
Statistical Language Models
for Alternative Sequence

Selection

PROEFSCHRIFT

ter verkrijging van de graad van doctor
aan Tilburg University,

op gezag van de rector magnificus,
prof. dr. Ph. Eijlander,

in het openbaar te verdedigen ten overstaan van een
door het college voor promoties aangewezen commissie

in de aula van de Universiteit
op woensdag 7 december 2011 om 18:15 uur

door

Johan Herman Stehouwer
geboren op 16 juni 1983 te Delfzijl

Promotores: Prof. dr. A.P.J. van den Bosch
Prof. dr. H.J. van den Herik

Copromotor: dr. M.M. van Zaanen
Beoordelingscommissie:

Prof. dr. E.J. Krahmer
Prof. dr. E.O. Postma
Prof. dr. W. Daelemans
Prof. dr. C. de la Higuera
Prof.dr. F.M.G. de Jong

The research reported in this thesis has been funded by NWO, the Nether-
lands Organisation for Scientific Research in the framework of the project
Implicit Linguistics , grant number 277-70-004.

SIKS Dissertation Series No. 2011-45
The research reported in this thesis has been carried out under the auspices of
SIKS, the Dutch Research School for Information and Knowledge Systems.

TiCC Ph.D. Series No. 19.
ISBN 978-94-6191-049-3
c©2011 Herman Stehouwer

Cover artwork & design by Levi van Huygevoort (levivanhuygevoort.com)
Printed by IPSKamp, Enschede
All rights reserved. No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by any means, electronically,
mechanically, photocopying, recording or otherwise, without prior permission
of the author.

file:levivanhuygevoort.com

Preface

In 2006 I decided to take the opportunity to become a Ph.D. student at the
Tilburg University. I was given the task to study some challenging problems
in computational linguistics and to improve my research skills. I was happy
and grateful that such an avenue for self improvement was open to me, and I
still consider it a privilege that I have had the opportunity to work on a single
topic relatively free of worries for a good four years. I encountered a variety of
interesting problems and learned more about my field and myself than I could
have foreseen.

First and foremost I would like to thank my supervisors Antal van den Bosch,
Jaap van den Herik, and Menno van Zaanen. Their endless enthusiasm and
feedback shaped me as I took my first steps as a researcher. Antal has always
given me free reign for pursuing my own research interests. Jaap has spent
hours and hours helping me sharpen my academic writing and argumentation
skills. Menno has provided me with daily suggestions and feedback on the
details of my work; moreover he helped me to define the shape of the complete
picture.

The research was performed at the Tilburg center for Cognition and Commu-
nication (TiCC). TiCC is a research center at the Tilburg School of Humanities
(TsSM). The research presented in this thesis was performed in the context
of the Implicit Linguistics project. I would like to acknowledge the Nether-
lands Organisation for Scientific Research (NWO) for funding this project as
part of the Vici program. The research reported in this thesis has been carried
out under auspices of SIKS, the Dutch School for Information and Knowledge
Systems. SIKS was acknowledged by the Royal Dutch Academy of Arts and
Sciences (KNAW) in 1998.

My life at the university has been interwoven with the coffee club. I would like
to thank Menno and Jeroen for their enthusiastic support of our passion: good
coffee. This coffee club was for me a stimulating source of fresh ideas, both
academic and silly.

ii Preface

The time spent on my Ph.D. was an exciting time. It has been successful thanks
to the colleagues at the Tilburg University, in particular those of the ILK group.
We had coffee breaks, ILK-Barbies, and Guitar Hero parties as well as the oc-
casional foray into the interesting world of Belgian beers. The atmosphere on
the third floor of the Dante building was always helpful, friendly, and support-
ive. All other persons not mentioned above who helped me in the various stages
of my research are equally thanked for their willingness. In summary, I would
like to thank all the fine colleagues at ILK, TiCC, Dante, and outside Dante.
Thank you very much for making my time enjoyable.

Finally, I would like to thank the people closest to me. My thanks go out to my
close friends, with whom I have had some great times. For instance, we had
some spiffy trips, pool games, and nights at the pub. Then, special thanks go
to my parents who have always been supportive and who have pushed me to
pursue everything to the best of my abilities. Of course, Laurence, you know
best what we endured. You encouraged me to continue and to spend many
nights writing this thesis and in these times you remained so supportive. Thank
you.

Herman Stehouwer June 2011

Contents

Preface i

Contents 6

1 Introduction 7

1.1 Statistical Language Models 7

1.2 Alternative Sequence Selection 12

1.3 Problem Statement . 13

1.4 Research Questions . 15

1.5 Research Methodology . 16

1.6 Structure of the Thesis . 18

2 Three Alternative Selection Problems 21

2.1 Confusibles . 21

2.1.1 Identification of Confusible Sets 23

2.1.2 Selection of the Correct Member 24

2.2 Verb and Noun Agreement 24

2.2.1 Identification of Agreement 25

2.2.2 Selection of the Correct Agreement 27

2.3 Prenominal Adjective Ordering 27

2.3.1 Investigation of the Ordering 28

iv CONTENTS

2.3.2 Selection: Seven Computational Approaches 28

3 Experimental Setup 31

3.1 Flowchart of the Experiments 31

3.2 Alternative Sequence Generation 35

3.2.1 Confusibles . 35

3.2.2 Verb and Noun Agreement 35

3.2.3 Prenominal Adjective Ordering 37

3.3 Alternative Sequence Selection 37

3.4 Alternative Sequence Evaluation 38

3.5 Data Structures Used . 39

3.5.1 Suffix Trees . 40

3.5.2 Suffix Arrays . 43

3.5.3 Enhanced Suffix Arrays 46

4 Models without Annotation 53

4.1 Basics of n-gram Language Models 54

4.1.1 Smoothing . 58

4.1.2 Interpolation . 60

4.1.3 Back-off . 61

4.2 Towards Flexible SLMs . 65

4.2.1 Preliminaries: Experimental Setup 65

4.2.2 Preliminaries: Results and Conclusions 66

4.2.3 Impact on our Work 69

4.3 Language-Model Environment 69

4.4 Experiments . 71

4.4.1 Results on Confusibles 72

4.4.2 Results on Verb and Noun Agreement 74

CONTENTS v

4.4.3 Results on Prenominal Adjective Ordering 77

4.5 Answers to RQ1 and RQ2 79

4.6 Chapter Conclusion . 80

5 Models with Local Annotation 81

5.1 Part-of-Speech Annotation 82

5.1.1 Human-Defined Part-of-Speech Annotation 83

5.1.2 Machine-Derived Part-of-Speech Annotation 84

5.1.3 Evaluation of Machine-Derived Annotations 86

5.1.4 Applying Part-of-Speech Tags Automatically 89

5.2 Language-Model Environment 90

5.2.1 The Part-of-Speech Tags 91

5.2.2 Evaluation of Machine-Derived Tags 92

5.2.3 Part-of-Speech on New Data 92

5.2.4 Combining Tags and Text 93

5.3 Experiments . 94

5.3.1 Evaluation of Machine-Derived Part-of-Speech Tags . 95

5.3.2 Results on Confusibles 97

5.3.3 Results on Verb and Noun Agreement 102

5.3.4 Results on Prenominal Adjective Ordering 106

5.4 Partial Answers to RQ3 and RQ4 110

5.5 Chapter Conclusions . 111

6 Models with Complex Annotation 113

6.1 Dependency Parses . 114

6.1.1 Supervised Dependency Parsing 115

6.1.2 Unsupervised Dependency Parsing 116

6.2 Language-Model Environment 117

6 CONTENTS

6.3 Experiments . 117

6.3.1 Comparing Dependency Parses 118

6.3.2 Results on Confusibles 119

6.3.3 Results on Verb and Noun Agreement 123

6.3.4 Results on Prenominal Adjective Ordering 127

6.4 Partial Answers to RQ3 and RQ4 131

6.5 Chapter Conclusions . 132

7 Conclusions and Future Work 133

7.1 Answering the Research Questions 133

7.2 Answering the Problem Statements 136

7.3 Recommendations and Future Work 137

References 151

Summary 153

Samenvatting 157

Curriculum Vitae 159

Publications 161

SIKS Dissertation Series 163

TiCC Ph.D. Series 173

Chapter 1

Introduction

Natural language processing (NLP) is a field which is part of both computer
science and linguistics. It regards the processing of natural language with the
help of computers. Three language processing tasks that use NLP techniques
are spelling correction, machine translation, and speech recognition. A well
established research direction approaches these tasks in NLP using language
models. Most typically, a language model determines how well a sequence of
linguistic elements fits the model, which by extension provides an estimate
of how likely the sequence is in its language. In our examination we focus on
statistical language models. The objective of this thesis is to investigate whether
adding explicit linguistic information to these language models leads to better
results when processing text, using the assumption that the given information
may be already implicitly present in the text.

The current chapter introduces the reader to the topic under consideration and
provides the essential elements for our investigation. In Section 1.1 we describe
statistical language models that support us in a variety of tasks. Section 1.2 dis-
cusses the process of selecting the best alternatives out of a set of alternative
sequences, each of which represents a possible change to the underlying text.
In Section 1.3 we formulate our problem statement, followed by the formula-
tion of four research questions in Section 1.4. Section 1.5 gives our research
methodology. Finally, Section 1.6 provides the structure of the thesis.

1.1 Statistical Language Models

In NLP, language models are used for many different tasks. For most of the
tasks, having access to a language model is essential for performing the task

8 Introduction

well. A language model can be used to decide on whether, or to what degree,
a sequence belongs to the language. A statistical language model (SLM) is a
language model that is characterised by a variety of distributions over (parts
of) the language. The distributions are measured and lead to statistics on dis-
tributions and probabilities on sequences. Next to the task of (1) estimating the
likelihood of a sequence, a language model may also be used for two other
tasks: (2) to generate language sequences, and (3) to decide between different
alternative sequences.

Applications of Language Models

Language models are typically used at places where a decision has to be made
on the suitability of a member from a set of possible sequences. Five example
applications that effectively use language models are speech recognition, ma-
chine translation, optical character recognition, text generation, and text correc-
tion. Below, we briefly describe the five applications and the use of statistical
language models for these tasks.

Speech recognition deals with recognising a spoken utterance from its corre-
sponding audio stream. Statistical language models are used to select a se-
quence from all the possible spoken sequences of words that fits the observed
data best. The task for language models in speech recognition is exacerbated
by the fact that the audio stream has many possible interpretations, both in seg-
mentation and in the selection of the individual phonemes. The interpretations
result in a large lattice of possible words and sequences matching the sound,
out of which a selection will have to be made.

Machine translation deals with translating a text written in one language to
a text written in another language. It tries to find a mapping of (parts of) a
sequence to another sequence. The possible mappings can result in many can-
didate translations. Typically, translating one sentence results in a choice be-
tween hundreds or several orders of magnitude more candidate translations,
where candidates differ in the order and choice of words or subsequences. Sta-
tistical language models contribute to a score by which the best translation can
be selected. Several factors make machine translation hard. We mention three
of them: (1) the word order of the languages involved can be different; (2)
the number of words for a correct translation can be smaller or larger than the
number of words in the original sequence; and (3) the other language might not
have the same translation for each sense of the word (e.g., the word bank 1 in
English might refer to several wholly different meanings each with their own
translation possibilities).

1 We use italics to denote an example.

1.1 | Statistical Language Models 9

Optical character recognition deals with converting a text in an image into
machine-readable text. Mapping a picture of some characters into the actual
characters is hard to do automatically and often leads to multiple possible char-
acter sequences. Statistical language models are used to select between possi-
ble different alternative conversions of words in a context in combination with
statistical models of character images and the context of those characters.

Text generation deals with generating a new text with a pre-defined meaning.
Specific applications that make use of text generation are machine translation
and the generation of text starting from concepts; for instance, the generation
of a weather forecast from forecast data. When formulating a text, there are
usually many possible correct formulations. Statistical language models are
used to select between several generated options.

Text correction deals with a set of problems that involve modifying (erroneous)
text. We experiment with problems taken from the domain of text correction
when investigating the effects of different language models. The main idea is
that the text is transformed into a better text in the same language. Statistical
language models are used here to choose a solution between different alterna-
tive rewordings.

Problems in Text Correction

As stated above we concentrate on problems related to the task of text cor-
rection. Here we introduce the topic globally by mentioning and briefly de-
scribing four problems out of the large variety of problems in text correction,
namely (1) non-word error correction, (2) confusible error detection and cor-
rection, (3) verb and noun agreement correction, and (4) prenominal adjective
reordering. These problems come with their own set of challenges and possible
approaches. Below we give a flavour of these challenges.

Non-word error correction deals with the detection and correction of non-word
errors in a text. A non-word error is the occurrence of a malformation of a word,
caused by the insertion, deletion or substitution of one or more letters of the
original word, resulting in a character string (token) that is not a proper word in
the language. The task is then to map this malformed word to the correct word
if such a correct word can be determined.

One of the difficult factors is the fact that not all words unknown to the sys-
tem are malformed. In any unseen text, the system is bound to observe words
it has not seen before, for instance, because of the creative aspects of produc-
tive morphology. A typical example of this would be noun compounding, as
found in amongst others Dutch, German, and Afrikaans. Two examples are the

10 Introduction

Dutch word fietspomphouder (bicycle pump holder), and dozenstapel (stack
of boxes).

An example of a non-word error is *Only one woord is wrong.2 In the exam-
ple, the word woord is not a correct English word. A possible correction could
be to replace it by the word word . For more information, techniques, and cor-
rection methods, the interested reader is referred to Kukich (1992) and Rey-
naert (2005).

Confusible error detection and correction is an extensively studied topic. A
confusible error occurs when a word is confused with a different word which
is incorrect within the context. For example, in the sentence *There car is red
the word There should be replaced by Their . Several forms of relatedness give
rise to confusible errors. Words that are mutually confused, and form a con-
fusible set, can be related by many factors, including homophony, similar writ-
ing, keyboard proximity, and similar morphology. An example of a confusible
set based on similarity in phonemes is {then, than}.

Verb and noun agreement correction deals with the detection and correction
of agreement errors of verbs and nouns in relation to their sentential context.
These types of errors occur when the verb and noun are incongruent with their
context, e.g., the number or the gender of the subject and verb do not match. An
example of an agreement error in a full sentence would be *The man run . This
example can be corrected by either changing the noun to men or the verb to
runs . In languages other than English the situation can be much more complex.

Prenominal adjective reordering deals with the correct ordering of prenomi-
nal adjectives. This problem does not always have a clear, best solution. Then
again, language users do have preferences for certain orderings. An example is
?? the wooden red cabin3 versus the red wooden cabin .

The Use of n-grams

A statistical language model is trained on a collection of language sequences
before it is used. Such a collection of sequences cannot be complete, as it is
impossible by any standards to enumerate all sequences that are possible in a
natural language. Confronted with a new sequence, it is unlikely that the model
has encountered this sequence in advance. Yet, it is likely that the model has
encountered subsequences of the sequence.

2 The character * announces an erroneous example. We mark the entire sentence that contains the
error.
3 From here on we will mark all less preferred examples that are not, strictly speaking, incorrect
by a double question mark. This is also in line with the approach used in the literature, specifically
in Malouf (2000).

1.1 | Statistical Language Models 11

Statistical language models assign likelihood scores to sequences. A score is
usually given by combining scores of fixed-size parts of the sequence. These
fixed-size parts are called n-grams. An n-gram is a set of n consecutive sym-
bols as they occur in a sequence. We note that historically the term n-gram
denotes sequences of n characters. When we refer to n-grams in this thesis,
we refer to sequences of n words. Statistical language models use distributions
over n-grams to assign the scores to sequences.

Fixed-size n-grams provide for a limited flexibility, which is a serious obsta-
cle for language models. That is, the size of the n-grams used in the language
model is predetermined, i.e., not flexible. For instance, a 4-gram model will not
store all permissible combinations of four words, it will only store the combi-
nations of four words that it has seen. Therefore, a statistical language model
will often store n-grams of smaller sizes as back-off sub-models. It means that
when the data for a certain distribution (e.g., 4-grams) does not contain the 4-
gram in question, a back-off step is made to a distribution (e.g., 3-grams) for
which relatively more data is available (see Subsection 4.1.3). This is one of
the ways to try and deal with sparseness. Back-off increases the applicability
of the statistical language model at the expense of extra storage.

An important obstacle for statistical language models is sparseness . It means
that for certain distributions, such as those of 4-grams or 5-grams there is insuf-
ficient data for an accurate approximation of the real distribution. This implies
that the model will be confronted with valid sequences in which n-grams occur
that the model has not encountered before. Sparseness is unavoidable for com-
plex sequences such as sentences in natural language. We return to this topic
in Chapter 4.

Our aim is to develop a statistical language model that is able to select the best
solution among a number of alternatives. We use suffix arrays (see Section 3.5)
to implement this language model because we can use them to approach the
data flexibly (e.g., for calculating probabilities for n-grams of any size). Suf-
fix arrays allow us to look up the positions and number of occurrences of any
subsequence of the training material efficiently, enabling us to calculate prob-
abilities for any sequence (as far as it occurs in the training material). When
calculating n-grams of any size we are no longer bound by the fixed predeter-
mined maximum size. For a standard language model, we are able to determine,
on a case-by-case basis, the largest n-gram match that is still useful, i.e., that
is associated with a non-null probability.

12 Introduction

1.2 Alternative Sequence Selection

In the context of our research, a statistical language model is used to select
between sets of possible alternatives. The alternative that fits the statistical lan-
guage model best is selected. Note that in Latin, alter means the other one
of two. In the Dutch language, some still attach this meaning to the word
alternatief (alternative). We use the English interpretation, meaning that al-
ternative is different from the original (in Latin, alius).

As we stated earlier, statistical language models face the obstacle of sparseness.
Besides n-gram back-off, an alternative to mitigating the sparseness issue is by
using word-level annotations. These annotations provide additional informa-
tion when the statistical language model is unable to derive reliable statistics
from the words in the sequence. With annotations, we generally mean linguis-
tically motivated annotations that denote certain linguistic abstractions that can
be assigned to words, such as their morpho-syntactic function in the particular
sequence. In this way the annotation can act as a back-off. In the field of NLP
a great deal of attention is given to annotations of natural language texts. The
underlying idea of such annotations is that they help the computer with NLP
tasks, as they offer linguistically usable generalisations. In some NLP tasks,
for example, it is useful to know that a newly encountered word, for which no
statistical information is available, is probably a noun. The statistics that can
be gathered for categories such as noun are an aggregate of the statistics of all
nouns, which is likely to be useful back-off information for any new noun.

Two general classes of annotations of words in a sequence can be distinguished.
The first class is the class of human-designed annotations, where the annota-
tion is designed in advance inspired by explicit linguistic insights. The second
class is the class of machine-derived annotations. The computer uses the in-
herent structure of the text to create annotations that denote certain structures
suggested by, e.g., information-theoretical analyses. We remark that the class
of human-designed annotations is usually applied to new text using supervised
machine learning systems, i.e., incorporating linguistic knowledge in a learn-
ing system. In contrast, machine-derived annotations are applied to new text
using unsupervised machine learning systems, i.e., incorporating knowledge in
a learning system that is derived from the data only.

Several types of linguistically motivated annotations of natural language texts
exist. Two of the best known are part-of-speech tags and the grammatical parse
structure, such as dependency parses. Part-of-speech tags denote for each word
its category within the sequence based on its syntactic and/or morphological
function. Typically, these annotations are assigned by hand to a reference cor-
pus. Computer systems may be used to assist in this process (Van den Bosch
2009). From a reference corpus, usually manually annotated, automatic sys-

1.3 | Problem Statement 13

tems can be trained that apply the annotations to new, previously unseen, ma-
terial.

The grammatical parse structure is an annotation that denotes the syntactic
structure of a sentence. It describes the relations between words (and groups
of words). This is contrast to part-of-speech tags which deal with the function
of a single word. As with part-of-speech tags these annotations are typically
assigned by hand to a reference corpus.

In this thesis we aim to investigate the effect of these annotations on the statis-
tical language model. We can study the effects of the annotation on alternative
sequence selections using language models. The annotation for the alternatives
can be determined relatively straightforwardly on texts for which an annota-
tion exists. In order to study the effects of the addition of an annotation, we
restrict ourselves to possible alternatives where the changes in the sequence
are localised. Thus, as a baseline evaluation method, we make local changes
to a sequence to generate the alternatives. We are then able to check whether
our language model selected the original sentence as the most likely sequence
among the alternatives.

Earlier we mentioned three problems within the task of text correction that
conform to these restrictions, viz. confusible correction, verb and noun agree-
ment correction, and prenominal adjective ordering selection. They can all be
approached by changing small, localised parts of a larger sequence. In this
thesis we do not investigate correction of errors, instead we look at the selec-
tion of the original sequence from a set of alternative sequences. With the four
other tasks mentioned, the differences between alternative sequences are much
larger, making the specific effects harder to study. For (1) automatic speech
recognition, the assignment of annotations is made difficult by the alternatives
possibly constituting completely different sentences. For (2) machine transla-
tion, the order of the words in the target sequence as well as the words to use
in the target sequence are not fixed, resulting in many possibly radically dif-
ferent alternative sequences. For (3) optical character recognition, the surface
form of the words is often malformed making the assignment of annotations
difficult to do, prior to correction of the OCR-ed text. For (4) text generation,
the differences between the sequences that can be generated with the same or
a similar meaning are also not localised.

1.3 Problem Statement

As a key challenge of statistical language modeling, we identify the sparseness
problem. We identify two possible solutions to mitigate the problem. Namely,

14 Introduction

(1) the flexibility of the n-gram, and (2) the use of annotations. Below we
provide a summary and a line of reasoning for choosing these two.

First, we approach the issue of flexibility of language models. Often, statistical
language models split the input into equal size n-grams of words. They do so
in order to make assigning probabilities to sequences tractable. We will inves-
tigate how a flexible size of n-gram, with or without annotation, impacts the
processing of a set of alternative sequences. There will be parts in a sequence
that are more regular than other parts. In the more regular parts, it should be
possible to come closer to the ideal model, namely that of evaluating the com-
plete sequence.

Second, we approach the issue of annotations on data. For statistical language
modelling, we rely on data. If the data is insufficient we stumble into the prob-
lem of sparseness. Sometimes annotations may offer some relief. The study of
annotations is a world in itself. It contains a rich diversity of approaches. For
an adequate overview we refer to Garside et al. (1997), Kingsbury et al. (2002),
and Van Eynde (2004).

Expert-based, linguistically motivated annotations, such as part-of-speech tags
and dependency parses are learnable by a computer system when a pre-
annotated corpus is available. Once learned they can be automatically applied
to new text.

After assigning annotations to alternative sequences, the ability of the language
model to choose among alternative sequences should improve as the annota-
tions should help to access more reliable statistics.. The annotations can help
combat the effects of the sparseness problem by providing a different back-off
possibility.

The production of human-designed annotation schemes and hand-annotated
corpora are expensive in terms of expert or annotator time. The schemes and
annotated corpora can be used (and are needed) for training automatic systems
that apply those annotations. To resolve these practical issues, machine-derived
(or unsupervised) annotation schemes and the corresponding automatically an-
notated corpora may provide some relief. They can be seen as an alternative to
human-designed annotations.

Based on the above observations, our problem statement (PS) consists of two
parts (PS 1 and PS 2). They read as follows.

Problem Statement 1. (Flexibility) Is it helpful to create a statistical lan-
guage model that is flexible, i.e., not fixed in advance, with regards to the n-
gram size, for adequately handling the problem of sparseness?

Problem Statement 2. (Annotations) Do linguistically motivated annotations
and their automatically generated counterparts provide information that can

1.4 | Research Questions 15

be successfully used as a back-off step to handle sparseness? Does alleviating
sparseness in this way increase performance on alternative-sequence-selection
tasks?

1.4 Research Questions

To answer the two-fold problem statement, we developed four research ques-
tions (RQs). To answer problem statement 1 we developed RQ1 and RQ2. To
answer problem statement 2, we developed RQ3 and RQ4. Below we provide
background and reasons for our research questions.

Flexibility

We remark that most of the current language models are not flexible; they are
frequently limited to predetermined-size n-grams. Admittedly, fixed-size n-
grams make the problem of assigning probabilities to sequences more tractable.
Limiting n helps dealing with sparseness by only examining a small part of the
sequence at hand. In our opinion, it is desirable to have a system which is more
flexible. So, we aim at a system that can deal with flexible size n-grams, i.e. a
system for which the size of the n-gram is not predetermined. Thus, our first
research question reads as follows.

Research Question 1. Is there a need to predetermine or limit the size of the
n-grams used in language models? Is there an inherent advantage or disad-
vantage to using a fixed-size n?

Some tentative considerations on RQ1 follow below. If the n-gram size is
larger, sparseness will have a greater impact. The sparseness of n-grams be-
comes more of an issue for each increase of n. If the n of the n-gram is no
longer limited to a fixed value, how do we deal with the greater sparseness of
the larger n-grams? Can we sidestep or avoid this obstacle?

When the n-gram size is too large, the calculation of the probability becomes
impossible due to sparseness. However, for each sequence the size of the n-
gram at which the calculation becomes impossible will be different. The largest
n-gram size that can be used can be determined by examining the distributions
at a position in a sequence.

Research Question 2. If the size of the n-grams is not fixed in advance, how
can we still generate comparable distributions when we select among alterna-
tive sequences?

16 Introduction

Annotations

To aid the computer in dealing with the task of alternative sequence selection,
the text may be used with annotation. Here we remark that, similar information
to what the annotations model is also derivable, to some extent, from the un-
annotated text given a discovery procedure. It is an open question whether we
need these annotations for a decision in alternative sequence selection. If we
assume that the information is already implicitly available in the un-annotated
text. Therefore, we will investigate whether annotations improve the perfor-
mance of the language model.

Research Question 3. Is there a benefit to including annotations in the lan-
guage model, measured as a better performance on alternative sequence selec-
tion tasks?

Research Question 4. Is there a difference in performance on alternative se-
quence selection tasks when using human-designed annotations compared to
machine-generated annotations?

machine-derived annotations may provide a level of abstraction similar to lin-
guistically motivated ones.. It makes information explicit that is already im-
plicitly available in the data. By contrasting the two types of annotations we
will examine the differences. Appropriate answers to these four RQs will help
us to answer both PS1 and PS2.

1.5 Research Methodology

The thesis investigates how we can make language models flexible with regards
to (a) not predetermining the size of the n-gram and (b) supporting annotations.
We focus on three key issues of this flexibility: (1) the impact of a flexible-
size n-gram-based language model, (2) the impact on the back-off capabilities
of a language model with respect to added annotation information, and (3)
contrasting the difference between using manually created annotations versus
machine-derived annotations.

This section outlines the research methodology that describes the approach
we have used for answering PS1 and PS2. The methodology consists of four
parts, viz. literature review and analysis, designing and using an experimental
platform, measuring the effects of flexibility, and evaluation. They are briefly
discussed in the subsections below.

1.5 | Research Methodology 17

Literature Review and Analysis

Literature review is at the base of our research into language models for al-
ternative sequence selection. The literature review concentrates on: (1) liter-
ature on language modelling, specifically n-gram-based language modelling
(we will also mention other types of language models); (2) literature on the
essential tasks for which we use alternative sequence selection; (3) literature
on manually created annotations and machine-derived annotation schemes and
annotations.

Designing and Using an Experimental Platform

In order to deploy flexible size n-grams and annotations in language mod-
els, there is a need for a flexible experimental platform. The design, develop-
ment, and use of the platform concentrates on three key issues: (1) a separate
language-model component that is easily modified in order to change major
aspects of the language model; (2) an alternative-sequence-generation compo-
nent; and (3) a clear data model shared by all parts of the platform. We aim at
obtaining results while keeping the model as constant as possible on different
alternative-sequence-selection tasks.

Measuring the Effect of Flexibility and Annotations

Below we mention how we perform our measurements. The effects we want
to measure in order to answer the problem statements are partitioned into three
phases.

In the first phase we will introduce a flexible n-gram-based language model
(without any annotation). This model will not be tied to a predetermined size
or predetermined sizes of n-grams. We will try to scale the n-gram in order to
come closer to the ideal of evaluating the sequence as a whole. This flexible
system will be used for the three tasks of alternative sequence selection.

In the second phase we will investigate the effects of local annotations on the
performance of the three tasks. To investigate the effects of the different anno-
tations we will add them to the language model in two ways. First, we will add
human-designed assigned part-of-speech annotations. Second, we will add a
machine-derived annotation that approximates the part-of-speech annotations.

In the third phase we investigate the use of syntactic dependency annotation.
First, we will add human-designed dependency-parse annotations. Second, we
will add machine-derived annotations. The machine-derived annotations try to
establish a dependency structure automatically. The dependency structure is

18 Introduction

sentence-global, in the sense that the dependencies between words can span
the entire sentence.

Evaluation

We will study the effects of (1) the changes to the language model, and (2) the
changes to the data used, by evaluating the performance of three alternative-
sequence-selection tasks. The evaluation will be partitioned into three parts,
analogous to the introduction of the effects studied.

The sub-division will be as follows: (1) we evaluate the effects of variable
size n-grams without any annotation; (2) we evaluate the addition of human-
designed and machine-derived annotations at a local level; and (3) we evaluate
the addition of human-designed and machine-derived annotations at a global
level.

The evaluation is performed by investigating how well the statistical language
models predict the gold standard. From the corpus (the gold standard) we de-
rive alternative sequence sets, on which we perform a selection step using the
language model. When the model predicts the sequence that is also in the gold
standard, this is counted as correct even if the gold standard would at points be
considered incorrect upon inspection. We remark that the gold standard con-
tains very few errors.

We provide an example of the non-word error rate of a frequently used cor-
pus. In an error analysis of running text of the Reuters RVC1 corpus, Reynaert
(2005) found that 21% of all types were non-word errors. As most of these
types have low frequencies, the errors account for one error in every four hun-
dred tokens, i.e., 0.25% of the text.

1.6 Structure of the Thesis

The structure of the thesis is as follows. In Chapter 1, we introduce the reader
to the topic and provide the essential elements for our investigation. Moreover,
we formulate two problem statements with each two research questions and we
outline our research methodology.

In Chapter 2, we describe three problems that serve our investigation through-
out the thesis. The three alternative-sequence-selection problems are used to
study the impact of several design choices for the language model. In Chap-
ter 3, we introduce the experimental setup that we use throughout the thesis.

1.6 | Structure of the Thesis 19

In Chapter 4, the first language-model type is discussed. We examine a lan-
guage model which is not limited in the size of the n-gram used. The language
model is employed without any annotation. We try to answer RQ1 and RQ2,
and thereby PS1. Chapter 5 deals with the second language-model type. The
language models belonging to this type are enriched with local annotations
dependent on the local context of the word. This chapter provides partial an-
swers to RQ3 and RQ4, on the basis of which we address PS2. In Chapter 6
we discuss the third type of language models. They are enriched with annota-
tions dependent on a global context. This chapter provides additional answers
to RQ3 and RQ4, on the basis of which we address PS2.

In Chapter 7 we provide answers to the RQs, to PS1 and PS2 and formulate
our conclusions. Furthermore, we describe future work that can be pursued on
the basis of this thesis.

Chapter 2

Three Alternative Selection
Problems

The thesis focusses on three alternative selection problems. The three alter-
native selection problems are taken from the domain of text correction. Our
choice is guided by the expectation that the solutions to these problems require
only a localised change to the structure of the sequence in order to make the
sequence correct. The three problems allow us to study the effects of changes
to the model on a set of well-understood and studied issues.

The chapter introduces the three problems. Each of them provides a different
element in our investigation. In Section 2.1 we describe the problem of con-
fusibles. In Section 2.2 we discuss the problem of verb and noun agreement.
Then, in Section 2.3 we treat the problem of prenominal adjective ordering.

2.1 Confusibles

The confusible problem deals with the detection and correction of confusibles.
A confusible occurs when a word is confused with a different word which is
incorrect within the given context. Confusible errors are quite common. There
are a number of different approaches to identify confusible sets (see Subsec-
tion 2.1.1). They are described in this section together with several approaches
to handle the selection of the correct element within the elements of the con-
fusible set (see Subsection 2.1.2). Within the context of this thesis we will
restrict ourselves to the confusible sets as used by Golding and Roth (1999).
These confusible sets have been used in many experiments and publications.

22 Three Alternative Selection Problems

They allow us to study the effects of making language models more flexible
with regards to (1) the n-gram size and (2) the presence or absence of annota-
tions.

The use of a predefined set of confusibles has as a consequence that identifica-
tion of confusibles is not considered as part of the problem under investigation.
For investigations of the identification of confusibles we refer to an article pub-
lished by Huang and Powers (2001).

Several forms of relatedness give rise to confusible sets. A confusible set is
typically quite small (consisting of two or three elements). In the literature
we found four forms of relatedness. A word can be related by sound, similar
writing, keyboard proximity, and similar meaning. For instance, when word
forms are homophonic, they often tend to become confused in writing (cf. the
pronunciations of to , too , and two; affect and effect ; or there , their , and they’re
in English) (cf. Sandra et al. 2001, Van den Bosch et al. 2007).

Below we briefly discuss a confusible set taken from the list by Golding and
Roth (1999). We consider its relations with other areas of research, and mention
two facets of the problem. Our example is the set {then, than}. This confusible
set accounts for a part of confusible errors mostly made by non-native speak-
ers of English. A straightforward erroneous example using this set is given in
Example 1.

Example 1. * The cat is smaller then the dog.

In Example 1, the only possible correction is replacing then by the word than .
The error can only be corrected by looking at the sentential context.

The confusible problem can be seen as a specialised form of the all-word pre-
diction task (Van den Bosch 2006a). In all-word prediction, the task is to pre-
dict the next word in a sequence or the word that should be inserted in a gap
in a sequence. A unique characteristic of the word prediction task, compared
to many other natural language tasks, is that real-world training examples are
abundant. Any digitally available text can be used as training material.

Confusibles are an active area of research. Many different approaches
have been proposed. The approaches largely differ in two facets: (1) the
identification of possible confusible sets, and (2) the selection of the correct
alternative given a confusible set. Selection between members of a confusible
set (i.e., alternatives) in the context given leads directly to correction if the
selected alternative is different from the original. We discuss both facets sepa-
rately below.

2.1 | Confusibles 23

2.1.1 Identification of Confusible Sets

An important step in the approach to identify confusibles is the definition of
possible confusible sets. Each possible confusible set represents a set of words
which account for a part of the errors in a sequence. For the identification of
such sets we distinguish two approaches: (1) the manual selection of confusible
sets, such as done by Golding and Roth (1999), and (2) the automatic creation
of confusible sets based on a similarity metric such as in Huang and Powers
(2001).

Two Identification Approaches

The first identification approach1 of confusible sets is by Golding and Roth
(1999) who wrote a seminal work on confusible correction. Their main con-
tribution is a classification-based system for spelling correction. Their point of
departure was the manual creation of confusible sets. They used 21 different
confusible sets taken from the introduction of a dictionary in three different
categories of confusion: (1) closeness in phonetic distance, (2) closeness in
spelling distance, and (3) relatedness in meaning2. We remark that the notion
of closeness implicitly defines the notion of distance. The distance between the
surface form of words and the distance between the representation of words3

can be expressed by the Levenshtein (1966) distance metric.

A different focus is proposed by Banko and Brill (2001). They only studied
the effects on two confusible sets: (1) {then, than}, and (2) {among, between}.
They used the corresponding confusible task, and employed it to study the
effects of scaling to large training corpora.

The second identification approach is by Huang and Powers (2001) who pri-
marily identified confusible sets that are close in measurable distance. They
computed the distance between words using two representations: (1) the dis-
tance on the keyboard between words, and (2) the distance between words
when represented using a phonetic representation. For both these representa-
tions they modelled the insertion, deletion, and substitution operations. An ex-
ample for the keyboard proximity (we refer here to a qwerty-type keyboard)
would be that the letter d might be replaced by the letters s, w, e, r, f, v, c , or x .
Huang and Powers (2001) also identified a third type of confusibles, namely (3)
suspect words (errors) made by second language learners (found in databases

1 Which is not really an identification approach as it used a static, human-defined list of confusible
sets.
2 We note that there is some overlap between categories. For instance {affect, effect} is close in
both phonetic and spelling distance.
3 For instance, phonological representation using the IPA alphabet.

24 Three Alternative Selection Problems

and corpora). All the sets of words that are identified using the metrics (1), (2),
and (3) were stored as confusible sets.

2.1.2 Selection of the Correct Member

Almost all approaches in the literature use a classifier to perform the confusible
selection step. A classifier is a machine learning system that predicts a class
based on an input vector (also known as an instance). In this case the input
is a representation of the sentential context (including the focus confusible).
Typically, a single classifier is trained for each set of confusibles.

For the selection of the correct member of an identified confusible set, a vari-
ety of different classifiers have been used in the approaches mentioned above.
Golding and Roth (1999) use a layered classifier approach. Banko and Brill
(2001) use four different selection approaches: (1) a memory-based classifier,
(2) a WINNOW-based classifier (analogous to Golding and Roth 1999), (3) a
naive-bayes-based classifier, and (4) a perceptron-based classifier. Huang and
Powers (2001) used statistics on local syntactic patterns in order to select be-
tween the elements of the confusible set.

Most work on confusibles using machine learning concentrates on hand-
selected sets of notorious confusibles. The machine learner works with train-
ing examples of contexts containing the members of the confusible set (cf.
Yarowsky 1994, Golding 1995, Mangu and Brill 1997, Wu et al. 1999, Even-
Zohar and Roth 2000, Banko and Brill 2001, Huang and Powers 2001, Van den
Bosch 2006b).

2.2 Verb and Noun Agreement

Verb and noun agreement is a classical problem in natural language processing.
It concerns the question whether a verb or a noun agrees with the rest of the
sentence. The literature on this classical problem mainly focusses on learning
English as a second language (ESL). ESL corpora are typically rich sources of
errors.

Below we discuss two aspects of this task as they occur in the literature: (1) the
identification of disagreement in the sequence (see Subsection 2.2.1), and (2)
the selection of a correct word at an identified position (see Subsection 2.2.2)

2.2 | Verb and Noun Agreement 25

2.2.1 Identification of Agreement

The verb and noun agreement problem deals with the congruence of verbs and
nouns in a sentence. If a noun or verb does not agree in one of its aspects
within its corresponding sentence there is an incongruence. Below we show
two examples (see Examples 2 and 3).

Example 2. * He sit at the table.

In Example 2 we show a sentence that is incongruent in the verb sit . If we
replace sit by the word sits it would result in a correct sequence. We remark that
changing the subject of the sentence to They would also be a valid correction.

Example 3. * The trees burns.

In Example 3 we show an example of a sentence that is (a) incongruent in the
noun trees , or (b) incongruent in the verb burns . If we replace trees by the word
tree it would result in a correct sequence. Changing the verb to burn would also
result in a correct sequence.

Six Identification Approaches

Many different approaches to correcting the verbs and nouns with the goal of
making the sequence congruent have been examined. Below we briefly discuss
six approaches to identifying incongruence: (1) the n-gram-based approach,
(2) the mutual-information-based approach, (3) the semantic-relatedness ap-
proach, (4) the canonical-form approach, (5) the labelled-sequential-patterns
approach, and (6) the rich-feature-selection approach. For each approach, we
cite a typical publication, preferably the original.

The first approach is the n-gram-based approach. One of the earliest n-gram-
based approaches is that by Mays et al. (1991). The n-gram-based approaches
use sequences of n-grams to estimate, locally, whether a different word would
fit better in that context, if that word resembled the word to be replaced. It
is mentioned by Mitton (1996) as one of the few known systems in 1996 that
attempts to handle real-word errors. Wilcox-O’Hearn et al. (2008) reconsidered
the approach and compared it with a WORDNET (Miller et al. 1990) based
approach as described by Hirst and Budanitsky (2005).

The second approach is based on Mutual Information (MI)4. Chodorow and
Leacock (2000) present ALEK, a system for detecting grammatical errors in

4 Mutual information is a measure of mutual dependence of two variables. We return to the MI
metric in detail in Subsection 5.1.3.

26 Three Alternative Selection Problems

text. It uses negative evidence for the combination of target words collected
from a secondary, small training corpus. Interesting is the use of the MI metric,
comparing the probability of the occurrence of bi-grams to that of the product
of the probabilities of the corresponding uni-grams. Chodorow and Leacock as-
sume that when a sequence is ungrammatical the MI metric should be negative.
Negative values occur when the co-occurrence of the bigram is very unlikely
compared to the product of the occurrences of the corresponding unigrams.
It means that normally in a running text the MI metric remains positive, but
when the metric drops to a negative value for a certain position the system has
detected a potential error and will try to replace the word in question.

The third approach is an approach based on semantic relatedness of words as
described by Hirst and Budanitsky (2005). For each word in the text that is
suspect (e.g., a noun or a verb) they investigate the existence of a semantic
relatedness between that word and its sentence. If such a relatedness is not
found, spelling variants are examined for semantic relatedness. If a variant is
related, it is suggested to the user as a possible replacement. The measure of
relatedness is based on WORDNET (Miller et al. 1990). Suspect words are all
words occurring in the text which (1) do not occur elsewhere in the text, (2) are
not part of a fixed expression, and (3) are not semantically related to the nearby
context.

The fourth approach is based on the canonical form and developed by Lee and
Seneff (2006). A sentence is stripped down to its canonical form before being
completely rebuilt. In the canonical form all articles, modals, verb auxiliaries,
and prepositions are removed, and nouns and verbs are reduced to their stems.
They create a lattice of all possibilities (i.e., all possible articles, modals, and
verb auxiliaries at each position) at all positions and then traverse the lattice
using the Viterbi (1967) algorithm. Lee and Seneff (2006) try several different
ranking strategies for re-ranking the possible alternatives including a word tri-
gram model and a parser. The parser is used with a domain specific context-free
grammar, trained on the training set. Later, Lee and Seneff (2008) focussed
specifically on verb form correction using the parser and tri-gram approach
mentioned.

The fifth approach is by Sun et al. (2007). They approach the problem of errors
in second-language-learner sequences by learning labelled sequential patterns.
Pattern discovery is done using correct and incorrect examples from Chinese-
written and Japanese-written English language corpora. These patterns repre-
sent a typical part of a type of erroneous sequence, such as <this, NNS> 5

(e.g., contained in * this books is stolen.).

5 Here, NNS is a part-of-speech tag that stands for plural noun. For part-of-speech tags NN is
often used as the tag for the nouns and NNS for the plural nouns. Examples that contain such a tag
are the Penn Treebank tagset and the CLAWS 5 tagset.

2.3 | Prenominal Adjective Ordering 27

The sixth approach is developed by Schaback and Li (2007). They use co-
occurrence, bigrams, and syntactic patterns to serve as features for a support
vector machine classifier. They outperform the systems they compare against6

through the features used on the recall7 measure. However, on precision8 Sch-
aback and Li (2007) are outperformed by all compared systems except AS-
PELL.

2.2.2 Selection of the Correct Agreement

Most approaches in the literature use a classifier to perform the selection step.
For verb and noun agreement a generative approach is also taken from time to
time. For instance, Lee and Seneff (2006) use such a generative approach.

For the selection of the correct word form for the verb or the noun, a variety
of approaches are used in the literature mentioned above. Mays et al. (1991)
perform selection by using a tri-gram model and selecting the most likely se-
quence. Chodorow and Leacock (2000) only detect errors, without selecting
a correct alternative. Hirst and Budanitsky (2005) use the same method for
selection as for detection. They order possible corrections by their semantic
relatedness and the most related possibility was selected. The selection cri-
terium that Lee and Seneff (2006) use is based on the language model used, the
best traversal through the lattice is selected as the correct sequence. Sun et al.
(2007) does not try to select a correction candidate. Schaback and Li (2007)
uses a support vector machine classifier to select a correction candidate.

2.3 Prenominal Adjective Ordering

Prenominal adjective ordering is a problem that has been mostly studied in the
linguistics literature. The ordering of the prenominal adjectives is important
for the fluency of the resulting sentence. As such it is an interesting candi-
date for computational approaches. Naı̈ve computational attempts (e.g., using
a simple bigram model) already attain a fairly high performance of around
75% prediction accuracy on newspaper texts. Malouf (2000) has improved this
result to around 92% by adequately putting partial orderings to use. The per-

6 Schaback and Li (2007) compare their system to the following systems: MS WORD, ASPELL,
HUNSPELL, FST, and GOOGLE. We remark that ASPELL does not take context into account, so it
is not surprising that it is outperformed.
7 Recall is used to measure the coverage of a system. In this case it denotes the percentage of
faults present in the data that where found by the system.
8 Precision is used to measure the correctness of a system. In this case it denotes the percentage
of correctly spotted faults compared to the total number of potential faults indicated.

28 Three Alternative Selection Problems

formance measures do not take into account different adjective orderings that
occur for reasons of focus or contrast, i.e., they are counted as not preferred
even if the author intended that specific ordering. In this section, we discuss
the investigation of the order (Subsection 2.3.1) and the selection procedure
(Subsection 2.3.2).

2.3.1 Investigation of the Ordering

Below we give two alternative examples of prenominal adjective orderings.
The first is preferred over the second.

Example 4. the large wooden red cabin

Example 5. ?? the red wooden large cabin

In Example 4 we see the following order: size, material, colour. In Example 5
we see: colour, material, size. A correction system should not place a hard con-
straint on these orders. In practice, some orderings are less correct, e.g., the one
shown in Example 5 is not preferred compared to Example 4. However, some
orderings are more ‘correct’ than others. Therefore, the order of prenominal
adjective modifiers is a challenge with a subtle preference system.

The investigation of the order is studied by many linguists in countries from all
over the world. Language users have their own background, culture, and taste.
Within the field of linguistics the ordering is also a debated issue.

Feist (2008) devoted his thesis to this problem of prenominal adjective order-
ing. He included a thorough overview of the relevant literature. He stated about
the literature the following.

Views on English premodifier order have varied greatly. They have
varied as to whether there are distinct positions for modifiers or a
gradience, and as to the degree and nature of variability in position.
(Feist 2008, p. 22)

For discussion of linguistic issues we refer to Feist (2008). Below we deal with
computational approaches.

2.3.2 Selection: Seven Computational Approaches

Below we discuss two studies that together contain seven computational ap-
proaches of the prenominal adjective ordering problem. Specifically, the stud-
ies try to find the best ordering of a set of (at least two) prenominal adjectives.

2.3 | Prenominal Adjective Ordering 29

This problem has most notably been studied in a computational manner by
Shaw and Hatzivassiloglou (1999), and Malouf (2000). Both publications deal
with finding evidence for orderings where the absolute best order is not known.
Still, if evidence for a possible order is found in the data it is taken into account.

Shaw and Hatzivassiloglou (1999) presented a system for ordering prenominal
modifiers. The authors propose and evaluate three different approaches to iden-
tify the sequential ordering among prenominal adjectives. They used the first
three approaches described below.

The first approach is straightforward. It deals with evidence of direct prece-
dence, of A ≺ B9. Direct evidence means that in the training material signif-
icantly more instances of A preceding B were found. If such direct evidence
is found, the decision that is supported by the evidence is made, i.e., the sys-
tem predicts the ordering that contains A ≺ B over the one where B ≺ A.
This approach was also used by Lapata and Keller (2004) who used web-based
n-grams as the underlying data.

The second approach deals with transitive evidence. In case of transitive evi-
dence of precedence, if there exists direct evidence for A ≺ B and for B ≺ C,
there is transitive evidence forA ≺ C. If such transitive evidence is found to be
statistically significant, the decision is made that is supported by the evidence.

The third approach deals with clusters of pre-modifiers. When dealing with
evidence for clusters of prenominal modifiers the system looks for evidence
of X ≺ Y ,when A ∈ X and B ∈ Y . Again, if such evidence is statistically
significant, the decision is made that is supported by the evidence.

Malouf (2000) also presents a system for ordering prenominal modifiers. Next
to the approaches by Shaw and Hatzivassiloglou (1999) as discussed above,
Malouf (2000) explored four new approaches. These four approaches are dis-
cussed below.

The fourth approach describes the use of maximum likelihood estimates of
bigrams of adjectives. This produces a system where there is both a likelihood
forA ≺ B andB ≺ A. The ordering with the highest likelihood is then chosen.

The fifth approach uses memory-based learning. In this approach a memory
based classifier is trained on morphological features of sets of adjectives, with
as class the adjective that is preceding. The prediction made by this classifier is
followed. Vandekerckhove et al. (2011) also use the memory-based approach
to model overeager abstraction for adjective ordering.

The sixth approach determines positional probabilities. This probability is cal-
culated independently for all adjectives. The ordering that gives the highest

9 Where A ≺ B stands for A precedes B.

30 Three Alternative Selection Problems

combined, independent probability is chosen. To clarify, if there are two adjec-
tives (A and B) then the chance of A being in the first position and B being
in the last position are multiplied independently and compared to the situation
when it is the other way around. So P (first(A))×P (last(B)) is compared with
P (last(A))× P (first(B)).

The seventh approach uses a combination of the fifth and sixth approach. A
memory-based learner is trained on both morphological and positional proba-
bility features. The classification of the learner is used as prediction.

Finally, both studies conclude that they have introduced an approach that partly
solves the problem. Malouf’s final result of 92% prediction accuracy is high for
such a task. This result can be compared to the result achieved by a naı̈ve ap-
proach as also reported by Malouf (2000). When employing a back-off bigram
model on the first one million sentences of the British National Corpus, the
model predicted the correct ordering in around 75% of the time. This leads
him to conclude the following.

. . . , machine learning techniques can be applied to a different kind
of linguistic problem with some success, even in the absence of
syntagmatic context. (Malouf 2000, p.7)

More recently Mitchell (2009) introduced an class-based ordering of prenomi-
nal modifiers. She automatically assigns each modifier a positional-class based
on its frequent positions of appearance. In the classification stage these classes
are combined to determine the best-ordering of the prenominal modifiers. The
performance of the system is 89.63%, comparable to the performance achieved
by Malouf (2000).

Chapter 3

Experimental Setup

In this chapter we describe the experimental setup for our investigations. The
setup is modular. We start by giving an overview in Section 3.1. In Section 3.2
we describe the generation of alternative sequences. The alternative sequence
generator depends on the task under investigation. In Section 3.3 we discuss the
selection between different alternative sequences. In Section 3.4 we explain the
evaluation performed after the selection process. So finally, in Section 3.5 we
give some background on suffix trees and suffix arrays. We use suffix arrays as
the underlying data structure for our language-model implementations We note
that the use of suffix arrays is not essential for the setup of the experiments, as it
only serves as a way to count sequences efficiently. However, the use of suffix
arrays has practical implications.

3.1 Flowchart of the Experiments

In this section we provide an overview of the experimental setup (see Fig-
ure 3.1). Our system consists of 13 steps (0, 1, . . . , 12). We note that in this
chapter the numbers between parentheses refer to the thirteen steps of the
flowchart. In our flowchart the ovals refer to data, and the boxes to the ac-
tions which we perform on the data (in other words: they are the programs that
we have developed or adapted). The Language-Model Environment (LME) (5,
6, 7) is the core part of the system. In the remainder of the thesis we will de-
scribe how we modify this part. In general, the steps (0, 1, 2, 3, 4) and (8, 9,
10, 11, 12) remain constant over all experiments. In some situations there are
small changes (e.g., when annotations are added); they will be given explicitly
in the text. Below we describe all the steps of the setup.

32 Experimental Setup

Generate
alternatives

Apply
Language

Model

Make
Selection

Evaluate

Training
Corpus

Alternative
Lists

Generate
Language

Model

Language
Model

Test
Corpus

Probability
Lists

Selection
Result

Evaluation

1

2

3

4

6

5

7

8

9

12

11

10

Language-Model
Environment

Parent
Corpus 0

Figure 3.1: Flowchart visualizing our experimental setup. Data is repre-
sented by ovals and programs are represented by boxes. All
elements of the flowchart are numbered.

3.1 | Flowchart of the Experiments 33

Our point of departure is the parent corpus (0). In our investigation we use the
British National Corpus (BNC) (see Leech et al. 1994). The BNC is a repre-
sentative sample of modern-day written English. It consists of some hundred
million tokens1. From the parent corpus, the system takes a test corpus (1) and
a training corpus (4). Usually the test corpus and the training corpus are both
taken from the same parent corpus in a 1 : 9 ratio (cf. Weiss and Kulikowski
1991). We use 1

10 -th of the corpus for testing and the other 9
10 -th for training.

The training part of the corpus (4) helps to build the Language-Model Envi-
ronment. The Language Model (LM) (6) is created by the Generate Language
Model (GML) program (5). In the LME, the LM (6) forms the internal input
for the Apply Language Model (ALM) program (7). The alternative lists (3) are
the external input of the ALM (7). The output is written to (8) in the form of
probability lists.

The LME will be replaced from chapter to chapter to examine the different
approaches. Here we already mention the following. In Chapter 4 we replace
this part by n-gram-based language models which are flexible in the size of
the n-grams. In the subsequent chapters we replace the LME by n-gram-based
language models to which annotations are added. In Chapter 5 the annotations
are locally dependent and in Chapter 6 they are more complex.

In brief, the process starts with the test corpus (1). Then we generate (2)
lists of alternatives (3). There are three different generate alternatives pro-
grams, one for each sequence selection problem. The three corresponding
generate alternatives programs (2) are discussed in detail in Section 3.2. To
run experiments on the different sequence selection problems we only have to
change the generate alternatives program (2). Below we provide an example of
the whole process for a confusible problem. For each oval in the flowchart we
give an example with a reference in square brackets.

In the examples 6 and 7 we show a straightforward example of a sentence
(Example 6) and the alternatives generated from that sentence (Example 7).
These example alternatives are based on the confusible set {then, than}. We
mark the differences in the generated alternatives by using a bold typeface. We
remark that the original sentence is also generated as an alternative.

Example 6. The pen is mightier than the sword.
[sentence in (1)]

Example 7. The pen is mightier then the sword.
The pen is mightier than the sword.

[alternatives in (3)]

1 To be precise, 111,851,659 tokens.

34 Experimental Setup

When the sets of alternative sequences (3) are generated we use the ALM (7)
on it. The ALM assigns a probability to each of the alternatives. The outcomes
are saved as a list of probabilities (8). For each set of alternatives, a separate list
of probabilities is stored. For instance, a possible probability set for Example 7
is shown in Example 8. Here the first sequence has been assigned a probability
of 0.3 and the second sequence a probability of 0.6.

Example 8. The pen is mightier then the sword. . . 0.3
The pen is mightier than the sword. . . 0.6

[probabilities in (8)]

The list of alternatives (3) and the corresponding list of probabilities (8) are
used to make a selection (9). This process is discussed in more detail in Sec-
tion 3.3. The make selection program (9) selects the most likely sequence and
outputs this as a selection result (10). For each alternative sequence set this
selection result consists of (a) the part of the original sequence (as contained
in the corpus) that was modified and (b) the modified part of the sequence as
contained in the most likely alternative sequence. Labels for the selection are
detected automatically. For instance, in Example 7 the differences between the
sequences are then and than; they give us two selection labels as a result (i.e.,
then and than). We now look back to our example of an alternative sequence
set in Example 7 and to the (sample) probability list for the sequence set given
in Example 8. Using these probabilities for the alternative sequences the selec-
tion made would be than, as shown in Example 9.

Example 9. then . . . 0.3
than . . . 0.6←

[selection in (10)]

Finally, the selection result (10) is used by the evaluation program (11) to gen-
erate an evaluation (12). An example of such an evaluation is shown in Exam-
ple 10 (the outcome is fabricated).

Our main measurement is the accuracy score of the prediction. Our reasoning
for this is as follows. We are interested in the performance of the LME in terms
of making a correct choice from a pre-generated set of alternatives. Hence, ac-
curacy is the most precise measurement of this choice. We discuss the selection
result (10) and evaluation (12) in more detail in Section 3.4.

Example 10. Accuracy = 0.700

Having described the flowchart globally by all its constituents, we are now
ready to take a closer look at the programs. We will discuss generate alterna-
tives (2), make selection (9), and evaluate (11) in Sections 3.2, 3.3, and 3.4,
respectively.

3.2 | Alternative Sequence Generation 35

3.2 Alternative Sequence Generation

For each of the three problems we have built a different alternative se-
quence generator. The three alternatives generators occur on position (2) in
our flowchart, shown in Figure 3.1. The corresponding generator for each of
the problems outputs a set of alternative sequences. In Subsections 3.2.1, 3.2.2,
and 3.2.3 we describe briefly the triggers and alternative generation for each
problem.

3.2.1 Confusibles

For the confusible problem we use the 21 confusible sets as introduced by
Golding and Roth (1999). If a member of any of these sets is encountered it
triggers the alternative generation. In other words, the trigger is the occurrence
of a member of a given set of confusibles. The 21 sets and the number of times
they occur in the British National Corpus are listed in Table 3.1. The alternative
generation is shown in Example 11.

When generating alternative sequences for each member of the confusible set,
we generate all alternatives. So, if we were to encounter the word sight in the
running text three alternatives would be generated (see Example 11).

Example 11. It was a lovely sight.
It was a lovely cite.
It was a lovely site.

3.2.2 Verb and Noun Agreement

For the trigger of the verb and noun agreement problem we use the tagging as
present in the British National Corpus. When a verb or a noun is encountered, it
triggers the alternative generation. In other words, our trigger is the occurrence
of a verb tag or a noun tag. If a verb tag is encountered, we use an inflection list
for our generation process. An example verb inflection list for the verb speak
is presented in Table 3.2.

Example 12. He spoke softly.
He speak softly.
He speaks softly.
He speaken softly.
He spoken softly.

36 Experimental Setup

confusible set # occurrences in BNC
accept, except 9,424 10,025
affect, effect 4,860 22,657
among, between 21,790 86,335
begin, being 7,232 84,922
cite, sight, site 288 6,352 9,612
country, county 30,962 10,667
fewer, less 2,897 37,276
I, me 663,660 122,477
its, it’s 144,047 114,105
lead, led 14,223 15,468
maybe, may be 9,541 36,539
passed, past 10,120 25,203
peace, piece 8,561 9,383
principal, principle 4,781 7,832
quiet, quite 5,969 38,836
raise, rise 6,066 10,304
than, then 139,531 149,237
their, there, they’re 223,820 295,546 22,466
weather, whether 5,787 32,735
your, you’re 117,864 34,242

Table 3.1: The confusible sets as used by Golding and Roth (1999) with
the number of the occurrences, for each element of the set (in
order), in the British National Corpus.

Form Example
base speak
infinitive to speak
third person singular speaks
past spoke
-ing participle speaking
-ed participle spoken

Table 3.2: Example of an inflection list, demonstrated by the verb speak.

3.3 | Alternative Sequence Selection 37

When generating alternative sequences for each verb or noun we generate the
full alternative set for the verb or noun. For a verb this means that all inflec-
tions of the verb are generated. For a noun this means that the singular and
plural form are generated. For a verb it means that an inflection list is gen-
erated with the singular and plural forms of the present tense, the past tense,
the present participle and gerund form (-ing), and the past participle (-ed). The
set of alternatives for all verbs and nouns encountered is generated using the
CELEX database as described by Baayen et al. (1993). So, if we were to en-
counter the word spoke in the running text five alternatives would be generated
(see Example 12). We remark that the alternative he speaks softly. is also a cor-
rect sentence. However, this alternative does not match the gold-standard text.
In this thesis we measure how well the alternative sequence selection system
recreates the original text, so this alternative, if selected, would be counted as
incorrect.

3.2.3 Prenominal Adjective Ordering

For the prenominal adjective ordering problem we again use the tagging as
present in the British National Corpus. When two or more subsequent prenom-
inal adjectives are encountered, the alternative generation is triggered. So, our
trigger is the occurrence of two or more subsequent prenominal adjectives, i.e.,
in front of a noun. All possible orderings are generated from the set of adjec-
tives.

In Example 13 we show a fabricated output of all alternative sequences. The
number of alternatives generated for a sequence of x adjectives is x!2.

Example 13. The large wooden red cabin.
The large red wooden cabin.
The wooden red large cabin.
The wooden large red cabin.
The red wooden large cabin.
The red large wooden cabin.

3.3 Alternative Sequence Selection

The alternative sequence selector (9), selects the sequence with the highest as-
signed probability. This program also assigns a label to the selection made.
The inputs to the make selection program are alternative lists (3) and proba-

2 Assuming all adjectives are unique, as is usually the case.

38 Experimental Setup

bility lists (8). It uses the probabilities to make a selection between alternative
sequences.

The alternative sequence selector is implemented as follows: (1) the alternative
lists contain all the textual sequences, and (2) the probability lists contain only
the probabilities with the proper reference to the alternative lists. For readabil-
ity, in the examples given above, we have replaced the reference by the full text
of the sequence.

The make selection program selects the alternative sequence with the highest
probability. Based on the alternative sequence selected, the corresponding se-
lection label is automatically generated.

3.4 Alternative Sequence Evaluation

We evaluate the selection result by comparing its value to the value of the
original sequence. When the values match, the prediction is counted as correct.
When the values do not match, the prediction is counted as incorrect. We stress
that this means that sometimes predictions of correct alternative sequences are
counted as incorrect as they do not match the original input. In effect we are
measuring the ability of the system to regenerate the original sequence. As
evaluation measure we use the accuracy measure, i.e., the number of correct
predictions divided by the total number of predictions.

For determining the significance of our predictions we use McNemar’s test
(McNemar 1947). Our experiments provide predictions on the same series of
alternative sequence sets. Using McNemar’s test we can calculate the signifi-
cance of the differences between the series.

The null hypothesis of the statistical test is that both series of measurements are
taken from the same distribution. The result will clarify whether or not the null
hypothesis should be rejected. If we reject the null hypothesis we conclude that
the difference between the two compared series of predictions is significant.
Thus, McNemar’s test is a χ2 test. The formula for calculating χ2 is given in
in Equation 3.1.

χ2 =
(B − C)2

B + C
(3.1)

In the equation the values for B and C are given by the non-matching cells in a
binary confusion matrix. We give the shape of the confusion matrix (Table 3.3).
So, B and C are the counts of the elements on which both series disagree. In
the case ofB, it is the count of the number of times the first series had a positive

3.5 | Data Structures Used 39

Positive Negative
Positive A B A+B
Negative C D C +D

A+ C B +D N

Table 3.3: A table showing the binary confusion matrix as used for ap-
plying McNemar’s test. From top to bottom we show positive
and negative items from the first series. From left to right we
show the matching positive and negative items from the second
series.

outcome and the second series a negative outcome. In the case of C it is the
other way around. For the calculations we use the R package (R Development
Core Team 2010).

3.5 Data Structures Used

In this section we motivate our preference for suffix arrays. In most language
models straightforward hash tables are used (cf. Stolcke 2002). A hash table
is an array with {key, value} pairs where the key is translated into an index
on the array by a linear-time hashing function. A suffix tree is a tree-like data
structure that stores all the suffixes of a sequence as paths from the root to a
leaf. A suffix arrays is an arrays of all, (lexically) sorted, suffixes of a sequence.

Below we briefly review the historical development from hash table to suf-
fix array. The idea of using suffix trees and suffix arrays is a spin-off from
Zobrist’s ideas on hash tables. Zobrist (1970) used a hashing function based
on the content of a game-tree3. In game playing, new ideas and applications
of hash tables were further developed in Warnock and Wendroff (1988). They
called their tables search tables . Parallel to this development there was ongoing
work on tries and indexing. Starting with the concept of tries as described by
Knuth (1973, p. 492), concepts such as suffix trees as described by Ukkonen
(1995) were developed. These suffix trees in turn lead to the development of
a more efficient data structure (in terms of memory use), the suffix array, as
introduced by Manber and Myers (1990).

In implementations of statistical language models, suffix trees and suffix arrays
can be used for the underlying data structure (cf. Yamamoto and Church 2001,
Geertzen 2003). In typical models we see hash tables with stored probabilities
assigned to a key, i.e., an n-gram (cf. Stolcke 2002). Hash tables (Zobrist 1970)
store a single value for a key, for instance, a probability for an n-gram.

3 In the case of Zobrist (1970) these are game-trees for the game of chess.

40 Experimental Setup

Suffix trees and suffix arrays provide access to counts and positions of all sub-
sequences, i.e., any subsequence of any length of the training data. We observe
that suffix trees are mainly used within bioinformatics, where they facilitate
counting subsequences. In language models, suffix trees play a subordinate
role, since they: (1) use more storage than a singular hash, and (2) are complex
in relation to their use.

For our language-model implementations, we use suffix arrays as the under-
lying data structure. Suffix arrays have been proposed more recently and are
strongly related to the applications of the suffix trees. For the suffix array and
the suffix tree, the underlying approach to the data is rather different. As will
be described below, the common property is that both data structures provide a
searchable access to all suffixes of a sequence.

For a proper explanation we use the following. For hash tables we refer to
the literature (Zobrist 1970, Knuth 1973, Baase and Gelder 2000, and Stolcke
2002, p. 513–558), for search tables to Warnock and Wendroff (1988), and for
tries to Knuth (1973, p.492). Below, we explain suffix trees in Subsection 3.5.1,
followed by suffix arrays in Subsection 3.5.2, and enhanced suffix arrays in
Subsection 3.5.3.

3.5.1 Suffix Trees

A suffix tree is a tree-like data structure that stores all suffixes of the sequence.
In our example, we use the word robot . In robot there are five character suf-
fixes: {t, ot, bot, obot, robot}. A suffix is a subsequence of which the last ele-
ment is also the last element of the input sequence. When displaying a suffix
tree we use a trie as data structure and the alphabetical order as in Figure 3.2.
The suffix tree is built in such a way that every path from the root of the tree
to its leaves represents a single suffix. The leaves of the suffix tree contain an
index back to the start of the suffix in the input sequence. We represent indices
by numbers that start at 0. An example for the string robot is shown in Fig-
ure 3.3. The values in the leaves of the suffix tree point back to the index of the
place in the string where the suffix starts.

Suffix trees are a well-known data structure with many applications in natural
language processing (specifically string processing) and other fields such as
bioinformatics. We mention three applications:

1. With suffix trees we can search for a query sequence in O(m) time,
where m is the length of the query, the results are (a) the existence of

3.5 | Data Structures Used 41

3

2

1

0

4

b

o

t

o

t
b

o

t

r t

o

b

o

t

Figure 3.2: Suffix tree for robot .

r o b o t
0 1 2 3 4

Word

Index

Figure 3.3: Index example on robot .

42 Experimental Setup

3

2

1

0

4

b

o

t

o

t
b

o

t

r t

o

b

o

t

Figure 3.4: Suffix tree counting example for robot . The pattern searched
is o .

the query, (b) the positions of the query in the sequence, and (c) the
number of occurrences in the sequence4.

2. We can find the longest repeated subsequence efficiently.

3. We can find the shortest substrings that occur only once.

Suffix trees can be constructed in linear time with regards to the length of
the input. The state-of-the-art algorithm for the online linear-time construction
of suffix trees was introduced by Ukkonen (1995). Later on, Gusfield (1997)
explained this construction algorithm more clearly.

A well constructed suffix tree can be used to find the number of occurrences of
substrings efficiently. To count the number of occurrences the tree is traversed
from the root node following the path indicated by the query to a node in the
tree. At that point we count the number of leaves under that node5. This is
illustrated for the robot example with the query o in Figure 3.4. The number
of leaves under the path for o is two, with suffix index 1 and 3.

There are efficient implementations available on the internet. A representative
example of such an efficient implementation is by Van Zaanen (2010), who

4 Provided this extra bit of information is stored at construction time.
5 We note that for this application we would store this information in the nodes itself, speeding up
this step significantly.

3.5 | Data Structures Used 43

implemented Ukkonen (1995)’s algorithm for building suffix trees, in template-
based C++.

3.5.2 Suffix Arrays

In the 1990s, a data structure related to suffix trees called a suffix array was
developed for operations on sequential data. Manber and Myers (1990) intro-
duced the concept of a suffix array. The data structure underlying suffix arrays
deviates considerably from that of suffix trees. The development of suffix ar-
rays is motivated by more efficient use of memory. As a side comment, we
remark that storing and reading in a suffix array from disk is also more straight-
forward than reading in a suffix tree.

Suffix arrays are related to suffix trees in two ways: (1) a suffix tree can be
converted to a suffix array in linear time, and (2) suffix arrays can support the
same operations as suffix trees.

A suffix array is an ordered list of all suffixes in a sequence. The suffixes are
typically ordered alphabetically. Obviously, storing all suffixes as separate se-
quences is rather inefficient, e.g., for storing all n suffixes of a sequence of
length n it needs 1

2 × (n+n2) memory. Therefore, only a list of indices on the
original input sequence is stored, denoting the positions in which the suffixes
start. In Figure 3.5, we illustrate the way of storing by the example suffix array
for robot , including indices on the original sequence.

An interesting aspect of suffix arrays is that suffixes that share a common prefix
are grouped together in the array. It means that the suffix array can be used to
locate the position and number of all infixes of an input sequence. It is done
by finding all suffixes that start with the given infix. Since they are grouped
together, they can be found efficiently.

Suffix arrays have much lower memory requirements than suffix trees. The
worst case memory usage of a suffix tree is Θ(m|Σ|)6 with m the length of
the sequence and Σ the alphabet. In contrast, suffix arrays are Θ(m) in their
memory utilisation, regardless of the alphabet |Σ|.

Building a suffix array using a regular sorting algorithm takes Θ(n2 log n)
time, where n is the length of the input. Typical sorting algorithms use

6 When using the notation Θ we refer to the worst-case complexity or space utilisation of an
algorithm, conversely O (big O) denotes the average case complexity or space utilisation. This is
analogous to the literature (Knuth 1973, Baase and Gelder 2000).

44 Experimental Setup

2
1
3
0
4

bot

obot

ot

robot

t

r o b o t
0 1 2 3 4

Suffix Index

Figure 3.5: Suffix array example for robot . The index blocks form the suf-
fix array. The arrows denote the pointers to the original, in-
dexed input sequence (robot). Left of the suffix array we have
listed the suffices.

Θ(n log n) time to sort a sequence7. However the sorting of the prefixes of
the suffixes can depend on multiple consecutive positions in the original input.
This means that we have to perform sequence comparison which may need
symbol comparisons of at most n positions. It results in a naive construction
time of Θ(n2 log n) for a sequence of length n.

During recent years, many sorting algorithms have been developed that can
construct a suffix array more efficiently with respect to time requirements. The
fastest algorithms run in O(n) time. They build a suffix tree first (which can be
done in linear time) and then obtain the sorted suffixes by a one-pass traversal
of the suffix tree. However, these algorithms need a working space of at least
15× n (see Manzini and Ferragina 2004).

We remark that Manzini and Ferragina (2004) also proposed a reasonably fast
algorithm that needs a working space of only 5 × n. The reasonable fast al-
gorithm works by partially sorting the array into buckets of which the suffixes
start with the same x tokens and afterwards sorting each of these buckets with
a blind trie. This strategy is called deep-shallow sort.

7 Typical fast sorting algorithms such as mergesort have a worst case complexity of Θ(n logn)
(Baase and Gelder 2000, p. 174–177). There are many other related and relevant sorting algorithms
such as bucket sort, radix sort, trie sort, etcetera. The interested reader is referred to the literature
(Knuth 1973, Baase and Gelder 2000).

3.5 | Data Structures Used 45

There are two issues we may encounter when using suffix arrays: (1) there
were no free, flexible implementations available8 at the time that we decided
to use suffix arrays, and (2) searching for a (sub) sequence in a suffix array is
not linear in time with regards to the pattern length, but logarithmic in time
with regards to the length of the sequence on which the suffix array was built9.
There are solutions to both issues, which we will discuss below.

Since there was no implementation available that met our needs we created
our own implementation. We used as guidelines the articles by Abouelhoda
et al. (2004) and Manzini and Ferragina (2004). We aimed at achieving a quite
flexible data structure. So, we decided to write the data structure in template-
based C++, which means that it can be applied to any sortable sequence10. As
our implementation choices are strongly biased towards reducing the memory,
we have implemented the deep-shallow sort strategy introduced by Manzini
and Ferragina (2004).

After constructing the initial array of suffixes we performed a bucket sort. For
the bucket-sort we employed the built-in sort algorithm of the STL library.
This is a quite efficient implementation using Θ(n log n) time (cf. Knuth 1973,
Baase and Gelder 2000). As we sorted to depth x the number of sequential
comparisons performed could be at most x. So, we could infer that the time
complexity of this sort is at most Θ(x×n log n). The implementation resulted
in an almost sorted list of suffixes.

To each bucket of the bucket-sorted list we then applied a blind-trie sort in turn.
For the blind-trie sort we built, from the suffixes of a single bucket, a trie. This
trie is then traversed in sorted order and the ordering of the suffixes is read-out.
This kind of trie is also known as a patricia tree (Morrison 1968).

In the suffix array it takes some O(log n) time to find a pattern due to the lack
of an index structure. Here we remark that the suffix tree is itself an index
structure. The question is: can we combine this property of the suffix tree with
the memory utilization of the suffix array somehow? The affirmative answer
leads us to the concept of enhanced suffix arrays (see Abouelhoda et al. 2004).

8 Most implementations available online pose restrictions on the size of the alphabet that is used
making them not suitable for word-based n-gram models.

9 Without an index, locating the position of a specific element of a sorted list takes Θ(logn) steps
when using binary search (Baase and Gelder 2000, p. 56-57).

10 For a considerable sorting speedup we have eliminated the bounds check from the sorting phase.
Due to this elimination the input sequence has to have a unique largest element in the last position.

46 Experimental Setup

3.5.3 Enhanced Suffix Arrays

Abouelhoda et al. (2004) suggested several improvements to a plain suffix array
structure. Together, the suffix array and the improvements form the enhanced
suffix array. The enhanced suffix array enables, amongst other things, search-
ing in linear time. The extension consists of two parts: (1) a longest-common-
prefix (lcp) value table, and (2) a child table representing the implicit suffix
tree structure. Below, we discuss both in more detail. For our application, the
most important enhancement is that of the child table .

Enhancement 1: LCP

The first enhancement is the longest-common-prefix (lcp) value. The lcp value
is a positive integer that denotes the length of the common prefix of two ele-
ments. Two examples illustrate this idea. First, the lcp value of monkeys and
robot is 0. Second, the lcp value for road and robot is 2 as the longest common
prefix between the two is ro , which has length 2. This lcp value is stored for
each position in the suffix array, denoting the length of the longest common
prefix with the previous suffix in the array. We show an example of lcp values
in an array in Figure 3.6.

2
1
3
0
4

0
1

3
4

2

SuffixIndexPosition

bot 0
0
1
0
0

obot
ot

robot
t

LCP

Figure 3.6: Suffix array longest-common-prefix example for robot .

We use the lcp values for the construction of a virtual suffix tree. For this pur-
pose we use the concept of lcp intervals . An lcp interval defines the interval
that corresponds to the range of suffixes (in the suffix array) with a specific
prefix. In Figure 3.6 the lcp value 1 indicates that the given position shares a
prefix of length 1 with the previous item. Moreover, the 1 is preceded and suc-
ceeded by lower values. Since the lcp value indicates the relation between the

3.5 | Data Structures Used 47

current element of the array and the preceding one, we may establish the length
of the lcp interval as 2. An interval [i . . . j], 0 ≤ i < j ≤ (n − 1) with n the
length of the sequence, is an lcp interval of the lcp value l if the following four
conditions hold:

1. lcp[i] < l

2. lcp[k] ≥ l for all k with i+ 1 ≤ k ≤ j

3. lcp[k] = l for at least one k with i+ 1 ≤ k ≤ j

4. lcp[j + 1] < l.

Below we explain the conditions.

Ad 1 Since the lcp value is l, the lcp[i] should be lower than l. Otherwise
element i− 1 would also belong to the lcp interval.

Ad 2 All elements within the lcp interval must at least share a prefix of size l.

Ad 3 There needs to be at least one element in the interval that has an lcp value
of l. Otherwise, the shared prefix of the interval would have a length
greater than l.

Ad 4 The element directly after the lcp interval does not share the prefix of
length l with the lcp interval, otherwise it would also belong to the lcp
interval.

The lcp intervals can have smaller lcp intervals embedded within them, re-
cursively. These recursive intervals have a tree structure and are called an lcp
interval tree. The lcp interval tree is implicit and has the same structure as the
suffix tree. We show the (recursive) lcp intervals of our example robot in Fig-
ure 3.7. The root lcp interval encompasses the entire suffix array. This interval
constitutes the lcp interval with lcp value 0. The root interval branches to depth
1 into four lcp intervals, viz. {bot,o,robot,t}. Of these, only the lcp interval for
o has more elements than 1, namely 2. Therefore, this specific interval branches
once more into {bot, t}.The whole structure is given in Figure 3.8.

Enhancement 2: Child Table

Using the lcp values all the lcp intervals can be computed in a single pass
(with a stack-based algorithm) over the suffix array. However, the resulting
representation does not allow us to search for a desired internal node (i.e.,
a desired pattern) efficiently. To improve the efficiency of the search we use

48 Experimental Setup

2
1
3
0
4

0
1

3
4

2

SuffixIndexPosition

bot 0
0
1
0
0

obot
ot

robot
t

LCP
LCP intervals
0 1 2

Figure 3.7: Suffix array lcp intervals example for robot .

b

o
r

t

b

t

ot

obot

ot

Figure 3.8: Lcp tree example for robot . The lcp intervals can be also seen
in Figure 3.7.

3.5 | Data Structures Used 49

2
1
3
0
4

0
1

3
4

2

SuffixIndexPosition

bot0
0
1
0
0

obot
ot

robot
t

LCP

-
2
-
-
-

1
3
-
4
-

ChildTab
NextDown

Figure 3.9: Enhanced suffix array example for robot .

3
1
4
0
2

0
1

3
4

2

IndexPosition

The robots walk in space
0 1 2 3 4

Figure 3.10: Suffix array example for The robots walk in space .

50 Experimental Setup

the childtable representation. The addition of a child table makes the implicit
suffixtree structure more explicit, so we can search for patterns in Θ(n) time
with regards to the pattern length.

In order to access the implicit suffixtree structure efficiently we store the jumps
through the suffix array that we need for top-down traversal of the implicit
suffix tree in an additional support array. The idea is that for each interval
we can easily determine the children of that interval (which are also intervals
themselves), and that we can do so recursively. Therefore, we need indices for
the next element of the current depth of the tree. We also need an index for the
first element of the next lcp interval one level deeper. Of course, the interval
[0 . . . n − 1] is always a valid lcp interval, giving us a start position to work
from.

An example of a regular suffix array for our example robot enhanced with the
lcp values and the child table is given in Figure 3.9. We have already shown the
corresponding lcp interval tree in Figure 3.7 and Figure 3.8. Below we explain
the contents of next and down . Next always points to the next branch at the
same depth. For depth 1, we have four intervals (see Figure 3.7). For each first
element of each of the intervals the next value points to the first element of
the next interval. So, we find the values 1, 3, and 4. The down value points to
the first element of the second branch one level lower. Finally, we remark that
in our research only top-down tree traversal is applied. For tasks that require
bottom-up tree traversal approaches, Abouelhoda et al. (2004) have introduced
a third index, called up . The use of the up index falls beyond the scope of our
research.

The construction of the child table can be done, analogously to the lcp value
array, in a single pass over the suffix array. However, building the child table
depends on the presence of the lcp table. Therefore, two passes over the suffix
array are needed to fill the support structures that allow access to the implicit
suffixtree structure after regular construction.

From Letters to Words

We created an efficient, template based, C++ implementation of these tech-
niques, which is used throughout this thesis. We exploit this implementation to
answer queries for n-grams of words.

It is possible to construct a suffix array based on sequences of words instead
of sequences of characters. In doing so we gain the ability to answer word-
based n-gram queries more efficiently. We give an example of a suffix array
built on the short sentence The robots walk in space . The sentence contains five

3.5 | Data Structures Used 51

suffixes: (1) space , (2) in space , (3) walk in space , (4) robots walk in space ,
and (5) The robots walk in space . We show the suffix array in Figure 3.10.

Having described of the enhanced suffix arrays, we are ready to perform our
experiments. In Chapter 4, 5, and 6 we describe (1) the LME as applicable to
the specific situation at hand, i.e., without annotations, with part-of-speech an-
notations, and with dependency annotation, and (2) the results achieved using
that LME.

Chapter 4

Models without Annotation

This chapter describes a language-model environment (LME) that is to be char-
acterised as a model without added annotation on top of the words. Using this
straightforward LME and the corresponding LM, we investigate the flexibility
of the n-gram. This means that, we explicitly choose not to set the size of the
n-gram in advance. However, we do the comparison with fixed size n-grams in
the preliminary experiments. They are discussed in Section 4.2. In this chapter,
we examine RQ1 and RQ2 with respect to this model for the three alternative
sequence selection problems. Below we reiterate both RQs.

Research Question 1: Is there a need to predetermine or limit the
size of the n-grams used in language models? Is there an inherent
advantage or disadvantage to using a fixed-size n?

Research Question 2: If the size of the n-grams is not fixed in
advance, how can we still generate comparable distributions when
we select among alternative sequences?

The course of this chapter reads as follows. In Section 4.1 we describe n-gram
models and several of their aspects. We then discuss (1) the n-gram size, (2)
smoothing, (3) interpolation, and (4) back-off.

In Section 4.2 we report on experiments to determine variables related to the
four items discussed in Section 4.1. The experiments are performed on the con-
fusibles disambiguation task and lead to initial conclusions. These conclusions
have guided the precise design of the full range of our experiments. Based on
these experiments we introduce a new back-off method for alternative sequence
selection.

54 Models without Annotation

In Section 4.3 we complement the language-model environment as described
in Chapter 3 with a precise description of the back-off. The section is brief and
only provides essential details about the experimental setup.

In Section 4.4 we describe the results of our experiments on the three alter-
native sequence selection problems. In addition to the different problems, we
investigate the influence of the flexibility in terms of the n-gram size. The re-
sults of the experiments are analysed and related to RQ1 and RQ2.

In Section 4.5 we explicitly formulate our answers to RQ1 and RQ2 for the
models without annotation. In Section 4.6 we provide a summary and our con-
clusions.

4.1 Basics of n-gram Language Models

Statistical language models (SLMs) based on n-grams assign probabilities to
sequences from a language1. Jelinek (1998) gives a detailed overview of these
models in his book. The advantage of using n-grams is that they describe the
sequences in a language in a compact representation. The main features of the
models are the simplicity of calculating the probabilities for sequences, and
their speed.

Language modelling deals with (1) determining the likelihood of a sequence
(or part of a sequence) and (2) determining the validity of a sequence (or part
of a sequence). In our research we focus on determining the likelihood of a
sequence. Since we consider alternatives for given sentences, we do not need
the concept of validity of a sequence to determine the most fitting candidate
sequence. We mention that in this thesis the phrase ‘determining the likelihood
of a sequence’ is equivalent to ‘assigning a probability to a sequence’. We
denote the probability of a sequence of n words, as assigned by the language
model (LM), as follows.

PLM (w1, . . . , wn) (4.1)

Equation 4.1 represents the ideal probability computed by the ideal language
model. However, we do not possess a perfect model of any natural language. In-
stead, we approximate the probability of the sequence. Even when using a large

1 Statistical language models are a type of grammatical language models. Roughly speaking, we
may make the following distinctions. Language models deal with the distribution of language,
grammatical models deal with the structure of language. However, the structure of language can
be expressing in n-grams, which is the basis for k-testable machines. In the literature, Adriaans
and Van Zaanen (2004), and de la Higuera (2005, 2010) give an extensive overview of the field of
grammatical inference, including k-testable machines.

4.1 | Basics of n-gram Language Models 55

amount of training material, it is typical that not all the possible sequences in
the language are explicitly known2. For instance, assume that we are comput-
ing the occurrences of complete sentences, then it will turn out that most of
those sentences are not known3 to the model. This is the sparseness problem
described in Section 1.1. Later in this section, we describe three methods for
dealing with the sparseness problem: smoothing (see Subsection 4.1.1), inter-
polation (see Subsection 4.1.2), and back-off (see Subsection 4.1.3).

The Relation between Sparseness and n-gram Size

The relation between the sparseness problem and the n-gram size is an impor-
tant aspect in our research. One way to deal with sparseness is to model the
probability of complete sequences from the probabilities of smaller sequences.
A well-known approach is to use n-grams. They can be considered as Markov
models4 as described by Jurafsky and Martin (2000, Ch. 6). These models take
into account the probability that a word occurs in the context of the previous
n− 1 words.

Taking the product of the probabilities of all words in the sequence, with n− 1
words as context, gives us a prediction of the probability of the sequence. We
express this in the Equation 4.2.

Pn(w1, . . . , wm) =

m∏
i=1

Pn(wi|wi−(n−1), . . . , wi−1) (4.2)

We provide a clear example of using n-grams, specifically, of
using a 3-gram to calculate the probability of the word dog
given a sentential context. Instead of computing the probability
PLM (dog|The quick brown fox jumps over the lazy) we compute the prob-
ability P3(dog|the lazy). The difference between the two probabilities is as
follows. The first probability ranges over the entire sequence and the second
one is restricted to the two preceding words in its immediate context. In
SLMs based on n-grams, the assumption is that the second probability is an
adequate approximation of the first one. The approximation is shown formally
in Equation 4.3 where the probability for the word under consideration (w)

2 With infinite languages this is always the case, with finite languages this is not the case only if
the entire language is provided as training material.
3 It assumes that we are computing occurrences of natural language. There are many classes
of language, of which some contain finite languages. For finite languages it is possible to have
observed all possible sequences.
4 An English translation of one of Markov’s lectures (republished in Markov 2006) recently be-
came available, explaining the concept in Markov’s own words.

56 Models without Annotation

depends solely on its occurrence compared to the previous n − 1 words
(wherein wi−(n−1) denotes the word n− 1 positions to the left of wi).

Pn(wi|wi−(n−1), . . . , wi−1) (4.3)

All n-gram-based models make predictions about the probability of a word in
a sequence based on local information bounded by n, where n is usually small
(2 to 5).

An approximation of the probabilities can be extracted from the counts of oc-
currences of n-grams in a corpus. In the uncomplicated case, probabilities are
computed by taking the relative occurrence count of the n words in sequence.
We can use such models to predict the most likely word wi following a se-
quence of n− 1 words.

When dealing with natural language, the use of n-grams with large n tends to
sparseness. Often the training data does not contain occurrences of the partic-
ular sequence of n symbols, even though the sequence in question is correct.
Alternatively, the training data might contain too few instances of the particular
sequence to estimate the probability reliably. In the first case, the probability
extracted from the training data will be zero, even though the correct prob-
ability should be non-zero (albeit smaller than the probability for observed
sequences). In the second case, the probability extracted will be unreliable.
Specifically, Good (1953) already implied that observations with low counts
may give rise to a considerable overestimation of the probability. For clarity,
we remark that a correct or valid sequence should be assigned a probability
greater than zero, and a sequence perceived to be incorrect by native speakers
a probability of zero.

We now illustrate the problem of sparseness by looking at the number of n-
grams of different sizes. Consider, for instance, the Wall Street Journal part
of the Penn Treebank (Marcus et al. 1993). It consists of 1,174,170 tokens.
Of these 1 million words there are around 50 thousand distinct unigrams, 400
thousand distinct bigrams, 800 thousand distinct trigrams, 900 thousand dis-
tinct 4-grams, and also 900 thousand distinct 5-grams. We show these values
in Table 4.1. It can be observed that the growth in the number of distinct n-
grams for size n compared to size n − 1 sharply diminishes, and reaches 1.0
by n = 10. A telling example can be observed in the transition from unigrams
to bigrams. In the WSJ we observe the word chapter 77 times. However, the
short sequence the chapter is never observed, even though this is undoubtedly a
valid sequence. We note that a large part of the potential bigram space (50, 0002

words) consists of invalid combinations. However, the amount of valid combi-
nations should clearly be much larger than 397, 057. Almost all 4-grams and
5-grams occur only once. There are many valid n-grams that we do not en-

4.1 | Basics of n-gram Language Models 57

n-gram # distinct n-grams factor
1-gram 49,152
2-gram 397,057 8.07
3-gram 787,931 1.98
4-gram 957,812 1.22
5-gram 1,011,748 1.06
6-gram 1,029,442 1.02
7-gram 1,036,625 1.01

Table 4.1: The size of the n-gram and the number of distinct n-grams of
that size. The factor is calculated by |n|

|n−1| and denotes the mul-
tiplication factor for the number of distinct n-grams of length
n, compared to distinct n-grams of length n− 1.

counter in the corpus, and therefore not in the training material. This clearly
illustrates the problem of sparseness.

A large n-gram size makes the sparseness problem worse as the number of
observations in relation to the amount of valid language sequences of length
n decreases strongly. However, it is nevertheless desirable to use an n-gram as
large as possible. The larger the accurate n-gram, the better it is able to estimate
the probability of a sequence of any length. For instance, when using unigrams,
n-grams with n = 1, no context words are taken into account when calculating
the probability. Consequently, in the sequence The quick brown fox is assigned
a lower probability than the sequence the the the the5. This is undesirable. If
we increase the size of the n-gram, effectively increasing the size of the local
context, we reduce this problem until at n = m (m being the length of the se-
quence) the context problem for computing the probabilities disappears as then
pm(w1 . . . wm) = PLM (w1 . . . wm), i.e., when approaching the ideal model.
The larger the size of the n-gram, the more accurately the language model is
able to assign a probability to a given sequence. In this scenario we assume
that there are sufficient observations of the sequence in order to make a reliable
probability estimation. In practice, this is rarely the case. We therefore prefer
to use a large size n-gram that is at the same time not so large as to cause too
much sparseness.

5 The word the is one of the most frequent words in the English language, therefore in an unigram
model it has a quite high probability. In the aforementioned Wall-Street Journal corpus it occurs
around 33 thousand times, or around one in every 50 words.

58 Models without Annotation

Approaches to Reduce the Sparseness Problem

To reduce the sparseness problem we may use (1) smoothing, (2) interpolation,
and (3) back-off. We remark that the boundaries between these three categories
are vague and that many techniques can be seen to fit in more than one of them.
Chen and Goodman (1996) provide an overview of the three approaches in
many varieties. Smoothing methods redistribute the probabilities to take into
account previously unseen word sequences. For interpolation methods, distri-
butions of different order n-grams are mixed. For back-off methods, the prob-
abilities of lower-order n-grams are used when there is insufficient data for the
higher-order models. In the remainder of this section we will discuss the three
classes of methods.

4.1.1 Smoothing

The first class of methods to deal with the sparseness problem we discuss is
smoothing. Like all redistribution methods, smoothing methods assume an im-
perfect sampling of data. The methods redistribute the probabilities of the n-
grams, theoretically resulting in a distribution that fits the reality better than the
sample. Due to this redistribution a part of the new probabilities can be con-
sidered to be assigned to unseen events. Part of the probability redistribution
is caused by a shift from more frequent n-grams to less frequent n-grams in
the assigned sample. This results in all n-grams having a probability higher
than zero in the model. The smoothing method originates from biology. In this
situation a class is an observation of a certain type of animal, a common sub-
division is by species6. In biology, all potential classes are given a probability
greater than zero (cf. Good 1953). The consequence for SLMs is that when this
type of smoothing is used even invalid sequences are now assigned a probabil-
ity greater than zero. Below we discuss two specific smoothing methods out of
the class of methods, viz. add-one smoothing and Good-Turing smoothing.

Add-one smoothing is one of the earliest smoothing methods. The counts of all
the observations made during sampling are modified by adding one to them.
So, the count of an hitherto unseen element is one. This ensures that there
is always a non-zero probability assigned to a sequence. However, as clearly
explained by Gale and Church (1994) the add-one smoothing method is not
a good smoothing method in terms of the redistribution of probabilities. They
show that the add-one smoothing method can lead to errors that are several
magnitudes worse compared to real data using a test set. Additionally they
state the following.

6 It is assumed that for observing counts all potentially observed species in an area are known.
Depending on the location is more or less true.

4.1 | Basics of n-gram Language Models 59

r Nr r∗

0 74,671,100,000 0.0000270
1 2,018,046 0.446
2 449,721 1.26
3 177,933 2.24
4 195,668 3.24
5 68,379 4.22
6 48,190 5.19
7 35,709 6.21
8 27,710 7.24
9 22,280 8.25

Table 4.2: An illustration of the effects of Good-Turing smoothing. From
Jurafsky and Martin (2000). The countsNr are bigram frequen-
cies of frequencies taken from 22 million Associated-Press bi-
grams. The third line is boldfaced as it is used in a clarifying
example in the text.

[F]or Add-One to produce reasonable estimates, it is necessary
that the ratio of unseen types to observed types and the ratio of
all types to the training sample size be equal. There is no reason
to assume such a relation between these observations. (Gale and
Church 1994, p. 6)

Good (1953) wrote a seminal work on smoothing. He introduced the smoothing
method now known as Good-Turing smoothing. It is one of the many smooth-
ing methods included in Chen and Goodman (1998). It has also been exten-
sively explained in many textbooks, e.g., Jurafsky and Martin (2000). In brief,
the smoothing method is described by the following equation:

r∗ = (r + 1)
N(r+1)

Nr
(4.4)

In Equation 4.4 r is an observed count of a distinct n-gram and r∗ is its revised
count. Nr denotes the number of distinct tokens that have been observed with
count r, this is known as the count of counts. N0 6= 0 (N0 consists of unseen
n-grams). Good (1953) estimate the number of unobserved tokens using the
size of the vocabulary (please remark that this is quite arbitrary). For unigrams
we use the size of the vocabulary; for bigrams the square of the size of the
vocabulary. For more complex models we estimate N0 analogously. We illus-
trate applying Good-Turing smoothing by an example, shown in Table 4.2. We
explain the table by running through the revised count r∗ for the n-grams that

60 Models without Annotation

occur twice, i.e., for r = 2. In the example N2 = 449, 721 and N3 = 177, 933,
i.e., Nr and Nr+1. Using these values and Equation 4.4 we calculate the new,
smoothed, value r∗. Consequently, we obtain r∗ = 3× 177,933

449,721 ' 1.26. So, the
new counts for n-grams of which the count was previously 2 will now be 1.26.

For further reading we refer to Chen and Goodman (1998). They provide an ex-
cellent overview of several smoothing methods. They also give a comparison.
The smoothing methods mentioned include amongst others: additive smooth-
ing, Good-Turing smoothing, Jelinek-Mercer smoothing, Witten-Bell smooth-
ing, and absolute discounting.

4.1.2 Interpolation

Interpolation is the second class of redistribution methods to deal with the
sparseness problem. Interpolation combines probability distributions over sev-
eral different models into one. The idea is that a sparse, precise, and complex
model is supported by less sparse, less precise, and less complex models. For
instance, it is common to interpolate the probabilities of an SLM (of n grams)
by one or more SLMs of n′-grams with n′ < n. The probabilities are combined
regardless of the probability of the higher-order models7. We briefly discuss
two interpolation methods below.

The first method is linear interpolation. The probabilities of different SLMs are
combined equally. This is a straightforward interpolation of models and suffers
from many drawbacks. The most prevailing drawback is that the contribution
of the lower-order model is equal to the contribution of the higher-order model,
whereas we may expect in advance that the higher-order model is more precise.
However, the unigram model contains fewer unique n-grams than the higher-
order model (e.g., the trigram model), which implies that overall, the expected
probabilities of the unigram model are higher, and so, their contribution will be
larger (which is the reverse of what we aim for). That is, the probability space
has to be divided over more distinct n-grams.

The second method is weighted interpolation . This is also a linear interpolation
method.‘ Here, we also combine the probabilities of the SLMs involved. The
difference between linear interpolation and weighted interpolation is that in the
case of weighted interpolation the probabilities are weighted by some factor.
Typically, higher-order models have a higher weight so as to compensate for
the smaller amount of the probability space that a sequence occupies compared
to the lower-order models.

7 n-gram models are considered to be of higher-order than n− 1-gram models.

4.1 | Basics of n-gram Language Models 61

We give an example. Assume that we have the sequence w1 w2 w3 and are
employing a trigram language model. Moreover, we assume that the sequence
has been enhanced by start-symbols so that the immediately preceding context
is defined (cf. Stolcke 2002). We then combine the probabilities as follows.

PLM (wi . . . wm) = α×
m∏
i=1

(
PLM3(wi|wi−2wi−1)

)
+ β ×

m∏
i=1

(
PLM2(wi|wi−1)

)
+ γ ×

m∏
i=1

(
PLM1(wi)

) (4.5)

In the case of linear interpolation we take as the interpolation values α =
β = γ = 1

|LM | , where |LM | represents the number of different language
models that are interpolated. For weighted interpolation we may use unequal
values, that add up to 1 so that the sum is also a probability, to weigh the SLMs
involved. In the overview article of Chen and Goodman (1998) interpolation
methods are also discussed.

4.1.3 Back-off

Back-off is a third class of redistribution methods to deal with the sparseness
problem. The essence of the back-off method is that it starts using less sparse
models as soon as the SLM is effected by sparseness too much. So, lower-
order models are used to approximate the higher-order models in cases where
the probability of the higher-order model is zero (theoretically, is smaller than
a chance epsilon, i.e., ε for cases where smoothing is also employed).

The main difference between interpolation and back-off is that for back-off
only one language model is used at a time to determine the probability for
a word w in the sequence; for interpolation all available language models are
combined to determine the probability for a wordw in the sequence. We remark
that the difference is not always so explicit as stated above. There are back-off
methods which use ideas from interpolation and vice versa (cf. deleted interpo-
lation, absolute discounting). Below we discuss two specific back-off methods:
continuous back-off and Katz. For explanations of several other back-off meth-
ods, we refer to Chen and Goodman (1998).

A straightforward back-off strategy is continuous back-off. The continuous
back-off method uses probabilities from a single model at each position of
the sequence, and prefers to use the higher-order model probabilities over the
lower-order model probabilities. Such a back-off model thus provides a step-

62 Models without Annotation

w1w2w3

P3(w3|w1w2) ≤ ε?
⇓

P2(w3|w2) ≤ ε?
⇓

P1(w3)

Figure 4.1: The illustration of the working of continuous back-off.

wise back-off. This method conforms to the Katz (1987) back-off method with-
out a weighting factor (see also below). We illustrate the continuous back-off
method in Figure 4.1. One sequence is given w = w1w2w3.We examine the
back-off method for position 3, i.e., determine the probability of w3. Since we
start with a trigram model there are two possible back-off steps, viz. (1) from
trigram to bigram, and (2) from bigram to unigram. We remark that the P1(w3)
always has an answer (> 0 assuming that all words are known).

Katz (1987) introduced the so-called Katz back-off method. This is a method
applicable to n-gram SLMs. In the case where an n-gram was not seen in the
training set, one backs off to the (n− 1)-gram. The probability of the (n− 1)-
gram is modified by a factor α which is estimated based on the fraction of the
probability mass available for the not-occurring n-grams after smoothing (for
instance, after Good-Turing smoothing; this is the proportion of the probability
mass assigned to N0). The method uses Equation 4.6 to compute Pbo (Pbo is
the probability assigned by the back-off model).

Pbo(w|w−) =

{
dw− ×

C(w−...w)
C(w−) if C(w− . . . w) > k

αw− × Pbo(w|w−) otherwise
(4.6)

With w− = w−(n−1) . . . w−1. Here C(x) is the count of x; α the back-off
weight, d the smoothing factor, and k the back-off constant. The α and d are
typically determined using a smoothing method such as Good-Turing smooth-
ing, as is also done by Katz (1987).

Synchronous Back-off

In the case of alternative sequence selection the back-off methods discussed so
far have the problem of possibly comparing probabilities of different SLMs. We

4.1 | Basics of n-gram Language Models 63

w1w2w3 v1v2v3

P3(w3|w1w2) ≤ ε? P3(v3|v1v2) ≤ ε?
⇓ ⇓

P2(w3|w2) ≤ ε? P2(v3|v2) ≤ ε?
⇓ ⇓

P1(w3) P1(v3)

Figure 4.2: The illustration of the working of continuous back-off. In this
case we show two (parallel) alternative sequences. The back-
off of the two sequences is separate.

illustrate this problem with the aid of Figure 4.2. This figure shows the usage of
the continuous back-off method discussed above for the alternative sequence
selection case. Observe that the back-off steps on the sequences w1w2w3 and
v1v2v3 are independent. So, it may occur that probabilities from different order
models are compared. Comparing the values of different order models is not
desirable. In general lower order models have a larger mass per unique n-gram
and thus a better chance to win, whereas we prefer the higher order model as it
comes closer to the ideal model.

To resolve this issue we developed a novel back-off method, called syn-
chronous back-off (Stehouwer and Van Zaanen 2009a,b, 2010c). The differ-
ence with the continuous back-off method is as follows. In the continuous
back-off method, a position in two similar sequences may be computed us-
ing probabilities of SLMs of different order (see the example in Figure 4.2).
In the synchronous back-off method probabilities of the same SLM must be
used at the same position for all alternative sequences. In the approximation,
the highest-order model is preferred, i.e., the one that has at least one non-zero
probability (i.e., ≥ ε) on one of the sequences at the position in question. We
call the highest-order model, when combined with an unrestricted n-gram sizes
the∞-gram.

For clarity, we provide an example in Figure 4.3. The difference with Fig-
ure 4.1 is that in order to have assigned probabilities to w3 and v3 the reduction
to a lower-order SLM may only happen synchronously (in the figure this is
indicated by the word ‘and’). We look at trigrams on the focus position, i.e.,
w1w2w3 and v1v2v3. If the trigram model has a non-zero probability on the
first sequence and a probability < ε on the second sequence, the synchronous
back-off method will assign the probability of the trigram model to both se-
quences. This will result in the second sequence being assigned an probability
< ε. When both have a probability < ε, a back-off to a lower-order model is
performed synchronously. This is in line with the idea that if a probability is

64 Models without Annotation

w1w2w3 v1v2v3

P3(w3|w1w2) ≤ ε? and P3(v3|v1v2) ≤ ε?
⇓ ⇓

P2(w3|w2) ≤ ε? and P2(v3|v2) ≤ ε?
⇓ ⇓

P1(w3) P1(v3)

Figure 4.3: The figure illustrates the working of synchronous back-off. In
this case with two alternative sequences. The back-off of the
two sequences is linked. Only if both probabilities at a higher-
order model are smaller or equal than ε does the back-off to a
lower-order occur.

< ε and the training data sufficient, that the sequence is less likely. We assume
we observe valid language sequences much more often than invalid sequences,
i.e., when one of the alternative sequences has not been observed we assume
it to be less valid than the observed sequences. In short, it means that we have
seen evidence supporting at least one of the alternative sequences. So, all subse-
quences will be assigned a probability by the same SLM, as the same position.
This method is applicable for sets of alternative sequences for any size, i.e.,
also if there are many alternatives.

However, there is an issue with the synchronous back-off method that one has
to take into account. The method only works when comparing different alterna-
tive sequences of the same length. One situation where synchronous back-off
runs into problems is when the alternatives in the confusible set (in particular
when occurring on the focus position) contain a different number of tokens.
For example, consider the case of your (one token) versus you ’re (two tokens)8

. Also consider onto versus on to . The problem here is that for the first alter-
native, there is one token as focus position, whereas the other alternative has a
two token focus position.

We wish to note that using synchronous back-off can result in a distribution
which does not represent a proper probability. This means, it does not add up
to one. The reason is the dynamic variation of the n-gram size. Synchronous
back-off does ensure that the resulting scores9 are comparable. In this thesis

8 We remark that there is a linguistic reason to consider you ’re to be two tokens. The two parts
perform different linguistics functions in a sentence and are generally assigned a separate part-of-
speech tag.
9 We use the word score here instead of probability as, technically, it is no longer a probability.

4.2 | Towards Flexible SLMs 65

we investigate making a selection between alternative sequences, having com-
parable scores is sufficient for that.

4.2 Towards Flexible SLMs

In this section we describe eighteen preliminary experiments and their results
(partly published in Stehouwer and Van Zaanen 2009a). They are considered to
have an explorative nature. We hoped that their results give us insights into the
best way of performing experiments. However, we were pleasantly surprised
by the results when they showed us the strength of our novel alternative se-
quence selection with statistical language model method, called synchronous
back-off. Even early on, it was clear to us that the synchronous back-of was
an approach superior to the typical statistical language approach, at least for
alternative sequence selection.

The preliminary experiments fall outside our experimental setup as described
in Chapter 3.

In Subsection 4.2.1 we will describe the experimental setup used in these pre-
liminary experiments in detail. The results of the experiments are given to-
gether with conclusions in Subsection 4.2.2. As mentioned above the experi-
ments have shaped our work. In Subsection 4.2.3 we describe their impact on
our work.

4.2.1 Preliminaries: Experimental Setup

For the preliminary experiments a rather ad-hoc experimental setup was used.
This enabled us to obtain quick results for a better definition of the area under
investigation. The experiments were run on both Dutch and English data.

For the Dutch experiments we used the D-Coi data (Oostdijk et al. 2008) (the
Dutch language Corpus initiative) as parsed by the Alpino parser. The D-Coi
corpus consists of data from several different domains, such as Wikipedia,
books, brochures, newspapers, and websites. The Alpino parser is described
in detail by Van der Beek et al. (2001). The main results of the parser are in
the form of treebanks. At the time of writing several treebanks, as generated by
this parser, are available on the web at http://www.let.rug.nl/˜vannoord/trees/.

For the English experiments we used both the Reuters RCV1 corpus and the
Wall Street Journal (WSJ) part of Penn Treebank (PTB). The Reuters corpus
is described by Lewis et al. (2004). The PTB corpus is described in detail by

http://www.let.rug.nl/~{}vannoord/trees/

66 Models without Annotation

Marcus et al. (1993). In our early experiments we have used the Reuters corpus
as training material. The WSJ part of the PTB was used as test corpus.

For both sets of experiments hand-picked sets of confusibles were used. For the
Dutch experiments we used {word, wordt} (become first person and second
person singular present tense), {de, het} (the non-neuter and neuter forms of
the), {kun, kan} (can second person singular present tense, and first, second
and third person singular present tense), and {hun, hen, zij} (them, their/them,
they). For the English experiments we used {accept, except}, {affect, effect},
{extent, extend}, and {then, than}.

For the set of experiments on Dutch we only used trigrams. Six experimental
language models were employed: (1) linear interpolation, (2) weighted interpo-
lation10, (3) continuous back-off, (4) synchronous back-off, (5) add-1 smooth-
ing, and (6) Good-Turing smoothing. All six experimental language models
are based on 3-grams, i.e., in case of back-off the largest model is a trigram
model. Based on the results of these experiments we decided (a) not to focus
on interpolation11, and (b) to expand the size of the n-grams used. For English,
we describe three types of experiments, viz. 3-gram, 4-gram, and 5-gram ex-
periments.

So, for the set of experiments on English four experimental language models
were employed: (1) continuous back-off, (2) synchronous back-off, (3) add-1
smoothing, and (4) Good-Turing smoothing. These four language models were
run using 3-gram, 4-gram, and 5-gram SLMs in turn.

For these sets of experiments we used a hash-based approach to SLMs. It means
that the counts and probabilities of the n-grams were stored as values attached
to a key. In these cases such a key would be an n-gram.

4.2.2 Preliminaries: Results and Conclusions

In the experiments, predictions are made on sets of alternative sequences. Each
alternative sequence set is characterised by one of the confusible sequence sets
given above. The results were calculated as accuracy of the prediction in per-
centages. We remark that, if the system is not able to make a choice, e.g., due
to sparseness, the specific instance is counted as incorrect.

The results are listed in Tables 4.3 (Dutch) and 4.4 (English). We note that both
tables may give rise to extensive observations leading to a plethora of small
findings. However, we prefer to keep the main line of our research as given

10 We remark that the weights were set using iterative hill-climbing on a holdout set. This results
in unigrams with weight 1, bigrams with weight 138, and trigrams weight 437.
11 This decision is the reason that (1) and (2) were not used in the English experiments.

4.2 | Towards Flexible SLMs 67

{w
or

d,
w

or
dt
}
{

de
,h

et
}
{k

un
,k

an
}
{h

un
,h

en
,z

ij}
U

ni
fo

rm
lin

ea
r

99
.3

8
80

.7
0

94
.5

2
49

.6
7

W
ei

gh
te

d
lin

ea
r

99
.3

8
80

.9
1

96
.4

2
50

.7
6

C
on

tin
uo

us
ba

ck
-o

ff
85

.2
4

46
.5

0
74

.3
9

48
.5

9
Sy

nc
hr

on
ou

s
ba

ck
-o

ff
99

.6
3

89
.9

1
97

.0
9

57
.9

5
A

dd
-1

sm
oo

th
in

g
92

.5
1

85
.5

8
90

.6
5

52
.4

1
G

oo
d-

Tu
ri

ng
sm

oo
th

in
g

92
.5

2
85

.5
4

90
.6

7
52

.5
7

Ta
bl

e
4.

3:
T

he
ta

bl
e

ill
us

tr
at

es
th

e
pe

rf
or

m
an

ce
ac

hi
ev

ed
by

th
e

pr
el

im
i-

na
ry

ex
pe

ri
m

en
ts

on
D

ut
ch

.W
e

sh
ow

ex
pe

ri
m

en
ts

on
th

e
fo

ur
se

ts
of

co
nf

us
ib

le
s

fo
r

th
e

fo
llo

w
in

g
tr

ig
ra

m
SL

M
s:

(1
)

un
i-

fo
rm

in
te

rp
ol

at
io

n,
(2

)
w

ei
gh

te
d

in
te

rp
ol

at
io

n,
(3

)
co

nt
in

uo
us

ba
ck

-o
ff

,(
4)

sy
nc

hr
on

ou
s

ba
ck

-o
ff

,(
5)

ad
d-

1
sm

oo
th

in
g,

an
d

(6
)

G
oo

d-
Tu

ri
ng

sm
oo

th
in

g.
R

es
ul

ts
ar

e
sh

ow
n

by
th

ei
r

ac
cu

-
ra

cy
(%

).

68 Models without Annotation

{accept,except}
{affect,effect}

{extent,extend}
{then,than}

3-gram
cont

74.12
83.40

87
78.48

3-gram
sync

88.11
93.78

95
94.5

3-gram
add-1

74.83
87.14

95
87.02

3-gram
gt

74.83
87.14

95
87.02

4-gram
cont

62.24
72.20

72
69.20

4-gram
sync

88.11
93.36

95
94.59

4-gram
add-1

41.26
64.73

80
64.85

4-gram
gt

41.26
64.73

80
64.81

5-gram
cont

62.24
68.63

70
66.44

5-gram
sync

88.11
93.36

95
94.51

5-gram
add-1

13.99
42.74

51
37.27

5-gram
gt

13.99
42.74

51
37.27

Table
4.4:T

he
table

illustrates
the

perform
ance

achieved
by

the
prelim

i-
nary

experim
ents

on
E

nglish.W
e

show
experim

ents
on

the
four

sets
of

confusibles
for

the
follow

ing
3-gram

,
4-gram

,
and

5-
gram

SL
M

s:
(1)

continuous
back-off

(cont),
(2)

synchronous
back-off

(sync),
(3)

add-1
sm

oothing
(add-1),

and
(4)

G
ood-

Turing
sm

oothing
(gt).

R
esults

are
show

n
by

their
accuracy

(%
).

4.3 | Language-Model Environment 69

by PS1, PS2, and RQ1 to RQ4. From the results (both Dutch and English) we
have drawn four conclusions. They are listed below.

First, for making a decision between alternative sequences, smoothing methods
do not help to arrive at a better performance. Smoothing methods do not harm
the performance either. We stress that, when using smoothing methods, the
relative order of the probabilities between the sequences remains the same.
Thus, smoothing does not influence the decision made.

Second, as we see in Table 4.3 the weighted linear approach outperforms the
uniform linear approach on all confusible sets. We may conclude that the con-
tribution from the n-grams with large n is overruled by the probabilities of
the n-grams with smaller n in the uniform linear method. This causes a bias
towards the more frequent words, compounded by the fact that bigrams, and
unigrams even more so, are less sparse and therefore contribute more to the
total probability of the entire sequence than the trigrams do.

Third, for continuous back-off versus synchronous back-off, it is detrimental
to compare different-size n-grams on the same position in different alternative
sequences. In the case of continuous back-off, if on one of the alternatives a
lower-order model is used it will generally receive a larger score. Avoiding
to compare scores from different distributions is why synchronous back-off
works well.

Fourth, while larger n-grams have detrimental effects on the other methods,
they do not harm the robust synchronous back-off method much. They can
help if the typical context for the alternatives is different. If possible, we prefer
larger n-grams, as they provide more precise statistics.

4.2.3 Impact on our Work

As stated above, the preliminary experiments guided our further investigation.
First, they resulted in a modular approach (described in Chapter 3).

Second, the experiments showed the power of synchronous back-off. Syn-
chronous back-off avoids comparing scores from different distributions. So,
from here on, we will exclusively employ the synchronous back-off method.

4.3 Language-Model Environment

The language-model environment used in this chapter can be characterised by
two aspects: (1) the usage of unbounded size n-grams, and (2) not using an-
notations. We call the unbounded size n-grams∞-grams. All experiments are

70 Models without Annotation

performed with synchronous back-off. For a proper reading we provide two
practical details that are essential for our implementation.

The first detail is that the actual implementation of synchronous back-off is a
reversed one compared to its description above. We do not start at the largest
possible n-gram and reduce its size until a probability can be assigned. Instead,
we start with the smallest size n-gram (i.e., the unigram) and step by step in-
crease the n-gram size until we can no longer assign a non-zero probability. At
that point, we use the n-grams one size smaller.

The second detail of the implementation is that we only calculate the prob-
abilities of n-grams that have some overlap with the focus position. As the
focus position contains the only difference between the generated alternatives,
n-grams that do not cover the focus position will be equal among alternatives.
Thus, the relative differences in score between the alternatives will stay the
same.

Pn(w1, . . . , wm) =

m∏
i=1

Pn(wi|wi−(n−1), . . . , wi−1) (4.7)

The probability of a sequence is assigned using Equation 4.712. The calcu-
lation of each positional probability in the sequence is done separately (see
Equation 4.8). With this equation we calculate the probability of an n-gram
at position x, i.e., the probability of part of the sequence. We perform these
calculations by looking up the counts of the relevant n-gram and corre-
sponding n − 1-gram in the suffix array. Using these counts we calculate
Pn(w|w−(n−1), . . . , w−1). By combining the positional probabilities, we de-
termine the sequential probability Pn(w1 . . . wm).

Pn(w|w−1, . . . , w−(n−1)) =
#(w−(n−1), . . . , w)

#(w−(n−1), . . . , w−1)
(4.8)

We remark that for all probability calculations we use the logarithmic values of
those probabilities as much as possible (see Equation 4.9). This prevents under-
flow of the floating point numbers used in calculating fractions and increases
the precision of the calculations. It is a well known technique and it is used in
most language model implementations, including SRILM (Stolcke 2002).

P (x)× P (y) ≡ log−1(logP (x) + logP (y)) (4.9)

12 This formula was already given above in Equation 4.2 on Page 55.

4.4 | Experiments 71

For Equation 4.8 we need to look up the counts of n-grams. In order to be
able to produce these counts for any size n we use a suffix array to look up
the counts. The suffix array is built on the training part of the corpus after
conversion to a string where each type is mapped to a unique integer. This
conversion step speeds up the operations in the suffix array considerably, as the
basic operations on integers are faster13than the basic operations on strings. We
note that integers also use less storage than strings.

We summarize the operations performed by this version of the language-model
environment as follows. First, a suffix array data structure is built on the train-
ing part of the corpus. The training consists of plain sequences (such as natural
language sentences), i.e., material without any added annotations. Second, the
language model is applied to the set alternatives, using the formulas in Equa-
tion 4.8 and Equation 4.7. The application of the language model is done using
synchronous back-off, in order to use the largest n-gram size applicable to the
decision throughout the experiments. Finally, the output is a set of score per
set of alternative sequences. Each alternative sequence has its corresponding
score. The post-processing and evaluation is done afterwards as described in
Chapter 3.

4.4 Experiments

In this section we describe the results of the experiments as described in Chap-
ter 3. Starting with the testing material, we generate alternative sequence sets.
For each of the alternative sequence sets we assign a score to each member.
This score assignment is performed with synchronous back-off with an un-
bounded size n-gram. Subsequently, we choose the alternative with the highest
score.

If the choice coincides with the gold standard text we count the choice as cor-
rect. If it does not coincide then the system generated an incorrect choice. That
is, we assume the training and testing material to be free of errors. We may take
Reynaert’s (2005) estimate that 0.25% of all tokens in a corpus of the type we
use represent a non-word error. We take this as an indication that similar error
levels can be expected to occur for our three alternative selection tasks.

13 In particular, this statements holds true for the basic operation compare . Comparison operations
on integers are faster than comparison operations on strings. For a string these operations useO(n)
time, where n is the length of the string. For integers, these operations are done inO(1) time. Since
almost all operations on the suffix array use mainly comparisons between elements of the array we
gain speed. In particular operations concerning construction and searching for a pattern use these
comparisons.

72 Models without Annotation

 0.8

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

1e+03 1e+04 1e+05 1e+06 1e+07

A
cc

u
ra

cy

Training set size in sentences

Accuracy on Confusibles

Figure 4.4: Learning curve for the confusible problem. Results obtained
with synchronous back-off and without annotations. Y-axis
denotes the accuracy and the X-axis the number of sentences
used for training. The X-axis is logarithmic.

In our experiment we record the errors. Ideally, we may expect zero errors,
because our point of departure is the gold standard text. Since we deal with
insufficient data, the language model will make errors.

We relate the number of errors to the training size. As errors can be caused
by insufficient data, so we also investigate the effect of the amount of training
data. As a next step we interpret and analyze the results. We relate these to the
n-gram size used for making the classification.

We investigate our three alternative selection problems, viz. confusibles, verb
and noun agreement, and prenominal adjective ordering. For all three prob-
lems we report on (1) the influence of the amount of training material on the
performances, (2) the average size n-gram used, and (3) the relation between
the n-gram size used for a decision and the performance.

4.4.1 Results on Confusibles

The execution of our series of experiments on the confusibles was as follows.
In the above, we stated that we are interested in the relation between the size
of the training material and the performance. Therefore we present the results
in the form of learning curves. The learning curves start at 9, 000 sentences of
training material. The end-point of the learning is reached when 90% of the

4.4 | Experiments 73

 1

 10

 100

 1000

 10000

 100000

 2 4 6 8 10 12

#
 o

cc
u
re

n
ce

s

N-gram size

9000
45000
90000

450000
900000

5417901

Figure 4.5: Occurence graph for the confusibles problem showing, for
each training set size, the number of times each n-gram size
was used in making the alternative selection. Results obtained
with synchronous back-off and without annotations. The Y-
axis is logarithmic.

1-gram (100%)

2-gram (96%)

3-gram (97%)

4-gram (98%)

5+-gram (99%)

Figure 4.6: A pie chart showing how often which n-gram size was used
for the classification on the confusibles problem and the cor-
responding accuracy. The pie chart is drawn for the full size
training set.

corpus is used for training, as 10% is reserved for testing. This learning curve
is shown in Figure 4.4.

74 Models without Annotation

In Figure 4.4 we see that the performance achieved roughly log-linear com-
pared to the size of the training set and near the full amount of training mate-
rial it starts to flatten. With our smallest training set (i.e., consisting of 9,000
sentences) we achieved an accuracy of 90.23%. With the full training set (i.e.,
the entire BNC minus the testing part) we achieved an accuracy of 98.19%.
Our performance can be compared to the performance achieved in the litera-
ture. Golding and Roth (1999) achieved as a best result a score of 96.6% on
the same confusible sets. Here we mention that other researchers with other
confusible sets achieve a higher score than 96.6%, cf. Van den Bosch (2006a),
Stehouwer and Van den Bosch (2009). Yet, we are not aware of any publication
with a score higher than 98% on these confusible sets. We remark that, as the
system is still increasing in performance at the end of the learning curve it is
unlikely that this is the upper limit of performance.

The size of the n-gram used for classification is also measured in our experi-
ments. Below we will report on (1) the average size of the n-grams and (2) on
the distribution of the n-gram sizes. The average size of the n-gram used for
classification increases with the amount of training material. At the smallest
training set (i.e., 9,000 sentences) the average n-gram size found by the system
is 2.1. At the largest training set the average n-gram size found by the system
is 3.1. The distribution of the n-gram sizes can be seen in Figure 4.6 where we
show a pie-chart of the number of occurrences for the n-gram sizes compared
to the performance. We observe that bigrams, trigrams and 4-grams are used in
84% of the cases. We note that the performance unigrams is as high as those
specific instances coincide with the majority class.

4.4.2 Results on Verb and Noun Agreement

The execution of our series of experiments for the verb and noun agreement
is performed analogously to the experiments in Subsection 4.4.1. The learning
curve for our results on verb and noun agreement is shown in Figure 4.7.

The performance achieved roughly log-linear compared to the size of the train-
ing set and near the full amount of training material it starts to flatten. With
our smallest training set (i.e., consisting of 9,000 sentences) we achieved an
accuracy of 55.87%. With the full training set (i.e., the entire BNC minus the
testing part) we achieved an accuracy of 80.73%. Our performance can be com-
pared to the performance achieved in the literature. On the one hand, Chodorow
and Leacock (2000) reported a classification precision of 77.9%. On the other
hand, Schaback and Li (2007) achieved a suggestion accuracy of 90% when us-

4.4 | Experiments 75

 0.5

 0.6

 0.7

 0.8

 0.9

 1

1e+03 1e+04 1e+05 1e+06 1e+07

A
cc

u
ra

cy

Training set size in sentences

Accuracy on Verb and Noun Agreement

Figure 4.7: Learning curve for the verb and noun agreement problem. Re-
sults obtained with synchronous back-off and without annota-
tions. Y-axis denotes the accuracy and the X-axis the number
of sentences used for training. The X-axis is logarithmic.

 1

 10

 100

 1000

 10000

 100000

 2 4 6 8 10 12

#
 o

cc
u
re

n
ce

s

N-gram size

9000
45000
90000

450000
900000

5417901

Figure 4.8: Occurence graph for the verb and noun agreement problem
showing, for each training set size, the number of times each
n-gram size was used in making the alternative selection. Re-
sults obtained with synchronous back-off and without annota-
tions. The Y-axis is logarithmic.

76 Models without Annotation

1-gram (86%)

2-gram (81%)

3-gram (81%)

4-gram (80%)

5+-gram (76%)

Figure 4.9: A pie chart showing how often which n-gram size was used
for the classification on the verb and noun agreement problem
and the corresponding accuracy. The pie chart is drawn for the
full size training set.

ing their 1-best system14. So, our performance falls within the range of reported
performance in the literature even though our system consists of a generic al-
ternative sequence selector not specialized on this task.

The size of the n-gram used for classification is also measured in our experi-
ments. Below we report again on (1) the average size of the n-grams and (2)
the distribution of the n-gram sizes. The average size of the n-gram used for
classification increases with the amount of training material. At the smallest
training set (i.e., 9,000 sentences) the average n-gram size found by the system
is 1.6. At the largest training set the average n-gram size found by the system
is 2.8. The distribution of the n-gram sizes can be seen in Figure 4.8 where we
show a plot of the occurence graph of the used n-gram sizes for each training
size. We remark that the n-gram size used increases with the training size, as
one would expect. These observation are similar to the ones on the confusible
task in Subsection 4.4.1. In Figure 4.9 we relate the performance to the size
of the n-gram used for classification. We observe that bigrams, trigrams and
4-grams are used in 91% of the cases.

14 They also reported results on 2-best, 3-best, and so on systems. These systems achieved a lower
(2-best) and lower (3-best) accuracy, as the extra predictions are counted against the accuracy.
In effect, the maximum accuracy of the 2-best system is 50%. Their accuracy was measured by
comparing the output of the system to a manual correction of the error (from a list of errors, i.e.,
no error detection was performed).

4.4 | Experiments 77

 0.5

 0.6

 0.7

 0.8

 0.9

 1

1e+03 1e+04 1e+05 1e+06 1e+07

A
cc

u
ra

cy

Training set size in sentences

Accuracy on Prenominal Adjective Ordening

Figure 4.10: Learning curve for the prenominal adjective order problem.
Results obtained with synchronous back-off and without an-
notations. Y-axis denotes the accuracy and the X-axis the
number of sentences used for training. The X-axis is loga-
rithmic.

4.4.3 Results on Prenominal Adjective Ordering

The execution of our series of experiments for the prenominal adjective or-
dering is performed analogously to the experiments on confusibles in Subsec-
tion 4.4.1 and the experiments on verb and noun agreement in Subsection 4.4.2.
The learning curve for our results on prenominal adjective ordering is shown
in Figure 4.10.

The performance achieved roughly increases linearly compared to the log of
the size of the training set. With our smallest training set (i.e., consisting of
9,000 sentences) we achieved an accuracy of 52.94%. With the full training
set (i.e., the entire BNC minus the testing part) we achieved an accuracy of
76.59%. Our performance can be compared to the performance achieved in
the literature. Malouf (2000) achieved as a best result a score of 92% on the
same task. Malouf (2000) also achieved a prediction accuracy of 75.57% us-
ing a straightforward word trigram model. Shaw and Hatzivassiloglou (1999)
reported an achieved accuracy of 86.17% on newspaper data using a multi-
cluster model and of 75.41% using a direct evidence model. So, our results are
on the low end of the reported results in the literature. However, we performed
similarly to the other non-specialised models which Malouf (2000) and Shaw
and Hatzivassiloglou (1999) reported on, i.e., models similar to n-gram mod-

78 Models without Annotation

 1

 10

 100

 1000

 10000

 2 4 6 8 10 12

#
 o

cc
u
re

n
ce

s

N-gram size

9000
45000
90000

450000
900000

5417901

Figure 4.11: Occurence graph for the prenominal adjective order problem
showing, for each training set size, the number of times each
n-gram size was used in making the alternative selection. Re-
sults obtained with synchronous back-off and without anno-
tations. The Y-axis is logarithmic.

1-gram (41%)

2-gram (81%)

3-gram (75%) 4-gram (71%)

5+-gram (58%)

Figure 4.12: A pie chart showing how often which n-gram size was used
for the classification of the prenominal adjective ordering
problem and the corresponding accuracy. The pie chart is
drawn for the full size training set.

els. Our tentative conclusion here is that prenominal adjective ordering is a task
which benefits greatly from specialised models15.

15 We have discussed these specialised models in Section 2.3.

4.5 | Answers to RQ1 and RQ2 79

The size of the n-gram used for classification is also measured in our exper-
iments. Below we report on (1) the average size of the n-grams and (2) the
distribution of the n-gram sizes. The average size of the n-gram used for classi-
fication increases with the amount of training material. At the smallest training
set (i.e., 9,000 sentences) the average n-gram size found by the system is 1.57.
At the largest training set the average n-gram size found by the system is 2.8.
The distribution of the n-gram sizes can be seen in Figure 4.11 where we show
a plot of the occurence graph of the used n-gram sizes for each training size. We
remark that the n-gram size used increases with the training size, as one would
expect. In Figure 4.12 we relate the performance to the size of the n-gram used
for classification. We observe that bigrams, trigrams and 4-grams are used in
94% of the cases. In case of prenominal adjective ordering unigrams perform
particularly bad, due to the fact that with unigrams the adjecency adjectives is
not taken into account.

4.5 Answers to RQ1 and RQ2

In this chapter we investigated a language-model environment without annota-
tion that uses n-grams of unlimited size. The investigations provide a basis to
answer our research questions RQ1 and RQ2. Below we repeat RQ1 and RQ2.
They are followed by our answers.

Research Question 1: Is there a need to predetermine or limit the
size of the n-grams used in language models? Is there an inherent
advantage or disadvantage to using a fixed-size n?

In the general case we are facing an ambiguous answer: restricting the size
of the n-gram is a disadvantage, however it does not impair performance. In
the three alternative sequence selection tasks we observe that the number of
times n-grams larger than 5 are used are low. So, even though the larger size
n-gram helps, it does not occur often enough to impact performance positively.
However, restricting the size of the n-grams can be done in two ways: 1) the
size of the n-grams can be fixed ahead of time, or 2) the size of the n-grams
can be restricted based on the specific situation they occur in, as is done with
synchronous back-off.

From our preliminary results described and discussed in Section 4.2 we learn
that distributions of different sized n-grams produce incomparable scores, and
distributions of the same sized n-grams produce comparable scores. Using syn-
chronous back-off we ensure that we always generate comparable scores.

Owing to synchronous back-off we were able to show that there is no need
to predetermine and restrict the size of the n-gram in advance. However, the

80 Models without Annotation

sparseness of the training data used will automatically limit the size of the
n-gram that synchronous back-off uses for decisions. The optimal size of the
n-gram used for a decision between alternative sequences can differ for each
position of each set of alternative sequences. From these observations we may
conclude that there is an advantage when the size of the n-gram us not pre-
determined.

Research Question 2: If the size of the n-grams is not fixed in
advance, how can we still generate comparable distributions when
we select among alternative sequences?

The synchronous back-off method ensures that the score of all alternatives in a
set of alternative sequences is calculated using comparable distributions. We
can generate comparable distributions by synchronizing the sizes of the n-
grams used for the calculations. This process is described in detail in Sec-
tion 4.2.

4.6 Chapter Conclusion

In this chapter we investigated a language-model environment that can be char-
acterised as a word-based language model without any additional linguistic
annotation. We focussed on increasing flexibility, and on automatically deter-
mining an optimal n-gram size to use on a position-by-position basis.

We discussed the results from the preliminary experiments. Synchronous back-
off performs a back-off step to the same order n-grams at each position within
a set of alternative sequences. Synchronous back-off avoids comparing scores
from different distributions. Using synchronous back-off leads to better alter-
native sequence selection.

The experiments performed on the three alternative selection problems led to
detailed results for the language-model environment described in this chapter.
The results are compared with respect to the n-gram size used. Here we observe
that decisions made on larger size n-grams are better. However, such large n-
grams do not occur sufficiently to increase the overall performance. More than
80% of the classifications are performed with bigrams, trigrams, or 4-grams
(as also visualized in the pie charts in Figures 4.6, 4.9, and 4.12). Specifically
in case of the confusibles problem 84% of decisions are made by bigrams,
trigrams, or 4-grams. For the verb and noun agreement problem this is the case
for 91% of decisions, and for the prenominal adjective ordering this is the case
for 94% of decisions. Yet, from the above results we may conclude that in some
cases a model using flexible sized n-grams for decisions comes closer to the
ideal model.

Chapter 5

Models with Local
Annotation

This chapter describes an LME that is to be characterised as a model with local
annotation. It means that we focus on the effect that adding such information
has on the language-model environment. Local annotation is annotation that
is added to each word in the sentence, which depends only on the word it-
self and its local context. The LME described in this chapter also includes the
aspects discussed in Chapter 4, i.e., the ∞-gram and synchronous back-off.
Using this enhanced LME and its corresponding LM we perform our experi-
ments. There are many possible types of local annotation such as named enti-
ties, part-of-speech, and morphological annotation. In this chapter we focus on
part-of-speech annotation. We examine RQ3 and RQ4 with respect to the local
annotation model for the three alternative sequence selection problems. Below
we re-iterate both RQs and remark that for this chapter ‘annotations’ refer to
‘local annotations’.

Research Question 3: Is there a benefit to including annotations
in the language model, measured as a better performance on alter-
native sequence selection tasks?

Research Question 4: Is there a difference in performance on al-
ternative sequence selection tasks when using human-designed an-
notations compared to machine-generated annotations?

The course of this chapter reads as follows. We start by describing four issues
related to part-of-speech annotations. This is done in Section 5.1.

82 Models with Local Annotation

The spaceinwalkrobots .

article nounprep.verbnoun punct.

Figure 5.1: An example with fabricated part-of-speech tags.

In Section 5.2 we complement the language-model environment as described
in Chapter 3 with (1) a precise description of the use of human-designed part-
of-speech tags, and (2) the generation and use of machine-derived ones. This
section uses and expands the environment as described in Section 4.3. So, all
information given there still applies.

In Section 5.3 we describe our experiments on the three alternative sequence
selection problems. Next to the three problems, in this chapter we investigate
the influence of adding part-of-speech tags. Moreover, we contrast the perfor-
mance of human-designed part-of-speech tags to the performance of machine-
derived tags.

The results of the experiments are analysed with respect to RQ3 and RQ4. In
Section 5.4 we use this analysis to formulate our answers to RQ3 and RQ4s
for the models with local annotation. In Section 5.5 we provide a summary and
give our conclusions.

5.1 Part-of-Speech Annotation

A frequently used type of local annotation is part-of-speech annotation. For
each word within a sequence the tag denotes its morphosyntactic category.
The categorisation is based on the syntactic and sometimes morphological be-
haviour of the word in its context. Part-of-speech tags are generally defined by
linguists and dependent on locally word context. Typically, these annotations
are assigned by hand to a reference corpus. Each word in a sequence has such
a part-of-speech tag in a tagged corpus. For a fabricated example we refer to
Figure 5.1. The sequence The robots walk in space . is mapped to a labeling
consisting of an article, two nouns, a verb, a preposition, and a punctuation
tag.

Part-of-speech tags form a useful annotation layer supporting the linguistic
analysis of a text or a corpus. Their usefulness is in part due to the disam-
biguation of the function of a wordform, e.g., walk can be both a noun and a
verb. Sometimes, part-of-speech tags are used in the automatic analysis of a
text (e.g., by participating as a part of a pattern, cf. Sun et al. 2007). A part-

5.1 | Part-of-Speech Annotation 83

of-speech tag can also be used as a building block to construct other, more
complex annotation layers. An example of a complex annotation layer is a syn-
tactic parse (see Charniak et al. 1996, Hall et al. 2007, Nivre et al. 2007b,
Nivre and McDonald 2008). A parse is an analysis of the syntactic structure of
a sequence.

Below, we briefly discuss (1) part-of-speech tags as defined by human ex-
perts, (2) part-of-speech tags as derived by a computer, (3) the evaluation of
the quality of computer-derived tags, and (4) the automatic assignment of part-
of-speech tags to new sequences.

5.1.1 Human-Defined Part-of-Speech Annotation

Over the years, many diverse sets of part-of-speech tags have been defined
for many different languages. Subsequently, the elements of these tagsets were
assigned manually to the words in a corpus. From the many tagsets constructed
by hand we single out three of them for discussion in this subsection: (1) the
Penn Treebank tagset (see Marcus et al. 1993), (2) the CGN tagset as used
in the Corpus Gesproken Nederlands (see Van Eynde et al. 2000, Van Eynde
2004), and (3) the CLAWS5 tagset as used in the British National Corpus (see
Leech et al. 1994).

The Penn Treebank (PTB) is a corpus consisting of full parse trees, including
part-of-speech tags, of mainly newspaper text. The PTB also contains general
English texts (Brown) and dialog texts (ATIS). Marcus et al. (1993) describe
the process of creating the tagset. It is a significantly reduced version of the
Brown corpus tagset (see Kučera and Francis 1967, Francis and Kučera 1982).
It consists of 36 part-of-speech tags and 12 other tags (i.e., for punctuation and
currency symbols). The tagset uses monolithic tags, such as NN for a proper
noun. Monolithic tags are tags that are non-divisible and that consist of one
element.

The CGN tagset for the Dutch language is developed by Van Eynde et al.
(2000). It is quite different from the Penn Treebank tagset by its modularity
and detailed tags. The tagset consists of more than three hundred different ap-
plicable1 tags, which are described in detail in Van Eynde et al. (2000) and Van
Eynde (2004). The modularity of the tagset is an important element. Modu-
larity means that a tag consists of multiple independent elements which can be
easily viewed and queried separately. An example is N(soort,ev,basis,zijd,stan) 2

1 Here, applicable refers to the way words are used in the Dutch language, e.g., diminutive and
non-neuter will not occur as a combination.

84 Models with Local Annotation

. . . -2 -1 1 . . .
, the . of to

, 0 0 0 8 20
the 4,244 11 0 6,159 1,959
. 0 0 1 8 19
of 218 0 0 1 0
to 570 0 0 2 2

Figure 5.2: An partial example of co-occurrence vectors. We show po-
sition -1 for the co-occurrences of the top five most frequent
words in the WSJ part of the PTB.

for a singular, basic proper noun that is non-neuter. One of the elements in this
example tag is ev (i.e., enkelvoud, which means singular). The hierarchical el-
ement at this position could also be mv (i.e., meervoud, which means plural).
Such a tagging system enables the linguist to compile statistics and search for
patterns for specific properties.

A slightly larger tagset than the Penn Treebank tagset is the CLAWS5 tagset
(Leech et al. 1994). This tagset is used in the British National Corpus. The
CLAWS5 tagset consists of 57 monolithic tags. Two examples are as follows.
First, one of the tags is AJS for a superlative adjective, e.g., best, oldest, largest,
etc. Second, one of the tags is PNP for a personal pronoun, e.g., you, them,
etc. Leech et al. (1994) describe the basic process used for tagging the British
National Corpus with these tags. This process was automatic and supervised
by linguists on a sampling of the output, an error rate of 1.5% was found on
the tagger output. We mention this tagset here as it is the tagset we employed
in our experiments (cf. Chapter 3). Our choice of this tagset follows from the
choice of our corpus, as this is the human-designed tagset for the BNC.

5.1.2 Machine-Derived Part-of-Speech Annotation

In the literature several approaches have been proposed to derive tags on se-
quences of words automatically. The derived tagsets are assumed to resemble
part-of-speech tags. Here we will discuss two approaches: (1) the clustering of

2 The annotation is as follows. N stands for a proper noun, soort stands for soortnaam (type
name), i.e., a name that is not capitalised, e.g., zondag (sunday) or maandag (monday), ev stands
for enkelvoud (singular), basis stands for the basic form of the noun, i.e., not its diminutive form,
zijd stands for zijdig (gendered), i.e., the noun has a gender (in Dutch, nouns can be gendered
or neuter; however, nouns referring to an object or a concept do not have a specific gender as
far as grammatical use is concerned), stan stands for standaard (standard), i.e., the noun uses the
standard conjugation. Van Eynde (2004) describes in detail all the possible elements of the tagset
(the article is in Dutch).

5.1 | Part-of-Speech Annotation 85

co-occurrence vectors (Schütze 1993), and (2) graph colouring of neighbour-
hood graphs Biemann (2007).

The work by Schütze (1993) is a seminal work on the unsupervised part-of-
speech tagging. This means that the tagset and the tagging are both decided
upon by an algorithm. Schütze (1993) represents each frequent word as a
co-occurrence vector of its neighbouring frequent words. A word is defined
as frequent if its number of occurrences has passed a previously set thresh-
old. A co-occurrence vector consists of elements that are vectors themselves.
Each of these elements represents the number of occurrences of each frequent
word at a specific offset position. For instance, when the offset position is
−3, i.e., the content of the offset position −3 is compared to the frequent
word that the vector represents. To substantiate the idea, consider the sentence
The robots walk in space . If the focus position is on in , then for the offset vec-
tor −3 the value corresponding to the combination The. . . in is increased by
1. We illustrate the concept of co-occurrence vectors in Figure 5.2. Clusters
of these co-occurrence vectors then represent a single part-of-speech tag3. The
number of part-of-speech tags depends on the number of clusters found.

Biemann (2007) introduced a more recent unsupervised learning approach
to part-of-speech tagging, called CHINESE WHISPERS (the name is derived
from a children’s game). CHINESE WHISPERS is a non-deterministic graph-
colouring approach to clustering. In this approach, words are represented as
nodes, and the edges between the nodes are determined by a threshold on the
number of shared (co-occurrence) neighbours. Once a graph is constructed, all
nodes are assigned a random colour. After the construction phase the algorithm
iterates many times over all nodes in the graph. Each round this is done in a dif-
ferent, random order. When a node is visited it is assigned the majority colour
at that position based on the incoming edges and the colour of the nodes those
edges connect to. This graph-colouring algorithm is self-terminating4 and au-
tomatically determines the number of clusters used. When it terminates it has
assigned the same colour, or part-of-speech tag, to strongly-connected sub-
graphs of the neighbourhood graph. A strongly-connected subgraph is a part of
a graph of which its internal connections result in direct connections between
all vertices of the subgraph.

Machine-derived tagsets are characterised by the fact that they arise from the
data itself. The advantage is that no expensive human annotator or linguistic
researcher is needed to generate a tagging. However, it is not clear whether
such an unsupervised method is able to provide a tagging that is similar to one
obtained using a supervised method on a human-designed tagset. The evalua-

3 The clustering itself can be done with any vector-based clustering algorithm, such as k-means.
4 As soon as the difference in the labeling of the nodes between rounds is < ε the algorithm
terminates.

86 Models with Local Annotation

tions present in the literature do not fully address this problem. We will go into
more detail on this in Subsection 5.1.3.

5.1.3 Evaluation of Machine-Derived Annotations

We start by listing two assumptions:

1. Assume that we are in possession of a set of machine-derived annotations
on a corpus.

2. Assume that the corpus is also annotated by a human-designed tagset
(e.g., part-of-speech tags).

Now the question arises, how should we evaluate the set of machine-derived
annotations?

In the literature, a common approach is qualitative analysis5 (cf. Schütze 1993),
which is mostly performed manually. However, manually looking whether a set
of words for a specific tag in a context looks right becomes quickly unfeasible
with any decent-sized corpus and it is highly subjective. So, we should attempt
to perform the evaluation automatically and objectively.

Circumventing the problems of using qualitative methods we take a quan-
titative approach to the evaluation of machine-derived part-of-speech tags.
We compare the machine-derived part-of-speech tags with the gold standard
human-designed annotation. There are two common metrics to perform such
comparisons: (1) directly comparing the machine-derived tags to the human-
designed tags in terms of shared distribution, i.e., using concepts such as pre-
cision, recall, and F-score, and (2) measuring the predictability of the human-
designed tags by the machine-derived tags in terms of the reduction in perplex-
ity.

For the first evaluation we employ the F-score measure introduced by Van Ri-
jsbergen (1979). This measure is calculated by combining the the scores for
precision and for recall. In the equations for precision and recall the terms TP ,
FP , TN , and FN stand for true positive, false positive, true negative, and
false negative, respectively. We illustrate the classes of true and false positives
and negatives in Figure 5.3. The positive class is represented as the target class
in the explanations below. This approach generalises to a multi-class problem,
where for calculating the F-score for a class that class is the positive target and
all the other classes combined are the negative target.

5 In qualitative analysis a deep, manual inspection of the material is made in order to come to
a conclusion. Qualitative analysis stands in contrast to quantitative analysis, in which case the
analysis is done based on measurable aspects.

5.1 | Part-of-Speech Annotation 87

Negatives Positives

Classified as Positives

TN FP TP FN

Figure 5.3: Illustration of the areas that are true negatives (TN), false pos-
itives (FP), true positives (TP), and false negatives (FN). Illus-
tration adapted from Figure 1 in Reynaert (2008).

true positive An element classified correctly in the target class is a true posi-
tive.

false positive An element classified erroneously as belonging to the target
class is a false positive.

true negative An element classified correctly as not in the target class is a true
negative.

false negative An element classified erroneously as not belonging to the target
class is a false negative.

Precision (P) defines the number of correctly identified positive examples com-
pared to the total number of positive examples identified. We show precision
in Equation 5.1.

P =
TP

TP + FP
(5.1)

Recall (R) defines the number of correct positive examples identified com-
pared to the total number of correct positive examples. We show recall in Equa-
tion 5.2.

R =
TP

TP + FN
(5.2)

We define the F-score as shown in Equation 5.3, this formula is derived from
the formula introduced by Van Rijsbergen (1979).

F =
2× P ×R
P +R

(5.3)

88 Models with Local Annotation

Traditionally the measure F defines a weighting between precision and recall
using the parameter β. For β we will use the value 1 resulting in the harmonic
mean between precision and recall. In the equation above we show the sim-
plification resulting from removing the (effectively unused) factor β from the
formula.

The second approach was introduced by Freitag (2004) and is called
cluster–conditional tag perplexity6. The approach was also used by Biemann
(2007) to evaluate the output of his graph-based part-of-speech tagger. The
measure is based on a combination of the entropy (or Shannon information) IX
and the mutual information of the distribution of clusters and human-designed
tags MXY .

Mutual information is a measure of mutual dependence of two variables. We
define the mutual information MXY of two variables X and Y as in Equa-
tion 5.4. In Equation 5.4 P (x) is the chance of x and P (x, y) is the chance of
x and y. We note that the MI metric becomes negative if the separate probabil-
ities for x and y are much larger than the conditional probability P (x, y).

MXY =
∑
XY

P (X,Y) log2

P (X,Y)

P (X)P (Y)
(5.4)

The mutual information metric is used in a variety of NLP investigations, from
compound extraction (Wu and Su 1993), via word association (Church and
Hanks 1990), and via parsing (Magerman and Marcus 1990), to evaluation of
unsupervised tagging (Freitag 2004).

Entropy, or Shannon information, is a measure of the inverse likelihood of a
sequence. We define the entropy IX over the variable X as in Equation 5.5.

IX = −
∑
x

P (x) log2 P (x) (5.5)

Freitag (2004) combined Equations 5.4 and 5.5, calculating the reduction of
the perplexity (R) over the set of human-designed tags (T) with respect to the
machine-derived set of annotations (C).

RTC = IT −MTC (5.6)

6 Perplexity usually refers to a measure of surprisedness when observing the data compared to
some model. In this case the surprisedness of observing one set of tags compared to another set of
tags on the same sequences.

5.1 | Part-of-Speech Annotation 89

In effect theRTC determines the perplexity for the classification of the human-
designed tagset T (i.e., IT) resulting from the presence of the machine-derived
annotation C measured by MTC . The perplexity for the human-designed tags
given an machine-derived annotation is a better evaluation of machine-derived
annotations than the F-score (Freitag 2004, Biemann 2007) as it more accu-
rately measures the prediction value of the annotation.

5.1.4 Applying Part-of-Speech Tags Automatically

Human-defined tagsets are not typically applied to new sequences by hand as
this is unfeasible for very large amounts of text. Typically a supervised au-
tomatic tagging system is trained on a small amount of manually tagged text
and then applied to new text automatically. Over the years several approaches
for supervised automatic tagging have been developed, we mention three of
them: (1) using a statistical model, (2) using rule induction, and (3) using a
memory-based model.

The most popular approach is using a statistical model for the assignment of
tags. Like all three approaches, the statistical model is trained on some set
of correctly-tagged training material. This approach is used in many different
taggers, such as the Xerox tagger (Cutting et al. 1992), TnT (Brants 2000), and
many others (Steetskamp 1995; Ratnaparkhi 1996; Màrquez and Padró 1997).
During training the model stores conditional probabilities of n-gram sequences
of tags and input text. After training, the choice for a specific tag is made on
the basis of all possible sequences of tags given the input sentence. Out of
these possible tags the sequence that fits the sentence, given the model, best is
chosen. For selection of the most likely path through the lattice of possibilities,
the Viterbi (1967) algorithm is generally employed. The algorithm is a dynamic
programming approach to finding the optimal path through a lattice of possible
paths where, in this case, a path describes a part-of-speech sequence.

A second approach to supervised automatic tagging is by the use of rule
induction. In the field of rule induction the learning system tries to derive a set
of rules for some task. The method developed by Brill (1992) is prototypical
for this approach on part-of-speech tagging. Brill (1992) introduced the
transformation-based learning part-of-speech tagger. In the training phase
of this approach the tagger starts with a base state of the corpus. In this
base state each word is tagged with its most frequent tag based on the
training data. Thereafter, transformation rules are learned and applied to
the tags to improve the tagging as compared to the original training data.
The most promising rule is learned first, i.e., the rule that provides for
the greatest improvement. These rules are context dependent. An example
is: change tag a to tag b when: one of the three preceding words is tagged z.

90 Models with Local Annotation

(Brill 1992). When applying the learned ruleset to a new sentence that sentence
is first tagged with the most frequent tags for each word. After that all the
learned transformation rules are applied, in order, to the sentence in order to
produce the tagging.

The third approach is that of using a memory-based model. An example of
this approach is the MEMORY-BASED TAGGER (MBT) as described by Daele-
mans et al. (1996a,b), Zavrel and Daelemans (1999), and Van den Bosch
et al. (2007). The MEMORY-BASED TAGGER uses the TIMBL memory-based
learner (Daelemans et al. 2010) to perform the classifications. TiMBL is based
on the k-nearest neighbour approach (Cover and Hart 1967, Dudani 1976). In
the k-nearest neighbour approach all instances are loaded into memory in the
training phase; in the testing phase the distance from the new instance to all
learned instances is calculated. The k closest instances are then used for classi-
fication by using weighted voting. MBT learns memory-based taggers trained
on user-selected features. It automatically creates two taggers, one for known
words and one for unknown words. The tagger for the unknown words is based
on data of infrequent words. Zavrel and Daelemans (1999) argue that these in-
frequent words are more likely to resemble unseen words than the very frequent
words of the language.

An important advantage of memory-based learning on language-based tasks as
opposed to, for instance, a Maximum Entropy model (Guiasu and Shenitzer
1985) is that even though memory-based learning generalizes, the model does
not forget local exceptions7 (Nøklestad 2009, Section 2.5). As Daelemans et al.
(1999) argue, forgetting exceptions is harmful in natural language processing
models as language contains a large number of exceptions to the rules.

5.2 Language-Model Environment

The LME used in this chapter and its corresponding LM can be characterised
by two aspects. First, the LM is a model with unbounded n-grams (i.e., the∞-
gram) controlled with synchronous back-off. Second, the model employs an
annotation layer. The annotation layer consists of part-of-speech information.
The annotation layer is stored inline in the training data, with the annotation
directly after the word it applies to. We will perform two sets of experiments,
namely (1) with human-designed part-of-speech tags, and (2) with machine-
derived part-of-speech tags.

7 The sensitivity to local exceptions and the amount of generalisation are opposed. The balance be-
tween the two can be influenced with the k value. A larger value of k results in more generalisation
and less sensitivity to local exceptions.

5.2 | Language-Model Environment 91

Below we describe our experimental setup. As in Chapter 4 we only cover what
differs from the description in Chapter 3. First, we discuss the human-designed
part-of-speech tags and the development of the machine-derived part-of-speech
tags in Subsection 5.2.1. Second, we discuss the evaluation of the machine-
derived part-of-speech tags in Subsection 5.2.2. Third, we consider the ap-
plication of part-of-speech tags (both human-designed and machine-derived)
to novel data, i.e., new alternative sequences in Subsection 5.2.3. Finally, we
discuss how we combine the part-of-speech tags with the sequences in Subsec-
tion 5.2.4.

5.2.1 The Part-of-Speech Tags

In our experiments we use two types of part-of-speech tags, (1) the human-
designed tagset, and (2) a machine-derived tagset.

The first type is the human-designed tagset as included in the British Na-
tional Corpus. The British National Corpus is tagged with the CLAWS5 tagset.
The process of creating the human-designed tagging is described by Leech
et al. (1994). The CLAWS5 tagset consists of 57 monolithic tags (see Subsec-
tion 5.1.1).

The second type is the machine-derived tagset. We generate the tagset using
the methods described by Schütze (1993). The method as employed consists of
four phases. They are discussed below.

In the first phase, the neighbourhood vectors are created for each word in
the vocabulary. Our vocabulary consists of the 25,000 most frequent words.
A neighbourhood vector contains the co-occurrence counts for each word in
the vocabulary for a fixed position compared to the word position. We use the
co-occurrence positions −2 until 2, i.e., 〈−2,−1,1,2〉.

In the second phase, these vectors are clustered. For clustering we use the co-
sine similarity measure instead of the Euclidian distance measure as is typical.
This means that the cosine of the angle between the two vectors is used as the
distance metric. For the clustering we employ the CLUTO clustering program
(Steinbach et al. 2000).

In the third phase, all clusters are assigned a tag, and the tags are retroactively
applied to the corpus. Each word in the corpus is assigned the tag that corre-
sponds to its cluster. We remark that due to this process each word-form gets
the same tag, i.e., a word like walk will always get the same tag.

In the fourth phase, a machine-learning classifier is used to apply the tags not
just to the most frequent 25,000 words, but to all words. In our research, we
use a MEMORY-BASED TAGGER model (see the third approach of Subsec-

92 Models with Local Annotation

tion 5.1.4). We apply it to the untagged part of the data (i.e., all tokens not in
the 25,000 most frequent words). The result is a fully tagged corpus, with our
machine-derived part-of-speech tags.

After employing the four phases of this machine-derived part-of-speech tag-
ging algorithm we end up with two tagged corpora: (1) tagged with the human-
designed (CLAWS5) tagset, and (2) tagged with the new machine-derived
tagset. Both are used in our experiments.

5.2.2 Evaluation of Machine-Derived Tags

We evaluate the machine-derived tags in three ways, (1) we perform a qual-
itative analysis, (2) we apply a best-mapping from the machine-derived tags
to the human-designed part-of-speech tags, and (3) we calculate the cluster–
conditional tag perplexity. The result of our evaluations can be found in Sub-
section 5.3.1

For the qualitative analysis we examine the clusters of words by hand. Our aim
is to achieve some insights into the nature of the tags. We therefore look at the
list of some words (say the ten most frequent words) belonging to each cluster.

The best-mapping is created by determining for each machine-derived tag
which human-designed tag is the most likely corresponding tag. This is deter-
mined using the two tagged version of the BNC (once tagged with the machine-
derived tags, once with the human-designed ones), so how often which set
of tags co-occurs. The machine-derived tagging is then converted to the best-
matching human-designed tag. This conversion is evaluated by using the stan-
dard precision, recall, and F-score metrics.

For calculating cluster-conditional tag perplexity we compare the two sets of
tags (the human-designed tagset and the machine-derived tagset) as they are
applied to the corpus. We use the formula shown in Equation 5.6 to calculate
the measure. We also calculate the cluster-conditional tag perplexity values of
the human-designed PTB tagset compared to the human-designed BNC tagset.
We apply the PTB tagset, which is generated by an MBT-model trained on the
PTB. So, we create a frame of reference the reduction in perplexity between
two human-designed tagsets, i.e., a baseline value.

5.2.3 Part-of-Speech on New Data

When performing alternative sequence selection a set of alternatives is gener-
ated. The elements of this set do not have a part-of-speech tag after generation.

5.2 | Language-Model Environment 93

If replacing a word by a different word takes place the part-of-speech tags may
change.

Before applying the selection process, the tagging of the alternatives is per-
formed. As in Subsection 5.1.4 (third approach) we use an MBT tagger. The
tagger is trained on the same training data as the LME and then applied to the
alternative sequences before the LME is applied to them.

5.2.4 Combining Tags and Text

When dealing with sequence classification we base the scores on flexible size
n-grams. We want these n-grams to be as large as possible while still providing
reliable statistics. In models with local annotation an n-gram can contain part-
of-speech tags. In our tagged corpus the part-of-speech tag relevant to a specific
token always occurs directly after the token.

We combine tags and text in four different ways. The five ways are listed and
explained below. We call them W, PW-wf, PW, P-wf, and W-pwf. We note
that the differences between the combination methods are sometimes subtle.
When we mention focus position in these descriptions we refer to position w0

which is the position currently in focus (as in Equation 4.2, reproduced here in
Equation 5.7 for convenience).

Pn(w1 . . . wm) =

m∏
i=1

Pn(wi|wi−(n−1), . . . , wi−1) (5.7)

For clarity we provide, for each of the five descriptions, an illustration showing
which elements are used at which position (indicated by). Word tokens
are indicated by word, part-of-speech is abbreviated as pos.

W (Word) Our baseline, conforms to the approach described in Chapter 4.
It uses only word-tokens at all positions.

word posword pos...

0-1

word pos

-2

PW-wf (Part-of-speech Word – word focus) Using all part-of-speech tags and
all word tokens at all context positions. At the focus position we only

94 Models with Local Annotation

employ the word token and not the part-of-speech tag.

word posword pos...

0-1

word pos

-2

PW (Part-of-speech Word) Using all part-of-speech tags and all word to-
kens at all positions including the focus position.

word posword pos...

0-1

word pos

-2

P-wf (Part-of-speech – word focus) Using only part-of-speech tags at all
positions, only word tokens at the focus position.

word posword pos...

0-1

word pos

-2

W-pwf (Word – part-of-speech word focus) Using only word tokens at all con-
text positions. At the focus position we use both the part-of-speech tags
and the word token.

word posword pos...

0-1

word pos

-2

5.3 Experiments

In this section we describe the results of the experiments for the four combina-
tion methods PW-wf, PW, P-wf, and W-pwf. We look at the results (1) when
using the human-designed tagset, i.e., the gold-standard tagging as present in
the BNC, and (2) when using the machine-derived tagset, i.e., the BNC tagged
with the tagset derived by the machine according to the methodology outlined
in Subsection 5.2.1. The result of the experimental setup is unchanged com-
pared to Chapter 4 Section 4.4.

5.3 | Experiments 95

Before we detail our experimental results in the Subsections 5.3.2 to 5.3.4, we
first give an evaluation of the quality of the machine-derived part-of-speech
tags in Subsection 5.3.1. We describe our evaluation procedure above in Sub-
section 5.2.2. To recapitulate we perform three kinds of evaluation: (1) we will
perform a qualitative analysis, (2) we will create a best-mapping, apply it, and
report on Recall, Precision, and F-score with respect to the gold-standard, and
(3) we will report on the cluster conditional tag perplexity of the machine-
derived part of speech tagset.

5.3.1 Evaluation of Machine-Derived Part-of-Speech Tags

First we perform a brief qualitative analysis of the assigned clusters. The most
frequent tokens for the ten largest clusters are given in Table 5.1. We remark
that there is a large disparity in the sizes of the clusters. The smallest cluster
consists of 7 types with 18 occurrences, the largest cluster consists of 489 types
with 1,223,296 occurrences. We show the differences in cluster occurrences in
Figure 5.5. In contrast the differences in the tag occurrences for the human-
defined tags is shown in Figure 5.4.

In general the tokens in each cluster seem to be related. This can be clearly
seen in Table 5.1. For example, cluster #4 consists partly of past-tense verbs.
Other clusters often also show groupings. A second interesting example from
Table 5.1 is cluster 8, of which the tokens are less linguistically related. We see
a variety of tokens, such as (1) the period, (2) words as in {right, anyway, else},
and (3) nouns as in {money, tea, milk}.

Secondly, we create a mapping of each machine-derived tag to a human-
designed tag by using the most frequently co-occurring tag. By this tag-to-tag
mapping we obtain a corpus that is tagged with the human-designed tagset. We
evaluate the tagging by comparing it to the gold-standard tagset. We then cal-
culate an F-score to provide a measure for how well the mapping performs. For
the mapping of the machine-derived tags to the gold-standard human-defined
tagset of the BNC we achieve the F-score of 0.63. For the human-designed
Penn-Treebank tagset to the gold-standard tagset of the BNC achieved the F-
score of 0.69. To make the human-designed PTB tags comparable, an MBT
tagger was trained on the PTB and applied to the BNC. We sum up the mea-
surements, including the cluster conditional tag perplexity, in Table 5.2. We
note that the score achieved by the machine-derived tags is close to the score
of the PTB annotation.

Thirdly, we determined the cluster-conditional tag perplexity of the machine-
derived tagset compared to the human-designed tagset. As above, we contrast
with cluster-conditional tag perplexity of the Penn-Treebank human-designed
tagset to the BNC human-designed tagset. The machine-derived tagset has a

96 Models with Local Annotation

tag # frequent words
1 ,, that, but, ;, when, if, then, what, an, . . .
2 not, no, only, also, now, such, being, even, still, often, . . .
3 of, to, in, for, on, at, by, from, about, into, . . .
4 was, had, came, died, suddenly, lay, goes, arrived, fell, lived, . . .
5 a, an, very, too, quite, particularly, slightly, completely, somewhat,

perfectly, . . .
6 and, or, than, both, giving, nor, increasing, finding, showing, keep-

ing, . . .
7 are, were, up, ?, will, may, ’re, er, again, . . .
8 ., right, money, else, trouble, anyway, tea, stuff, milk, mine, . . .
9 the, his, which, this, their, my, its, your, our, every, . . .

10 i, who, someone, everything, anyone, jesus, somebody, nobody,
let’s, . . .

Table 5.1: A table showing the most frequent words for each of the ten
largest clusters found by the machine-derived part-of-speech
tagging system.

1e+2

1e+3

1e+4

1e+5

1e+6

1e+7

N
u
m
b
e
r

o
f

o
c
c
u
r
r
e
n
c
e
s

Tags (ordered by number of occurrences)

Figure 5.4: A plot showing the number of occurrences of each part-of-
speech tag in the human-defined tagging of the BNC. All tags
are ordered by number of occurrences and their number of
occurrences is shown in the graph. The y-axis is logarithmic.

cluster-conditional tag perplexity of 2.10 on the BNC human-designed tagset.
The PTB human-designed tagset has a cluster-conditional tag perplexity of
1.49 on the BNC human-designed tagset. Biemann (2006, 2007) achieved a
cluster-conditional tag perplexity with his graph-based method of 2.05 when

5.3 | Experiments 97

1e+1

1e+2

1e+3

1e+4

1e+5

1e+6

1e+7

N
u
m
b
e
r

o
f

o
c
c
u
r
r
e
n
c
e
s

Tags (ordered by number of occurrences)

Figure 5.5: A plot showing the number of occurrences of each part-of-
speech tag in the machine-derived tagging of the BNC. All
tags are ordered by number of occurrences and their number of
occurrences is shown in the graph. The y-axis is logarithmic.

F-score CCTP
machine-derived→ gold-standard 0.63 2.10
Penn-TreeBank→ gold-standard 0.69 1.49
Biemann (2006) 2.05

Table 5.2: A table showing the results of the evaluations of the machine-
derived tagset compared to the human-defined tagset. We show
the F-score achieved with the best-mapping and the cluster con-
ditional tag perplexity. Also shown in the cluster-conditional
tag perplexity score achieved by Biemann (2006, 2007).

applied to the British National Corpus, i.e., on the same corpus and compared
to the same tagset. Our unsupervised clustering is based on the method by
Schütze (1993). So, from these observations we may conclude that Schütze’s
method is still comparable in performance, in this measurement, to a state-of-
the-art machine-derived tagging system.

5.3.2 Results on Confusibles

Our series of experiments for the confusibles problem are performed analo-
gously to the series of confusible experiments in Subsection 4.4.1. We run them
for two sets of annotations and for five combination methods (W included). For

98 Models with Local Annotation

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

1e+03 1e+04 1e+05 1e+06 1e+07

A
cc

u
ra

cy

Training set size

W
PW-wf

PW
P-wf

W-pwf

Figure 5.6: Learning curve for the confusible problem using the human-
designed tagset. We plot all the 4 combination methods next to
the learning curve from Subsection 4.4.1. Y-axis denotes the
accuracy (ranging from 0 to 1) and the X-axis the number of
sentences used for training. The X-axis is logarithmic.

the two annotations we use (1) the human-defined CLAWS5 tags as present in
the BNC and (2) the machine-derived tags on the BNC (see Subsection 5.2.1).

The results are presented as a set of learning curves, (Figure 5.6 shows for the
human-designed tags, and Figure 5.7 the machine-derived tags).

We note that, in both cases, the learning curve of P-wf (only tags with the
text token as focus) resulted in significantly worse performance, with a p-
value < 2.2e−168 (between W and P-wf for for the human-designed and the
machine-derived part-of-speech tags). P-wf abstracts the contextual informa-
tion (it only uses part-of-speech tags as context). PW-wf, PW, and W-pwf per-
form around the level of W, but no better than W. The differences between the
different combination methods are significant for the human-designed part-of-
speech tags, except between PW-wf and W-pwf (p-value of 0.95 according to
McNemar’s test, i.e. no significant difference). However, for the full training
set the LMEs with added human-designed part-of-speech data perform slightly
worse than the LME without (i.e., W).

For the machine-derived tags (see Figure 5.7) the differences between PW-
wf, PW, P-wf, and W are not significant, e.g. between W and PW McNemar’s
test has a p-value of 0.84. For the human-designed tags (see Figure 5.6) we

8 < 1.1e−16 is the smallest value reported by R.

5.3 | Experiments 99

 0.88

 0.89

 0.9

 0.91

 0.92

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

1e+03 1e+04 1e+05 1e+06 1e+07

A
cc

u
ra

cy

Training set size

W
PW-wf

PW
P-wf

W-pwf

Figure 5.7: Learning curve for the confusible problem using the machine-
derived tagset. We plot all the 4 combination methods next to
the learning curve from Subsection 4.4.1. Y-axis denotes the
accuracy (ranging from 0 to 1) and the X-axis the number of
sentences used for training. The X-axis is logarithmic.

see something interesting in the learning curves. That is, we see two methods
(PW and W-pwf) clearly9 outperforming W on small amounts of training data,
while at the same time being clearly outperformed when using large amounts of
training data10. This finding is in accordance with conclusions in the literature,
in particular Van den Bosch and Buchholz (2002) already made the argument
that part-of-speech information has less value as the training material increases
in size. Van den Bosch and Buchholz (2002) also showed that as system with-
out part-of-speech tags will be outperformed by a system using only words,
provided that sufficient training material is used.

In the Figures 5.8 and 5.9 the sizes of the n-grams used in the classification
are shown. The average size of the n-grams used in W, PW-wf, PW and W-
pwf is roughly the same. The difference between P-wf compared to the other
four methods is most pronounced in the human-designed tagset case (see Fig-
ure 5.8(d)), where the average n-gram size used for the full training set is as
large as 5.0. For the machine-derived tagset the average n-gram size used by
P-wf is 3.9. The reason that the P-wf set has a larger average n-gram size is

9 For instance, when using 90.000 sentences of training material, between W and W-pwf the
p-value is < 2.2e−16.
10 For instance, for the full training set, between W and W-pwf the p-value is 2.2e−08. So the
difference is clearly significant.

100 Models with Local Annotation

 1

 10

 100

 1000

 10000

 100000

 2 4 6 8 10 12

#
 o

cc
u
re

n
ce

s

N-gram size

9000
45000
90000

450000
900000

5417901

(a) Only text

 1

 10

 100

 1000

 10000

 100000

 2 4 6 8 10 12

#
 o

cc
u
re

n
ce

s

N-gram size

9000
45000
90000

450000
900000

5417901

 1

 10

 100

 1000

 10000

 100000

 2 4 6 8 10 12

#
 o

cc
u
re

n
ce

s

N-gram size

9000
45000
90000

450000
900000

5417901

(b) Combination method PW-wf (c) Combination method PW

 1

 10

 100

 1000

 10000

 2 4 6 8 10 12

#
 o

cc
u
re

n
ce

s

N-gram size

9000
45000
90000

450000
900000

5417901

 1

 10

 100

 1000

 10000

 100000

 2 4 6 8 10 12

#
 o

cc
u
re

n
ce

s

N-gram size

9000
45000
90000

450000
900000

5417901

(d) Combination method P-wf (e) Combination method W-pwf

Figure 5.8: Occurrence graph for the confusibles problem on the human-
designed tagset showing, for each training set size, the number
of times each n-gram size was used in making the alternative
selection. The Y-axis is logarithmic. One occurrence graph is
shown for each combination method as well as a comparative
occurrence graph in (a) for the experiment without any added
annotation, as presented in Subsection 4.4.1.

5.3 | Experiments 101

 1

 10

 100

 1000

 10000

 100000

 2 4 6 8 10 12

#
 o

cc
u
re

n
ce

s

N-gram size

9000
45000
90000

450000
900000

5417901

(a) Only text

 1

 10

 100

 1000

 10000

 100000

 2 4 6 8 10 12

#
 o

cc
u
re

n
ce

s

N-gram size

9000
45000
90000

450000
900000

5417901

 1

 10

 100

 1000

 10000

 100000

 2 4 6 8 10 12

#
 o

cc
u
re

n
ce

s

N-gram size

9000
45000
90000

450000
900000

5417901

(b) Combination method PW-wf (c) Combination method PW

 1

 10

 100

 1000

 10000

 100000

 2 4 6 8 10 12

#
 o

cc
u
re

n
ce

s

N-gram size

9000
45000
90000

450000
900000

5417901

 1

 10

 100

 1000

 10000

 100000

 2 4 6 8 10 12

#
 o

cc
u
re

n
ce

s

N-gram size

9000
45000
90000

450000
900000

5417901

(d) Combination method P-wf (e) Combination method W-pwf

Figure 5.9: Occurrence graph for the confusibles problem on the machine-
derived tagset showing, for each training set size, the number
of times each n-gram size was used in making the alternative
selection. The Y-axis is logarithmic. One occurrence graph is
shown for each combination method as well as a comparative
occurrence graph in(a) for the experiment without any added
annotation, as presented in Subsection 4.4.1.

102 Models with Local Annotation

because part-of-speech tags in itself are less sparse than words, so they match
more often. However, as we see in the accuracy results discussed above, having
a larger context does not aid performance if an alternative with smaller context
has sufficiently rich data, e.g., as in the part-of-speech tag context versus the
word context.

5.3.3 Results on Verb and Noun Agreement

Our series of experiments for the verb and noun agreement problem are per-
formed analogously to the series of the verb and noun agreement experiments
in Subsection 4.4.2. As for the confusible experiments (see Subsection 5.3.2)
we run them for two sets of annotations and for five combination methods (W
included). The results of the learning curves are shown in Figure 5.10 for the
human-designed tags, and in Figure 5.11 for the machine-derived tags. We also
visualize the size of the n-grams used for classification in a series of occurrence
graphs. This series can be seen in Figure 5.12 for the human-designed tagset
and in Figure 5.13 for the machine-derived tagset.

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

1e+03 1e+04 1e+05 1e+06 1e+07

A
cc

u
ra

cy

Training set size

W
PW-wf

PW
P-wf

W-pwf

Figure 5.10: Learning curve for the verb and noun agreement problem us-
ing the human-designed tagset. We plot all the 4 combina-
tion methods next to the original learning curve from Sub-
section 4.4.2. Y-axis denotes the accuracy (from 0 to 1) and
the X-axis the number of sentences used for training. The
X-axis is logarithmic.

We note that all the learning curves perform roughly the same, with a few ex-
ceptions. One exception occurs in case of the machine-derived tagset, where

5.3 | Experiments 103

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

1e+03 1e+04 1e+05 1e+06 1e+07

A
cc

u
ra

cy

Training set size

W
PW-wf

PW
P-wf

W-pwf

Figure 5.11: Learning curve for the verb and noun agreement problem us-
ing the machine-derived tagset. We plot all the 4 combina-
tion methods next to the original learning curve from Sub-
section 4.4.2. Y-axis denotes the accuracy (from 0 to 1) and
the X-axis the number of sentences used for training. The
X-axis is logarithmic.

the combination method P-wf is clearly and significantly outperformed by
the other methods, as with the experiments on the confusibles in Subsec-
tion 5.3.2. This is remarkable as PW-wf and P-wf significantly outperform the
text-only curve in case of the human-designed tagset11. In fact, even with the
full-size training set PW-wf significantly outperforms the baseline W (p-value
of 8.2e−06). From this we deduce that, in case of verb and noun agreement,
the human-designed part-of-speech tags provide extra relevant information that
the machine-derived tagset does not. This extra information is only beneficial
to the results with the full-size training data in cases where it compliments the
wordform information.

11 At 450.000 sentences of training material, the p-value for W versus PW-wf is 4.8e−09. At
450.000 sentences of training material, for W versus P-wf the p-value is 8.2e−05.

104 Models with Local Annotation

 1

 10

 100

 1000

 10000

 100000

 2 4 6 8 10 12

#
 o

cc
u
re

n
ce

s

N-gram size

9000
45000
90000

450000
900000

5417901

(a) Only text

 1

 10

 100

 1000

 10000

 100000

 2 4 6 8 10 12

#
 o

cc
u
re

n
ce

s

N-gram size

9000
45000
90000

450000
900000

5417901

 1

 10

 100

 1000

 10000

 100000

 2 4 6 8 10 12

#
 o

cc
u
re

n
ce

s

N-gram size

9000
45000
90000

450000
900000

5417901

(b) Combination method PW-wf (c) Combination method PW

 1

 10

 100

 1000

 10000

 2 4 6 8 10 12

#
 o

cc
u
re

n
ce

s

N-gram size

9000
45000
90000

450000
900000

5417901

 1

 10

 100

 1000

 10000

 100000

 2 4 6 8 10 12

#
 o

cc
u
re

n
ce

s

N-gram size

9000
45000
90000

450000
900000

5417901

(d) Combination method P-wf (e) Combination method W-pwf

Figure 5.12: Occurrence graph for the verb and noun agreement problem
on the human-designed tagset showing, for each training set
size, the number of times each n-gram size was used in mak-
ing the alternative selection. The Y-axis is logarithmic. One
occurrence graph is shown for each combination method as
well as a comparative occurrence graph in (a) for the original
experiment in Subsection 4.4.2.

5.3 | Experiments 105

 1

 10

 100

 1000

 10000

 100000

 2 4 6 8 10 12

#
 o

cc
u
re

n
ce

s

N-gram size

9000
45000
90000

450000
900000

5417901

(a) Only text

 1

 10

 100

 1000

 10000

 100000

 2 4 6 8 10 12

#
 o

cc
u
re

n
ce

s

N-gram size

9000
45000
90000

450000
900000

5417901

 1

 10

 100

 1000

 10000

 100000

 2 4 6 8 10 12

#
 o

cc
u
re

n
ce

s

N-gram size

9000
45000
90000

450000
900000

5417901

(b) Combination method PW-wf (c) Combination method PW

 1

 10

 100

 1000

 10000

 100000

 2 4 6 8 10 12

#
 o

cc
u
re

n
ce

s

N-gram size

9000
45000
90000

450000
900000

5417901

 1

 10

 100

 1000

 10000

 100000

 2 4 6 8 10 12

#
 o

cc
u
re

n
ce

s

N-gram size

9000
45000
90000

450000
900000

5417901

(d) Combination method W-pwf (e) Combination method P-wf

Figure 5.13: Occurrence graph for the verb and noun agreement problem
on the machine-derived tagset showing, for each training set
size, the number of times each n-gram size was used in mak-
ing the alternative selection. The Y-axis is logarithmic. One
occurrence graph is shown for each combination method as
well as a comparative occurrence graph in (a) for the original
experiment in Subsection 4.4.2.

106 Models with Local Annotation

5.3.4 Results on Prenominal Adjective Ordering

Our series of experiments for the prenominal adjective reordering problem is,
just like the series of experiments for the confusibles problem and the verb and
noun agreement problem, performed analogously to the series in the previous
chapter. These learning curves are shown in Figure 5.14 for the learning curves
using the human-designed tags, and in Figure 5.15 for the learning curves using
the machine-derived tags. In the Figures 5.16 and 5.17 we visualise the size of
the sizes of the n-grams used for classification in a series of occurrence graphs.

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

1e+03 1e+04 1e+05 1e+06 1e+07

A
cc

u
ra

cy

Training set size

W
PW-wf

PW
P-wf

W-pwf

Figure 5.14: Learning curve for the prenominal adjective reordering prob-
lem using the human-designed tagset. We plot all the 4 com-
bination methods next to the original learning curve from
Subsection 4.4.3. Y-axis denotes the accuracy (from 0 to 1)
and the X-axis the number of sentences used for training. The
X-axis is logarithmic.

We note that the learning curves all perform roughly similar. In the case of
the human-defined tagset there is one exception in the form of the P-wf learn-
ing curve. The other combination methods perform roughly the same, but their
small difference in performance is significant with one exception. The excep-
tion is in the case of PW-wf, were the difference with W is not significant,
with a p-value of 0.26 according to McNemar’s test. The P-wf learning curve
initially performs the best, but with the full-size training it is clearly (p-value
< 2.2e−16) outperformed by the rest. The context of the P-wf curve consists
of only the part-of-speech tags, out of our combination methods it is the only
one without words in the context. The results suggest that for the prenominal
adjectives re-ordering problem the larger context generated by this method is

5.3 | Experiments 107

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

1e+03 1e+04 1e+05 1e+06 1e+07

A
cc

u
ra

cy

Training set size

W
PW-wf

PW
P-wf

W-pwf

Figure 5.15: Learning curve for the prenominal adjective reordering prob-
lem using the machine-derived tagset. We plot all the 4 com-
bination methods next to the original learning curve from
Subsection 4.4.3. Y-axis denotes the accuracy (from 0 to 1)
and the X-axis the number of sentences used for training. The
X-axis is logarithmic.

initially more important, but later the simplified information in that context is
detrimental compared to the full text information.

For the learning curves of the machine-derived tagging experiments we see a
similar behaviour, i.e., we see P-wf initially outperforming the other combi-
nation methods, while P-wf is outperformed with larger amounts of training
material (significantly with a p-value of 9.7e−3). All other combination meth-
ods, i.e., W, PW-wf (p-value of 1), PW (p-value of 1), and W-pwf (p-value of
1) do not significantly differ in performance in these experiments. We did not
observe this behaviour of P-wf for the machine-derived tagging experiments in
the results for the other two alternative sequence selection tasks. Therefore, we
may conclude that, at least with small amounts of training material, the larger
context provided by the P-wf method is more important to the performance of
the prenominal adjective reordering task.

108 Models with Local Annotation

 1

 10

 100

 1000

 10000

 2 4 6 8 10 12

#
 o

cc
u
re

n
ce

s

N-gram size

9000
45000
90000

450000
900000

5417901

(a) Only text

 1

 10

 100

 1000

 10000

 2 4 6 8 10 12

#
 o

cc
u
re

n
ce

s

N-gram size

9000
45000
90000

450000
900000

5417901

 1

 10

 100

 1000

 10000

 2 4 6 8 10 12

#
 o

cc
u
re

n
ce

s

N-gram size

9000
45000
90000

450000
900000

5417901

(b) Combination method PW-wf (c) Combination method PW

 1

 10

 100

 1000

 10000

 2 4 6 8 10 12

#
 o

cc
u
re

n
ce

s

N-gram size

9000
45000
90000

450000
900000

5417901

 1

 10

 100

 1000

 10000

 2 4 6 8 10 12

#
 o

cc
u
re

n
ce

s

N-gram size

9000
45000
90000

450000
900000

5417901

(d) Combination method P-wf (e) Combination method W-pwf

Figure 5.16: Occurrence graph for the prenominal adjective reordering
problem on the human-designed tagset showing, for each
training set size, the number of times each n-gram size was
used in making the alternative selection. The Y-axis is log-
arithmic. One occurrence graph is shown for each combina-
tion method as well as a comparative occurrence graph in (a)
for the original experiment in Subsection 4.4.3.

5.3 | Experiments 109

 1

 10

 100

 1000

 10000

 2 4 6 8 10 12

#
 o

cc
u
re

n
ce

s

N-gram size

9000
45000
90000

450000
900000

5417901

(a) Only text

 1

 10

 100

 1000

 10000

 2 4 6 8 10 12

#
 o

cc
u
re

n
ce

s

N-gram size

9000
45000
90000

450000
900000

5417901

 1

 10

 100

 1000

 10000

 2 4 6 8 10 12

#
 o

cc
u
re

n
ce

s

N-gram size

9000
45000
90000

450000
900000

5417901

(b) Combination method PW-wf (c) Combination method PW

 1

 10

 100

 1000

 10000

 2 4 6 8 10 12

#
 o

cc
u
re

n
ce

s

N-gram size

9000
45000
90000

450000
900000

5417901

 1

 10

 100

 1000

 10000

 2 4 6 8 10 12

#
 o

cc
u
re

n
ce

s

N-gram size

9000
45000
90000

450000
900000

5417901

(d) Combination method P-wf (e) Combination method W-pwf

Figure 5.17: Occurrence graph for the prenominal adjective reordering
problem on the machine-derived tagset showing, for each
training set size, the number of times each n-gram size was
used in making the alternative selection. The Y-axis is log-
arithmic. One occurrence graph is shown for each combina-
tion method as well as a comparative occurrence graph in (a)
for the original experiment in Subsection 4.4.2.

110 Models with Local Annotation

5.4 Partial Answers to RQ3 and RQ4

In this chapter we investigated a language-model environment with local anno-
tation that uses∞-grams and synchronous back-off. The investigations provide
a basis for achieving partial answers for the research questions RQ3 and RQ4.
We repeat RQ3 and RQ4 below. They are followed by our partial answers.

Research Question 3: Is there a benefit to including annotations
in the language model, measured as a better performance on alter-
native sequence selection tasks?

We attempt to answer RQ3 employing three observations. First, given suffi-
cient training material little benefit is gained by including locally dependent
annotation, which in our investigation are based on part-of-speech tags. How-
ever, we found two exceptions mentioned here as our second and third ob-
servations. Second, in the case of verb and noun agreement, the presence of
the human-designed part-of-speech tags adds useful information, resulting in a
significantly higher performance. Third, in all three alternative sequence selec-
tion tasks the presence of the human-designed tagset improves the performance
when a limited amount of training data is available. So, for small amounts of
training data there is an advantage.

Research Question 4: Is there a difference in performance on al-
ternative sequence selection tasks when using human-designed an-
notations compared to machine-generated annotations?

We attempt to answer RQ4 by employing two observations. First, we see from
the results above that the machine-derived part-of-speech tags generally per-
form similarly compared to a system without annotation. Second, we observe
that for the experiments using the human-designed part-of-speech tags there
is an improvement in performance for small amounts of training data. These
answers raise the question as to why the addition of machine-derived part-of-
speech tags does not result in performance improvement.

We note that the system with the human-defined annotation provides novel in-
formation to the system, which we can observe in the results being different
compared to the system without annotation. In contrast, the system with the
machine-derived annotation performs nearly identical to the system without
annotation. We may speculate that the human-designed part-of-speech tags,
being designed and defined by humans, actually add information. In contrast,
the machine-derived tags do not add new information to the corpus. It is even
worse, when using the full training set, the system without annotation outper-
forms, or performs identical to the experiments with annotations. The answer to

5.5 | Chapter Conclusions 111

RQ4, is that human-designed annotation provides an advantage over machine-
derived annotation, only for small training sets.

5.5 Chapter Conclusions

In this chapter we investigated a language-model environment that can be char-
acterized as a model with local annotation. We focussed on the effect of adding
such annotation, and on the difference in performance between the human-
designed part-of-speech tagset and the machine-derived part-of-speech tagset.

The experiments performed on the three alternative selection problems led to
detailed results for the language-model environment described in this chap-
ter. The result of the two types of annotation (human-designed and machine-
derived) were compared to each other, as well as to the results from Chapter 4.
From the experiments with combinations of annotations (using five methods)
we may conclude the following. (1) The machine-derived part-of-speech tagset
does not add any useful new information to the model. (2) The human-designed
part-of-speech tagset does add useful information to the model. (3) As the size
of the training material increases the addition of the part-of-speech tags be-
comes less and less influential on the performance of the system (when com-
pared to the system without annotations), up to the point where its addition
reduces to zero. As we observed in Section 5.3 this point occurs around one
million sentences of training material for all three alternative sequence selec-
tion tasks.

Chapter 6

Models with Complex
Annotation

This chapter describes an LME that is to be characterised as a model with com-
plex annotation. We focus on the effect of adding dependency information to
the language-model environment. The LME described in this chapter also in-
cludes the aspects discussed in Chapter 4, i.e., the ∞-gram and synchronous
back-off. There are many types of complex annotations such as complex an-
notations such as constituency or dependency parses, semantic role graphs, or
anaphoric link structures. In this chapter we focus on adding information de-
rived from dependency parses. We choose dependency structures as they are a
relatively straightforward and well-studied type of syntactic annotation. Now
we are ready to examine RQ3 and RQ4 with respect to the complex annota-
tion model for the three alternative sequence selection problems. Below we
re-iterate both RQs.

Research Question 3: Is there a benefit to including annotations
in the language model, measured as a better performance on alter-
native sequence selection tasks?

Research Question 4: Is there a difference in performance on al-
ternative sequence selection tasks when using human-designed an-
notations compared to machine-generated annotations?

The course of this chapter reads as follows. In Section 6.1 we describe two
computational approaches to dependency parsing.

114 Models with Complex Annotation

This represented 45% of their net expenditurecurrent on personal social services .

Figure 6.1: Example dependency parse made by the Maltparser on the
BNC. Here we only show the dependency relations.

In Section 6.2 we complement the language-model environment as described
in Chapter 3 with a precise description of (1) the use of human-designed depen-
dency parses, and (2) the generation and use of machine-derived dependency
parses. This section builds on the information given in Section 4.3. That infor-
mation still applies.

In Section 6.3 we describe our experiments on the three alternative sequence
selection problems for the experiments with added dependency information.
The results of the experiments are analysed with respect to RQ3 and RQ4.

In Section 6.4 we explicitly formulate our answers to RQ3 and RQ4 for the
models with complex annotation. In Section 6.5 we provide a summary and
give our conclusions.

6.1 Dependency Parses

A well-known complex annotation type is the dependency parse. We call de-
pendency parses complex because rather than being associated with individual
tokens, dependencies represent cross-token information that may span any dis-
tance within the sentence. Dependency parses denote the lexical dependencies
within the sequence (Jurafsky and Martin 2000). We illustrate the concept in
Figure 6.1. For each word in the sequence a relation is assigned to a head-
word of that word, i.e., the headword is the word on which the word depends
syntactically.

Dependency parses are a popular type of parses. Usually, supervised machine-
learning systems are employed to assign parses to new, previously unseen, sen-
tences. Dependency parsing has been the subject of several CoNLL shared
tasks. The first CoNLL shared task on dependency parsing was in 2006 (Buch-
holz and Marsi 2006), it continued in 2007 (Nivre et al. 2007a), 2008 (Sur-
deanu et al. 2008), and 2009 (Hajič et al. 2009). Dependency parsers often
use the presence of a part-of-speech tagging in order to improve tractability.

6.1 | Dependency Parses 115

Several approaches to supervised dependency parsing have been tried, such
as spanning-tree based algorithms (McDonald and Pereira 2006, McDonald
et al. 2005), projective dependency parsing (Nivre 2003, Nivre et al. 2007b),
memory-based learning (Nivre et al. 2004, Morante et al. 2009a,b), and con-
straint satisfaction (Canisius and Tjong Kim Sang 2007).

Below, we will briefly discuss (1) supervised dependency parsing as designed
by human experts, and (2) unsupervised dependency parsing based on statistics
as derived by a computer.

6.1.1 Supervised Dependency Parsing

Here, we briefly discuss some approaches to supervised dependency parsing.
The shared aspect of these approaches is that they are all based on graph theory.
The main difference is in the decision scope. Decisions are made for each word
in the input sequence to decide which other word is its headword. One major
difference between the two approached mentioned above is using the entire
search space as decision context versus using the local part of the search space
to make a greedy decision.

McDonald et al. (2005) introduced a well-known supervised dependency
parser called MSTPARSER. The dependency parsing problem is reduced to a
maximum-spanning-tree search problem. A spanning tree is a graph-theoretic
concept that denotes a tree over a graph that includes all vertices, but no cy-
cles. Chu and Liu (1965) provides an insightful description of this concept. A
maximum spanning tree is the spanning tree over a graph of which the com-
bined edge value is the largest possible value for a spanning tree on the graph in
question. Edge values are based on observations made on the training corpus,
i.e., an often observed relation will have a larger value than an infrequently
observed one. The parser that the MSTParser generates makes decisions based
on the entire search space in an exhaustive manner. It examines all possible
dependency parses.

Nivre et al. (2006) introduced another well-known supervised dependency
parser, the MALTPARSER (see also Hall et al. 2007). Nivre et al. (2006) de-
scribe the MALTPARSER as a data-driven parser. The parser that the MALT-
PARSER generates makes decisions online and in a greedy manner. (Here on-
line means that it processes the sequence token by token and makes a decision
at each step.) Due to its focus on local token-level decisions, the classifier in
MALTPARSER can be enriched with a large feature space.

In two publications, McDonald and Nivre (2007) and Nivre and McDonald
(2008) make a direct comparison between the MSTPARSER and the MALT-
PARSER. They mainly compare the locality and nature of the errors made by

116 Models with Complex Annotation

the parsers. This is contrasted to the feature-poor but exhaustive approach of
the MSTPARSER on the one side and the feature-rich and greedy approach of
the MALTPARSER on the other side.

A third approach is proposed by Canisius (2009). They propose to use con-
straint satisfaction inference to tackle dependency parsing. Three classifiers
generate possible constraints, based on tokens and pairs of tokens. These con-
straints are combined using weighted constrained satisfaction (maximising the
value of the selected constraints) resulting in a dependency parse of the se-
quence. For the combination step the CYK algorithm (Younger 1967, Eisner
2000) is used.

6.1.2 Unsupervised Dependency Parsing

We briefly discuss a selection of approaches to unsupervised dependency pars-
ing We start by describing the approach by Gorla et al. (2007) which is closely
related to the MST (maximum spanning tree) approach. We will describe sev-
eral other approaches as well.

Gorla et al. (2007) describe an unsupervised dependency parsing method that
uses a modified mutual information formula on sequences of part of speech
tags. They modify the MI formula with a distance component and use it to
generate an MST over possible dependency parses, much like McDonald and
Nivre (2007) did on supervised data. The weights of all the possible connec-
tions in the graph are based on co-occurence observations in the training data.

Spitkovsky et al. (2009) describe a scaffolding approach, where the system is
first developed using sentences of length one. At each step the resulting model
of the previous step is used to initiate training. In the first step, sentences with
length one, the element in the sentence is sure to attach to the root-position. In
the second step, sentences with length two, there is a single choice to make,
i.e., which of the two elements attaches to the other, where the other will then
attach to the root position. The decision on the second step are made with the
help of statistics from the first step and afterwards all statistics are updated.
These steps are repeated until the entire training set is processed.

Seginer (2007) describes an incremental dependency parser that is learned by
an efficient unsupervised learning algorithm. The common cover link (CCL)
parser works directly on the raw natural language data without depending on
annotations such as part-of-speech tags.

The CCL-system creates an incremental parser which can be used to parse
new sentences. Incrementality means that the parser reads a sentence word by
word and for each new word it looks in the history, to add, if possible, some
dependency and parse structure. For each incremental step the parser looks at

6.2 | Language-Model Environment 117

all possible links it can add, adds the highest-scoring link out of those possible
links and then repeats the process. Adding a link alters the set of possible links
that can be added to the sentence at hand. For this process the parser depends on
the use of a lexicon with adjacency points. Adjacency points are a collection
of the most frequent co-occuring words, with their counts and their relative
position (to the left or to the right). At each step of the learning process (i.e.,
every time a step of one word is taken) the lexicon is updated.

Unsupervised dependency parsing systems have been used successfully in lan-
guage modelling for Japanese Kana-Kanji conversion, realising a 3.5% reduc-
tion in error-rate compared to the same system without the unsupervised de-
pendency information. Gao and Suzuki (2003) described a system where they
incorporated unsupervised dependency relations into a language model. Their
approach to the incorporation of such information is similar to that of Chelba
and Jelinek (1998), who combined parts of supervised parses in an n-gram
language model.

6.2 Language-Model Environment

The LME employed in this chapter is based closely on the LME of Chap-
ter 5. However, instead of annotating with part-of-speech tags we use a human-
designed and a machine-derived dependency-parse structure to add information
to the model. The information generated by these two systems is added in the
form of tags. As the tag value the corresponding headword of the word in focus
is added.

We remark that there is an important distinction between the human-defined
dependency parses and the machine-derived dependency parses. The human-
defined dependency parses also contain several types of information that we do
not use, such as the part-of-speech tags of words, and the types of dependency
relations between words.

Below we will examine the structure found by the two different dependency
parsers. We will investigate the average distance from each word to its corre-
sponding headword for each dependency parser, as well as the overall structure
of the parses.

6.3 Experiments

In this section we describe the results of the experiments for this chapter. The
experiments are structured similarly to Section 5.3. As before we will examine

118 Models with Complex Annotation

This represented 45% of their net expenditurecurrent on personal social services .

Figure 6.2: Example parse made by the CCLparser on the BNC.

the performance of the LME using the five methods (see Subsection 5.2.4) on
the three alternative sequence selection tasks for the two annotation methods.
These annotations are (1) the human-designed dependency parse, and (2) the
machine-derived dependency parse. The performance achieved by the language
model is reported in Subsections 6.3.2 to 6.3.4.

In Subsection 6.3.1 we start by examining some aspects of the machine-derived
dependency parses. We will focus on two aspects: (1) the distance between
each word and its attached headword, and (2) the overall structure of the parses.
These aspects are compared to their analogues in the human-designed depen-
dency parses.

6.3.1 Comparing Dependency Parses

In this subsection we give quantitative and qualitative comparisons between
the two parsing systems. The MALTPARSER provides the human-defined de-
pendency parse structure and the CCLPARSER provides the machine-derived
dependency parse structure.

First, we look at the distance of each word to its corresponding headword on
the BNC. We observe that the average distance from the current word to its
headword is rather different. In case of the MALTPARSER the average distance
from the focus word to its headword is 3.2 word positions on the original sen-
tence. In case of the CCLPARSER the average distance from the focus word to
its headword is 1.4 word positions. This difference is explained by the inherent
bias of the CCLPARSER to establish local dependencies.

Secondly, we look at the overall structure of the parses. We do this with two
telling examples, one for each parser. The example for the MALTPARSER is
given in Figure 6.1. The example for the CCLPARSER is given in Figure 6.2.
Both figures show an example sentence, with each line-and-arrow connect-
ing a word with its corresponding headword. The examples illustrate that the
CCLPARSER discovers mainly local relations.

These observations imply that with human-designed dependency annotations,
many words link to a headword at a longer distance. In case of the machine-

6.3 | Experiments 119

derived dependency annotation most words link to the next word as headword,
at least on English data. With the way we add the information to the model,
i.e., using the linked headword as a tag, the former seems more useful.

6.3.2 Results on Confusibles

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

1e+03 1e+04 1e+05 1e+06 1e+07

A
cc

u
ra

cy

Training set size

W
PW-wf

PW
P-wf

W-pwf

Figure 6.3: Learning curve for the human-defined dependency parses. We
plot all the five methods (baseline included). Y-axis denotes
the accuracy (from 0 to 1) and the X-axis the number of sen-
tences used for training. The X-axis is logarithmic.

The execution of our series of experiments for the confusibles problem is anal-
ogous to the series of experiments in Subsection 4.4.1 and Subsection 5.3.2.
We calculate the learning curves for the five different combination methods
(baseline included). Figure 6.3 shows the results for the human-designed de-
pendency parses and Figure 6.4 shows the results for the machine-derived de-
pendency parses.

The sizes of the n-grams used for the selections are measured. We visualize the
size of the sizes of the n-grams used for classification in a series of occurrence
graphs. The average size of the n-grams used is rather similar (see Figure 6.5
and 6.6).

We observe that, in both cases, the learning curve of the combination method
P-wf (only tags with the text token as focus) resulted in the worst performance.
P-wf only has the headword information of the context to base its decisions on,
and not the words themselves. Consequently, the most important contextual

120 Models with Complex Annotation

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

1e+03 1e+04 1e+05 1e+06 1e+07

A
cc

u
ra

cy

Training set size

W
PW-wf

PW
P-wf

W-pwf

Figure 6.4: Learning curve for the machine-derived dependency parses.
We plot all the five methods (baseline included). Y-axis de-
notes the accuracy (from 0 to 1) and the X-axis the number of
sentences used for training. The X-axis is logarithmic.

information is not used. Furthermore we observe that, unlike P-wf, all other
methods approach the performance of the model without added annotations as
the training set size increases.

For both the human-defined and the machine-generated annotation we observe
that the differences between PW-wf, PW, W-pwf, and W decrease as the train-
ing size increases. We observe that the human-defined annotation approaches
the learning curve without annotation less than the machine-derived annota-
tion. For both cases we observe that at no point the enriched learning curves
outperform the original curve W. The difference of the learning curves with
annotation to the original curve W is significant in all cases with a p-value
< 2.2e−16 for both the human-designed and the machine-derived annotations.

We also observe that, for both annotations, the curves for PW and W-pwf start
with a performance much lower than would be expected when compared to the
other learning curves. If we observe the amount of items for which the system
cannot make a decision we see that for those two curves the system encoun-
ters too much sparseness to make a decision at the start of the learning curve.
Note that if the system does not make a decision, the item is counted as erro-
neous. We show the results of these observations only for the human-designed
dependency parse in Figure 6.7. We postulate that this is caused by too much
sparseness, even when just using the focus position. When PW and W-pwd
only use the focus position they try to calculate the probability P (wordtag).

6.3 | Experiments 121

 1

 10

 100

 1000

 10000

 100000

 2 4 6 8 10 12

#
 o

cc
u
re

n
ce

s

N-gram size

9000
45000
90000

450000
900000

5417901

(a) Only text

 1

 10

 100

 1000

 10000

 100000

 2 4 6 8 10 12

#
 o

cc
u
re

n
ce

s

N-gram size

9000
45000
90000

450000
900000

5417901

 1

 10

 100

 1000

 10000

 100000

 2 4 6 8 10 12

#
 o

cc
u
re

n
ce

s

N-gram size

9000
45000
90000

450000
900000

5417901

(b) Combination method PW-wf (c) Combination method PW

 1

 10

 100

 1000

 10000

 2 4 6 8 10 12

#
 o

cc
u
re

n
ce

s

N-gram size

9000
45000
90000

450000
900000

5417901

 1

 10

 100

 1000

 10000

 100000

 2 4 6 8 10 12

#
 o

cc
u
re

n
ce

s

N-gram size

9000
45000
90000

450000
900000

5417901

(d) Combination method P-wf (e) Combination method W-pwf

Figure 6.5: Occurrence graph for the confusibles problem on the human-
defined dependency parses. For each training set size, the
number of times each n-gram size was used in making the
alternative selection is shown. The Y-axis is logarithmic. One
occurrence graph is shown for each combination method as
well as a comparative occurrence graph in (a) for the original
experiment in Subsection 4.4.1.

122 Models with Complex Annotation

 1

 10

 100

 1000

 10000

 100000

 2 4 6 8 10 12

#
 o

cc
u
re

n
ce

s

N-gram size

9000
45000
90000

450000
900000

5417901

(a) Only text

 1

 10

 100

 1000

 10000

 100000

 2 4 6 8 10 12

#
 o

cc
u
re

n
ce

s

N-gram size

9000
45000
90000

450000
900000

5417901

 1

 10

 100

 1000

 10000

 100000

 2 4 6 8 10 12

#
 o

cc
u
re

n
ce

s

N-gram size

9000
45000
90000

450000
900000

5417901

(b) Combination method PW-wf (c) Combination method PW

 1

 10

 100

 1000

 10000

 100000

 2 4 6 8 10 12

#
 o

cc
u
re

n
ce

s

N-gram size

9000
45000
90000

450000
900000

5417901

 1

 10

 100

 1000

 10000

 2 4 6 8 10 12

#
 o

cc
u
re

n
ce

s

N-gram size

9000
45000
90000

450000
900000

5417901

(d) Combination method P-wf (e) Combination method W-pwf

Figure 6.6: Occurrence graph for the confusibles problem on the
machine-derived dependency parses. For each training set
size, the number of times each n-gram size was used in mak-
ing the alternative selection is shown. The Y-axis is logarith-
mic. One occurrence graph is shown for each combination
method as well as a comparative occurrence graph in (a) for
the original experiment in Subsection 4.4.1.

6.3 | Experiments 123

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

1e+03 1e+04 1e+05 1e+06 1e+07

%
 o

f
u
n
d
ec

id
ed

 i
te

m
s

Training set size

W
PW-wf

PW
P-wf

W-pwf

Figure 6.7: Learning curve for the confusible problem using the human-
defined tagset. The curve shows the percentage of items for
which the system was unable to make a decision. The X-axis
denotes the number of sentences used for training. The X-axis
is logarithmic.

As the tag is also a word in the case of dependency parsing, it causes the lan-
guage model to be too sparse to make a decision, especially for small amounts
of training data.

6.3.3 Results on Verb and Noun Agreement

The execution of our series of experiments for the verb and noun agreement
problem was as follows. Analogously to Subsection 4.4.2 and Subsection 5.3.3
we run a series of experiments to create learning curves for all four combination
methods involving annotations. We give the results as a series of graphs. In
Figure 6.8 we show the learning curves for the human-designed dependency
parses and in Figure 6.9 we show the learning curves for the machine-generated
dependency parses.

We observe that, similarly to the results for the confusibles in Subsection 6.3.2,
the systems with annotations do not outperform the system from Chapter 4 at
any point. Second, similarity with the results for the confusibles is that the
combination methods PW and W-pwf again perform quite badly with small
amounts of training data. This is caused by the same reason as in the con-
fusibles experiments from Subsection 6.3.2. The difference of the learning

124 Models with Complex Annotation

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

1e+03 1e+04 1e+05 1e+06 1e+07

A
cc

u
ra

cy

Training set size

W
PW-wf

PW
P-wf

W-pwf

Figure 6.8: Learning curve for the human-defined dependency parses
on the verb and noun agreement problem. We plot all the
five methods (baseline included). Y-axis denotes the accuracy
(from 0 to 1) and the X-axis the number of sentences used for
training. The X-axis is logarithmic.

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

1e+03 1e+04 1e+05 1e+06 1e+07

A
cc

u
ra

cy

Training set size

W
PW-wf

PW
P-wf

W-pwf

Figure 6.9: Learning curve for the machine-derived dependency parses
on the verb and noun agreement problem. We plot all the
five methods (baseline included). Y-axis denotes the accuracy
(from 0 to 1) and the X-axis the number of sentences used for
training. The X-axis is logarithmic.

6.3 | Experiments 125

 1

 10

 100

 1000

 10000

 100000

 2 4 6 8 10 12

#
 o

cc
u
re

n
ce

s

N-gram size

9000
45000
90000

450000
900000

5417901

(a) Only text

 1

 10

 100

 1000

 10000

 100000

 2 4 6 8 10 12

#
 o

cc
u
re

n
ce

s

N-gram size

9000
45000
90000

450000
900000

5417901

 1

 10

 100

 1000

 10000

 2 4 6 8 10 12

#
 o

cc
u
re

n
ce

s

N-gram size

9000
45000
90000

450000
900000

5417901

(b) Combination method PW-wf (c) Combination method PW

 1

 10

 100

 1000

 10000

 100000

 2 4 6 8 10 12

#
 o

cc
u
re

n
ce

s

N-gram size

9000
45000
90000

450000
900000

5417901

 1

 10

 100

 1000

 10000

 2 4 6 8 10 12

#
 o

cc
u
re

n
ce

s

N-gram size

9000
45000
90000

450000
900000

5417901

(d) Combination method P-wf (e) Combination method W-pwf

Figure 6.10: Occurrence graph for the verb and noun agreement problem
on the human-defined dependency parses. For each training
set size, the number of times each n-gram size was used in
making the alternative selection is shown. The Y-axis is log-
arithmic. One occurrence graph is shown for each combina-
tion method as well as a comparative occurrence graph in (a)
for the original experiment in Subsection 4.4.2.

126 Models with Complex Annotation

 1

 10

 100

 1000

 10000

 100000

 2 4 6 8 10 12

#
 o

cc
u
re

n
ce

s

N-gram size

9000
45000
90000

450000
900000

5417901

(a) Only text

 1

 10

 100

 1000

 10000

 100000

 2 4 6 8 10 12

#
 o

cc
u
re

n
ce

s

N-gram size

9000
45000
90000

450000
900000

5417901

 1

 10

 100

 1000

 10000

 100000

 2 4 6 8 10 12

#
 o

cc
u
re

n
ce

s

N-gram size

9000
45000
90000

450000
900000

5417901

(b) Combination method PW-wf (c) Combination method PW

 1

 10

 100

 1000

 10000

 100000

 2 4 6 8 10 12

#
 o

cc
u
re

n
ce

s

N-gram size

9000
45000
90000

450000
900000

5417901

 1

 10

 100

 1000

 10000

 100000

 2 4 6 8 10 12

#
 o

cc
u
re

n
ce

s

N-gram size

9000
45000
90000

450000
900000

5417901

(d) Combination method P-wf (e) Combination method W-pwf

Figure 6.11: Occurrence graph for the verb and noun agreement problem
on the machine-derived dependency parses. For each train-
ing set size, the number of times each n-gram size was used
in making the alternative selection is shown. The Y-axis is
logarithmic. One occurrence graph is shown for each combi-
nation method as well as a comparative occurrence graph in
(a) for the original experiment in Subsection 4.4.2.

6.3 | Experiments 127

curves with annotation to the original curve W is significant in all cases with
a p-value < 2.2e−16 for both the human-designed and the machine-derived
annotations.

6.3.4 Results on Prenominal Adjective Ordering

The execution of our series of experiments for the prenominal adjective re-
ordering problem is as follows. We run the experiments analogously to the
experiments on prenominal adjective reordering in Subsection 4.4.3 and Sub-
section 5.3.4 The resulting learning curves are shown in Figure 6.12 for the
human-defined dependency parses and in Figure 6.13 for the machine-derived
dependency parses. Furthermore, in Figure 6.14 we show the occurrence
graphs for the human-designed dependency annotations and in Figure 6.15 the
corresponding occurence graphs for the machine-generated dependency anno-
tations.

We note that the learning curves all perform roughly similar. The exceptions
here are the methods PW and W-pwf for both annotations. We remark that the
similarity between PW and W-pwf is the use of both the text-token and the
annotation on the focus position. This opposed to W, PW-wf, and P-wf which
all only use the text-token at the focus position. This observation suggests that,
with a text token and annotation token in the focus position the language model
suffers from increased sparseness. As with the confusibles and the verb and
noun agreement problem earlier in the chapter we observe that this is due to
the system not being able to make a decision due to the sparseness. For both
the human-defined and machine-derived dependency annotation the difference
of the curve for W with the curves with annotation is significant with a p-value
< 2.2e−16.

128 Models with Complex Annotation

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

1e+03 1e+04 1e+05 1e+06 1e+07

A
cc

u
ra

cy

Training set size

W
PW-wf

PW
P-wf

W-pwf

Figure 6.12: Learning curve for the human-defined dependency parses on
the prenominal adjective ordering problem. We plot all the
five methods (baseline included). Y-axis denotes the accu-
racy (from 0 to 1) and the X-axis the number of sentences
used for training. The X-axis is logarithmic.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

1e+03 1e+04 1e+05 1e+06 1e+07

A
cc

u
ra

cy

Training set size

W
PW-wf

PW
P-wf

W-pwf

Figure 6.13: Learning curve for the machine-derived dependency parses
on the prenominal adjective ordering problem. We plot all
the five methods (baseline included). Y-axis denotes the ac-
curacy (from 0 to 1) and the X-axis the number of sentences
used for training. The X-axis is logarithmic.

6.3 | Experiments 129

 1

 10

 100

 1000

 10000

 2 4 6 8 10 12

#
 o

cc
u
re

n
ce

s

N-gram size

9000
45000
90000

450000
900000

5417901

(a) Only text

 1

 10

 100

 1000

 10000

 2 4 6 8 10 12

#
 o

cc
u
re

n
ce

s

N-gram size

9000
45000
90000

450000
900000

5417901

 1

 10

 100

 1000

 10000

 2 4 6 8 10 12

#
 o

cc
u
re

n
ce

s

N-gram size

9000
45000
90000

450000
900000

5417901

(b) Combination method PW-wf (c) Combination method PW

 1

 10

 100

 1000

 10000

 100000

 2 4 6 8 10 12

#
 o

cc
u
re

n
ce

s

N-gram size

9000
45000
90000

450000
900000

5417901

 1

 10

 100

 1000

 10000

 2 4 6 8 10 12

#
 o

cc
u
re

n
ce

s

N-gram size

9000
45000
90000

450000
900000

5417901

(d) Combination method P-wf (e) Combination method W-pwf

Figure 6.14: Occurrence graph for the prenominal adjective ordering
problem on the human-defined dependency parses. For each
training set size, the number of times each n-gram size was
used in making the alternative selection is shown. The Y-axis
is logarithmic. One occurrence graph is shown for each com-
bination method as well as a comparative occurrence graph
in (a) for the original experiment in Subsection 4.4.3.

130 Models with Complex Annotation

 1

 10

 100

 1000

 10000

 2 4 6 8 10 12

#
 o

cc
u
re

n
ce

s

N-gram size

9000
45000
90000

450000
900000

5417901

(a) Only text

 1

 10

 100

 1000

 10000

 2 4 6 8 10 12

#
 o

cc
u
re

n
ce

s

N-gram size

9000
45000
90000

450000
900000

5417901

 1

 10

 100

 1000

 10000

 2 4 6 8 10 12

#
 o

cc
u
re

n
ce

s

N-gram size

9000
45000
90000

450000
900000

5417901

(b) Combination method PW-wf (c) Combination method PW

 1

 10

 100

 1000

 10000

 100000

 2 4 6 8 10 12

#
 o

cc
u
re

n
ce

s

N-gram size

9000
45000
90000

450000
900000

5417901

 1

 10

 100

 1000

 10000

 2 4 6 8 10 12

#
 o

cc
u
re

n
ce

s

N-gram size

9000
45000
90000

450000
900000

5417901

(d) Combination method P-wf (e) Combination method W-pwf

Figure 6.15: Occurrence graph for the prenominal adjective ordering
problem on the machine-derived dependency parses. For
each training set size, the number of times each n-gram size
was used in making the alternative selection is shown. The Y-
axis is logarithmic. One occurrence graph is shown for each
combination method as well as a comparative occurrence
graph in (a) for the original experiment in Subsection 4.4.3.

6.4 | Partial Answers to RQ3 and RQ4 131

6.4 Partial Answers to RQ3 and RQ4

In this chapter we investigated a language-model environment with depen-
dency annotation that uses ∞-grams. The investigations provide a basis to
achieve partial answers for the research questions RQ3 and RQ4. We repeat
RQ3 and RQ4 below. They are followed by our partial answers.

Research Question 3: Is there a benefit to including annotations
in the language model, measured as a better performance on alter-
native sequence selection tasks?

We attempt to answer RQ3 by employing two observations made on all the re-
sults presented above. First, no benefit is gained by including dependency an-
notation in the manner as presented above. Second, we observe that the meth-
ods with text-token and annotation token in the focus position (i.e., PW and
W-pwf) perform much worse than the other methods due to the sparseness
problems. Near the full training set they all converge to the results from Chap-
ter 4 (the system without annotation). However, all methods that use annotation
perform significantly worse than the method without annotation (i.e., W). In
summary, this type of annotation does not contribute to a better performance.

Research Question 4: Is there a difference in performance on al-
ternative sequence selection tasks when using human-designed an-
notations compared to machine-generated annotations?

We attempt to answer RQ4 by employing two observations on all the results
presented above. We see in the results above that the language models for both
types of dependency annotations perform worse than the language model with-
out annotation. The differences between the two annotations is most apparent
when looking at them qualitatively. We observe that the human-defined anno-
tation uses much longer dependencies than the machine-derived dependencies.
Furthermore, in case of the human-defined annotation there is additional infor-
mation available that we do not use (as the machine-derived dependencies lack
this information).

The results presented in this chapter raise the question as to why the addition of
dependency annotation does not result in an increase of performance. We may
speculate that including the headwords directly results in an increase in sparse-
ness, instead of combatting sparseness. Here, we remark that the approach of
Gao and Suzuki (2003) also directly uses the headword. In all cases the sys-
tem without annotation outperforms the experiments with annotations. In brief,
human-designed dependency annotation does not provide an advantage over
machine-generated dependency annotation in the way it is used here.

132 Models with Complex Annotation

6.5 Chapter Conclusions

In this chapter we investigated a language-model environment that can be char-
acterised as a model with dependency annotation. We focussed on the effect of
adding such annotations, and on the difference in performance between the
human-designed dependency annotation and the machine-derived dependency
annotation.

The experiments performed on the three alternative sequence selection prob-
lems led to detailed results for the language-model environment described in
this chapter. The result of the two types of annotation (human-defined and
machine-derived) were compared to each other, as well as to the results of
Chapter 4. From the experiments with combinations of annotations we may
conclude the following: (1) dependency annotations, when employed in this
manner, hamper the performance of the model; and (2) when using a merged
token combining the annotation and the word token in the focus position the
model performs considerable worse, due to sparseness.

However, human-designed dependency annotations usually contain extra infor-
mation that we do not employ. In the case of the human-designed dependency
annotation as used in this chapter this extra information includes the type of
dependency relation and part-of-speech tags.

Chapter 7

Conclusions and Future
Work

This chapter provides our final conclusions on language models for alternative
sequence selection and recommendations for future work. For clarity we pro-
vide an overview of the best results from all language model systems (from
Chapters 4, 5, and 6) in Table 7.1. The conclusions will be given in two parts.
First, in Section 7.1 we give our conclusions for each research question in turn.
Second, in Section 7.2 we answer our problem statements by using the answers
to our research questions.

In addition to the conclusions, in Section 7.3 we will give recommendations
for future work.

7.1 Answering the Research Questions

We will commence by, once again, reiterating our research questions. Each RQ
will be followed by a brief conclusion for the domain of alternative sequence
selection.

Research Question 1: Is there a need to predetermine or limit the
size of the n-grams used in language models? Is there an inherent
advantage or disadvantage to using a fixed-size n?

In the general case we are facing an ambiguous answer: restricting the size
of the n-gram is a disadvantage, however it does not impair performance. The

134 Conclusions and Future Work

L
M

type
confusibles

verb
and

noun
adjectives

no
annotation

98.19%
80.73%

76.59%
part-of-speech

hum
an-defined

PW
96.71%

79.74%
74.91%

P-w
f

92.03%
79.20%

68.54%
W

-pw
f

97.54%
79.12%

75.41%
PW

-w
f

97.52%
81.80%

76.42%
m

achine-generated
PW

98.17%
80.57%

76.59%
P-w

f
91.97%

73.92%
75.34%

W
-pw

f
98.17%

80.55%
76.59%

PW
-w

f
98.23%

80.84%
76.59%

dependency
hum

an-defined
PW

89.90%
62.25%

45.79%
P-w

f
81.44%

56.63%
49.48%

W
-pw

f
92.17%

65.95%
46.02%

PW
-w

f
93.50%

72.36%
63.53%

m
achine-generated

PW
93.30%

68.10%
54.27%

P-w
f

79.11%
55.92%

69.13%
W

-pw
f

93.80%
72.88%

54.58%
PW

-w
f

96.00%
70.75%

65.68%

Table
7.1:

A
n

overview
ofthe

results
achieved

by
allL

M
E

s
(from

C
hap-

ters
4

5,and
6).R

esults
are

given
in

percentage
of

correctde-
cisions

(accuracy).
N

um
bers

in
bold

face
are

the
best

results
in

each
colum

n
and

do
notdiffer

significantly
(M

cN
em

ar
test

p-value
>

0
.0
5).T

hey
do

differsignificantly
w

ith
the

num
bers

notin
bold

face.

7.1 | Answering the Research Questions 135

natural limit for the n-gram is reached quite soon in practice, and this natural
limit is determined by the largest size n-gram. It is a disadvantage to fix the n
in cases where a probability for a larger subsequence than n tokens.

Research Question 2: If the size of the n-grams is not fixed in
advance, how can we still generate comparable distributions when
we select among alternative sequences?

Owing to synchronous back-off we were able to show that there is no need
to predetermine and restrict the size of the n-gram in advance. However, the
sparseness of the training data used will naturally limit the size of the n-gram
that synchronous back-off uses for decisions. The optimal size of the n-gram
used for a decision between alternative sequences can differ for each set of
alternative sequences. This leads us to conclude that there is an advantage in
not predetermining the size of the n-gram. Using synchronous back-off, we
generate comparable distributions by synchronising the back-off mechanism
over alternative sequences. From our observations in Section 4.2 it is clear that
synchronous back-off works better than the other language model strategies
discussed in that section.

Research Question 3: Is there a benefit to including annotations
in the language model, measured as a better performance on alter-
native sequence selection tasks?

We attempt to answer RQ3 on the basis of three observations. We observe
that, given sufficient training material little benefit is gained by including lo-
cally dependent annotations such as part-of-speech tags. In our experiments,
we found two exceptions. First, in the case of verb and noun agreement, the
presence of human-designed part-of-speech tags adds useful information, re-
sulting in a significantly higher performance. Second, in all three alternative
sequence selection tasks the presence of the human-designed tagset signifi-
cantly improved the performance when using a small training set. This does
not hold for the machine-derived tagset where there is no improvement and no
significant difference between the different systems. So it appears that, only
for small amounts of training data there exists an advantage when employing
human-designed part-of-speech tags.

In contrast, we face the following two observations relating to the dependency
annotations. First, no benefit is gained by including dependency annotation
in the manner proposed here. Second, we observe that the methods PW and
W-pw perform much worse than the other combination methods due to the
sparseness problems. In summary, dependency annotation does not deliver any
benefit and so it does not contribute to a better performance. The most likely
reason is sparseness due to directly including the headword as annotation.

136 Conclusions and Future Work

Research Question 4: Is there a difference in performance on al-
ternative sequence selection tasks when using human-designed an-
notations compared to machine-generated annotations?

We attempt to answer RQ4 with two observations. First, we see in the results
of Chapter 5 that the machine-generated part-of-speech tags generally perform
similarly (not significantly different) as the experiments without annotation.
The exception to this is P-wf, in which case it performs significantly worse
than the experiments without annotation. Second, we observe that for the ex-
periments with the human-designed part-of-speech tags, there is a significant
difference in performance between the experiments without annotation versus
the experiments with annotations.

However, for the dependency annotations (Chapter 6), we see in the results that
both dependency annotations perform significantly worse than the experiments
without annotation.

In brief, we may conclude that using human-defined part-of-speech annotations
can be useful for small amounts of training data.

In our experiments we observe that the machine-generated annotations do not
aid in the performance of the LME. In contrast, the human-defined annota-
tions aid performance in several, specific, cases. We speculate that this is the
case because the machine-derived annotations model information that is al-
ready present in the data itself.

7.2 Answering the Problem Statements

Here we will reiterate our problem statements, followed by the answers as they
pertain to each problem statement. We will formulate our answers in terms of
the answers to the RQs.

Problem Statement 1 (Flexibility): Is it helpful to create a statis-
tical language model that is flexible, i.e., not fixed in advance, with
regards to the n-gram size, for adequately handling the problem of
sparseness?

In Chapter 4 we answered RQ1 and RQ2. We showed that it is possible to
determine flexibly the size of the n-gram on a case-by-case basis. In theory
this is highly desirable, as it results in a model that better approximates the
ideal language model. In practise, the synchronous back-off method performs
rather better on alternative sequence selection than the other back-off methods

7.3 | Recommendations and Future Work 137

in our preliminary experiments, as shown in Section 4.2. However, we observe
that the average n-gram size used tends to be around 3. We also observed that
almost no n-grams of a size greater than 5 were used. In brief, we have created
a flexible language model that automatically determines the optimal n-gram
size to use.

Problem Statement 2 (Annotations): Do linguistically motivated
annotations and their automatically generated counterparts pro-
vide information that can be successfully used as a back-off step
to handle sparseness? Does alleviating sparseness in this way in-
crease performance on alternative sequence selection tasks?

In the Chapters 5 and 6 we answered RQ3 and RQ4, determining the answer
to this problem statement. In those chapters we observed, and concluded, that
the addition of linguistically motivated annotations as well as automatically
derived annotations do not provide the language model system with additional
useful information except in quite specific cases. Those specific cases involve
the human-designed part-of-speech tags and limited amounts of training ma-
terial. Should the amount of training material be further increased, then the
importance of the additions will continue to decrease.

7.3 Recommendations and Future Work

We complete this chapter by five recommendations for possible avenues of
further study.

First, for building language models, it holds that investigating the effects of us-
ing annotations on the performance can be beneficial if annotations are already
available. However, using more unannotated data is a more reliable source for
improving results.

Second, further studies on the effects of dependency annotations should be per-
formed. For instance, by not using the headword as a main feature, but by using
aspects pertaining to it as additional features (e.g., the part-of-speech tag of the
headword, the type of dependency relation). This could reduce sparseness and
might provide more usable long-distance information.

Thirth, fourth, and fifth, two related concepts could be further studied in the
context of our language models. The third recommendation is to encourage
the creation of more flexible, automatically discovered, back-off paths (i.e., not
user defined as in Bilmes and Kirchhof (2003) or this thesis), and the fourth rec-
ommendation is the investigation of flexibly implementing traditional smooth-
ing and interpolation methods in our language models. Furthermore, we note

138 Conclusions and Future Work

that it is limiting in many cases to only use the left context for calculating the
probability of a word in a sequence, as well as using a fixed back-off path. So,
the fifth recommendation is to investigate more general models of language that
include both left and right context when available, and flexible back-off strate-
gies. For instance, Van den Bosch (2006b) uses both left and right context in a
word prediction system based on k-nearest neighbour classification.

References

Abouelhoda, M., Kurtz, S., and Ohlebusch, E. (2004). Replacing suffix trees
with enhanced suffix arrays. Journal of Discrete Algorithms, 2(1):53–86.

Adriaans, P. and Van Zaanen, M. (2004). Computational grammar induction for
linguists. Grammars, 7:57–68. Special issue with the theme “Grammar
Induction”.

Baase, S. and Gelder, A. V. (2000). Computer algorithms. Addison Wesley
Longman, Boston.

Baayen, R. H., Piepenbrock, R., and van Rijn, H. (1993). The CELEX lexical
data base on CD-ROM. Linguistic Data Consortium, Philadelphia, PA.

Bailey, T. and Jain, A. K. (1978). A note on distance-weighted k-nearest neigh-
bor rules. IEEE Transactions on Systems, Man, and Cybernetics, SMC-
8(4):311–313.

Banko, M. and Brill, E. (2001). Scaling to very very large corpora for natural
language disambiguation. In Proceedings of the 39th Annual Meeting of
the Association for Computational Linguistics, pages 26–33. Association
for Computational Linguistics.

Biemann, C. (2006). Unsupervised part-of-speech tagging employing efficient
graph clustering. In Proceedings of the 21st International Conference on
computational Linguistics and 44th Annual Meeting of the Association for
Computational Linguistics: Student Research Workshop, COLING ACL
’06, pages 7–12, Stroudsburg, PA, USA. Association for Computational
Linguistics.

Biemann, C. (2007). Unsupervised and Knowledge-free Natural Language
Processing in the Structure Discovery Paradigm. PhD thesis, Leipzig
University.

Bilmes, J. and Kirchhof, K. (2003). Factored language models and generalized
parallel backoff. In Proceedings of HLT/NACCL, 2003.

140 REFERENCES

Brants, T. (2000). TnT – a statistical part-of-speech tagger. In Proceedings of
the 6th Applied NLP Conference, ANLP-2000, April 29 – May 3, 2000,
Seattle, WA, pages 224–231.

Brill, E. (1992). A simple rule-based part-of-speech tagger. In Proceedings of
the Third ACL Applied NLP, pages 152–155, Trento, Italy.

Buchholz, S. and Marsi, E. (2006). CoNLL-X shared task on multilingual
dependency parsing. In Proceedings of CoNLL-X, the Tenth Conference
on Computational Natural Language Learning, New York, NY.

Busser, G. and Morante, R. (2005). Designing an active learning based sys-
tem for corpus annotation. In Proceedings of the XXI Congresso de la
Sociedad Espanola para el Procesamiento del Lenguaje Natural, SEPLN-
2005, pages 375–381, Granada, Spain.

Canisius, S. (2009). Structured prediction for natural language processing: A
constraint satisfaction approach. PhD thesis, Tilburg University.

Canisius, S. and Tjong Kim Sang, E. (2007). A constraint satisfaction approach
to dependency parsing. In Proc. of the CoNLL Shared Task Session of
EMNLP-CoNLL 2007, pages 1124–1128, Prague, Czech Republic.

Canisius, S. and Van den Bosch, A. (2004). A memory-based shallow parser for
spoken Dutch. In Decadt, B., De Pauw, G., and Hoste, V., editors, Selected
papers from the Thirteenth Computational Linguistics in the Netherlands
Meeting, pages 31–45. University of Antwerp.

Canisius, S. and Van den Bosch, A. (2007). Recompiling a knowledge-based
dependency parser into memory. In Proceedings of the International Con-
ference on Recent Advances in Natural Language Processing (RANLP-
2007), pages 104–108, Borovets, Bulgaria.

Charniak, E., Carroll, G., Adcock, J., Cassandra, A., Gotoh, Y., Catz, J.,
Littman, M., and McCann, J. (1996). Taggers for parsers. Artificial Intel-
ligence, 85:45–57.

Chelba, C. and Jelinek, F. (1998). Exploiting syntactic structure for language
modeling. In Proceedings of the 36th Annual Meeting of the Associa-
tion for Computational Linguistics and 17th International Conference on
Computational Linguistics, Montréal, Quebec, Canada.

Chen, S. and Goodman, J. (1996). An empirical study of smoothing techniques
for language modelling. In Proceedings of the 34th Annual Meeting of the
ACL, pages 310–318. ACL.

Chen, S. and Goodman, J. (1998). An empirical study of smoothing techniques
for language modeling. Technical Report TR-10-98, Harvard University.

REFERENCES 141

Chodorow, M. and Leacock, C. (2000). An unsupervised method for detecting
grammatical errors. In Proceedings of NAACL‘00, pages 140–147.

Chu, Y. and Liu, T. (1965). On the shortest arborescence of a directed graph.
Science Sinica, 14:1396–1400.

Church, K. and Hanks, P. (1990). Word association norms, mutual information,
and lexicography. Computational Linguistics, 16(1):22–29.

Cost, S. and Salzberg, S. (1993). A weighted nearest neighbour algorithm for
learning with symbolic features. Machine Learning, 10:57–78.

Cover, T. M. and Hart, P. E. (1967). Nearest neighbor pattern classification.
Institute of Electrical and Electronics Engineers Transactions on Infor-
mation Theory, 13:21–27.

Cutting, D., Kupiec, J., Pedersen, J., and Sibun, P. (1992). A practical Part-of-
Speech tagger. In Proceedings Third ACL Applied NLP, pages 133–140,
Trento, Italy.

Daelemans, W., Van den Bosch, A., and Zavrel, J. (1999). Forgetting excep-
tions is harmful in language learning. Machine Learning, Special issue on
Natural Language Learning, 34:11–41.

Daelemans, W., Zavrel, J., and Berck, P. (1996a). Part-of-speech tagging for
Dutch with MBT, a memory-based tagger generator. In Van der Meer,
K., editor, Informatiewetenschap 1996, Wetenschappelijke bijdrage aan
de Vierde Interdisciplinaire Onderzoeksconferentie Informatiewetenchap,
pages 33–40, The Netherlands. TU Delft.

Daelemans, W., Zavrel, J., Berck, P., and Gillis, S. (1996b). MBT: A memory-
based part of speech tagger generator. In Ejerhed, E. and Dagan, I., edi-
tors, Proceedings of the Fourth Workshop on Very Large Corpora, pages
14–27. ACL SIGDAT.

Daelemans, W., Zavrel, J., Van der Sloot, K., and Van den Bosch, A. (2010).
TiMBL: Tilburg memory based learner, version 6.3, reference guide.
Technical Report ILK 10-01, ILK Research Group, Tilburg University.

De Jong, F. (1983a). Numerals as determiners. In Bennis, H. and Van Lessen
Kloeke, W., editors, Linguistics in the Netherlands, pages 95–104, Dor-
drecht, The Netherlands. Foris.

De Jong, F. (1983b). Sommige niet, andere wel; de verklaring van een raad-
selachtig verschil. In GLOT 6, pages 229–246, Dordrecht, The Nether-
lands.

142 REFERENCES

de la Higuera, C. (2005). A bibliographical study of grammatical inference.
Pattern Recognition, 38:1332–1348.

de la Higuera, C. (2010). Grammatical Inference, Learning Automata and
Grammars. Cambridge University Press, Cambridge.

Devijver, P. A. and Kittler, J. (1982). Pattern recognition. A statistical ap-
proach. Prentice-Hall, London, UK.

Dudani, S. (1976). The distance-weighted k-nearest neighbor rule. In IEEE
Transactions on Systems, Man, and Cybernetics, volume SMC-6, pages
325–327.

Eisner, J. (2000). Bilexical grammars and their cubic-time parsing algorithms.
In Bunt, H. and Nijholt, A., editors, Advances in Probabilistic and Other
Parsing Technologies, pages 29–62. Kluwer Academic Publishers, Nor-
well, MA, USA.

Even-Zohar, Y. and Roth, D. (2000). A classification approach to word predic-
tion. In Proceedings of the First North-American Conference on Compu-
tational Linguistics, pages 124–131, New Brunswick, NJ. ACL.

Feist, J. (2008). The order of premodifiers in English nominal phrases. PhD
thesis, The University of Auckland, Auckland, NZ.

Francis, W. and Kučera, H. (1982). Frequency Analysis of English Usage.
Houghton Mifflin Company, Boston, MA.

Freitag, D. (2004). Toward unsupervised whole-corpus tagging. In COLING
’04: Proceedings of the 20th international conference on Computational
Linguistics, page 357, Morristown, NJ, USA. Association for Computa-
tional Linguistics.

Gale, W. A. and Church, K. W. (1994). What’s wrong with adding one? In
Corpus-Based Research into Language, pages 189–198.

Gao, J. and Suzuki, H. (2003). Unsupervised learning of dependency struc-
ture for language modeling. In Proceedings of the 41st Annual Meeting
on Association for Computational Linguistics - Volume 1, ACL ’03, pages
521–528, Stroudsburg, PA, USA. Association for Computational Linguis-
tics.

Garside, R., Leech, G., and McEnery, A. (1997). Corpus Annotation. Long-
man, London and New York.

Geertzen, J. (2003). String alignment in grammatical induction: What suffix
trees can do. ILK Research Group Technical Report Series 03-11, Tilburg
University.

REFERENCES 143

Golding, A. and Roth, D. (1999). A Winnow-Based Approach to Context-
Sensitive Spelling Correction. Machine Learning, 34(1–3):107–130.

Golding, A. R. (1995). A Bayesian hybrid method for context-sensitive
spelling correction. In Proceedings of the 3rd workshop on very large
corpora, ACL-95, pages 39–53.

Good, I. J. (1953). The population frequencies of species and the estimation of
population parameters. Biometrika, 40:237–264.

Gorla, J., Goyal, A., and Sangal, R. (2007). Two approaches for building an
unsupervised dependency parser and their other applications. In Proceed-
ings of the 22nd national conference on Artificial intelligence - Volume 2,
pages 1860–1861, Vancouver, British Columbia, Canada. AAAI Press.

Grishman, R., Macleod, C., and Meyers, A. (1994). Comlex syntax: Building
a computational lexicon. In Proceedings of the 15th International Con-
ference on Computational Linguistics, COLING-94, pages 268–272, New
York. New York University.

Grünwald, P. (1996). A minimum description length approach to grammar in-
ference. In Wermter, S., Riloff, E., and Scheler, G., editors, Connectionist,
Statistical and Symbolic Approaches to Learning for Natural Language
Processing, volume 1040 of Lecture Notes in Artificial Intelligence, pages
203–216. Springer-Verlag, Berlin.

Grünwald, P. D. (2007). The Minimum Description Length Principle. MIT
Press, US.

Guiasu, S. and Shenitzer, A. (1985). The principle of maximum entropy. The
Mathematical Intelligencer, 7(1).

Gusfield, D. (1997). Algorithms on Strings, Trees and Sequences. University
of Cambridge, Cambridge.

Hajič, J., Ciaramita, M., Johansson, R., Kawahara, D., Martı́, M. A., Màrquez,
L., Meyers, A., Nivre, J., Padó, S., Štěpánek, J., Straňák, P., Surdeanu, M.,
Xue, N., and Zhang, Y. (2009). The CoNLL-2009 shared task: Syntactic
and semantic dependencies in multiple languages. In Proc. of CoNLL-
2009: Shared Task, pages 1–18, Boulder, Colorado, USA.

Hall, J., Nilsson, J., Nivre, J., Eryigit, G., Megyesi, B., Nilsson, M., and Saers,
M. (2007). Single malt or blended? a study in multilingual parser opti-
mization. In Proceedings of the CoNLL Shared Task Session of EMNLP-
CoNLL 2007, pages 933–939.

144 REFERENCES

Headden III, W. P., Johnson, M., and McClosky, D. (2009). Improving un-
supervised dependency parsing with richer contexts and smoothing. In
Proceedings of Human Language Technologies: The 2009 Annual Con-
ference of the North American Chapter of the Association for Compu-
tational Linguistics, pages 101–109, Boulder, Colorado. Association for
Computational Linguistics.

Hirst, G. and Budanitsky, A. (2005). Correcting real-word spelling errors by
restoring lexical cohesion. Natural Language Engineering, 11(1):87–111.

Huang, J. H. and Powers, D. W. (2001). Large scale experiments on correction
of confused words. In Australasian Computer Science Conference Pro-
ceedings, pages 77–82, Gold Coast, Queensland, Australia. Bond Univer-
sity.

Jelinek, F. (1998). Statistical Methods for Speech Recognition. The MIT Press,
Cambridge, MA.

Jurafsky, D. and Martin, J. H. (2000). Speech and Language Processing: An
Introduction to Natural Language Processing, Computational Linguistics,
and Speech Recognition. Prentice Hall, Englewood Cliffs, New Jersey.

Katz, S. M. (1987). Estimation of probabilities from sparse data for the lan-
guage model component of a speech recognizer. IEEE Transactions on
Acoustics, Speech and Signal Processing, ASSP-35:400–401.

Kingsbury, P., Palmer, M., and Marcus, M. (2002). Adding semantic annotation
to the Penn Treebank. In Proceedings of the Human Language Technology
Conference, San Diego, CA.

Knuth, D. E. (1973). The Art of Computer Programming, volume 3: Sorting
and Searching. Addison-Wesley, Reading, MA.

Kukich, K. (1992). Techniques for automatically correcting words in text. ACM
Computing Surveys, 24(4):377–439.

Kučera, H. and Francis, W. N. (1967). Computational Analysis of Present-Day
American English. Brown University Press, Providence, RI.

Lapata, M. and Keller, F. (2004). The Web as a Baseline: Evaluating the Per-
formance of Unsupervised Web-based Models for a Range of NLP Tasks.
In Dumais, S., Marcu, D., and Roukos, S., editors, HLT-NAACL 2004:
Main Proceedings, pages 121–128, Boston, MA. Association for Compu-
tational Linguistics.

Lee, J. and Seneff, S. (2006). Automatic Grammar Correction for Second-
Language Learners. In Ninth International Conference on Spoken Lan-
guage Processing, pages 1978–1981. ISCA.

REFERENCES 145

Lee, J. and Seneff, S. (2008). Correcting misuse of verb forms. In Proceed-
ings of ACL-08: HLT, pages 174–182, Columbus, Ohio. Association for
Computational Linguistics.

Leech, G., Garside, R., and Bryant, M. (1994). Claws4: The tagging of the
british national corpus.

Levenshtein, V. (1966). Binary codes capable of correcting deletions, inser-
tions, and reversals. Sovjet Physics Doklady, 10:707–710.

Lewis, D., Yang, Y., Rose, T., and Li, F. (2004). RCV1: A new benchmark
collection for text categorization research. Journal of Machine Learning
Research, 5:361–397.

Magerman, D. and Marcus, M. (1990). Parsing a natural language using mutual
information statistics. In Proceedings of 8th. conference on AI (AAAI-90),
volume 2, pages 984–989.

Malouf, R. (2000). The order of prenominal adjectives in natural language
generation. In Proceedings of the 38th Annual Meeting of the Association
for Computational Linguistics, pages 85–92, New Brunswick, NJ. ACL.

Manber, U. and Myers, G. (1990). Suffix arrays: a new method for on-line
string searches. In SODA ’90: Proceedings of the first annual ACM-
SIAM symposium on Discrete algorithms, pages 319–327, Philadelphia,
PA, USA. Society for Industrial and Applied Mathematics.

Mangu, L. and Brill, E. (1997). Automatic rule acquisition for spelling correc-
tion. In Proceedings of the International Conference on Machine Learn-
ing, pages 187–194.

Manning, C. and Schütze, H. (1999). Foundations of Statistical Natural Lan-
guage Processing. The MIT Press, Cambridge, MA.

Manzini, G. and Ferragina, P. (2004). Engineering a lightweight suffix array
construction algorithm. Algorithmica, 40:33–50.

Marcus, M., Santorini, S., and Marcinkiewicz, M. (1993). Building a Large
Annotated Corpus of English: the Penn Treebank. Computational Lin-
guistics, 19(2):313–330.

Markov, A. A. (2006). An example of statistical investigation of the text Eu-
gene Onegin concerning the connection of samples in chains. Science in
Context, 19(4):591–600.

Màrquez, L. and Padró, L. (1997). A flexible pos tagger using an automatically
acquired language model. In Proceedings of EACL/ACL 1997, pages 238–
245, Madrid, Spain.

146 REFERENCES

Mays, E., Damerau, F. J., and Mercer, R. L. (1991). Context based spelling
correction. Information Processing and Management, 27(5):517–522.

McDonald, R. and Nivre, J. (2007). Characterizing the errors of data-driven
dependency parsing models. In Proceedings of the 2007 Joint Conference
on Empirical Methods in Natural Language Processing and Computa-
tional Natural Language Learning, pages pp. 122–131. Association for
Computational Linguistics.

McDonald, R. and Pereira, F. (2006). Online learning of approximate de-
pendency parsing algorithms. In Proceedings of the 11th Conference of
the European Chapter of the Association for Computational Linguistics
(EACL), pages 81–88.

McDonald, R., Pereira, F., Ribarov, K., and Hajič, J. (2005). Non-projective
dependency parsing using spanning tree algorithms. In Proceedings of
the conference on Human Language Technology and Empirical Methods
in Natural Language Processing, pages 523–530.

McNemar, Q. (1947). Note on the Sampling Error of the Difference Between
Correlated Proportions or Percentages. Psychometrika, 12(2):153–157.

Miller, G., Beckwith, R., Fellbaum, C., Gross, D., and Miller, K. (1990). Word-
net: An on-line lexical database. International Journal of Lexicography,
3(4):235–312.

Mitchell, M. (2009). Class-based ordering of prenominal modifiers. In Pro-
ceedings of the 12th European Workshop on Natural Language Gener-
ation, ENLG ’09, pages 50–57, Stroudsburg, PA, USA. Association for
Computational Linguistics.

Mitton, R. (1996). English Spelling and the Computer. Longman, Harlow,
Essex, UK.

Morante, R., Van Asch, V., and Van den Bosch, A. (2009a). Dependency pars-
ing and semantic role labeling as a single task. In Proceedings of the
7th International Conference on Recent Advances in Natural Language
Processing (RANLP-2009),, pages 275–280, Borovets, Bulgaria.

Morante, R., Van Asch, V., and Van den Bosch, A. (2009b). Joint memory-
based learning of syntactic and semantic dependencies in multiple lan-
guages. In Proceedings of the Thirteenth Conference on Computational
Natural Language Learning (CoNLL): Shared Task,, pages 25–30, Boul-
der, CO, USA.

Morrison, D. R. (1968). Patricia—practical algorithm to retrieve information
coded in alphanumeric. J. ACM, 15(4):514–534.

REFERENCES 147

Nivre, J. (2003). An efficient algorithm for projective dependency parsing. In
Proceedings of the 8th International Workshop on Parsing Technologies
(IWPT), pages 149–160.

Nivre, J., Hall, J., Kübler, S., McDonald, R., Nilsson, J., Riedel, S., and Yuret,
D. (2007a). The CoNLL 2007 shared task on dependency parsing. In
Proceedings of the CoNLL Shared Task Session of EMNLP-CoNLL 2007,
pages 915–932, Prague, Czech Republic. Association for Computational
Linguistics.

Nivre, J., Hall, J., and Nilsson, J. (2004). Memory-based dependency parsing.
In Ng, H. T. and Riloff, E., editors, Proceedings of the Eighth Conference
on Computational Natural Language Learning (CoNLL 2004), pages 49–
57, Boston, MA.

Nivre, J., Hall, J., and Nilsson, J. (2006). Maltparser: A data-driven parser-
generator for dependency parsing. In Proceedings of LREC-2006, pages
2216–2219.

Nivre, J., Hall, J., Nilsson, J., Chanev, A., Eryigit, G., Kübler, S., Marinov,
S., and Marsi, E. (2007b). MaltParser: a language-independent system
for data-driven dependency parsing. Natural Language Engineering,
13(2):95–135.

Nivre, J. and McDonald, R. (2008). Integrating graph-based and transition-
based dependency parsers. In Proceedings of ACL-08: HLT, pages 950–
958, Columbus, Ohio. Association for Computational Linguistics.

Nøklestad, A. (2009). A Machine Learning Approach to Anaphora Resolu-
tion Including Named Entity Recognition, PP Attachment Disambigua-
tion, and Animacy Detection. PhD thesis, University of Oslo.

Oostdijk, N., Reynaert, M., Monachesi, P., Van Noord, G., Ordelman, R., Schu-
urman, I., and Vandeghinste, V. (2008). From D-Coi to SoNaR: A refer-
ence corpus for Dutch. In Proceedings of the Sixth International Lan-
guage Resources and Evaluation (LREC’08), Marrakech, Morocco.

R Development Core Team (2010). R: A Language and Environment for Sta-
tistical Computing. R Foundation for Statistical Computing, Vienna, Aus-
tria. ISBN 3-900051-07-0.

Ratnaparkhi, A. (1996). A maximum entropy part-of-speech tagger. In Pro-
ceedings of the Conference on Empirical Methods in Natural Language
Processing, May 17-18, 1996, University of Pennsylvania.

Reynaert, M. (2005). Text-induced spelling correction. PhD thesis, Tilburg
University.

148 REFERENCES

Reynaert, M. (2008). All, and only, the errors: More complete and consis-
tent spelling and OCR-error correction evaluation. In Proceedings of the
Sixth International Language Resources and Evaluation (LREC’08), Mar-
rakech, Morocco.

Sandra, D., Daems, F., and Frisson, S. (2001). Zo helder en toch zoveel fouten!
wat leren we uit psycholinguı̈stisch onderzoek naar werkwoordfouten bij
ervaren spellers? Tijdschrift van de Vereniging voor het Onderwijs in het
Nederlands, 30(3):3–20.

Schaback, J. and Li, F. (2007). Multi-level feature extraction for spelling cor-
rection. In IJCAI-2007 Workshop on Analytics for Noisy Unstructured
Text Data, pages 79–86, Hyderabad, India.

Schütze, H. (1993). Part-of-speech induction from scratch. In Proceedings of
the Annual Meeting of the ACL, pages 251–258.

Seginer, Y. (2007). Fast unsupervised incremental parsing. In Proceedings of
the 45th Annual Meeting of the Association of Computational Linguistics,
pages 384–391, Prague, Czech Republic. Association for Computational
Linguistics.

Shaw, J. and Hatzivassiloglou, V. (1999). Ordering among premodifiers. In
Proceedings of the 37th Annual Meeting of the Association for Computa-
tional Linguistics, pages 135–143, College Park, Maryland, USA. Asso-
ciation for Computational Linguistics.

Spitkovsky, V. I., Alshawi, H., and Jurafsky, D. (2009). Baby Steps: How
“Less is More” in unsupervised dependency parsing. In NIPS: Grammar
Induction, Representation of Language and Language Learning, pages 1–
10.

Steetskamp, R. (1995). An implementation of a probabilistic tagger. Master’s
thesis, TOSCA Research Group, University of Nijmegen, Nijmegen, The
Netherlands.

Stehouwer, H. and Van den Bosch, A. (2009). Putting the t where it belongs:
Solving a confusion problem in Dutch. In Verberne, S., van Halteren,
H., and Coppen, P.-A., editors, Computational Linguistics in the Nether-
lands 2007: Selected Papers from the 18th CLIN Meeting, pages 21–36,
Nijmegen, The Netherlands.

Stehouwer, H. and Van Zaanen, M. (2009a). Language models for contex-
tual error detection and correction. In Proceedings of the EACL 2009
Workshop on Computational Linguistic Aspects of Grammatical Infer-
ence, pages 41–48, Athens, Greece.

REFERENCES 149

Stehouwer, H. and Van Zaanen, M. (2009b). Token merging in language
model-based confusible disambiguation. In Proceedings of the 21st
Benelux Conference on Artificial Intelligence (BNAIC-2009), pages 241–
248, Eindhoven, The Netherlands.

Stehouwer, H. and Van Zaanen, M. (2010a). Enhanced suffix arrays as lan-
guage models: Virtual k-testable languages. In Sempere, J. and Garcı́a,
P., editors, Grammatical Inference: Theoretical Results and Applications,
volume 6339 of Lecture Notes in Computer Science, pages 305–308.
Springer Berlin / Heidelberg.

Stehouwer, H. and Van Zaanen, M. (2010b). Finding patterns in strings using
suffixarrays. In Proceedings of Computational Linguistics—Applications,
2010, pages 151–158. International Multiconference on Computer Sci-
ence and Information Technology.

Stehouwer, H. and Van Zaanen, M. (2010c). Using suffix arrays as language
models: Scaling the n-gram. In Proceedings of the 22nd Benelux Confer-
ence on Artificial Intelligence (BNAIC).

Steinbach, M., Karypis, G., and Kumar, V. (2000). A comparison of document
clustering techniques. In KDD Workshop on Text Mining.

Stolcke, A. (2002). SRILM – An extensible language modeling toolkit. In
Proceedings of the International Conference on Spoken Language Pro-
cessing, pages 901–904, Denver, Colorado.

Sun, G., Liu, X., Cong, G., Zhou, M., Xiong, Z., Lee, J., and Lin, C. (2007).
Detecting erroneous sentences using automatically mined sequential pat-
terns. In Proceedings of the 45th Annual Meeting of the Association of
Computational Linguistics, pages 81–88, Prague, Czech Republic. Asso-
ciation for Computational Linguistics.

Surdeanu, M., Johansson, R., Meyers, A., Màrquez, L., and Nivre, J. (2008).
The CoNLL-2008 shared task on joint parsing of syntactic and semantic
dependencies. In Proc. of CoNLL-2008.

Ukkonen, E. (1995). On-line construction of suffix trees. Algorithmica,
14(3):249–260.

Van Delden, S., Bracewell, D. B., and Gomez, F. (2004). Supervised and
unsupervised automatic spelling correction algorithms. In Zhang, D.,
Grégoire, É., and DeGroot, D., editors, Proceedings of the 2004 IEEE
International Conference on Information Reuse and Integration, pages
530–535, Las Vegas, NV.

150 REFERENCES

Van den Bosch, A. (2006a). All-word prediction as the ultimate confusible
disambiguation. In Proceedings of the HLT-NAACL Workshop on Com-
putationally hard problems and joint inference in speech and language
processing, New York, NY.

Van den Bosch, A. (2006b). Scalable classification-based word prediction and
confusible correction. Traitement Automatique des Langues, 46(2):39–63.

Van den Bosch, A. (2009). Machine learning. In Lüdeling, A. and Kytö, M.,
editors, Corpus Linguistics: An International Handbook, volume 2, pages
855–872. Walter de Gruyter, Berlin.

Van den Bosch, A. and Buchholz, S. (2002). Shallow parsing on the basis
of words only: A case study. In Proceedings of the 40th Meeting of the
Association for Computational Linguistics, pages 433–440.

Van den Bosch, A., Busser, G., Canisius, S., and Daelemans, W. (2007). An
efficient memory-based morpho-syntactic tagger and parser for Dutch. In
Dirix, P., Schuurman, I., Vandeghinste, V., and Van Eynde, F., editors,
Computational Linguistics in the Netherlands: Selected Papers from the
Seventeenth CLIN Meeting, pages 99–114, Leuven, Belgium.

Van der Beek, L., Bouma, G., Malouf, R., and Van Noord, G. (2001). The
Alpino Dependency Treebank. In Selected Papers from the Twelfth Com-
putational Linguistics in the Netherlands Meeting, CLIN-2001, Amster-
dam, The Netherlands. Rodopi.

Van Eynde, F. (2004). Part of speech tagging en lemmatisering van het Cor-
pus Gesproken Nederlands. Technical report, Centrum voor Computer-
linguı̈stiek, K.U. Leuven.

Van Eynde, F., Zavrel, J., and Daelemans, W. (2000). Part of speech tagging
and lemmatisation for the Spoken Dutch Corpus. In In Proceedings of
LREC’2000, pages 1427–1433.

Van Rijsbergen, C. (1979). Information Retrieval. Buttersworth, London.

Van Zaanen, M. (2000). ABL: Alignment-Based Learning. In Proceedings of
the 18th International Conference on Computational Linguistics (COL-
ING); Saarbrücken, Germany, pages 961–967. Association for Computa-
tional Linguistics.

Van Zaanen, M. (2010). Suffix tree package. http://ilk.uvt.nl/ menno/research/-
software/suffixtree.

Vandekerckhove, B., Sandra, D., and Daelemans, W. (2011). Selective impair-
ment of adjective order constraints as overeager abstraction: An expansion
on Kemmerer et al. (2009). Manuscript submitted for publication.

http://ilk.uvt.nl/~menno/research/software/suffixtree
http://ilk.uvt.nl/~menno/research/software/suffixtree

REFERENCES 151

Viterbi, A. J. (1967). Error bounds for convolutional codes and an asymptot-
ically optimum decoding algorithm. IEEE Transactions on Information
Theory, 13:260–269.

Warnock, T. and Wendroff, B. (1988). Search tables in computer chess. In
ICCA Journal, volume 11–1, pages 10–13.

Weiss, S. and Kulikowski, C. (1991). Computer systems that learn. San Mateo,
CA: Morgan Kaufmann.

Wilcox-O’Hearn, L. A., Hirst, G., and Budanitsky, A. (2008). Real-Word
spelling correction with trigrams: A reconsideration of the Mays, Dam-
erau, and Mercer model. In Gelbukh, A., editor, Proceedings of the Com-
putational Linguistics and Intelligent Text Processing 9th International
Conference, CICLing 2008, volume LNCS 4919, pages 605–616, Berlin,
Germany. Springer Verlag.

Wu, D., Sui, Z., and Zhao, J. (1999). An information-based method for se-
lecting feature types for word prediction. In Proceedings of the Sixth
European Conference on Speech Communication and Technology, EU-
ROSPEECH’99, Budapest.

Wu, M.-W. and Su, K.-Y. (1993). Corpus-based compound extraction with
mutual information and relative frequency count. In Proceedings of RO-
CLING VI, pages 207–216.

Yamamoto, M. and Church, K. (2001). Using suffix arrays to compute term
frequency and document frequency for all substrings in a corpus. Compu-
tational Linguistics, 27:28–37.

Yarowsky, D. (1994). Decision lists for lexical ambiguity resolution: applica-
tion to accent restoration in Spanish and French. In Proceedings of the
Annual Meeting of the ACL, pages 88–95.

Younger, D. (1967). Recognition and parsing of context-free languages in time
n3. Information and Control, 10(2):189–208.

Zavrel, J. and Daelemans, W. (1999). Recent advances in memory-based part-
of-speech tagging. In VI Simposio Internacional de Comunicacion Social,
pages 590–597.

Zobrist, A. L. (1970). A new hashing method with application for game play-
ing. In ICCA Journal (republished), volume 13–2, pages 69–73.

Summary

Over the last decades, language modelling has played an important part in nat-
ural language processing. However, the flexibility of the language models has
not increased over time, and problems with data sparseness persist. Our re-
search is motivated by our desire to provide a language model paradigm that is
flexible and less effected by sparseness.

Derived from the motivation for the research, we phrase the following two
problem statements: (PS1) Is it helpful to create a statistical language model
that is flexible, i.e., not fixed in advance, with regards to the n-gram size, for
adequately handling the problem of sparseness?, and (PS2) Do linguistically
motivated annotations and their automatically generated counterparts provide
information that can be successfully used as a back-off step to handle sparse-
ness? Does alleviating sparseness in this way increase performance on alter-
native sequence selection tasks? To address the problem statements, we in-
vestigate several language model environments on three alternative sequence
selection problems.

As language model environments we investigate (1) a flexible language model
(in terms of the size of the n-grams used) without annotation, (2) a flexible
language model enriched with either the human-designed or machine-derived
part-of-speech tags, and (3) a flexible language model enriched with human-
designed or machine-derived dependency information. These three language
model environments are each used on a set of three alternative sequence se-
lection problems. To wit, (1) confusibles, (2) verb and noun agreement, (3)
prenominal adjective reordering.

The proposed investigations can be performed by finding answers to four re-
search questions: (RQ1) Is there a need to predetermine or limit the size of the
n-grams used in language models? Is there an inherent advantage or disad-
vantage to using a fixed-size n?, (RQ2) If the size of the n-grams is not fixed
in advance, how can we still generate comparable distributions when we select
among alternative sequences?, (RQ3) Is there a benefit to including annota-
tions in the language model, measured as a better performance on alternative

154 Summary

sequence selection tasks?, and (RQ4) Is there a difference in performance on
alternative sequence selection tasks when using human-designed annotations
compared to machine-generated annotations?.

We provide background on the three selection problems in Chapter 2. This
is followed by a detailed overview of our experimental setup in Chapter 3.
This experimental setup is used throughout this thesis to examine the effects
of the different language model environments on the three alternative selection
problems. These results form the basis for our answers to the research questions
and problem statements.

We dedicate one chapter to each of the three language model environments
used, starting with Chapter 4 for the language model environment without any
added annotations (RQ1 and RQ2). In the chapter we provide literary back-
ground on language models, present some preliminary work that shaped the
design of our language model system, and we present the results of the lan-
guage model environment without any added annotation. These results lead us
to conclude that by synchronising the distributions used on the different alter-
natives we can increase the flexibility of the language model system as well as
outperform a range of existing language models on the three alternative selec-
tion tasks..

In Chapter 5 we discuss background and results of the language model envi-
ronment that can be characterised by the addition of part-of-speech annotation
(RQ3 and RQ4). We examine two annotations, (1) the human-designed part-of-
speech annotation, and (2) a machine-derived part-of-speech annotation. The
results lead us to conclude that (1) the machine-generated part-of-speech tagset
does not add any new information to the model, (2) the human-designed part-
of-speech tagset does add new information to the model, and (3) as the size
of the training material increases the addition of the part-of-speech tags con-
tributes less and less to the performance of the system. As we observed the
point where the addition of part-of-speech tags no longer adds to the system
occurs around one million sentences of training material for all three alterna-
tive sequence selection tasks.

In Chapter 6 we discuss background and results of the language model envi-
ronment that can be characterised by the addition of dependency information
(RQ3 and RQ4). We examine two annotations, (1) added human-designed de-
pendency information using the Maltparser, and (2) added machine-derived de-
pendency information using the common-cover-link (CCL) parser. The results
lead us to conclude that, (1) dependency annotations, when employed as in this
thesis, hamper the performance of the model, and (2) when using a merged
token combining the annotation and the word token in the focus position the
model performs considerable worse, due to sparseness.

Summary 155

In Chapter 7 we conclude the thesis by answering the four research questions
and the two problem statements. Given that the benefits of adding annotation to
language models lessen when more data becomes available, we conclude that
(1) we have created a flexible language model that automatically determines the
optimal n-gram size, and (2) while integrating added annotations in a flexible
and automatic manner is possible, the benefits of annotations disappear with
enough training material. Also, we conclude about the use of machine-derived
annotations that, in combination with synchronous back-off, they add no novel
information to the language model as synchronous back-off implicitly derived
similar information. In addition to the conclusions, Chapter 7 presents possible
avenues for future research.

Samenvatting

In de laatste decennia hebben statistische taalmodellen een grote rol gespeeld
binnen de computationele taalkunde. De flexibiliteit van deze taalmodellen is in
de loop van de tijd echter niet toegenomen. Ook zijn er nog immer problemen
met de schaarste van de data. Ons onderzoek is gemotiveerd door het verlangen
om statische taalmodellen flexibeler te maken en minder last te hebben van de
schaarste aan data.

Op basis van deze motivatie en met kennis van de relevante literatuur hebben
we twee probleemstellingen gedefinieerd: (PS1) In hoeverre is het nuttig
een flexibeler statistisch taalmodel te maken, dwz., een taalmodel waarbij
de grootte van de n-grammen niet van te voren is vastgelegd, voor het ade-
quaat omgaan met het schaarste-probleem? en (PS2) Helpen taalkundig gemo-
tiveerde annotaties en hun machinaal-gegenereerde equivalenten als back-
off stap tegen het schaarste-probleem van de data? Geeft het aanpakken
van schaarste op deze manier een voordeel bij alternatieve sequentieselectie-
taken? Om deze vragen te beantwoorden onderzoeken we drie verschillende
statistische taalmodellen over drie alternatieve sequentieselectie-problemen.
Het gaat om de volgende taalmodellen: (1) een flexibel taalmodel zonder
toegevoegde annotaties, (2) een flexibel taalmodel dat verrijkt is met òf
menselijk-gedefinieerde òf machinaal-gegenereerde woordsoort-annotatie, en
(3) een flexibel taalmodel dat verrijkt is met òf menselijk-gedefinieerde òf
machinaal-gegenereerde dependency-annotatie. Deze drie taalmodellen wor-
den toegepast op drie alternatieve sequentieselectie-problemen, namelijk (1)
confusibles, (2) werkwoord en zelfstandig naamwoord congruentie, en (3) or-
dening van prenominale adjectieven.

In Hoofdstuk 2 geven we achtergrondinformatie over de drie alternatieve
sequentieselectie-problemen. Dit wordt direct gevolgd door een overzicht van
onze experimentele opzet in Hoofdstuk 3. Deze opzet is voor het gehele proef-
schrift hetzelfde om de effecten van het gebruik van de verschillende taalmod-
ellen zo precies mogelijk te bestuderen.

158 Samenvatting

Ieder taalmodel wordt in één hoofdstuk beschreven te samen met de resultaten.
We beginnen daarmee in Hoofdstuk 4 voor het flexibele taalmodel zonder an-
notaties. In dit hoofdstuk geven we enige theoretische achtergrond, beschri-
jven we eerdere experimenten die het ontwerp van de taalmodellen hebben
beı̈nvloed, en presenteren we de resultaten van het taalmodel zonder annotaties.
De resultaten leiden ons tot de conclusie dat we door het synchroniseren van
de distributies die de taalmodellen gebruiken flexibel kunnen zijn in de grootte
van de gebruikte n-grammen voor alternatieve sequentieselectie-problemen.

Vervolgens beschrijven we in Hoofdstuk 5 eerst enige achtergrond en geven
daarna de resultaten die gerelateerd zijn aan het taalmodel met toegevoegde
woordsoort-annotaties. Specifiek kijken we naar het effect van twee verschil-
lende annotaties, (1) een menselijk-gedefinieerde woordsoort-annotatie, en
(2) een machine-gegenereerde woordsoort-annotatie. Op basis van de obser-
vaties gemaakt in dit hoofdstuk concluderen wij het volgende: (1) de machine-
gegenereerde annotatie voegt geen nieuwe, bruikbare informatie toe aan het
model, (2) de menselijk-gedefinieerde annotatie voegt wel nieuwe, bruikbare
informatie toe aan het model, en (3) als de hoeveelheid van het trainingma-
teriaal toeneemt, neemt de toegevoegde waarde van de woordsoort-annotatie
af.

In Hoofdstuk 6 geven we opnieuw enige achtergrond en de resultaten, dit
keer voor het taalmodel met toegevoegde dependency-annotatie. We bestud-
eren wederom twee annotaties: (1) een menselijk-gedefinieerde dependency-
annotatie die wordt toegevoegd door de Maltparser en (2) een machine-
gegenereerde dependency-annotatie die wordt toegevoegd door de common-
cover-link (CCL) parser. Op basis van de observaties gemaakt in dit hoofd-
stuk concluderen wij het volgende: (1) dependency-annotatie, zoals hier ge-
bruikt, heeft geen positieve invloed op de prestaties van het model en (2) als
we zowel het tekst-token als het annotatie-token gebruiken op de focus-positie
is de prestatie van het model aanmerkelijk slechter.

In Hoofdstuk 7 formuleren we de conclusie van dit proefschrift in de vorm
van antwoorden op de onderzoeksvragen, waarmee we eveneens de probleem-
stellingen beantwoorden. Uit de observaties dat de voordelen van het toevoe-
gen van annotaties aan taalmodellen afnemen als er meer training materiaal
beschikbaar komt, mogen we concluderen dat (1) we een flexibel taalmodel
hebben gemaakt dat op een automatische manier de optimale grootte van
het n-gram bepaalt en (2) hoewel het mogelijk is om automatisch en flex-
ibel annotaties te integreren de voordelen daarvan gering zijn als er vol-
doende trainingmateriaal aanwezig is. Ook merken we op dat het gebruik van
machine-gegenereerde annotaties, in combinatie met synchronous back-off,
geen nieuwe informatie toevoegt aan het model, aangezien synchronous back-
off zelf al impliciet gelijksoortige informatie afleidt. Tevens wordt in Hoofd-
stuk 7 een richting aangegeven voor toekomstig onderzoek.

Curriculum Vitae

Johan Herman Stehouwer was born in Delfzijl, on the 16th of June 1983. From
1994 to 2001 he attended the Ommelander College (Atheneum Nature and
Technology). From 2001 to 2006 he studied Computer Science at Twente Uni-
versity, where he majored on Machine Learning on Natural Language (on a
comparison of a dozen models for selecting key phrases in running text).

Directly following his studies at Twente University he was given the opportu-
nity to pursue a Ph.D. at Tilburg University, starting in September 2006. There
he participated in the NWO Vici project Implicit Linguistics. Here he explored
several subject areas such as Machine Translation and Spelling Correction. In
2008 he took up the research resulting in this thesis, on Language Models for
alternative sequence selection.

Since February 2011 he works as a scientific software developer for the Max
Planck Institute for Psycholinguistics.

Publications

The scientific work performed during the author’s Ph.D. research resulted in
the following publications.

Conference and workshop proceedings

1. Stehouwer, H. and Van den Bosch, A. (2009). Putting the t where it be-
longs: Solving a confusion problem in Dutch. In Verberne, S., van Hal-
teren, H., and Coppen, P.-A., editors, Computational Linguistics in the
Netherlands 2007: Selected Papers from the 18th CLIN Meeting, pages
21–36, Nijmegen, The Netherlands

2. Stehouwer, H. and Van Zaanen, M. (2009a). Language models for con-
textual error detection and correction. In Proceedings of the EACL 2009
Workshop on Computational Linguistic Aspects of Grammatical Infer-
ence, pages 41–48, Athens, Greece

3. Stehouwer, H. and Van Zaanen, M. (2009b). Token merging in lan-
guage model-based confusible disambiguation. In Proceedings of the
21st Benelux Conference on Artificial Intelligence (BNAIC-2009), pages
241–248, Eindhoven, The Netherlands

4. Stehouwer, H. and Van Zaanen, M. (2010a). Enhanced suffix arrays
as language models: Virtual k-testable languages. In Sempere, J. and
Garcı́a, P., editors, Grammatical Inference: Theoretical Results and Ap-
plications, volume 6339 of Lecture Notes in Computer Science, pages
305–308. Springer Berlin / Heidelberg

5. Stehouwer, H. and Van Zaanen, M. (2010b). Finding patterns in strings
using suffixarrays. In Proceedings of Computational Linguistics—
Applications, 2010, pages 151–158. International Multiconference on
Computer Science and Information Technology

162 Publications

6. Stehouwer, H. and Van Zaanen, M. (2010c). Using suffix arrays as lan-
guage models: Scaling the n-gram. In Proceedings of the 22nd Benelux
Conference on Artificial Intelligence (BNAIC)

SIKS Dissertation Series

1998

1 Johan van den Akker (CWI) DEGAS - An
Active, Temporal Database of Autonomous
Objects

2 Floris Wiesman (UM) Information Retrieval
by Graphically Browsing Meta-Information

3 Ans Steuten (TUD) A Contribution to the
Linguistic Analysis of Business Conversa-
tions within the Language/Action Perspec-
tive

4 Dennis Breuker (UM) Memory versus
Search in Games

5 Eduard W. Oskamp (RUL) Computeronder-
steuning bij Straftoemeting

1999

1 Mark Sloof (VU) Physiology of Quality
Change Modelling; Automated Modelling of
Quality Change of Agricultural Products

2 Rob Potharst (EUR) Classification using
Decision Trees and Neural Nets

3 Don Beal (UM) The Nature of Minimax
Search

4 Jacques Penders (UM) The Practical Art of
Moving Physical Objects

5 Aldo de Moor (KUB) Empowering Commu-
nities: A Method for the Legitimate User-

Driven Specification of Network Information
Systems

6 Niek J.E. Wijngaards (VU) Re-Design of
Compositional Systems

7 David Spelt (UT) Verification Support for
Object Database Design

8 Jacques H.J. Lenting (UM) Informed Gam-
bling: Conception and Analysis of a Multi-
Agent Mechanism for Discrete Reallocation

2000

1 Frank Niessink (VU) Perspectives on Im-
proving Software Maintenance

2 Koen Holtman (TU/e) Prototyping of CMS
Storage Management

3 Carolien M.T. Metselaar (UvA) Sociaal-
organisatorische Gevolgen van Kennistech-
nologie; een Procesbenadering en Actorper-
spectief

4 Geert de Haan (VU) ETAG, A Formal Model
of Competence Knowledge for User Inter-
face Design

5 Ruud van der Pol (UM) Knowledge-Based
Query Formulation in Information Retrieval

6 Rogier van Eijk (UU) Programming Lan-
guages for Agent Communication

7 Niels Peek (UU) Decision-Theoretic Plan-
ning of Clinical Patient Management

Abbreviations. SIKS – Dutch Research School for Information and Knowledge Systems; CWI
– Centrum voor Wiskunde en Informatica, Amsterdam; DROP – Delft Research institute for Op-
erations Programming; EUR – Erasmus Universiteit, Rotterdam; KUB – Katholieke Universiteit
Brabant, Tilburg; KUN – Katholieke Universiteit Nijmegen; OU – Open Universiteit Nederland;
RUG – Rijksuniversiteit Groningen; RUL – Rijksuniversiteit Leiden; RUN – Radboud Universiteit
Nijmegen; TUD – Technische Universiteit Delft; TU/e – Technische Universiteit Eindhoven; UL
– Universiteit Leiden; UM – Universiteit Maastricht; UT – Universiteit Twente; UU – Univer-
siteit Utrecht; UvA – Universiteit van Amsterdam; UvT – Universiteit van Tilburg; VU – Vrije
Universiteit, Amsterdam.

164 SIKS Dissertation Series

8 Veerle Coupé (EUR) Sensitivity Analyis of
Decision-Theoretic Networks

9 Florian Waas (CWI) Principles of Proba-
bilistic Query Optimization

10 Niels Nes (CWI) Image Database Manage-
ment System Design Considerations, Algo-
rithms and Architecture

11 Jonas Karlsson (CWI) Scalable Distributed
Data Structures for Database Management

2001

1 Silja Renooij (UU) Qualitative Approaches
to Quantifying Probabilistic Networks

2 Koen Hindriks (UU) Agent Programming
Languages: Programming with Mental
Models

3 Maarten van Someren (UvA) Learning as
Problem Solving

4 Evgueni Smirnov (UM) Conjunctive and
Disjunctive Version Spaces with Instance-
Based Boundary Sets

5 Jacco van Ossenbruggen (VU) Processing
Structured Hypermedia: A Matter of Style

6 Martijn van Welie (VU) Task-Based User In-
terface Design

7 Bastiaan Schonhage (VU) Diva: Architec-
tural Perspectives on Information Visualiza-
tion

8 Pascal van Eck (VU) A Compositional Se-
mantic Structure for Multi-Agent Systems
Dynamics

9 Pieter Jan ’t Hoen (RUL) Towards Dis-
tributed Development of Large Object-
Oriented Models, Views of Packages as
Classes

10 Maarten Sierhuis (UvA) Modeling and Sim-
ulating Work Practice BRAHMS: a Multia-
gent Modeling and Simulation Language for
Work Practice Analysis and Design

11 Tom M. van Engers (VU) Knowledge Man-
agement: The Role of Mental Models in
Business Systems Design

2002

1 Nico Lassing (VU) Architecture-Level Mod-
ifiability Analysis

2 Roelof van Zwol (UT) Modelling and
Searching Web-based Document Collections

3 Henk Ernst Blok (UT) Database Optimiza-
tion Aspects for Information Retrieval

4 Juan Roberto Castelo Valdueza (UU) The
Discrete Acyclic Digraph Markov Model in
Data Mining

5 Radu Serban (VU) The Private Cyberspace
Modeling Electronic Environments Inhab-
ited by Privacy-Concerned Agents

6 Laurens Mommers (UL) Applied Legal
Epistemology; Building a Knowledge-based
Ontology of the Legal Domain

7 Peter Boncz (CWI) Monet: A Next-
Generation DBMS Kernel For Query-
Intensive Applications

8 Jaap Gordijn (VU) Value Based Require-
ments Engineering: Exploring Innovative E-
Commerce Ideas

9 Willem-Jan van den Heuvel (KUB) Integrat-
ing Modern Business Applications with Ob-
jectified Legacy Systems

10 Brian Sheppard (UM) Towards Perfect Play
of Scrabble

11 Wouter C.A. Wijngaards (VU) Agent Based
Modelling of Dynamics: Biological and Or-
ganisational Applications

12 Albrecht Schmidt (UvA) Processing XML in
Database Systems

13 Hongjing Wu (TU/e) A Reference Architec-
ture for Adaptive Hypermedia Applications

14 Wieke de Vries (UU) Agent Interaction: Ab-
stract Approaches to Modelling, Program-
ming and Verifying Multi-Agent Systems

15 Rik Eshuis (UT) Semantics and Verifica-
tion of UML Activity Diagrams for Workflow
Modelling

16 Pieter van Langen (VU) The Anatomy of De-
sign: Foundations, Models and Applications

17 Stefan Manegold (UvA) Understanding,
Modeling, and Improving Main-Memory
Database Performance

2003

1 Heiner Stuckenschmidt (VU) Ontology-
Based Information Sharing in Weakly Struc-
tured Environments

2 Jan Broersen (VU) Modal Action Logics for
Reasoning About Reactive Systems

3 Martijn Schuemie (TUD) Human-Computer
Interaction and Presence in Virtual Reality
Exposure Therapy

4 Milan Petkovic (UT) Content-Based Video
Retrieval Supported by Database Technol-
ogy

SIKS Dissertation Series 165

5 Jos Lehmann (UvA) Causation in Artificial
Intelligence and Law – A Modelling Ap-
proach

6 Boris van Schooten (UT) Development and
Specification of Virtual Environments

7 Machiel Jansen (UvA) Formal Explorations
of Knowledge Intensive Tasks

8 Yong-Ping Ran (UM) Repair-Based
Scheduling

9 Rens Kortmann (UM) The Resolution of Vi-
sually Guided Behaviour

10 Andreas Lincke (UT) Electronic Business
Negotiation: Some Experimental Studies on
the Interaction between Medium, Innovation
Context and Cult

11 Simon Keizer (UT) Reasoning under Uncer-
tainty in Natural Language Dialogue using
Bayesian Networks

12 Roeland Ordelman (UT) Dutch Speech
Recognition in Multimedia Information Re-
trieval

13 Jeroen Donkers (UM) Nosce Hostem –
Searching with Opponent Models

14 Stijn Hoppenbrouwers (KUN) Freezing
Language: Conceptualisation Processes
across ICT-Supported Organisations

15 Mathijs de Weerdt (TUD) Plan Merging in
Multi-Agent Systems

16 Menzo Windhouwer (CWI) Feature Gram-
mar Systems - Incremental Maintenance of
Indexes to Digital Media Warehouse

17 David Jansen (UT) Extensions of Statecharts
with Probability, Time, and Stochastic Tim-
ing

18 Levente Kocsis (UM) Learning Search De-
cisions

2004

1 Virginia Dignum (UU) A Model for Or-
ganizational Interaction: Based on Agents,
Founded in Logic

2 Lai Xu (UvT) Monitoring Multi-party Con-
tracts for E-business

3 Perry Groot (VU) A Theoretical and Empir-
ical Analysis of Approximation in Symbolic
Problem Solving

4 Chris van Aart (UvA) Organizational Prin-
ciples for Multi-Agent Architectures

5 Viara Popova (EUR) Knowledge Discovery
and Monotonicity

6 Bart-Jan Hommes (TUD) The Evaluation of
Business Process Modeling Techniques

7 Elise Boltjes (UM) VoorbeeldIG Onderwijs;
Voorbeeldgestuurd Onderwijs, een Opstap
naar Abstract Denken, vooral voor Meisjes

8 Joop Verbeek (UM) Politie en de Nieuwe
Internationale Informatiemarkt, Grensre-
gionale Politiële Gegevensuitwisseling en
Digitale Expertise

9 Martin Caminada (VU) For the Sake of
the Argument; Explorations into Argument-
based Reasoning

10 Suzanne Kabel (UvA) Knowledge-rich In-
dexing of Learning-objects

11 Michel Klein (VU) Change Management for
Distributed Ontologies

12 The Duy Bui (UT) Creating Emotions and
Facial Expressions for Embodied Agents

13 Wojciech Jamroga (UT) Using Multiple
Models of Reality: On Agents who Know
how to Play

14 Paul Harrenstein (UU) Logic in Conflict.
Logical Explorations in Strategic Equilib-
rium

15 Arno Knobbe (UU) Multi-Relational Data
Mining

16 Federico Divina (VU) Hybrid Genetic Rela-
tional Search for Inductive Learning

17 Mark Winands (UM) Informed Search in
Complex Games

18 Vania Bessa Machado (UvA) Supporting
the Construction of Qualitative Knowledge
Models

19 Thijs Westerveld (UT) Using generative
probabilistic models for multimedia re-
trieval

20 Madelon Evers (Nyenrode) Learning from
Design: facilitating multidisciplinary design
teams

2005

1 Floor Verdenius (UvA) Methodological As-
pects of Designing Induction-Based Appli-
cations

2 Erik van der Werf (UM) AI techniques for
the game of Go

3 Franc Grootjen (RUN) A Pragmatic Ap-
proach to the Conceptualisation of Lan-
guage

4 Nirvana Meratnia (UT) Towards Database
Support for Moving Object data

5 Gabriel Infante-Lopez (UvA) Two-Level
Probabilistic Grammars for Natural Lan-
guage Parsing

6 Pieter Spronck (UM) Adaptive Game AI

166 SIKS Dissertation Series

7 Flavius Frasincar (TU/e) Hypermedia Pre-
sentation Generation for Semantic Web In-
formation Systems

8 Richard Vdovjak (TU/e) A Model-
driven Approach for Building Distributed
Ontology-based Web Applications

9 Jeen Broekstra (VU) Storage, Querying and
Inferencing for Semantic Web Languages

10 Anders Bouwer (UvA) Explaining Be-
haviour: Using Qualitative Simulation in In-
teractive Learning Environments

11 Elth Ogston (VU) Agent Based Matchmak-
ing and Clustering - A Decentralized Ap-
proach to Search

12 Csaba Boer (EUR) Distributed Simulation in
Industry

13 Fred Hamburg (UL) Een Computer-
model voor het Ondersteunen van Eu-
thanasiebeslissingen

14 Borys Omelayenko (VU) Web-Service con-
figuration on the Semantic Web; Exploring
how semantics meets pragmatics

15 Tibor Bosse (VU) Analysis of the Dynamics
of Cognitive Processes

16 Joris Graaumans (UU) Usability of XML
Query Languages

17 Boris Shishkov (TUD) Software Specifica-
tion Based on Re-usable Business Compo-
nents

18 Danielle Sent (UU) Test-selection strategies
for probabilistic networks

19 Michel van Dartel (UM) Situated Represen-
tation

20 Cristina Coteanu (UL) Cyber Consumer
Law, State of the Art and Perspectives

21 Wijnand Derks (UT) Improving Concur-
rency and Recovery in Database Systems by
Exploiting Application Semantics

2006

1 Samuil Angelov (TU/e) Foundations of B2B
Electronic Contracting

2 Cristina Chisalita (VU) Contextual issues in
the design and use of information technology
in organizations

3 Noor Christoph (UvA) The role of metacog-
nitive skills in learning to solve problems

4 Marta Sabou (VU) Building Web Service
Ontologies

5 Cees Pierik (UU) Validation Techniques for
Object-Oriented Proof Outlines

6 Ziv Baida (VU) Software-aided Service
Bundling - Intelligent Methods & Tools for
Graphical Service Modeling

7 Marko Smiljanic (UT) XML schema match-
ing – balancing efficiency and effectiveness
by means of clustering

8 Eelco Herder (UT) Forward, Back and
Home Again - Analyzing User Behavior on
the Web

9 Mohamed Wahdan (UM) Automatic Formu-
lation of the Auditor’s Opinion

10 Ronny Siebes (VU) Semantic Routing in
Peer-to-Peer Systems

11 Joeri van Ruth (UT) Flattening Queries over
Nested Data Types

12 Bert Bongers (VU) Interactivation - To-
wards an e-cology of people, our technolog-
ical environment, and the arts

13 Henk-Jan Lebbink (UU) Dialogue and De-
cision Games for Information Exchanging
Agents

14 Johan Hoorn (VU) Software Requirements:
Update, Upgrade, Redesign - towards a The-
ory of Requirements Change

15 Rainer Malik (UU) CONAN: Text Mining in
the Biomedical Domain

16 Carsten Riggelsen (UU) Approximation
Methods for Efficient Learning of Bayesian
Networks

17 Stacey Nagata (UU) User Assistance for
Multitasking with Interruptions on a Mobile
Device

18 Valentin Zhizhkun (UvA) Graph transfor-
mation for Natural Language Processing

19 Birna van Riemsdijk (UU) Cognitive Agent
Programming: A Semantic Approach

20 Marina Velikova (UvT) Monotone models
for prediction in data mining

21 Bas van Gils (RUN) Aptness on the Web
22 Paul de Vrieze (RUN) Fundaments of Adap-

tive Personalisation
23 Ion Juvina (UU) Development of Cognitive

Model for Navigating on the Web
24 Laura Hollink (VU) Semantic Annotation

for Retrieval of Visual Resources
25 Madalina Drugan (UU) Conditional log-

likelihood MDL and Evolutionary MCMC
26 Vojkan Mihajlovic (UT) Score Region Alge-

bra: A Flexible Framework for Structured
Information Retrieval

27 Stefano Bocconi (CWI) Vox Populi: generat-
ing video documentaries from semantically
annotated media repositories

SIKS Dissertation Series 167

28 Borkur Sigurbjornsson (UvA) Focused In-
formation Access using XML Element Re-
trieval

2007

1 Kees Leune (UvT) Access Control and
Service-Oriented Architectures

2 Wouter Teepe (RUG) Reconciling Informa-
tion Exchange and Confidentiality: A For-
mal Approach

3 Peter Mika (VU) Social Networks and the
Semantic Web

4 Jurriaan van Diggelen (UU) Achieving Se-
mantic Interoperability in Multi-agent Sys-
tems: a dialogue-based approach

5 Bart Schermer (UL) Software Agents,
Surveillance, and the Right to Privacy: a
Legislative Framework for Agent-enabled
Surveillance

6 Gilad Mishne (UvA) Applied Text Analytics
for Blogs

7 Natasa Jovanovic’ (UT) To Whom It May
Concern - Addressee Identification in Face-
to-Face Meetings

8 Mark Hoogendoorn (VU) Modeling of
Change in Multi-Agent Organizations

9 David Mobach (VU) Agent-Based Mediated
Service Negotiation

10 Huib Aldewereld (UU) Autonomy vs. Con-
formity: an Institutional Perspective on
Norms and Protocols

11 Natalia Stash (TU/e) Incorporating Cogni-
tive/Learning Styles in a General-Purpose
Adaptive Hypermedia System

12 Marcel van Gerven (RUN) Bayesian Net-
works for Clinical Decision Support: A
Rational Approach to Dynamic Decision-
Making under Uncertainty

13 Rutger Rienks (UT) Meetings in Smart Envi-
ronments; Implications of Progressing Tech-
nology

14 Niek Bergboer (UM) Context-Based Image
Analysis

15 Joyca Lacroix (UM) NIM: a Situated Com-
putational Memory Model

16 Davide Grossi (UU) Designing Invisible
Handcuffs. Formal investigations in Institu-
tions and Organizations for Multi-agent Sys-
tems

17 Theodore Charitos (UU) Reasoning with
Dynamic Networks in Practice

18 Bart Orriens (UvT) On the development and
management of adaptive business collabora-
tions

19 David Levy (UM) Intimate relationships
with artificial partners

20 Slinger Jansen (UU) Customer Configura-
tion Updating in a Software Supply Network

21 Karianne Vermaas (UU) Fast diffusion and
broadening use: A research on residential
adoption and usage of broadband internet in
the Netherlands between 2001 and 2005

22 Zlatko Zlatev (UT) Goal-oriented design of
value and process models from patterns

23 Peter Barna (TU/e) Specification of Applica-
tion Logic in Web Information Systems

24 Georgina Ramı́rez Camps (CWI) Structural
Features in XML Retrieval

25 Joost Schalken (VU) Empirical Investiga-
tions in Software Process Improvement

2008

1 Katalin Boer-Sorbán (EUR) Agent-Based
Simulation of Financial Markets: A modular,
continuous-time approach

2 Alexei Sharpanskykh (VU) On Computer-
Aided Methods for Modeling and Analysis of
Organizations

3 Vera Hollink (UvA) Optimizing hierarchical
menus: a usage-based approach

4 Ander de Keijzer (UT) Management of Un-
certain Data - towards unattended integra-
tion

5 Bela Mutschler (UT) Modeling and simulat-
ing causal dependencies on process-aware
information systems from a cost perspective

6 Arjen Hommersom (RUN) On the Applica-
tion of Formal Methods to Clinical Guide-
lines, an Artificial Intelligence Perspective

7 Peter van Rosmalen (OU) Supporting the tu-
tor in the design and support of adaptive e-
learning

8 Janneke Bolt (UU) Bayesian Networks: As-
pects of Approximate Inference

9 Christof van Nimwegen (UU) The para-
dox of the guided user: assistance can be
counter-effective

10 Wauter Bosma (UT) Discourse oriented
Summarization

11 Vera Kartseva (VU) Designing Controls for
Network Organizations: a Value-Based Ap-
proach

168 SIKS Dissertation Series

12 Jozsef Farkas (RUN) A Semiotically ori-
ented Cognitive Model of Knowlegde Rep-
resentation

13 Caterina Carraciolo (UvA) Topic Driven Ac-
cess to Scientific Handbooks

14 Arthur van Bunningen (UT) Context-Aware
Querying; Better Answers with Less Effort

15 Martijn van Otterlo (UT) The Logic of Adap-
tive Behavior: Knowledge Representation
and Algorithms for the Markov Decision
Process Framework in First-Order Domains

16 Henriette van Vugt (VU) Embodied Agents
from a User’s Perspective

17 Martin Op’t Land (TUD) Applying Architec-
ture and Ontology to the Splitting and Ally-
ing of Enterprises

18 Guido de Croon (UM) Adaptive Active Vi-
sion

19 Henning Rode (UT) From document to en-
tity retrieval: improving precision and per-
formance of focused text search

20 Rex Arendsen (UvA) Geen bericht, goed
bericht. Een onderzoek naar de effecten van
de introductie van elektronisch berichtenver-
keer met een overheid op de administratieve
lasten van bedrijven

21 Krisztian Balog (UvA) People search in the
enterprise

22 Henk Koning (UU) Communication of IT-
architecture

23 Stefan Visscher (UU) Bayesian network
models for the management of ventilator-
associated pneumonia

24 Zharko Aleksovski (VU) Using background
knowledge in ontology matching

25 Geert Jonker (UU) Efficient and Equitable
exchange in air traffic management plan re-
pair using spender-signed currency

26 Marijn Huijbregts (UT) Segmentation, di-
arization and speech transcription: surprise
data unraveled

27 Hubert Vogten (OU) Design and implemen-
tation strategies for IMS learning design

28 Ildiko Flesh (RUN) On the use of indepen-
dence relations in Bayesian networks

29 Dennis Reidsma (UT) Annotations and sub-
jective machines- Of annotators, embodied
agents, users, and other humans

30 Wouter van Atteveldt (VU) Semantic net-
work analysis: techniques for extracting,
representing and querying media content

31 Loes Braun (UM) Pro-active medical infor-
mation retrieval

32 Trung B. Hui (UT) Toward affective dia-
logue management using partially observ-
able markov decision processes

33 Frank Terpstra (UvA) Scientific workflow
design; theoretical and practical issues

34 Jeroen de Knijf (UU) Studies in Frequent
Tree Mining

35 Benjamin Torben-Nielsen (UvT) Dendritic
morphology: function shapes structure

2009

1 Rasa Jurgelenaite (RUN) Symmetric Causal
Independence Models

2 Willem Robert van Hage (VU) Evaluating
Ontology-Alignment Techniques

3 Hans Stol (UvT) A Framework for Evidence-
based Policy Making Using IT

4 Josephine Nabukenya (RUN) Improving the
Quality of Organisational Policy Making us-
ing Collaboration Engineering

5 Sietse Overbeek (RUN) Bridging Supply
and Demand for Knowledge Intensive Tasks
- Based on Knowledge, Cognition, and
Quality

6 Muhammad Subianto (UU) Understanding
Classification

7 Ronald Poppe (UT) Discriminative Vision-
Based Recovery and Recognition of Human
Motion

8 Volker Nannen (VU) Evolutionary Agent-
Based Policy Analysis in Dynamic Environ-
ments

9 Benjamin Kanagwa (RUN) Design, Discov-
ery and Construction of Service-oriented
Systems

10 Jan Wielemaker (UVA) Logic programming
for knowledge-intensive interactive applica-
tions

11 Alexander Boer (UVA) Legal Theory,
Sources of Law & the Semantic Web

12 Peter Massuthe (TUE, Humboldt-Universtät
zu Berlin) Operating Guidelines for Services

13 Steven de Jong (UM) Fairness in Multi-
Agent Systems

14 Maksym Korotkiy (VU) From ontology-
enabled services to service-enabled ontolo-
gies (making ontologies work in e-science
with ONTO-SOA)

15 Rinke Hoekstra (UVA) Ontology Represen-
tation - Design Patterns and Ontologies that
Make Sense

16 Fritz Reul (UvT) New Architectures in Com-
puter Chess

SIKS Dissertation Series 169

17 Laurens van der Maaten (UvT) Feature Ex-
traction from Visual Data

18 Fabian Groffen (CWI) Armada, An Evolving
Database System

19 Valentin Robu (CWI) Modeling Preferences,
Strategic Reasoning and Collaboration in
Agent-Mediated Electronic Markets

20 Bob van der Vecht (UU) Adjustable Au-
tonomy: Controling Influences on Decision
Making

21 Stijn Vanderlooy (UM) Ranking and Reli-
able Classification

22 Pavel Serdyukov (UT) Search For Expertise:
Going beyond direct evidence

23 Peter Hofgesang (VU) Modelling Web Us-
age in a Changing Environment

24 Annerieke Heuvelink (VU) Cognitive Mod-
els for Training Simulations

25 Alex van Ballegooij (CWI) RAM: Array
Database Management through Relational
Mapping

26 Fernando Koch (UU) An Agent-Based
Model for the Development of Intelligent
Mobile Services

27 Christian Glahn (OU) Contextual Support
of social Engagement and Reflection on the
Web

28 Sander Evers (UT) Sensor Data Manage-
ment with Probabilistic Models

29 Stanislav Pokraev (UT) Model-Driven Se-
mantic Integration of Service-Oriented Ap-
plications

30 Marcin Zukowski (CWI) Balancing vec-
torized query execution with bandwidth-
optimized storage

31 Sofiya Katrenko (UVA) A Closer Look at
Learning Relations from Text

32 Rik Farenhorst and Remco de Boer (VU) Ar-
chitectural Knowledge Management: Sup-
porting Architects and Auditors

33 Khiet Truong (UT) How Does Real Affect
Affect Affect Recognition In Speech?

34 Inge van de Weerd (UU) Advancing in Soft-
ware Product Management: An Incremental
Method Engineering Approach

35 Wouter Koelewijn (UL) Privacy en Poli-
tiegegevens; Over geautomatiseerde nor-
matieve informatie-uitwisseling

36 Marco Kalz (OU) Placement Support for
Learners in Learning Networks

37 Hendrik Drachsler (OU) Navigation Support
for Learners in Informal Learning Networks

38 Riina Vuorikari (OU) Tags and self-
organisation: a metadata ecology for learn-
ing resources in a multilingual context

39 Christian Stahl (TUE) Service Substitution –
A Behavioral Approach Based on Petri Nets

40 Stephan Raaijmakers (UvT) Multinomial
Language Learning: Investigations into the
Geometry of Language

41 Igor Berezhnyy (UvT) Digital Analysis of
Paintings

42 Toine Bogers (UvT) Recommender Systems
for Social Bookmarking

43 Virginia Nunes Leal Franqueira (UT) Find-
ing Multi-step Attacks in Computer Net-
works using Heuristic Search and Mobile
Ambients

44 Roberto Santana Tapia (UT) Assessing
Business-IT Alignment in Networked Orga-
nizations

45 Jilles Vreeken (UU) Making Pattern Mining
Useful

46 Loredana Afanasiev (UvA) Querying XML:
Benchmarks and Recursion

2010

1 Matthijs van Leeuwen (UU) Patterns that
Matter

2 Ingo Wassink (UT) Work flows in Life Sci-
ence

3 Joost Geurts (CWI) A Document Engineer-
ing Model and Processing Framework for
Multimedia documents

4 Olga Kulyk (UT) Do You Know What I
Know? Situational Awareness of Co-located
Teams in Multidisplay Environments

5 Claudia Hauff (UT) Predicting the Effec-
tiveness of Queries and Retrieval Systems

6 Sander Bakkes (UvT) Rapid Adaptation of
Video Game AI

7 Wim Fikkert (UT) Gesture interaction at a
Distance

8 Krzysztof Siewicz (UL) Towards an Im-
proved Regulatory Framework of Free Soft-
ware. Protecting user freedoms in a world of
software communities and eGovernments

9 Hugo Kielman (UL) Politiële gegevensver-
werking en Privacy, Naar een effectieve
waarborging

10 Rebecca Ong (UL) Mobile Communication
and Protection of Children

11 Adriaan Ter Mors (TUD) The world accord-
ing to MARP: Multi-Agent Route Planning

170 SIKS Dissertation Series

12 Susan van den Braak (UU) Sensemaking
software for crime analysis

13 Gianluigi Folino (RUN) High Performance
Data Mining using Bio-inspired techniques

14 Sander van Splunter (VU) Automated Web
Service Reconfiguration

15 Lianne Bodenstaff (UT) Managing De-
pendency Relations in Inter-Organizational
Models

16 Sicco Verwer (TUD) Efficient Identification
of Timed Automata, theory and practice

17 Spyros Kotoulas (VU) Scalable Discovery
of Networked Resources: Algorithms, Infras-
tructure, Applications

18 Charlotte Gerritsen (VU) Caught in the Act:
Investigating Crime by Agent-Based Simula-
tion

19 Henriette Cramer (UvA) People’s Re-
sponses to Autonomous and Adaptive Sys-
tems

20 Ivo Swartjes (UT) Whose Story Is It Any-
way? How Improv Informs Agency and Au-
thorship of Emergent Narrative

21 Harold van Heerde (UT) Privacy-aware
data management by means of data degra-
dation

22 Michiel Hildebrand (CWI) End-user Sup-
port for Access to Heterogeneous Linked
Data

23 Bas Steunebrink (UU) The Logical Struc-
ture of Emotions

24 Dmytro Tykhonov (TUD) Designing
Generic and Efficient Negotiation Strategies

25 Zulfiqar Ali Memon (VU) Modelling
Human-Awareness for Ambient Agents: A
Human Mindreading Perspective

26 Ying Zhang (CWI) XRPC: Efficient Dis-
tributed Query Processing on Heteroge-
neous XQuery Engines

27 Marten Voulon (UL) Automatisch con-
tracteren

28 Arne Koopman (UU) Characteristic Rela-
tional Patterns

29 Stratos Idreos (CWI) Database Cracking:
Towards Auto-tuning Database Kernels

30 Marieke van Erp (UvT) Accessing Natu-
ral History - Discoveries in data cleaning,
structuring, and retrieval

31 Victor de Boer (UVA) Ontology Enrichment
from Heterogeneous Sources on the Web

32 Marcel Hiel (UvT) An Adaptive Service
Oriented Architecture: Automatically solv-
ing Interoperability Problems

33 Robin Aly (UT) Modeling Representation
Uncertainty in Concept-Based Multimedia
Retrieval

34 Teduh Dirgahayu (UT) Interaction Design
in Service Compositions

35 Dolf Trieschnigg (UT) Proof of Concept:
Concept-based Biomedical Information Re-
trieval

36 Jose Janssen (OU) Paving the Way for Life-
long Learning; Facilitating competence de-
velopment through a learning path specifi-
cation

37 Niels Lohmann (TUE) Correctness of ser-
vices and their composition

38 Dirk Fahland (TUE) From Scenarios to
components

39 Ghazanfar Farooq Siddiqui (VU) Integra-
tive modeling of emotions in virtual agents

40 Mark van Assem (VU) Converting and In-
tegrating Vocabularies for the Semantic Web

41 Guillaume Chaslot (UM) Monte-Carlo Tree
Search

42 Sybren de Kinderen (VU) Needs-driven ser-
vice bundling in a multi-supplier setting - the
computational e3-service approach

43 Peter van Kranenburg (UU) A Computa-
tional Approach to Content-Based Retrieval
of Folk Song Melodies

44 Pieter Bellekens (TUE) An Approach to-
wards Context-sensitive and User-adapted
Access to Heterogeneous Data Sources, Il-
lustrated in the Television Domain

45 Vasilios Andrikopoulos (UvT) A theory and
model for the evolution of software services

46 Vincent Pijpers (VU) e3alignment: Ex-
ploring Inter-Organizational Business-ICT
Alignment

47 Chen Li (UT) Mining Process Model Vari-
ants: Challenges, Techniques, Examples

48 Jahn-Takeshi Saito (UM) Solving difficult
game positions

49 Bouke Huurnink (UVA) Search in Audiovi-
sual Broadcast Archives

50 Alia Khairia Amin (CWI) Understanding
and supporting information seeking tasks in
multiple sources

51 Peter-Paul van Maanen (VU) Adaptive Sup-
port for Human-Computer Teams: Explor-
ing the Use of Cognitive Models of Trust and
Attention

52 Edgar Meij (UVA) Combining Concepts
and Language Models for Information Ac-
cess

SIKS Dissertation Series 171

2011

1 Botond Cseke (RUN) Variational Algo-
rithms for Bayesian Inference in Latent
Gaussian Models

2 Nick Tinnemeier (UU) Organizing Agent
Organizations. Syntax and Operational Se-
mantics of an Organization-Oriented Pro-
gramming Language

3 Jan Martijn van der Werf (TUE) Com-
positional Design and Verification of
Component-Based Information Systems

4 Hado Philip van Hasselt (UU) Insights
in Reinforcement Learning; Formal analy-
sis and empirical evaluation of temporal-
difference learning algorithms

5 Bas van de Raadt (VU) Enterprise Architec-
ture Coming of Age - Increasing the Perfor-
mance of an Emerging Discipline

6 Yiwen Wang (TUE) Semantically-Enhanced
Recommendations in Cultural Heritage

7 Yujia Cao (UT) Multimodal Information
Presentation for High Load Human Com-
puter Interaction

8 Nieske Vergunst (UU) BDI-based Genera-
tion of Robust Task-Oriented Dialogues

9 Tim de Jong (OU) Contextualised Mobile
Media for Learning

10 Bart Bogaert (UvT) Cloud Content Con-
tention

11 Dhaval Vyas (UT) Designing for Aware-
ness: An Experience-focused HCI Perspec-
tive

12 Carmen Bratosin (TUE) Grid Architecture
for Distributed Process Mining

13 Xiaoyu Mao (UvT) Airport under Control;
Multiagent Scheduling for Airport Ground
Handling

14 Milan Lovric (EUR) Behavioral Finance
and Agent-Based Artificial Markets

15 Marijn Koolen (UVA) The Meaning of
Structure: the Value of Link Evidence for In-
formation Retrieval

16 Maarten Schadd (UM) Selective Search in
Games of Different Complexity

17 Jiyin He (UVA) Exploring Topic Structure:
Coherence, Diversity and Relatedness

18 Mark Ponsen (UM) Strategic Decision-
Making in complex games

19 Ellen Rusman (OU) The Mind ’ s Eye on
Personal Profiles

20 Qing Gu (VU) Guiding service-oriented
software engineering - A view-based ap-
proach

21 Linda Terlouw (TUD) Modularization and
Specification of Service-Oriented Systems

22 Junte Zhang (UVA) System Evaluation of
Archival Description and Access

23 Wouter Weerkamp (UVA) Finding People
and their Utterances in Social Media

24 Herwin van Welbergen (UT) Behavior Gen-
eration for Interpersonal Coordination with
Virtual Humans On Specifying, Scheduling
and Realizing Multimodal Virtual Human
Behavior

25 Syed Waqar ul Qounain Jaffry (VU) Analy-
sis and Validation of Models for Trust Dy-
namics

26 Matthijs Aart Pontier (VU) Virtual Agents
for Human Communication - Emotion Regu-
lation and Involvement-Distance Trade-Offs
in Embodied Conversational Agents and
Robots

27 Aniel Bhulai (VU) Dynamic website opti-
mization through autonomous management
of design patterns

28 Rianne Kaptein (UVA) Effective Focused
Retrieval by Exploiting Query Context and
Document Structure

29 Faisal Kamiran (TUE) Discrimination-
aware Classification

30 Egon van den Broek (UT) Affective Signal
Processing (ASP): Unraveling the mystery
of emotions

31 Ludo Waltman (EUR) Computational and
Game-Theoretic Approaches for Modeling
Bounded Rationality

32 Nees-Jan van Eck (EUR) Methodological
Advances in Bibliometric Mapping of Sci-
ence

33 Tom van der Weide (UU) Arguing to Moti-
vate Decisions

34 Paolo Turrini (UU) Strategic Reasoning
in Interdependence: Logical and Game-
theoretical Investigations

35 Maaike Harbers (UU) Explaining Agent Be-
havior in Virtual Training

36 Erik van der Spek (UU) Experiments in se-
rious game design: a cognitive approach

37 Adriana Burlutiu (RUN) Machine Learning
for Pairwise Data, Applications for Prefer-
ence Learning and Supervised Network In-
ference

38 Nyree Lemmens (UM) Bee-inspired Dis-
tributed Optimization

39 Joost Westra (UU) Organizing Adaptation
using Agents in Serious Games

172 SIKS Dissertation Series

40 Viktor Clerc (VU) Architectural Knowledge
Management in Global Software Develop-
ment

41 Luan Ibraimi (UT) Cryptographically En-
forced Distributed Data Access Control

42 Michal Sindlar (UU) Explaining Behavior
through Mental State Attribution

43 Henk van der Schuur (UU) Process Improve-
ment through Software Operation Knowl-
edge

44 Boris Reuderink (UT) Robust Brain-
Computer Interfaces

45 Herman Stehouwer (UvT) Statistical Lan-
guage Models for Alternative Sequence Se-
lection

TiCC Ph.D. Series

1 Pashiera Barkhuysen. Audiovisual prosody in interaction. Promotores:
M.G.J. Swerts, E.J. Krahmer. Tilburg, 3 October 2008.

2 Ben Torben-Nielsen. Dendritic morphology: function shapes structure. Pro-
motores: H.J. van den Herik, E.O. Postma. Co-promotor: K.P. Tuyls. Tilburg,
3 December 2008.

3 Hans Stol. A framework for evidence-based policy making using IT. Promo-
tor: H.J. van den Herik. Tilburg, 21 January 2009.

4 Jeroen Geertzen. Dialogue act recognition and prediction. Promotor: H.C.
Bunt. Co-promotor: J.M.B. Terken. Tilburg, 11 February 2009.

5 Sander Canisius. Structured prediction for natural language processing.
Promotores: A.P.J. van den Bosch, W.M.P. Daelemans. Tilburg, 13 Febru-
ary 2009.

6 Fritz Reul. New Architectures in Computer Chess. Promotor: H.J. van den
Herik. Co-promotor: J.W.H.M. Uiterwijk. Tilburg, 17 June 2009.

7 Laurens van der Maaten. Feature extraction from visual data. Promotores:
E.O. Postma, H.J. van den Herik. Co-promotor: A.G. Lange. Tilburg, 23
June 2009.

8 Stephan Raaijmakers. Multinomial Language Learning. Promotores: W.
Daelemans, A.P.J. van den Bosch. Tilburg, December 1, 2009.

9 Igor Berezhnyy. Digital analysis of paintings. Promotores: E.O. Postma, H.J.
van den Herik. Tilburg, December 7, 2009.

10 Toine Bogers. Recommender Systems for Social Bookmarking. Promotor:
A.P.J. van den Bosch. Tilburg, December 8, 2009.

174 TiCC Ph.D. Series

11 Sander Bakkes. Rapid adaptation of video game AI. Promotor: H.J. van den
Herik. Co-promotor: P.H.M. Spronck. Tilburg, March 3, 2010.

12 Maria Mos. Complex Lexical Items. Promotor: A.P.J. van den Bosch. Co-
promotores: Dr. A. Vermeer, Dr. A. Backus. Tilburg, May 12, 2010.

13 Marieke van Erp. Accessing Natural History. Discoveries in data cleaning,
structuring, and retrieval. Promotor: A.P.J. van den Bosch. Tilburg, June 30,
2010.

14 Edwin Commandeur. Implicit Causality and Implicit Consequentiality in
Language Comprehension. Promotores: Prof. dr. L.G.M. Noordman, Prof.
dr. W. Vonk. Co-promotor: Dr. R. Cozijn. Tilburg, June 20, 2010.

15 Bart Bogaert. Cloud Content Contention. Promotores: Prof. dr. H.J. van den
Herik, Prof. dr. E.O. Postma. Tilburg, March 30, 2011.

16 Xiauyo Mao. Airport under Control. Promotores: Prof. dr. H.J. van den
Herik, Prof. dr. E.O. Postma. Co-promotores: Dr. N. Roos and Dr. A. Salden.
Tilburg, May 25, 2011.

17 Olga Petukhova. Multidimensional Dialogue Modelling. Promotor: Prof. dr.
H. Bunt. Tilburg, September 1, 2011.

18 Lisette Mol. Language in the Hands. Promotores: Prof. dr. F. Maes, Prof. dr.
E.J. Krahmer, and Prof. dr. M.G.J. Swerts. Tilburg, November 7, 2011.

19 Herman Stehouwer. Statistical Language Models for Alternative Sequence
Selection. Promotores: A.P.J. van den Bosch, H.J. van den Herik. Co-
Promotor: M.M. van Zaanen. Tilburg, 7 December 2011.

	Preface
	Contents
	1 Introduction
	1.1 Statistical Language Models
	1.2 Alternative Sequence Selection
	1.3 Problem Statement
	1.4 Research Questions
	1.5 Research Methodology
	1.6 Structure of the Thesis

	2 Three Alternative Selection Problems
	2.1 Confusibles
	2.1.1 Identification of Confusible Sets
	2.1.2 Selection of the Correct Member

	2.2 Verb and Noun Agreement
	2.2.1 Identification of Agreement
	2.2.2 Selection of the Correct Agreement

	2.3 Prenominal Adjective Ordering
	2.3.1 Investigation of the Ordering
	2.3.2 Selection: Seven Computational Approaches

	3 Experimental Setup
	3.1 Flowchart of the Experiments
	3.2 Alternative Sequence Generation
	3.2.1 Confusibles
	3.2.2 Verb and Noun Agreement
	3.2.3 Prenominal Adjective Ordering

	3.3 Alternative Sequence Selection
	3.4 Alternative Sequence Evaluation
	3.5 Data Structures Used
	3.5.1 Suffix Trees
	3.5.2 Suffix Arrays
	3.5.3 Enhanced Suffix Arrays

	4 Models without Annotation
	4.1 Basics of n-gram Language Models
	4.1.1 Smoothing
	4.1.2 Interpolation
	4.1.3 Back-off

	4.2 Towards Flexible SLMs
	4.2.1 Preliminaries: Experimental Setup
	4.2.2 Preliminaries: Results and Conclusions
	4.2.3 Impact on our Work

	4.3 Language-Model Environment
	4.4 Experiments
	4.4.1 Results on Confusibles
	4.4.2 Results on Verb and Noun Agreement
	4.4.3 Results on Prenominal Adjective Ordering

	4.5 Answers to RQ1 and RQ2
	4.6 Chapter Conclusion

	5 Models with Local Annotation
	5.1 Part-of-Speech Annotation
	5.1.1 Human-Defined Part-of-Speech Annotation
	5.1.2 Machine-Derived Part-of-Speech Annotation
	5.1.3 Evaluation of Machine-Derived Annotations
	5.1.4 Applying Part-of-Speech Tags Automatically

	5.2 Language-Model Environment
	5.2.1 The Part-of-Speech Tags
	5.2.2 Evaluation of Machine-Derived Tags
	5.2.3 Part-of-Speech on New Data
	5.2.4 Combining Tags and Text

	5.3 Experiments
	5.3.1 Evaluation of Machine-Derived Part-of-Speech Tags
	5.3.2 Results on Confusibles
	5.3.3 Results on Verb and Noun Agreement
	5.3.4 Results on Prenominal Adjective Ordering

	5.4 Partial Answers to RQ3 and RQ4
	5.5 Chapter Conclusions

	6 Models with Complex Annotation
	6.1 Dependency Parses
	6.1.1 Supervised Dependency Parsing
	6.1.2 Unsupervised Dependency Parsing

	6.2 Language-Model Environment
	6.3 Experiments
	6.3.1 Comparing Dependency Parses
	6.3.2 Results on Confusibles
	6.3.3 Results on Verb and Noun Agreement
	6.3.4 Results on Prenominal Adjective Ordering

	6.4 Partial Answers to RQ3 and RQ4
	6.5 Chapter Conclusions

	7 Conclusions and Future Work
	7.1 Answering the Research Questions
	7.2 Answering the Problem Statements
	7.3 Recommendations and Future Work

	References
	Summary
	Samenvatting
	Curriculum Vitae
	Publications
	SIKS Dissertation Series
	TiCC Ph.D. Series

