants than in wildtype plants. (b) Developmental signals control further cell-cycle

progression; for example, trichomes start to endoreplicate after being specified. (c) Cell cycle and differentiation can progress independently

of each other; for example, guard cell differentiation commences without a formative division of a guard mother cell. (d) Cell cycle and

differentiation can be controlled by the same regulator or pathway; for example, the transcription factor E2F controls the expression of both

cell-cycle genes and genes that are involved in differentiation. During development, a succession of different relationships between cell cycle

and differentiation is often found. For example, during the formation of stomata, some cells are specified as meristemoid mother cells by

developmental signals, which also determine a cell-type-specific cell-cycle program (b). Next, meristemoid mother cells apparently have to go

through a cell division to create a meristemoid cell (a), which differentiates eventually into a guard mother cell. Finally, the development of a

guard mother cell into two guard cells appears to be largely independent of further cell divisions (c).
inhibitor nitropropionic acid (NPA) developed no lateral

roots. After application of auxin, the first cell-cycle genes

found to be upregulated were G1!S regulators, followed

by G2!M regulators, intriguingly, CDKB1;1 was among

those [10�]. And indeed, CDKB1;1dn plants have a

reduced number of lateral roots (I De Smet, T Beeckman,

pers. comm.).

The number of lateral roots was also found to be reduced

in plants that misexpressed the CDK inhibitor KINASE
INHIBITORY PROTEIN (KIP)-RELATED PROTEIN2
(KRP2) [9]. KRP2-misexpressing plants also displayed a

strong leaf phenotype, which was superficially very simi-

lar to that of CDKB1;1dn lines, comprising fewer and larger

cells but remarkably no significant change in stomatal

density. These observations demonstrate that cell-cycle

regulators can have different functions depending on the

cell type [11].

Interestingly, once a guard mother cell is formed, the

blocking of cell division appears not to completely attenu-

ate cell differentiation because kidney-shaped cells

resembling one half of a stoma were found in 35S:

CDKB1;1dn plants [5��]. Conversely, exit from a mitotic

cycle is not a prerequisite for guard cell differentiation, as

shown by the four lips mutant in which stomatal com-

plexes with multiple guard cells are formed by cell divi-

sion from one guard mother cell ([12]; JA Nadeau, FD
www.sciencedirect.com
Sack, pers. comm.). These results demonstrate that term-

inal differentiation in plants can proceed, at least to some

degree, independently of cell division (Figure 2b). This

conclusion is underscored by the observation that single-

celled Arabidopsis trichomes can be forced to divide,

giving rise to clustered and even multicellular leaf hairs

that still display trichome characteristics [13–15].

Although terminally differentiated cells appear to tolerate

cell divisions, strong induction of cell division during

early leaf development by misexpressing Arabidopsis
CYCD3;1 or tobacco CYCA3;2 under the 35S promoter

in Arabidopsis led to severe alterations of leaf morphology

[16��,17��]. In both cases, the development of distinct

spongy and palisade mesophyll layers was compromised

and hyperproliferation occurred, especially in the epider-

mal layer. The epidermal cells of the CYCD3;1- or

CYCA3;2-misexpression lines were small and polygonal,

traits that are indicative of undifferentiated cells. Endor-

eplication, which is often associated with cell differentia-

tion, was strongly inhibited in these lines. Two scenarios

may account for these phenotypes. First, CYCA3;2 and

CYCD3;1 might be special cyclins that are involved not

only in controlling cell proliferation but also in repressing

differentiation. Such an activity would have to be limited

to only some cells because stomatal development was

reported not to be strongly altered in the CYCD3;1-mis-

expression lines. Alternatively, rapid cell division during a
Current Opinion in Plant Biology 2004, 7:661–669
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Figure 3
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Many different cell-cycle modes are executed in plants. (a) The

different cell-cycle modes can vary with respect to cell-cycle phase

lengths, ranging from a rapid, proliferative mode to an exit from cell

cycle in either G1 or G2. (b) The composition of different cell-cycle

modes can also differ; for example, there is no mitosis in an

endoreplicating mode.
critical point in development could interfere with the

differentiation of some cells. The canonical pathway of

D-type cyclin function results in the activation of a

transcription factor, adenovirus E2 promoter binding

factor (E2F), which in turn is involved in controlling

entry into S-phase. Indeed, constitutive expression of

E2Fa and its cofactor DPa (DIMERIZATION PART-
NERa) from the 35S promoter also led to a dramatic

increase in cell number in both Arabidopsis and tobacco,

suggesting that the primary differentiation defect caused

by 35S:CYCD3;1 misexpression is due to strong promotion

of cell proliferation [18�,19].

Taken together, this evidence indicates that proper cell

divisions are crucial for differentiation programs (Figure

2a). However, there are different cell-cycle modes (based

on different sets of regulators) that reflect developmental-

time and cell-type-specific differences (Figure 3a).

Developmental signals are required to install these dif-

ferent cell-cycle modes, underlining the importance of

the developmental context (Figure 2b).
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Cell cycle and cell morphogenesis
Specified cells often exit a mitotic cell-cycle mode and

switch to an endoreplication (also called endoreduplica-

tion) program in which DNA replication is continued

without a subsequent cell division (Figure 3b). In some

cases, however, stimulation of cell divisions in already

specified cells does not perturb cell morphogenesis

(Figure 2c). For instance, the induction of cell divisions

in endoreplicating trichomes, as found in the siamese
mutant or in plants misexpressing B- or D-type cyclins,

still allowed adoption of the general trichome morphol-

ogy, including the initiation and expansion of branches

(preferentially in the upper cells of a multicellular

trichome) and the development of the characteristic

cuticula with papillae [13–15]. Interestingly, several

mutations that affect trichome branching appeared to

have a function related to cell-cycle and/or cell-division

control in other contexts [20]. This, together with the

observation that trichomes are multicellular in many

plant species, gave rise to speculation that Arabidopsis
trichomes are derived from multicellular leaf hairs

(presumably without endoreplication), and that the

branching of Arabidopsis trichomes is a derivative of cell

division (for further discussion see [20]). The origin of

endoreplication from a mitotic mode could also explain

why trichomes (and perhaps other endoreplicating cells)

may tolerate ectopic cell divisions.

The potential advantages of a single large polyploid cell

as opposed to many small cells might include facilitation

of transport processes and the continuity of transcription

as chromosomes do not condensate during endoreplica-

tion [21–23]. The recently described differences in the

ranges of DNA movement in endoreplicated and diploid

nuclei denote general changes in chromatin organization

and structure that occur during endoreplication, and

imply that vast changes in transcriptional control [24].

Furthermore, a correlation between nuclear size and cell

size/cytoplasmic volume has often been observed [25].

This correlation is preserved in the aborted stomata found

in CDKB1;1dn plants, which displayed a 4C DNA content

and were approximately the size of two guard cells each

containing 2C [5��]. In addition, several Arabidopsis
mutants that have altered trichomes support the correla-

tion between cell size and nuclear size. Whereas wildtype

trichomes have an DNA content of approximately 32C

and develop mostly between three and four branches,

mutants that have fewer endoreplication cycles have

smaller trichomes with fewer branches [26]. Branch num-

bers and cell size are also increased in trichome mutants

that have increased DNA contents [26]. Misexpression of

a CDK inhibitor, and thus presumed direct interference

with cell-cycle progression, concurrently reduced DNA

levels and the size and branch number of trichomes. This

represents another case, in which cell-cycle progression

seems to direct the course of further differentiation
www.sciencedirect.com
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processes (Figure 2a; [27��]). Conversely, increased

endoreplication in the trichomes of plants that misex-

pressed CDC6 or CDT1, in which components of the

replication machinery are again affected directly, was

correlated with more branches and larger cells (Figure

2a; [4�]). The connection between cell size and DNA

content seems to apply not only to terminally differen-

tiated cells such as trichomes or guard cells. By applying

inhibitors of DNA synthesis to Arabidopsis floral meris-

tems and following their growth over time, a similar

relationship between cell growth and DNA content could

also be found in meristematic cells [28��].

Nevertheless, a few mutants and misexpression lines

have been reported in which altered cell size and altered

DNA content are not correlated. For instance, studies on

a dominant-negative CDKA and on CDK inhibitors have

shown that DNA content and cell size can be uncoupled,

that is, that cells with less DNA than wildtype were larger

than wildtype cells (Figure 2c; [11,29]). However, there

are clearly limitations on the extent to which a cell can

expand without an increase in DNA content, as seen in

trichomes in which INTERACTOR/INHIBITOR OF CDKs
1 (ICK1)/KRP1 is misexpressed. Even though the ratio of

cell size to DNA content to was much larger in these

misexpression lines than in wildtype trichomes, the over-

all cell size of the transgenic trichomes was reduced in

comparison to wildtype [27��].

Another example in which endoreplication appears to be

required for proper cell differentiation is found in Med-
icago nodules, which are involved in nitrogen fixation.

The anaphase-promoting complex/cyclosome (APC/C)

activator protein CELL-CYCLE SWITCH 52 (CCS52;

belonging to the CDH1, HCT1, FIZZY-RELATED

[FZR] class) was previously shown to be required for

endoreplication [30]. Downregulation of CCS52 resulted

in smaller cells with reduced endoreplication levels,

which failed to develop into N-fixing cells, and interest-

ingly, died prematurely [31�]. As yet, it is not known how

direct endoreplication is coupled to cell differentiation

and cell survival, and/or whether other substrates of APC/

CCCS52 are involved in nodule formation. However, Ara-
bidopsis trichomes that were compromised in endorepli-

cation because they misexpressed the CDK inhibitor

ICK1/KRP1 also underwent cell death, suggesting that

endoreplication levels are directly involved in cell differ-

entiation and cell survival (Figure 2; [27��]).

How endoreduplication, growth, and differentiation are

mechanistically connected is not well understood. One

possibility is that some regulators are involved in both

processes at the same time (Figure 2d). For instance, the

recent observation that CDKA;1 can be found in vivo in

an complex with the translation initiation factor eIF4A

offers such a link [32]. Another candidate for linking cell-

cycle progression and differentiation is the group of E2F
www.sciencedirect.com
transcription factors. Misexpression of E2Fa together

with DPa has been found to increase the level of endo-

replicating cells [18�,19]. Interestingly, the transcription

profiles of E2F-DP misexpressing plants and analysis of

the E2F target genes revealed that E2F affects both

genes that are involved in cell-cycle control and other

target genes, including genes that have roles in nitrate

assimilation and stress signalling [33�,34�]. Similarly, E2F

appears to regulate many differentiation pathways in

animals [35]. On a wider scale, recent expression profile

studies in plants have shown that the expression of many

genes that are involved in various cellular tasks, such as

stress responses or metabolism, is specific to cell-cycle

phase, indicating that many interrelationships between

cell-cycle control and plant development are yet to be

discovered [36�,37–39].

Cell cycle and tissue and organ growth
The most obvious link between cell cycle and differen-

tiation at the organ level is found in meristems. Cell

division and differentiation have to happen in a balanced

manner for both the generation of new primordia and the

maintenance of a stem-cell population (see recent reviews

on meristem function [40–42]).

Furthermore, cell number and cell growth in the pri-

mordia and growing organs have to be regulated on a

supercellular level to control organ and organism size.

The regulation of organ growth is clearly comprised of

two components: the cellular parameters, including cell

size, cell shape and the division rate of individual cells;

and non-cell-autonomous organ parameters, such as

overall growth rate and growth direction. A long-range

signal that functions in a non-cell-autonomous manner

has recently been postulated subsequent to studies in

which the growth dynamics of Antirrhinum petals were

followed [43].

Compensation between cell size and cell number has

been repeatedly observed as a part of a putative non-cell-

autonomous surveillance function. In Arabidopsis plants

that misexpresss ICK2/KRP2 or CDKB1;1dn, the leaves

were comprised of fewer cells but these cells were much

larger than those in wildtype plants. This finding was

interpreted as an attempt to maintain overall organ size

(Figure 2b; [5��,11]; for further review see Tsukaya [44]).

The ability to follow in-vivo cell division, cell enlarge-

ment, and differentiation is an important advance in the

analysis of organ growth. Recently, Grandjean and col-

leagues [28��] adapted a special microscopical set-up to

observe live Arabidopsis flower meristems, allowing the

correlation of the expression of green fluorescent protein

(GFP) reporter lines for primordia fate with cellular

dynamics in these meristems. Two phases in primordia

formation could be determined: first, a relatively rapid

recruitment phase in which cells started to express the
Current Opinion in Plant Biology 2004, 7:661–669
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GFP markers, followed by the onset of proliferation.

Interestingly, interfering with cell division by applying

the microtubule-depolymerising drug oryzalin in the

recruitment phase blocked further development of pri-

mordia, whereas a later block did not prevent the out-

growth of primordia (by cell enlargement and

endoreplication). Thus, a minimal number of cells is

necessary to create an environment in which develop-

mental cues are able to function (Figure 2a).

The recruitment of cells into primordia seems to be a

non-cell-autonomous process and needs to be restricted

by boundary regions in which cell proliferation is pre-

vented. Breuil-Broyer and colleagues [45�] followed cell

division in a semi-in-vivo culture system of cut flowers by

labelling S-phase cells with 5-bromo-2-deoxyuridine

(BrdU) and then determined the boundaries of non-

dividing cells between growing primordia at cellular

resolution. Remarkably, in the boundary region, no

mRNAs could be found for either positive regulators

of cell proliferation, such as CYCD3;1, or negative reg-

ulators, such as ICK2/KRP2, whereas both classes of

genes were expressed in the surrounding primordia. In

Arabidopsis, the CUP-SHAPED COTELYDON (CUC)

genes, comprising a group of three highly homologous

genes that encode putative transcription factors, appear

to be involved in setting up boundaries in the meristems

[46–48]. Mutations in CUC genes lead to partially fused

organs and, in double or triple mutant combinations, to a

loss of the shoot apical meristems. Whether and how

directly CUC genes control cell-cycle regulators remains

to be determined.

Even though Grandjean and colleagues [28��] observed

that the individual cell-division rate can vary greatly in

meristems, the overall pace of cell division appears to

be highly regulated and to be important for develop-

ment. In all attempts to increase plant growth reported

to date, for instance in plants that misexpressed the

recently identified ARGOS gene [49], the duration of

cell division was temporally and spatially increased. By

contrast, a great increase in the pace of cell division

resulted in delayed differentiation, as seen in plants

that misexpress CYCA3;2, CYCD3;1, or E2Fa-DPa
[16��,17��,19]. In extreme cases, cell division activity

came to halt and plant growth ceased. One interesting

hypothesis to be tested in future is that a certain

differentiation level is required to set the stage for cell

proliferation.

Conclusions
Various relationships between cell-cycle control and dif-

ferentiation occur; in addition, the succession of different

relationships leads to complex developmental programs.

In the generation of stomata, initial developmental sig-

nals are required for the formation of a meristemoid

mother cell, which have to be coordinated with the
Current Opinion in Plant Biology 2004, 7:661–669
general cell-division pattern in the leaf epidermis. Next,

cell divisions appear to be required for further differen-

tiation into a meristemoid cell, eventually leading to the

formation of a guard mother cell. After this point, differ-

entiation can proceed somewhat independently of cell-

cycle progression. From an organ-level perspective, the

number of meristemoid mother cells and satellite mer-

istemoids is of primary importance as they will ultimately

determine the number of guard cells, which will in turn

control the balance between water loss and CO2 uptake.

The number of unequal cell divisions of the meristemoid

also has to be neatly controlled on a supercellular level,

because these divisions produce more than 70% of all

epidermal cells, and thus are a major component of organ-

size control [50].

Many of the observed relationships between cell cycle

and plant development underline that plant cell-cycle

control has a high degree of plasticity (e.g. already differ-

entiated cells can re-enter a cell division cycle), and also

possesses a high degree of robustness (e.g. terminal

differentiation can proceed even though cell divisions

continue). However, throughout development cell–cell

communication seems to be required to set the stage for

further cell-cycle progressions and differentiation.

An emerging theme is that cell-cycle regulators are cell-

type specific or dependent on the developmental state.

Thus, there is no definitive cell cycle but many different

cell-cycle modes that are adapted for various settings.

The organism might make use of these different cell-

cycle modes by linking the expression and activity of

other proteins to it. For instance, it has been speculated

that HOBBIT, a subunit of the APC/C, is involved in

mediating auxin responses in young and dividing cells,

which of course have the greatest potential to influence

the direction of plant growth and development [51].

Thus, we are just beginning to understand these different

programs and how the plant uses them to regulate its

development.
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