
Token merging in language model-based
confusible disambiguation

Herman Stehouwer Menno van Zaanen

TiCC, Tilburg University, Tilburg

Abstract

In the context of confusible disambiguation (spelling correction that requires context), the synchronous
back-off strategy combined with traditionaln-gram language models performs well. However, when
alternatives consist of a different number of tokens, this classification technique cannot be applied directly,
because the computation of the probabilities is skewed. Previous work already showed that probabilities
based on different ordern-grams should not be compared directly.

In this article, we propose new probability metrics in whichthe size of then is varied according to the
number of tokens of the confusible alternative. This requires access ton-grams of variable length. Results
show that the synchronous back-off method is extremely robust.

We discuss the use of suffix trees as a technique to store variable lengthn-gram information efficiently.

1 Introduction

When writing texts, people often use spelling checkers to tackle spelling mistakes. Most available spelling
checkers concentrate on non-word errors only. Since these errors consist of character sequences that are not
part of the language, these errors can be (relatively1) easily identified. For example, in Englishwoord is not
part of the language, hence a non-word error. A possible correction would beword.

However, even when a text does not contain any non-word errors, there is no guarantee that the text is
error-free. There are several types of spelling errors where the words themselves are part of the language,
but are used incorrectly in their context. Note that these kinds of errors are much harder to recognize,
as information from the context in which they occur is essential to recognize and correct these errors. In
contrast, non-word errors can be recognized without context.

One class of such errors, calledconfusibles, consists of words that belong to the language, but are
used incorrectly with respect to their local, sentential context. For example,She owns to carscontains the
confusibleto. Note that this word is a valid token and part of the language,but used incorrectly in the context.
Considering the context, a correct and very likely alternative here would be the wordtwo. Confusibles are
grouped together in confusible sets, which are sets of wordsthat are similar and often used incorrectly in
context.Too is the third alternative in this particular confusible set.

A typical way of solving the problem of confusibles is to use amachine learning classifier that uses
information from the context of the confusible and classifies the instance, resolving the ambiguity. In this
article, we tackle this problem using a language model approach. In particular, we combine the language
model approach with a synchronous back-off of higher-ordern-grams to lower-ordern-grams [12].

The research presented here is part of a larger project, which focusses on identifying and correcting
context-sensitive spelling mistakes in general, including for instance pragmatically incorrect words (which
requires a document-wide context). However, advanced techniques are needed for this problem.

This article is organized as follows. In the next section, webriefly describe different approaches to
confusible disambiguation, concentrating on how languagemodels can be used in the context of confusible
correction. We will also explain the synchronized back-offtechnique in more detail. In the following section
(section 3), we will treat the problem of multiple token confusibles in more detail and we will elaborate on
our need to merge the focus position of a sequence for alternatives of different length, and propose different

1Productive processes such as compounding make this processharder, as simple word lists will not contain all words in thelanguage.



Training . . . inflation locked in thenI think we can . . .
. . . much stronger thanmost analysts had expected .

〈locked, in, I, think〉 ⇒then
〈much, stronger, most, analysts〉 ⇒than

Testing . . . much stronger most analysts had expected .

〈much, stronger, most, analysts〉 ⇒?

Figure 1: Instances are extracted from sentences during training. Testing classifies new instances, yielding
values for the focus word position.

methods that allow us to do this. In section 4, we will discussa practical solution to the technical issues by
using suffix trees. Finally, we will end with a conclusion with some ideas on possible future work.

2 Approaches to confusible disambiguation

A typical approach to the problem of confusibles is to train amachine learning classifier to a specific con-
fusible set. Most of the work in this area has concentrated onconfusibles due to homophony (to, too, two) or
similar spelling (desert, dessert). For instance, when word forms are homophonic, they tend toget confused
often in writing (cf. the situation withto, too, andtwo, affect andeffect, or there, their, andthey’re in En-
glish) [11, 15]. However, some research has also touched upon inflectional or derivational confusibles such
as I versusme [4]. Typically, the confusible sets are very small (two or three elements) and the machine
learner will only see training examples of the members of theconfusible set. This approach is similar to that
of accent restoration [1, 2, 3, 6, 9, 14, 16, 17].

The task of the machine learner is to decide, using features describing information from the context,
which word taken from the confusible set really belongs on the position of the confusible. Using the example
above, the classifier has to decide which word belongs on the position of theX in She ownsX cars, where
the possible answers forX are to, too, or two. We callX, the confusible that is under consideration, the
focus word. Figure 1 illustrates the typical approach, when only wordsin the context are used.

2.1 Language model-based classification

Another way of looking at the problem of confusible disambiguation is to see it as a very specialized case of
word prediction. The problem is then to decide which word at acertain position is more likely (from a list
of alternatives). Using similarities between these cases,we can use techniques from the field of language
modeling to solve the decision problem of finding the correctvalue in confusible sets.

Language models assign probabilities to sequences of words. Using this information, it is possible to
predict the most likely word given a context. For example, wecan use a language model to give us the
probability for a sequence ofn wordsPLM (w1, . . . , wn). Based on this, it is possible to predict the most
likely word w following a sequence ofn− 1 words, namelyargmaxw PLM (w1, . . . , wn−1, w). Obviously,
a similar approach can be taken withw in the middle of the sequence. By limiting the possible values forw
to those in the confusible set, we have designed a classifier based on the language model.

The advantage of the language model approach to confusible disambiguation is a generic language model
can handle all potential confusibles without any further training and tuning. With the language model it is
possible to take the words from any confusible set and compute the probabilities of those words in the
context. The element from the confusible set that has the highest probability is then selected. Since the
language model can assign probabilities to all sequences ofwords, it is possible to define new confusible
sets on the fly and let the language model disambiguate them without any further training. Obviously, this
is not possible for a specialized machine learning classifier approach, where a classifier is fine-tuned to the
features and classes are pre-defined for a specific confusible set2.

The disadvantage of the generic (language model) classifierapproach is that the accuracy is less than
that of the specific (specialized machine learning classifier) approach, but previous works shows that the

2When using a machine-learning algorithm as a full-word predictor the full dictionary can be predicted by the machine-learner.
However, in general, such an approach is not directly suitable to make decisions between a specific set of alternatives. (See also
section 2.2.)



. . . much stronger most analysts had expected .

than then
P (much stronger than) P (much stronger then)
×P (stronger than most) ×P (stronger then most)
×P (than most analysts) ×P (then most analysts)

Figure 2: Computation of probabilities using the language model.

results are encouraging [12]. Since the specific classifiersare tuned to each specific confusible set, the
weights for each of the features may be different for each set. For instance, there may be confusibles for
which the correct word is easily identified by words in a specific position. If a determiner, likethe, occurs
in the position directly before the confusible,to or too are very probably not the correct answers. The
specific approach can take this into account by assigning specific weights to part-of-speech and position
combinations, whereas the generic approach cannot do this explicitly for specific cases; the weights follow
automatically from the training corpus and are the same for all words (in all situations).

Summarizing, there is no real difference between the classifier-based or language model-based disam-
biguation of confusibles. Both approaches classify instances. However, the main difference is the number of
classes that can be classified into. The classifier-based approach limits the number of classes to the number
of elements in the confusible set, whereas the language model-based approach allows for classification into
any word in the language (that the model knows of). This makesthe language model approach much more
flexible.

2.2 Synchronized back-off inn-gram language models

The language model approach to confusible disambiguation described above relies heavily on the language
model. In principle, any language model that provides probabilities given sequences can be used as com-
ponents in a classifier. In previous work [12], we have used a relatively simplen-gram based classifier. An
illustration of this approach can be found in figure 2.

The size ofn defines the size of the context around the focus word. The example in figure 2 usesn = 3.
This means that we do not need to compute the probability of the entire sentence, only the probabilities that
will change depending on the value of the focus word will needto be computed. As usual, using largern will
give us more specific probabilities. However, it also introduces data sparseness problems as the likelihood
that the largen-gram occurs in the training data is smaller.

There are several techniques that can be used to reduce the impact of data sparseness problems. Smooth-
ing of probabilities or back-off methods are typically used. Back-off techniques fall back on lower order
n-grams when no occurrence of the higher ordern-grams are found. In other words, ifPn(w0 . . . wn) = 0
then the language model usesPn−1(w0 . . . wn−1) × Pn−1(w1 . . . wn). This process may continue until
uni-grams are considered.

Applying this simple back-off strategy in the context of confusible disambiguation leads to the problem
of unbalanced probabilities. For instance, it may be the case that when comparing different members of
a confusible set, one of the alternatives has a non-zero tri-gram probability, while for the other alternative
bi-gram probabilities are used (because their tri-gram probability is zero). It turns out that using these unbal-
anced probabilities yield undesirable results. Intuitively, this can be argued, since the different probabilities
come from different probability spaces.

To resolve the problem of unbalanced probabilities, we haveemployed a back-off strategy calledsyn-
chronous back-off. This method always uses probabilities of the same ordern-gram model for each alterna-
tive in the confusible set. Whereas in the naive case, a position in two similar sequences may be computed
using probabilities of different order language models, the synchronous back-off model only takes a lower
ordern-gram into account when all alternatives have zero probability. This is illustrated in figure 3.

3 Multiple tokens as alternatives

The language model approach to confusible disambiguation runs into problems when the alternatives in the
confusible set (in particular when occurring on the focus position) contain a different number of tokens. For



a b c a x c

P3(a b c) = 0? and P3(a x c) = 0?
⇓ ⇓

P2(a b) × P2(b c) = 0? and P2(a x) × P2(x c) = 0?
⇓ ⇓

P1(a) × P1(b) × P1(c) P1(a) × P1(x) × P1(c)

Figure 3: The probabilities of the two alternatives are computed using synchronous back-off. Only if both
probabilities are zero are lower order probabilities takeninto account.

example, consider the case ofyour (one token) versusyou ’re (two tokens). The problem here is that for the
first alternative, there is one token as focus word, whereas the other alternative has a two token focus word.

Having different number of tokens as focus word has an impacton the computation of the probabilities
of the sequences. For instance, whenn = 3, the probabilities are computed based on two tokens before and
after the focus word, combined with the focus word. In the case of your, the probabilities are based on five
tokens, but in the case ofyou ’re as the focus word, which contains two tokens itself, the probabilities are
based on six tokens.

Experiments that compare continuous back-off (where each alternative is allowed to back off until a
non-zero probability is found) against synchronous back-off already showed that comparing probabilities
based on different ordern-grams yields unsatisfactory results. Unfortunately, disambiguating a confusible
set containing alternatives with a different number of tokens, this same situation arises. Effectively, different
ordern-grams will be compared.

3.1 Merging positions

Previous work resolved the problem of multiple tokens in alternatives by retokenizing the corpus, making
sure that the order of then-grams is the same for each alternative (essentially takingyou’re as one token).
Obviously, this approach equalizes the order of then-grams of the alternatives, but it is not a practical
solution, as for each situation with different tokens in thealternatives, retokenization is required.

The solution to the problem by merging tokens discards the information thatyou’re also contains both
tokensyou and’re, which might be important for disambiguation. Finally, this problem also occurs when
these multi-token “words” occur in non-focus word positions. Retokenizing the corpus implies that all
occurrences of such words are modified. This results in a different probability distribution compared to the
original, not retokenized version of the corpus.

3.2 Readjusting probabilities

From the previous section it may be clear that we would like tobe able to merge tokens during testing only.
This allows us to deal with different length confusible alternatives as if they all have the same size. However,
we do not want to merge tokens by retokenizing the entire corpus as there may be many situations in which
merging is needed.

Our solution to this problem is to retain the structural information that is present in the model, but to only
adjust the counts that are required to compute the probabilities of the sequences (and hence the probabilities
of the alternatives). This comes down to dynamically readjusting the probabilities when needed without
retokenizing the corpus.

In situations where all alternatives contain one token, theprobability of an alternative only depends
on the direct context of the focus word. For instance, if we have the sequencew = w0 . . . wm and
wf is the focus word, the probability of the sequence that is relevant for disambiguation is defined by
Πf

i=f−n+1Pn(wi . . . wi+n−1), which combines the probabilities ofn-grams containing the focus wordwf .
We now extend this computation by considering the case of having a focus word consisting of two

tokens:wf0
andwf1

(wheref0 + 1 = f1). During the computation of the probabilities, these two tokens
are treated as one.Πf0

i=f0−n+1Pn+1(wi . . . wi+n). This computation uses the same context as the one token
alternative, but since an additional token is used, a higherordern-gram is needed. Note that this approach



is trivial to extend to alternatives with more than two tokens (which requires a proportional increase in the
order of then-grams).

So far, the approach is exactly the same, but if results fromPn+1 are compared to those ofPn, then
different ordern-grams are compared, which is problematic, as discussed above. Clearly, different means of
computing the probabilities are needed. We will discuss four extensions and compare them against the case
where bothPn andPn+1 are used in section 5.

Typically, the probability of ann-gram is computed byPno discount(s) = occ(s)
|C|−|s|+1 , whereocc returns the

number of occurrences ofn-grams and |C| is the number of tokens in the corpus. The denominator is
number ofn-grams of lengthn = |s| in the corpus.

Since we are going to model the probability of a mergedn-gram, we will use a similar formula, but
discount the total number ofn-grams in the corpus. Essentially, this comes down to pretending the corpus
has been retokenized with respect tos. We will usePcount−occ(s) = occ(s)

|C|−|s|+1−(|s|−1)×occ(s) to compute the
probability. This effectively increases the probability by pretending to reduce the size of the corpus by the
number of timess occurred. This is like treatings as a single token.

Using simple heuristics, we can increase discounting further, for instance, by reducing the denomi-
nator by the number of occurrences of the uni-grams of the multi-token s. Pcount−min(occ(sub-gram))(s) =

occ(s)
|C|−|s|+1−minn

i=0
occ(si)

andPcount−max(occ(sub-gram))(s) = occ(s)
|C|−|s|+1−maxn

i=0
occ(si)

describe this (where sub-
gram is the bag of words in then-gram). As an extreme, we propose a heuristic that discountsthe ratio of
all bi-grams versus uni-grams, resulting inP

count× |uni-gram|

|bi-gram|

(s) = occ(s)

(|C|−|s|+1)×
|uni-gram|

|bi-gram|

.

We should note at this point that not all different implementations ofP result in proper probabilities.
The count numbers are modified and different probability spaces are combined in simple heuristic ways.
However, this is not a major concern, as we are only interested in comparing the figures for different options
in a set of alternatives to make a decision (argmax).

3.3 Impact

The problem of different probabilities in case of multiple token alternatives sketched here may only seem to
be a minor problem with hardly any impact on the task. However, future work in this project concentrates on
incorporating additional information in the language models. Details about incorporating more information
will be discussed in section 6. For now, imagine how, for instance, part-of-speech information of the focus
word can be incorporated. To get the probabilities right, merging tokens is preferred. However, this would
also mean that the focus word will have multiple part-of-speech tags assigned to it. Starting from the part-
of-speech information, keeping the tokens (and their part-of-speech information) separate is preferred, but
this again introduces problems regarding the probability distributions3.

Having access to a dynamic system that can readjust probabilities when needed is preferred. Essentially,
this allows for easy switching between both views of the data. However, as shown above, variable order of
n-grams (depending on the number of tokens in the focus word position) may be required to implement this.
The next section describes a practical approach to storing and retrieving variable ordern-grams based on
suffix trees.

4 Practical issues

Our solution to the computation of multiple token focus wordalternatives depends on access to variable
lengthn-grams. Since our language model approach allows for dynamic creation of confusible sets, we
cannot decide beforehand what the maximum requiredn is (apart from it being smaller than the size of the
corpus). This calls for the dynamic computation of probabilities, leading to dynamic counting ofn-grams
in the corpus.

To keep the process of countingn-grams efficient, we store the corpus in a suffix tree. A suffix tree is a
trie-based data structure (see page 492 of [7]) that stores all suffixes of an input string in such a way that a
suffix of the string can be found in linear time (in the length of the suffix). Note that suffix tree construction
can also be done with a linear time algorithm (in the length ofthe string) [5, 13], which only needs to be

3Adding additional information to tokens can be done sequentially in the suffixtree (see section 4), requiring wildcards, which
allows for skipping tokens in the suffixtree, when this information is not required.



c
a 2o

c a
0

o
a c

a
1

o
3o

4o

Figure 4: Suffix tree forcacao.

done once. All suffixes occupy a single path from the root of the suffix tree to a leaf. For a simple example
of a suffix tree based on the stringcacaosee figure 4.

Leaf nodes in suffix trees contain information on the begin position of the suffix leading to that specific
leaf. This allows for finding the start position of the suffix that ends in that leaf. By extending this search,
it is possible to find start positions of any sub-string. First, search the suffix tree using the symbols in the
sub-string. Unless the sub-string is a suffix, this will leadto an internal node. Finding the position stored in
a leaf node that can be reached from the internal node yields the start position of the sub-string.

Due to the way suffix trees are constructed, we can efficientlyfind the number of occurrences of sub-
strings in the entire string. Starting from the root node, wefind the node that belongs to the sub-string.
From this node, we can count the number of leaves that it governs. This number is exactly the number of
occurrences of the sub-string in the entire corpus.

Obviously, we can construct a suffix tree using tokens as elements (and not characters as was illustrated
in figure 4). This allows us to efficiently identify the count of anyn-gram of any order.

5 Results

To measure the impact of different means of adjusting the probabilities of the different ordern-grams, we
will run some experiments. First, we build a suffix tree givena training corpus, which will be used to
generaten-gram counts. Next, we identify possible confusibles in thetest corpus. We apply the language
model classifier to see whether the correct alternatives areselected.

For training purposes, we used the Reuters news corpus RCV1 [8]. The Reuters corpus contains about
810,000 categorized newswire stories as published by Reuters in 1996 and 1997. This corpus contains
around 130 million tokens.4 For testing purposes, we used the Wall Street Journal part ofthe Penn Treebank
corpus [10]. This well-known corpus contains articles fromthe Wall Street Journal in 1987 to 1989. We
extract our test-instances from this corpus in the same way as we extract our training data from the Reuters
corpus. Minor tokenization differences between the corpora are corrected for.

Both corpora are in the domain of English language news texts, so we expect them to have similar
properties. However, they are different corpora and hence have slightly different properties. This means
that there are also differences between the training and testing set. We have selected this division to create a
more realistic setting. This should allow for a more real-world use comparison than when both training and
testing instances are extracted from the same corpus. Training and testing on different corpora does mean
we expect lower results than those that could be achieved on the same corpus, however we believe this is a
more natural setting.

In this article, we will only concentrate on two confusible sets,{your, you ’re} and{their, they ’re,
there}, that contain alternatives that have different number of tokens. This will not result in an impression
on the performance of the language model approach of confusible disambiguation, but it will illustrate the
impact the different ways of normalizing the probabilitiesof the different orders ofn-grams.

Table 1 gives an idea of the order of magnitude of the occurrences of different tokens. The numbers
indicate the number of occurrences of the tokens and token combinations. The figures forof theare provided
as comparison.of the is the most frequent bi-gram in the corpus.

Looking at the counts of the multi-token alternatives (you ’re andthey ’re) in table 1, we see that they
are much lower compared to the single token alternatives. Itmay be clear that the uni-gram probabilities
(where we take the multi-token alternatives as single tokens) will lead to a clear preference for the single

4Memory usage of a suffix tree is larger than that of a simplen-gram model, but it is not prohibitively large. The Reuters corpus, a
4GB plain text corpus, can be stored in a 16GB suffix tree, while optimizations making more efficient use of space are possible.



Total # tokens 132,887,136
# your 5,776 # their 167,227
# you ’re 1,935 # there 94,247
# you 30,965 # they ’re 2,672
# ’re 20,678 # they 159,290
# of the 569,814 # the 4,792,464
# of 2,616,495

Table 1: Token counts from the Reuters RVC1 corpus.

Discount {your, you ’re} {their, there, they ’re}
method discount accuracy discount accuracy

No discount 0/132M 93.1 0/132M 90.4
count− occ 2K/132M 93.1 3K/132M 90.4
count− min (occ(sub-gram)) 21K/132M 93.1 21K/132M 90.4
count− max (occ(sub-gram)) 31K/132M 93.1 159K/132M 90.4

count× (
|uni-gram|

|bi-gram|
) 127M/132M 80.0 127M/132M 90.4

Table 2: Results of the five different discounting schemes. Results given in accuracy %.

token alternatives. The definition ofP should take this into account and assign more probability mass to the
multi-token alternatives.

The results of the different probability computations are shown in table 2. The discount columns shows
the count that is subtracted from the total count (which is also shown). The first entry shows the situation
where the probability of larger ordern-grams are treated as lower order (tri-grams used as bi-grams in this
case). The second entry normalizes the total count by subtracting the number of occurrences of the bi-gram,
effectively using the probability as if the corpus was retokenized, treating the multi-token alternative as a
single token. The next two entries reduce the total count by the number of occurrences of the elements of
the bi-gram. Finally, discounting is taken into extreme, where for probability computation, the total count
is reduced as if all bi-grams were uni-grams. Note that thesediscounting methods are only used when the
focus word contains multiple tokens.

The results5 clearly show that discounting does not have any effect in classification accuracy. This
means that the probabilities used to disambiguate between the different alternatives are extremely robust.
Even discounting more than half the total count only has a marginal effect (in the{your, you’re} case).

The robustness of the system also indicates that we need to find other ways to improve results. Clearly,
the token counts as used here do not easily allow modifications leading to improved results (the probabilities
are too robust). Future extensions will require additionalinformation not present in the counts per se.

6 Conclusion

In this article we have proposed several methods to allow alternatives in confusible sets to have an unequal
number of tokens. This is essential in confusible sets such as{your, you ’re}. Previous work has solved this
in an ad hoc way by retokenizing the corpus, but the newly proposed methods allow for computation based
on dynamic recounting, removing the explicit retokenization phase.

By varying the amount of discounting, which is the basis for the new probability metrics, shows that the
synchronous back-off method is very robust. Previous research has already shown that synchronous back-off
leads to good results.

On the practical side, we presented a suffix tree implementation of language models, allowing us to
extract the counts needed for the probability computation of n-grams efficiently. Creation of the suffix tree
is linear in corpus size, whereas finding then-gram information is linear in the search string (then-gram).

In the future, we would like to be able to deal with annotated tokens (such as part-of-speech), allowing
for gradual back-off based on this additional information.The methods described here are essential for

5Previous results were different due to retokenization problems.



incorporating this information. Whereas concatenating tokens and retokenization is still possible, this is
more problematic for part-of-speech information.

In the future, we would also like to investigate the performance of the methods presented here on different
problems to investigate the general applicability of the method.

References

[1] M. Banko and E. Brill. Scaling to very very large corpora for natural language disambiguation. In
Proceedings of the 39th Annual Meeting of the Association for Computational Linguistics, pages 26–
33. Association for Computational Linguistics, 2001.

[2] Y. Even-Zohar and D. Roth. A classification approach to word prediction. InProceedings of the
First North-American Conference on Computational Linguistics, pages 124–131, New Brunswick, NJ,
2000. ACL.

[3] A. R. Golding. A Bayesian hybrid method for context-sensitive spelling correction. InProceedings of
the 3rd workshop on very large corpora, ACL-95, 1995.

[4] A.R. Golding and D. Roth. A Winnow-Based Approach to Context-Sensitive Spelling Correction.
Machine Learning, 34(1–3):107–130, 1999.

[5] Dan Gusfield. Algorithms on Strings, Trees and Sequences. University of Cambridge, Cambridge,
1997.

[6] J. H. Huang and D. W. Powers. Large scale experiments on correction of confused words. InAus-
tralasian Computer Science Conference Proceedings, pages 77–82, Queensland AU, 2001. Bond Uni-
versity.

[7] D. E. Knuth. The art of computer programming, volume 3: Sorting and searching. Addison-Wesley,
Reading, MA, 1973.

[8] David D. Lewis, Yiming Yang, Tony G. Rose, G. Dietterich,Fan Li, and Fan Li. Rcv1: A new
benchmark collection for text categorization research.Journal of Machine Learning Research, 5:361–
397, 2004.

[9] L. Mangu and E. Brill. Automatic rule acquisition for spelling correction. InProceedings of the
International Conference on Machine Learning, pages 187–194, 1997.

[10] M. Marcus, S. Santorini, and M. Marcinkiewicz. Building a Large Annotated Corpus of English: the
Penn Treebank.Computational Linguistics, 19(2):313–330, 1993.

[11] D. Sandra, F. Daems, and S. Frisson. Zo helder en toch zoveel fouten! wat leren we uit psy-
cholinguı̈stisch onderzoek naar werkwoordfouten bij ervaren spellers?Tijdschrift van de Vereniging
voor het Onderwijs in het Nederlands, 30(3):3–20, 2001.

[12] Herman Stehouwer and Menno van Zaanen. Language modelsfor contextual error detection and cor-
rection. InProceedings of the EACL 2009 Workshop on Computational Linguistic Aspects of Grammat-
ical Inference, pages 41–48, Athens, Greece, March 2009. Association for Computational Linguistics.

[13] Esko Ukkonen. On-line construction of suffix trees, 1995.

[14] A. Van den Bosch. Scalable classification-based word prediction and confusible correction.Traitement
Automatique des Langues, 46(2):39–63, 2006.

[15] A. Van den Bosch and W. Daelemans.Tussen Taal, Spelling en Onderwijs, chapter Dat gebeurd mei
niet: Computationele modellen voor verwarbare homofonen,pages 199–210. Academia Press, 2007.

[16] D. Wu, Z. Sui, and J. Zhao. An information-based method for selecting feature types for word pre-
diction. InProceedings of the Sixth European Conference on Speech Communication and Technology,
EUROSPEECH’99, Budapest, 1999.

[17] D. Yarowsky. Decision lists for lexical ambiguity resolution: application to accent restoration in Span-
ish and French. InProceedings of the Annual Meeting of the ACL, pages 88–95, 1994.


	Introduction
	Approaches to confusible disambiguation
	Language model-based classification
	Synchronized back-off in n-gram language models

	Multiple tokens as alternatives
	Merging positions
	Readjusting probabilities
	Impact

	Practical issues
	Results
	Conclusion

