Token merging in language model-based
confusible disambiguation

Herman Stehouwer Menno van Zaanen

TiCC, Tilburg University, Tilburg

Abstract

In the context of confusible disambiguation (spelling egtion that requires context), the synchronous
back-off strategy combined with traditionalgram language models performs well. However, when
alternatives consist of a different number of tokens, tlissification technique cannot be applied directly,
because the computation of the probabilities is skewedvidtre work already showed that probabilities
based on different order-grams should not be compared directly.

In this article, we propose new probability metrics in whibk size of the: is varied according to the
number of tokens of the confusible alternative. This rezgiaccess ta-grams of variable length. Results
show that the synchronous back-off method is extremelysbbu

We discuss the use of suffix trees as a technique to stordl@hingthn-gram information efficiently.

1 Introduction

When writing texts, people often use spelling checkersakléaspelling mistakes. Most available spelling
checkers concentrate on non-word errors only. Since thresese&onsist of character sequences that are not
part of the language, these errors can be (relaﬂyelasily identified. For example, in Engligkoordis not
part of the language, hence a non-word error. A possibleecton would bevord.

However, even when a text does not contain any non-wordsrioere is no guarantee that the text is
error-free. There are several types of spelling errors /itteg words themselves are part of the language,
but are used incorrectly in their context. Note that thesel&iof errors are much harder to recognize,
as information from the context in which they occur is essémd recognize and correct these errors. In
contrast, non-word errors can be recognized without contex

One class of such errors, callednfusibles, consists of words that belong to the language, but are
used incorrectly with respect to their local, sententialteat. For exampleShe owns to carsontains the
confusibleto. Note that this word is a valid token and part of the langubgeuysed incorrectly in the context.
Considering the context, a correct and very likely alteugghere would be the wortivo. Confusibles are
grouped together in confusible sets, which are sets of withasare similar and often used incorrectly in
context.Too is the third alternative in this particular confusible set.

A typical way of solving the problem of confusibles is to usenachine learning classifier that uses
information from the context of the confusible and classiftee instance, resolving the ambiguity. In this
article, we tackle this problem using a language model apgroIn particular, we combine the language
model approach with a synchronous back-off of higher-ordgrams to lower-orden-grams|[[12].

The research presented here is part of a larger projecthwib@misses on identifying and correcting
context-sensitive spelling mistakes in general, inclgdor instance pragmatically incorrect words (which
requires a document-wide context). However, advancedtqubs are needed for this problem.

This article is organized as follows. In the next section, lwiefly describe different approaches to
confusible disambiguation, concentrating on how languagdels can be used in the context of confusible
correction. We will also explain the synchronized backtefhnique in more detail. In the following section
(sectiorB), we will treat the problem of multiple token casibles in more detail and we will elaborate on
our need to merge the focus position of a sequence for atieesaf different length, and propose different

IProductive processes such as compounding make this pieeks, as simple word lists will not contain all words in teguage.

Training ...Inflation locked in themthink we can ...
... much stronger thamost analysts had expected .

(locked, in, I, think =then
(much, stronger, most, analysts-than

Testing ... much stronger most analysts had expected .
{much, stronger, most, analysts-?

Figure 1: Instances are extracted from sentences durimiriga Testing classifies new instances, yielding
values for the focus word position.

methods that allow us to do this. In sectldn 4, we will discaigsactical solution to the technical issues by
using suffix trees. Finally, we will end with a conclusion lwvome ideas on possible future work.

2 Approaches to confusible disambiguation

A typical approach to the problem of confusibles is to tramachine learning classifier to a specific con-
fusible set. Most of the work in this area has concentratezboifusibles due to homophoniy(too, two) or
similar spelling @lesert dessert. For instance, when word forms are homophonic, they teggtaonfused
often in writing (cf. the situation withio, too, andtwo, affectandeffect, or therg their, andthey’rein En-
glish) [11,[15]. However, some research has also touched imflectional or derivational confusibles such
as! versusme [4]. Typically, the confusible sets are very small (two oreth elements) and the machine
learner will only see training examples of the members otthdusible set. This approach is similar to that
of accent restoration[L] 2| 3,16,[9,114] L6} 17].

The task of the machine learner is to decide, using featugssritbing information from the context,
which word taken from the confusible set really belongs @ybsition of the confusible. Using the example
above, the classifier has to decide which word belongs ondhkgign of theX in She ownsX cars where
the possible answers fof are to, too, or two. We call X, the confusible that is under consideration, the
focus word Figurdl illustrates the typical approach, when only wandbe context are used.

2.1 Language model-based classification

Another way of looking at the problem of confusible disamlzitjon is to see it as a very specialized case of
word prediction. The problem is then to decide which word e¢dain position is more likely (from a list
of alternatives). Using similarities between these casescan use techniques from the field of language
modeling to solve the decision problem of finding the corwadtie in confusible sets.

Language models assign probabilities to sequences of wafsigg this information, it is possible to
predict the most likely word given a context. For example,c@a use a language model to give us the
probability for a sequence of words Pr, s (w1, . .., w,). Based on this, it is possible to predict the most
likely word w following a sequence of — 1 words, namelyrg max,, Pras (w1, ..., w,—1,w). Obviously,

a similar approach can be taken within the middle of the sequence. By limiting the possible valiosw
to those in the confusible set, we have designed a class#fshon the language model.

The advantage of the language model approach to confusdalmbiguation is a generic language model
can handle all potential confusibles without any furthairting and tuning. With the language model it is
possible to take the words from any confusible set and coenthé probabilities of those words in the
context. The element from the confusible set that has thieesigprobability is then selected. Since the
language model can assign probabilities to all sequencemufs, it is possible to define new confusible
sets on the fly and let the language model disambiguate thémowtiany further training. Obviously, this
is not possible for a specialized machine learning classfiroach, where a classifier is fine-tuned to the
features and classes are pre-defined for a specific cordissil

The disadvantage of the generic (language model) clasafiproach is that the accuracy is less than
that of the specific (specialized machine learning clasyifipproach, but previous works shows that the

2When using a machine-learning algorithm as a full-word jated the full dictionary can be predicted by the machinarter.
However, in general, such an approach is not directly sleitted make decisions between a specific set of alternativBee @lso

sectioZP.)

... much stronger most analysts had expected .

than/ \ then

P(much stronger than P(much stronger then
x P(stronger than mo$t x P(stronger then mogt
x P(than most analysfs x P(then most analysts

Figure 2: Computation of probabilities using the languagelab.

results are encouragingJ12]. Since the specific classifiezstuned to each specific confusible set, the
weights for each of the features may be different for each Bet instance, there may be confusibles for
which the correct word is easily identified by words in a spegiosition. If a determiner, likeéhe, occurs

in the position directly before the confusibli or too are very probably not the correct answers. The
specific approach can take this into account by assigningifgpeveights to part-of-speech and position
combinations, whereas the generic approach cannot doxpiisidly for specific cases; the weights follow
automatically from the training corpus and are the samelfevards (in all situations).

Summarizing, there is no real difference between the dlasfiased or language model-based disam-
biguation of confusibles. Both approaches classify insgtanHowever, the main difference is the number of
classes that can be classified into. The classifier-basedagiplimits the number of classes to the number
of elements in the confusible set, whereas the languagelrbaded approach allows for classification into
any word in the language (that the model knows of). This m#kesanguage model approach much more
flexible.

2.2 Synchronized back-off inn-gram language models

The language model approach to confusible disambigua#eoribed above relies heavily on the language
model. In principle, any language model that provides pbdlis given sequences can be used as com-
ponents in a classifier. In previous wolk[12], we have useslaively simplen-gram based classifier. An
illustration of this approach can be found in figlite 2.

The size ofn defines the size of the context around the focus word. The pleaimfigurd2 uses = 3.
This means that we do not need to compute the probabilityeoéiitire sentence, only the probabilities that
will change depending on the value of the focus word will niedale computed. As usual, using largewill
give us more specific probabilities. However, it also introels data sparseness problems as the likelihood
that the largex-gram occurs in the training data is smaller.

There are several techniques that can be used to reduceqihetiof data sparseness problems. Smooth-
ing of probabilities or back-off methods are typically usdghck-off techniques fall back on lower order
n-grams when no occurrence of the higher ordgrams are found. In other words, i, (wg . .. w,) = 0
then the language model us€s_; (wy ... wp—1) X Py_1(w1 ...wy,). This process may continue until
uni-grams are considered.

Applying this simple back-off strategy in the context of fusible disambiguation leads to the problem
of unbalanced probabilities. For instance, it may be the ¢hat when comparing different members of
a confusible set, one of the alternatives has a non-zegyari probability, while for the other alternative
bi-gram probabilities are used (because their tri-grarbglodity is zero). It turns out that using these unbal-
anced probabilities yield undesirable results. Intulgivthis can be argued, since the different probabilities
come from different probability spaces.

To resolve the problem of unbalanced probabilities, we leaployed a back-off strategy callegh-
chronous back-off. This method always uses probabilities of the same otelfram model for each alterna-
tive in the confusible set. Whereas in the naive case, aiposit two similar sequences may be computed
using probabilities of different order language models, skinchronous back-off model only takes a lower
ordern-gram into account when all alternatives have zero protgblihis is illustrated in figur&l3.

3 Multiple tokens as alternatives

The language model approach to confusible disambiguatiofinto problems when the alternatives in the
confusible set (in particular when occurring on the focusitian) contain a different number of tokens. For

abc axc

Ps(abg =07 and Ps(axc) =07
I I
Py(ab) x Po(bc) =07 and P(ax)x Py(xc)=07
I I
Pl(a) x Py (b) X Pl(C) Pl(a) X Pl(X) X Pl(C)

Figure 3: The probabilities of the two alternatives are catag using synchronous back-off. Only if both
probabilities are zero are lower order probabilities taikeo account.

example, consider the caseyafur (one token) versugou 're (two tokens). The problem here is that for the
first alternative, there is one token as focus word, wheteasther alternative has a two token focus word.

Having different number of tokens as focus word has an impat¢he computation of the probabilities
of the sequences. For instance, whea 3, the probabilities are computed based on two tokens befate a
after the focus word, combined with the focus word. In theeaafs/our, the probabilities are based on five
tokens, but in the case g@bu 're as the focus word, which contains two tokens itself, the pbilies are
based on six tokens.

Experiments that compare continuous back-off (where edemnative is allowed to back off until a
non-zero probability is found) against synchronous batleloeady showed that comparing probabilities
based on different order-grams yields unsatisfactory results. Unfortunatelyadibiguating a confusible
set containing alternatives with a different number of tethis same situation arises. Effectively, different
ordern-grams will be compared.

3.1 Merging positions

Previous work resolved the problem of multiple tokens ieralatives by retokenizing the corpus, making
sure that the order of the-grams is the same for each alternative (essentially takingre as one token).
Obviously, this approach equalizes the order of thgrams of the alternatives, but it is not a practical
solution, as for each situation with different tokens in #ternatives, retokenization is required.

The solution to the problem by merging tokens discards tfenimation thatyou're also contains both
tokensyou and re, which might be important for disambiguation. Finally,glhroblem also occurs when
these multi-token “words” occur in non-focus word posisonRetokenizing the corpus implies that all
occurrences of such words are modified. This results in ardifft probability distribution compared to the
original, not retokenized version of the corpus.

3.2 Readjusting probabilities

From the previous section it may be clear that we would liked@ble to merge tokens during testing only.
This allows us to deal with different length confusible aittives as if they all have the same size. However,
we do not want to merge tokens by retokenizing the entireugs there may be many situations in which
merging is needed.

Our solution to this problem is to retain the structural mfi@ation that is present in the model, but to only
adjust the counts that are required to compute the proliabitif the sequences (and hence the probabilities
of the alternatives). This comes down to dynamically restiljg the probabilities when needed without
retokenizing the corpus.

In situations where all alternatives contain one token,gtabability of an alternative only depends
on the direct context of the focus word. For instance, if weehthe sequence = wy...w,, and
wy is the focus word, the probability of the sequence that isviagit for disambiguation is defined by
Hf:f7n+1Pn (w; ... wiyn—1), which combines the probabilities afgrams containing the focus wotd.

We now extend this computation by considering the case oihgaa focus word consisting of two
tokens:wy, andwy, (wherefy, +1 = f;). During the computation of the probabilities, these twketts
are treated as onﬂfifo_nHPnH(wi ...w;+n). This computation uses the same context as the one token
alternative, but since an additional token is used, a highdgrn-gram is needed. Note that this approach

is trivial to extend to alternatives with more than two tok€which requires a proportional increase in the
order of then-grams).

So far, the approach is exactly the same, but if results ffm; are compared to those &f,, then
different ordem-grams are compared, which is problematic, as discussadaBtearly, different means of
computing the probabilities are needed. We will discuss éxtensions and compare them against the case
where bothP, andP, ,; are used in sectidd 5.

Typically, the probability of am-gram is computed b¥ho discounfs) = % whereoccreturns the
number of occurrences aef-gram s and|C| is the number of tokens in the corpus. The denominator is
number ofn-grams of lengtn = |s| in the corpus.

Since we are going to model the probability of a mergegram, we will use a similar formula, but
discount the total number ef-grams in the corpus. Essentially, this comes down to pditerthe corpus
has been retokenized with respecttdVe will use Peount—oce(s) = |C|_|S‘+1°_°(°‘(SS|)_1)XOCO(S) to compute the
probability. This effectively increases the probability fretending to reduce the size of the corpus by the
number of times; occurred. This is like treatingas a single token.

Using simple heuristics, we can increase discounting éuytfor instance, by reducing the denomi-
nator by the number of occurrences of the uni-grams of theiftwken s. Peountmin(ocqsub-gram) (5) =

ocq(s) _ ocq(s) i i
CT=Ts T I—min, oeee) and Peount—max(oco(sub-gram) (5) = CT=Ts T T—max’_ ocds7) describe this (where sub-

gram is the bag of words in thegram). As an extreme, we propose a heuristic that discahatgatio of

; ; ;) _ ocq(s)
all bi-grams versus uni-grams, resulting uni-gram () = (Ol 1) O
[bi-gram s[+1)x [bi-gram

We should note at this point that not all different implenadiains of P result in proper probabilities.
The count numbers are modified and different probabilitycepaare combined in simple heuristic ways.
However, this is not a major concern, as we are only intedéateomparing the figures for different options
in a set of alternatives to make a decisiaerng(max).

3.3 Impact

The problem of different probabilities in case of multipiéen alternatives sketched here may only seem to
be a minor problem with hardly any impact on the task. Howedwugure work in this project concentrates on
incorporating additional information in the language miedPetails about incorporating more information
will be discussed in sectidd 6. For now, imagine how, foranse, part-of-speech information of the focus
word can be incorporated. To get the probabilities rightrgimg tokens is preferred. However, this would
also mean that the focus word will have multiple part-ofesgietags assigned to it. Starting from the part-
of-speech information, keeping the tokens (and their pagpeech information) separate is preferred, but
this again introduces problems regarding the probabil'ﬂyidtutionE.

Having access to a dynamic system that can readjust prdizsbithen needed is preferred. Essentially,
this allows for easy switching between both views of the difawever, as shown above, variable order of
n-grams (depending on the number of tokens in the focus waosilipn) may be required to implement this.
The next section describes a practical approach to storidgetrieving variable ordet-grams based on
suffix trees.

4 Practical issues

Our solution to the computation of multiple token focus waiternatives depends on access to variable
lengthn-grams. Since our language model approach allows for dynmamiation of confusible sets, we
cannot decide beforehand what the maximum requiredd(apart from it being smaller than the size of the
corpus). This calls for the dynamic computation of prolitibg, leading to dynamic counting afgrams

in the corpus.

To keep the process of countinggrams efficient, we store the corpus in a suffix tree. A suféir is a
trie-based data structure (see page 492Zlof [7]) that stdiresffixes of an input string in such a way that a
suffix of the string can be found in linear time (in the lengthh® suffix). Note that suffix tree construction
can also be done with a linear time algorithm (in the lengtkthefstring) [%5"13], which only needs to be

3Adding additional information to tokens can be done sedaliyntin the suffixtree (see sectidd 4), requiring wildcareéich
allows for skipping tokens in the suffixtree, when this imf@tion is not required.

Figure 4: Suffix tree focacao

done once. All suffixes occupy a single path from the root efdhffix tree to a leaf. For a simple example
of a suffix tree based on the stricgcaosee figur€}.

Leaf nodes in suffix trees contain information on the begisitimn of the suffix leading to that specific
leaf. This allows for finding the start position of the suffirat ends in that leaf. By extending this search,
it is possible to find start positions of any sub-string. frisearch the suffix tree using the symbols in the
sub-string. Unless the sub-string is a suffix, this will Iéaén internal node. Finding the position stored in
a leaf node that can be reached from the internal node yieddstart position of the sub-string.

Due to the way suffix trees are constructed, we can efficidimty/the number of occurrences of sub-
strings in the entire string. Starting from the root node,find the node that belongs to the sub-string.
From this node, we can count the number of leaves that it geverhis number is exactly the number of
occurrences of the sub-string in the entire corpus.

Obviously, we can construct a suffix tree using tokens as@&dsr(and not characters as was illustrated
in figure[4). This allows us to efficiently identify the courftamy n-gram of any order.

5 Results

To measure the impact of different means of adjusting théatiities of the different orden-grams, we
will run some experiments. First, we build a suffix tree givetraining corpus, which will be used to
generater-gram counts. Next, we identify possible confusibles intdst corpus. We apply the language
model classifier to see whether the correct alternativeselested.

For training purposes, we used the Reuters news corpus R8]VTle Reuters corpus contains about
810,000 categorized newswire stories as published by Reintel996 and 1997. This corpus contains
around 130 million toker$ For testing purposes, we used the Wall Street Journal ptred?enn Treebank
corpus [1D]. This well-known corpus contains articles frira Wall Street Journal in 1987 to 1989. We
extract our test-instances from this corpus in the same wayesextract our training data from the Reuters
corpus. Minor tokenization differences between the cajoe corrected for.

Both corpora are in the domain of English language news textave expect them to have similar
properties. However, they are different corpora and hemee Blightly different properties. This means
that there are also differences between the training atidgeset. We have selected this division to create a
more realistic setting. This should allow for a more reaHdi@se comparison than when both training and
testing instances are extracted from the same corpus.ifigaimd testing on different corpora does mean
we expect lower results than those that could be achievedeosame corpus, however we believe this is a
more natural setting.

In this article, we will only concentrate on two confusiblets {your, you re} and{their, they 're,
theré, that contain alternatives that have different number kéits. This will not result in an impression
on the performance of the language model approach of cdmdudisambiguation, but it will illustrate the
impact the different ways of normalizing the probabilitafghe different orders ofi-grams.

Table[d gives an idea of the order of magnitude of the occug®iwf different tokens. The numbers
indicate the number of occurrences of the tokens and tokabicwations. The figures f@f theare provided
as comparisorof theis the most frequent bi-gram in the corpus.

Looking at the counts of the multi-token alternativgsf re andthey 're) in table[1, we see that they
are much lower compared to the single token alternativesialf be clear that the uni-gram probabilities
(where we take the multi-token alternatives as single tekeuill lead to a clear preference for the single

4Memory usage of a suffix tree is larger than that of a sirpliram model, but it is not prohibitively large. The Reutesspus, a
4GB plain text corpus, can be stored in a 16GB suffix tree,embjiitimizations making more efficient use of space are plessib

Total # tokens| 132,887,136

your 5,776 || # their 167,227
you re 1,935 || #there 94,247
you 30,965 || #they re 2,672
#re 20,678| #they 159,290
of the 569,814| #the 4,792,464
of 2,616,495

Table 1: Token counts from the Reuters RVC1 corpus.

Discount {your, you re} {their, there they 're}

method discount| accuracy discount| accuracy
No discount 0/132M 93.1 0/132M 90.4
count— occ 2K/132M 93.1 3K/132M 90.4
count— min (occ(sub-gram) 21K/132M 93.1 21K/132M 90.4
count— max (occ(sub-gram) || 31K/132M 93.1|| 159K/132M 90.4
countx (%‘I_'a’r%n;”) 127M/132M 80.0 || 127M/132M 90.4

Table 2: Results of the five different discounting schemesuRs given in accuracy %.

token alternatives. The definition &f should take this into account and assign more probabilitysni@athe
multi-token alternatives.

The results of the different probability computations dreven in tabldP. The discount columns shows
the count that is subtracted from the total count (which $® &hown). The first entry shows the situation
where the probability of larger ordergrams are treated as lower order (tri-grams used as bisirmthis
case). The second entry normalizes the total count by stilstgethe number of occurrences of the bi-gram,
effectively using the probability as if the corpus was retioized, treating the multi-token alternative as a
single token. The next two entries reduce the total counhbynumber of occurrences of the elements of
the bi-gram. Finally, discounting is taken into extreme gwehfor probability computation, the total count
is reduced as if all bi-grams were uni-grams. Note that tldéseounting methods are only used when the
focus word contains multiple tokens.

The resul clearly show that discounting does not have any effect issifization accuracy. This
means that the probabilities used to disambiguate betweedifferent alternatives are extremely robust.
Even discounting more than half the total count only has aymat effect (in the{your, you're} case).

The robustness of the system also indicates that we needltotfier ways to improve results. Clearly,
the token counts as used here do not easily allow modificatéating to improved results (the probabilities
are too robust). Future extensions will require additionfdrmation not present in the counts per se.

6 Conclusion

In this article we have proposed several methods to allosvratives in confusible sets to have an unequal
number of tokens. This is essential in confusible sets sa¢haur, you re}. Previous work has solved this
in an ad hoc way by retokenizing the corpus, but the newly gsed methods allow for computation based
on dynamic recounting, removing the explicit retokenizatphase.

By varying the amount of discounting, which is the basis farnew probability metrics, shows that the
synchronous back-off method is very robust. Previous rebdwas already shown that synchronous back-off
leads to good results.

On the practical side, we presented a suffix tree implementaff language models, allowing us to
extract the counts needed for the probability computatfom-grams efficiently. Creation of the suffix tree
is linear in corpus size, whereas finding thigram information is linear in the search string (thgram).

In the future, we would like to be able to deal with annotataddehs (such as part-of-speech), allowing
for gradual back-off based on this additional informatioFhe methods described here are essential for

SPrevious results were different due to retokenization lerols.

incorporating this information. Whereas concatenatirgeirs and retokenization is still possible, this is
more problematic for part-of-speech information.

Inthe future, we would also like to investigate the perfonecaof the methods presented here on different
problems to investigate the general applicability of thehod.

References

[1] M. Banko and E. Brill. Scaling to very very large corpoia hatural language disambiguation. In
Proceedings of the 39th Annual Meeting of the Association for Computational Linguistics, pages 26—
33. Association for Computational Linguistics, 2001.

[2] Y. Even-Zohar and D. Roth. A classification approach tardvprediction. InProceedings of the
First North-American Conference on Computational Linguistics, pages 124—-131, New Brunswick, NJ,
2000. ACL.

[3] A. R. Golding. A Bayesian hybrid method for context-si¢ime spelling correction. IriProceedings of
the 3rd workshop on very large corpora, ACL-95, 1995.

[4] A.R. Golding and D. Roth. A Winnow-Based Approach to GaxttSensitive Spelling Correction.
Machine Learning, 34(1-3):107-130, 1999.

[5] Dan Gusfield. Algorithms on Srings, Trees and Sequences. University of Cambridge, Cambridge,
1997.

[6] J. H. Huang and D. W. Powers. Large scale experiments arction of confused words. 1Aus-
tralasian Computer Science Conference Proceedings, pages 77—82, Queensland AU, 2001. Bond Uni-
versity.

[7] D. E. Knuth. The art of computer programming, volume 3: Sorting and searching. Addison-Wesley,
Reading, MA, 1973.

[8] David D. Lewis, Yiming Yang, Tony G. Rose, G. Dietterichan Li, and Fan Li. Rcvl: A new
benchmark collection for text categorization reseadolarnal of Machine Learning Research, 5:361—
397, 2004.

[9] L. Mangu and E. Brill. Automatic rule acquisition for deg correction. InProceedings of the
International Conference on Machine Learning, pages 187-194, 1997.

[10] M. Marcus, S. Santorini, and M. Marcinkiewicz. Buildjra Large Annotated Corpus of English: the
Penn TreebankComputational Linguistics, 19(2):313-330, 1993.

[11] D. Sandra, F. Daems, and S. Frisson. Zo helder en tochetdeuten! wat leren we uit psy-
cholinguistisch onderzoek naar werkwoordfouten bij exmaspellers?Tijdschrift van de Vereniging
voor het Onderwijsin het Nederlands, 30(3):3—-20, 2001.

[12] Herman Stehouwer and Menno van Zaanen. Language mimd&sntextual error detection and cor-
rection. InProceedings of the EACL 2009 Workshop on Computational Linguistic Aspects of Grammat-
ical Inference, pages 41-48, Athens, Greece, March 2009. AssociationdorgDtational Linguistics.

[13] Esko Ukkonen. On-line construction of suffix trees, 399

[14] A.Van den Bosch. Scalable classification-based woedigtion and confusible correctiofraitement
Automatique des Langues, 46(2):39-63, 2006.

[15] A. Van den Bosch and W. DaelemanBussen Taal, Spelling en Onderwijs, chapter Dat gebeurd mei
niet: Computationele modellen voor verwarbare homofopages 199-210. Academia Press, 2007.

[16] D. Wu, Z. Sui, and J. Zhao. An information-based methadsklecting feature types for word pre-
diction. InProceedings of the Sxth European Conference on Speech Communication and Technology,
EUROSPEECH' 99, Budapest, 1999.

[17] D. Yarowsky. Decision lists for lexical ambiguity rdation: application to accent restoration in Span-
ish and French. IiProceedings of the Annual Meeting of the ACL, pages 88-95, 1994.

	Introduction
	Approaches to confusible disambiguation
	Language model-based classification
	Synchronized back-off in n-gram language models

	Multiple tokens as alternatives
	Merging positions
	Readjusting probabilities
	Impact

	Practical issues
	Results
	Conclusion

