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We present two methods for integrating forced geodesic equations in the Kerr spacetime. The methods

can accommodate arbitrary forces. As a test case, we compute inspirals caused by a simple drag force,

mimicking motion in the presence of gas. We verify that both methods give the same results for this simple

force. We find that drag generally causes eccentricity to increase throughout the inspiral. This is a

relativistic effect qualitatively opposite to what is seen in gravitational-radiation-driven inspirals, and

similar to what others have observed in hydrodynamic simulations of gaseous binaries. We provide an

analytic explanation by deriving the leading order relativistic correction to the Newtonian dynamics. If

observed, an increasing eccentricity would thus provide clear evidence that the inspiral was occurring in a

nonvacuum environment. Our two methods are especially useful for evolving orbits in the adiabatic

regime. Both use the method of osculating orbits, in which each point on the orbit is characterized by the

parameters of the geodesic with the same instantaneous position and velocity. Both methods describe the

orbit in terms of the geodesic energy, axial angular momentum, Carter constant, azimuthal phase, and two

angular variables that increase monotonically and are relativistic generalizations of the eccentric anomaly.

The two methods differ in their treatment of the orbital phases and the representation of the force. In the

first method, the geodesic phase and phase constant are evolved together as a single orbital phase

parameter, and the force is expressed in terms of its components on the Kinnersley orthonormal tetrad. In

the second method, the phase constants of the geodesic motion are evolved separately and the force is

expressed in terms of its Boyer-Lindquist components. This second approach is a direct generalization of

earlier work by Pound and Poisson [A. Pound and E. Poisson, Phys. Rev. D 77, 044013 (2008).] for planar

forces in a Schwarzschild background.
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I. INTRODUCTION

The two-body problem in relativity when one of the
bodies is much more massive than the other is of great
interest both theoretically and astrophysically. In this limit,
the orbit of the smaller body is approximately geodesic on
short time scales. Deviations from the geodesic trajectory
arise from the back-reaction on the orbit of the spacetime
perturbation created by the object, but can also arise from
external factors such as gravitational interactions with
other bodies, gaseous material in the spacetime and so
forth. In all these situations, the orbit can be described as
a geodesic acted on by a perturbing force, which is in
general small. In this article, we describe techniques for
integrating the Kerr geodesic equations in the presence of
an arbitrary forcing term, which can be applied to any of
these problems.

For the back-reaction on the orbit, the perturbing force,
called the self-force, is of the order of the mass ratio �=M
and it can be computed by a perturbation expansion in this
small parameter. Computing the linearized metric pertur-
bation sourced by the compact object and hence the self-
force is not an easy task and it has taken more than a decade

to solve this problem for a nonspinning compact object
moving in a Schwarzschild background [1–4]. The con-
ventional approach treats the compact object as a test mass
which leads to a divergence of the field at the position of
the particle and this must be dealt with using a regulariza-
tion procedure. The extension to Kerr orbits is under way.
The techniques described in this paper will be a useful tool
in the future for constructing trajectories evolving under
gravitational radiation reaction.
The problem of the motion of two bodies with very

different masses is relevant for present and future gravita-
tional wave detectors. Systems with mass ratios of 1:100
(intermediate-mass-ratio inspirals) could be detected by
the advanced generation of ground-based detectors that
are currently under construction [5]. The proposed space-
based detector LISA [6] is expected to detect �10–100
extreme-mass-ratio inspiral (EMRI) events per year [7].
These result from the capture of a compact stellar-mass
object (a white dwarf, neutron star or black hole) by a
massive black hole (MBH) from a surrounding cusp of
stars in a galactic nucleus. The captured object generates a
large number of gravitational wave cycles while it is
orbiting in the strong field of the MBH, which makes these
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very good sources to use as probes of strong-field gravity
[8]. For both of these classes of source, techniques for
evolving the orbit under the influence of both gravitational
back-reaction and other perturbing forces are essential for
constructing accurate waveform templates and for under-
standing how external perturbations can leave an imprint
on the inspiral trajectory

We present two implementations that can be used to
integrate geodesic motion in a Kerr background with an
external force. We use the method of osculating elements
extending previous work [9] for Schwarzschild orbits to
the Kerr background. The problem of motion under a small
perturbation is well studied in celestial mechanics and is
regularly applied to model the motion of satellites and
small planets. A geodesic in Newtonian mechanics, or
relativity, is uniquely characterized either by the three
components of the particle position vector, r, and the three
components of the particle velocity, _r, at any time or by six
orbital constants (three orbital constants of the motion and
three initial phases). There is a one-to-one correspondence
between the two characterizations. This means that any
trajectory can be instantaneously identified with a geodesic
that has the same values of r and _r. Of course, at two
different instances of time, the geodesics will differ, but
one can smoothly evolve the geodesic parameters to repro-
duce any nongeodesic trajectory. There are several ap-
proaches to do so and we describe these in the next
subsection.

A. Osculating elements or variation of constants

As mentioned above we can describe a bound stable
geodesic by six parameters, which we denote by I. In the
nonrelativistic case these parameters are simply I ¼ ðr; _rÞ,
while for geodesic motion in Kerr we can take I ¼
fE; Lz; Q; c 0; �0; �0g. Here E is the energy, Lz the azimu-
thal angular momentum, Q is the Carter constant, and the
remaining phases are defined in Sec. III below.

At each instant we can therefore identify the true trajec-
tory with a corresponding geodesic such that r and _r are the
same. This imposes a particular choice of parameters, I, at
each instance of time, and the whole trajectory is thus
described by a sequence in the geodesic phase space,
e.g., IðtÞ ¼ fEðtÞ; LzðtÞ; �ðtÞ; c 0ðtÞ; �0ðtÞ; �0ðtÞg. These are
referred to as the osculating orbital elements at the oscu-
lation epoch t [10]. Another name for this approach used in
the Hamiltonian description is a variation of constants.
We preserve the form of the equations of motion for a
geodesic but slowly vary what used to be constants of
motion in the unperturbed case. There are well known
techniques for tackling such problems which are widely
used in Newtonian celestial mechanics and can be ex-
tended to the relativistic regime. This was demonstrated
by Pound and Poisson [9] for the trajectory of a particle in a
Schwarzschild background under the action of (post-
Newtonian) radiation reaction.

When we have a perturbed system of the form

€r ¼ fgeo þ �f; (1.1)

we can describe the perturbed trajectory using the osculat-
ing elements referred to the orbits of the geodesic system
€r ¼ fgeo. From the chain rule, any one of the osculating

elements evolves as

_I ¼ rrI � _rþrvI � €r; (1.2)

in which the subscripts r and v denote derivatives with
respect to the orbital position and velocity, respectively. In
the absence of the perturbing force, each osculating ele-
ment is constant, so _I ¼ rrI � _rþrvI � fgeo � 0. The

perturbation equations thus take the rather simple form

_I ¼ rvI � �f: (1.3)

Given an explicit expression for the perturbing force we
can integrate these equations.
The osculating element method can be formulated in

several different ways. There is freedom in the parametri-
zation of the geodesic solution that is used as a basis for
deriving the osculating element equations, and in the basis
used to prescribe the force. It is also possible to treat the
orbital phase constants either as constants of the motion
that are evolved explicitly or as part of a total phase
variable which satisfies new equations that depend on the
perturbation. We will describe two methods for treating the
Kerr problem: (i) evolution of E, Lz, Q and the full orbital
phases with the force prescribed with respect to the
Kinnersley orthonormal tetrad; (ii) evolution of the orbital
constants of motionE, Lz,Q and the initial phases, with the
force prescribed by its Boyer-Lindquist components.
In the Hamiltonian approach we start with an unper-

turbed Hamiltonian, H0, and write the equations of motion
in terms of the constant canonical coordinates and mo-
menta, X�, P� (Hamilton-Jacobi approach), which are
closely related, if not exactly the same, as the six constants
of motion introduced above, I [11]. If we can describe the
perturbation as a small addition �H to the unperturbed
Hamiltonian, then we can describe the equations of motion
in the same generalized coordinates and momenta, which
are no longer constants. The derivatives of the perturbation
�H give the equations for the evolution of X�, P�. Quite
often those equations are solved iteratively starting with an
assumption that the orbit is unperturbed in the right-hand
side (in the �H). This is similar to the adiabatic solution to
the osculating element equations which we will describe
below. The Hamiltonian approach (if it can be formulated)
would give equations equivalent to approach (ii) men-
tioned above.
We note that an obvious method of computing inspirals

is to numerically integrate the second-order forced geode-
sic equations directly, taking the fundamental variables to
be the Boyer-Lindquist coordinates and their derivatives
with respect to proper time. The key advantage of the
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methods discussed in this paper over second-order integra-
tions is that they mesh much more naturally with the
adiabatic approximation and more generally with two-
time-scale approximation techniques [12]. For extreme-
mass-ratio inspirals driven by radiation reaction, the orbital
evolution time scale is much longer than the orbital time
scale for most of the inspiral, until the orbit becomes close
to the innermost stable orbit. The adiabatic approximation
to the motion gives the motion as an expansion in the ratio
of the time scales, and then there are various postadiabatic
corrections to this. Although it is not possible yet to
compute numerically the full first-order self-force for ge-
neric orbits in Kerr, it is possible to compute the averaged,
dissipative piece of this force, which is sufficient to com-
pute leading-order adiabatic inspirals [12]. The two-time-
scale expansion also allows one to go beyond the adiabatic
evolution and compute the small, rapidly oscillating per-
turbations to the evolution of the orbital variables, as well
as the slow secular changes to higher order.

The two-time-scale method cannot be easily applied to
the second-order, forced geodesic equations, but it can be
applied to the equations derived in this paper, as we discuss
in Secs. II and III below. In particular, the osculating
elements method allows us to explicitly estimate the orbital
average rate of change of the orbital elements. This gives
us a physical insight into the effect of a perturbing force on
the orbit which is otherwise obscured in the integration of
the second-order equations of motion. Estimation of these
secular changes also allows us to construct the adiabatic
evolution of the orbit in the regime where it is applicable.

B. Numerical ‘‘kludge’’ waveform

Another application for the results described in this
paper is for the construction of numerical kludge wave-
forms. The numerical kludge waveform for EMRIs is a fast
and accurate way to compute the long waveforms [13] that
will be needed for EMRI data analysis. These are built in a
not entirely consistent way, but the basic philosophy is to
model the underlying trajectory of the inspiralling object as
accurately as possible in order to obtain the best possible
phase match between the true and approximate waveforms.
The approximation is based on geodesic motion in the
MBH’s spacetime, combined with a flat spacetime wave-
form generation expression. In the most recent version of
the numerical kludge [14], the instantaneous geodesic orbit
was updated by evolving the three constants of the motion
E, Lz, Q [15] only. The evolution of the constants was
obtained by combining post-Newtonian results with fits to
numerical fluxes obtained by solving the Teukolsky equa-
tion [14]. However this method of evolving the geodesics is
not complete, as we described above, since we need to
evolve the (initial) orbital phases together with the orbital
constants E, Lz,Q. In particular, the natural (and incorrect)
way to evolve the phase constants, which is to fix them
at some initial point, leads to significantly different

evolutions in a time or frequency domain implementation
of the kludge. The desire to resolve this apparent discrep-
ancy between the two implementations was one of the
initial motivations for the work described here. This article
outlines the correct way to evolve geodesics under the self-
force which could be used to further improve the numerical
kludge waveforms in both time and frequency domain
descriptions of them.

C. Main results and the structure of the paper

In this paper we will give a detailed description of the
osculating elements approach applied to an arbitrary per-
turbing force acting on an object undergoing geodesic
motion in the Kerr spacetime. As an introduction to the
three dimensional relativistic problem of perturbed geode-
sic motion we will first consider a toy problem in Sec. II.
We look at the one-dimensional nonlinear oscillator acted
on by an external force. The external force is chosen to
have two components: a dissipative part and a conservative
part (which just redefines the energy of the system). As we
will see later this problem is a very good model for the
main problem of perturbed motion in the Kerr spacetime.
We show how two implementations of the osculating ele-
ments approach work in this simplified model and compare
the exact evolution with the adiabatic approximation. The
second of these two implementations [in which we evolve
the energy and the initial time defined as xðt0Þ ¼ 0] allows
us to treat the problem analytically in terms of Jacobi
elliptic functions. This one-dimensional example allows
the reader to understand the main approach which we then
extend to the problem of forced geodesic motion in the
Kerr spacetime in Sec. III. We start that section with an
introduction to our notation, before describing the osculat-
ing elements approach using the Kinnersley tetrad and
‘‘Hughes’’ variables (in terms of the orbital constants and
the total phase variables). We then describe the forced
geodesic equations in Boyer-Lindquist coordinates, evolv-
ing the orbital constants and the initial conditions, which is
a direct extension to Kerr of the Schwarzschild results
described in [9]. In both cases, we show how we can
explicitly avoid the appearance of an apparent divergence
in the osculating equations of motion at turning points.
In Sec. IV, we illustrate our techniques with a problem in

which the perturbing force is a ‘‘gas-drag’’ force propor-
tional to the velocity of the inspiralling compact object.
This is a toy model for an object inspiralling in a gaseous
environment around a MBH. We show that the different
approaches give identical results, and once again compare
the exact and adiabatic solutions to the problem. The
influence of the drag force is to drive the inspiral of the
object, but it also tends to increase the eccentricity of
the orbit and decrease the orbital inclination. Although
we primarily use this problem for illustrative purposes,
the increase in eccentricity is an interesting result that
could have observational consequences. The increase in
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eccentricity is a purely relativistic effect, and is to be
expected generically, as we discuss in more detail in
Appendix D, in the context of a drag force acting on an
object in a Schwarzschild background.

We summarize and discuss our findings in the conclud-
ing Sec. V. Some detailed mathematical calculations are
included in additional appendixes.

II. A SIMPLE MODEL TO ILLUSTRATE
METHODS USED: THE PERTURBED

NONLINEAR OSCILLATOR

In this section wewill study in detail the simple model of
an anharmonic oscillator subject to an external perturbing
force, in order to illustrate and explain in a simple context
the methods that we use for Kerr inspirals in subsequent
sections of the paper.

We take the equation of motion for the position xðtÞ of
the oscillator to be

€xþ xþ �x3 ¼ �aextðx; _xÞ: (2.1)

Here the frequency of the oscillator is chosen to be unity
for simplicity, �> 0 is a parameter governing the size of
the nonlinear term, aext is an externally applied perturbing
acceleration, which could be a function of both the position
and the velocity, and � is a small parameter. This simple
system is similar in some respects to the system of a point
particle in orbit about a Kerr black hole and subject to the
gravitational self-force. The dimensionless small parame-
ter � in the system (2.1) plays the role of the mass ratio in
the Kerr case, and the external acceleration aext is analo-
gous to the self-force.

A. Analysis using simple phase and energy coordinates
on phase space

Consider initially the situation where there is no external
acceleration. It is useful for some purposes to use a set of
phase space coordinates for the nonlinear oscillator which
eliminate the turning points. We define coordinates a and
c , functions of x and v � _x, by the equations

1

2
a2 þ 1

4
�a4 ¼ 1

2
_x2 þ 1

2
x2 þ 1

4
�x4; (2.2a)

x ¼ a cosc ; (2.2b)

sgnð _xÞ ¼ �sgnðsinc Þ: (2.2c)

The expression on the right-hand side of Eq. (2.2a) is just
the conserved energy of the system, and a is the conserved
amplitude of the oscillation. The variable c increases
monotonically (but not linearly) with time. The equations
of motion in these variables are

_a ¼ 0; (2.3a)

_c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �a2ð1þ cos2c Þ=2

q
: (2.3b)

Now consider turning on the external force. Then the
right-hand sides of the equations of motion (2.3) will
acquire terms proportional to �. If we differentiate the
definition (2.2b) of c with respect to t, insert the result
into the definition (2.2a) of a, and solve for _c using also
Eq. (2.2c), we obtain

_c ¼ _a

a
cotc þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �a2ð1þ cos2c Þ=2

q
; (2.4)

which explicitly shows the extra forcing term. However
this term contains an apparent divergence at c ¼ 0. The
divergence is only apparent, since _a will be constrained to
vanish when c ¼ 0, because the rate at which the force
does work will vanish when the velocity of the particle is
zero.
To see this explicitly, we substitute the definition (2.2b)

of c into the definition (2.2a) of a, and solve for _x to get

_x ¼ �a sinc
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �a2ð1þ cos2c Þ=2

q
: (2.5)

Next, we differentiate both sides of Eq. (2.2a) with respect
to t, and simplify the right-hand side using the equation of
motion (2.1). This gives

ðaþ �a3Þ _a ¼ � _xaext: (2.6)

Now using the result (2.5) for _x and substituting into Eq.
(2.4) gives the final results:

_c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ�a2ð1þ cos2c Þ=2

q �
1� �

cosc aext
að1þ�a2Þ

�
; (2.7a)

_a¼��
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ�a2ð1þ cos2c Þ=2

q sinc aext
1þ�a2

; (2.7b)

where aextðx; vÞ is evaluated at x ¼ a cosc , and
v ¼ vða; c Þ given by the expression (2.5).
The final result (2.7) now casts the system of differential

equations entirely in terms of the variables a and c , and as
expected there are no divergences. Note however that
Eq. (2.4) would show a divergence if one used an approxi-
mate, orbit-averaged version of _a instead of the exact
expression for _a.
In the analogous problem in Kerr, it is very straightfor-

ward to compute the analog of the equation of motion (2.4)
which contains the apparent divergence. For numerical
work, this form of the equation would be problematic,
since the right-hand side evaluates to 0=0 at turning points.
Our goal was to attempt to reformulate the equations in
Kerr analytically, to achieve a form analogous to Eq. (2.7),
where all the divergences have been removed. Although it
was not clear a priori that this would be possible (because
of the complexity of the Kerr-orbit dynamical system), we
were successful in finding an explicitly finite form of the
equations of motion in both sets of variables.
For the problem that we are really interested in, per-

turbed geodesics in the Kerr spacetime, it will be especially
useful to consider the adiabatic limit � ! 0 of small
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external perturbations. So we consider adiabatic perturba-
tions in the context of our example problem. The equations
of motion (2.7) for c and a can be written in the general
form

_c ¼ !ðc ; aÞ þ �gð1Þðc ; aÞ þOð�2Þ; (2.8a)

_a ¼ �Gð1Þðc ; aÞ þOð�2Þ: (2.8b)

Here on the right-hand side, all the functions are periodic
functions of c with period 2	. In Appendix B we derive
the limiting form of the solutions in the limit � ! 0; see
also Ref. [12]. The leading order or adiabatic solutions are
given by the following set of steps:

(1) We define the averaging operation, for any function
fðc Þ of c , by

hfia �
R
2	
0 dc fðc Þ

!ðc ;aÞR
2	
0 dc 1

!ðc ;aÞ
: (2.9)

The subscript a on the left-hand side is a reminder
that the averaging operation depends on the value
of a.

(2) We define the averaged functions

�!ðaÞ � h!ðc ; aÞia; (2.10)
and

�G ð1ÞðaÞ � hGð1Þðc ; aÞia: (2.11)

(3) We solve a pair of ordinary differential equations in
the slow time parameter

~t ¼ �t; (2.12)

for two auxiliary functions �ð0Þð~tÞ and að0Þð~tÞ. This
pair of ordinary differential equations is

d�ð0Þ

d~t
¼ �!ðað0Þð~tÞÞ; (2.13a)

dað0Þ

d~t
¼ �Gð1Þðað0Þð~tÞÞ: (2.13b)

Note that, for this step, one does not need to specify
a value of �.

(4) We can then write down the adiabatic solutions:

aðt; �Þ ¼ að0Þð�tÞ; (2.14a)

c ðt; �Þ ¼ �

�
1

�
�ð0Þð�tÞ; að0Þð�tÞ

�
; (2.14b)

where the function �ð�; aÞ is defined implicitly by
the equation

�

2	
¼

R�ð�;aÞ
0

dc
!ðc ;aÞR

2	
0

dc
!ðc ;aÞ

(2.15)

and satisfies �ð�þ 2	; aÞ ¼ �ð�; aÞ þ 2	. (The
inverse of the mapping � essentially maps the
given phase space coordinates onto action-angle
variables.)

Note that there is an asymmetry in how the forcing terms

gð1Þ and Gð1Þ in Eq. (2.8) enter into the adiabatic solution

(2.14). The function Gð1Þ, which drives the energy evolu-

tion, does enter, but the function gð1Þ, which drives the
phase evolution, does not enter at all. It influences only the
post-1-adiabatic solutions.
Note also that one cannot obtain the adiabatic solutions

by any simple modification of the original differential
equations.

B. Analysis exploiting analytic solution to
un-forced motion

It is also possible to find an analytic solution to the
unperturbed anharmonic oscillator in terms of Elliptic
functions. Equation (2.2a) can be rearranged to give

_x 2 ¼ �

2
ðx2þ � x2Þðx2 � x2�Þ; (2.16)

where we have defined the turning points

x2� ¼ 1

�
ð�1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2E�
p Þ (2.17)

in terms of the energy E, which is set to be twice the
conserved quantity on the right-hand side of Eq. (2.2a),
and is related to the amplitude of motion a and the non-
linearity parameter � by

E ¼ a2 þ 1

2
�a4: (2.18)

For �> 0, all of the solutions are bound and oscillate
periodically in the interval �x2þ � x � x2þ. Without loss
of generality we can set xðt0Þ ¼ 0, in which case Eq. (2.16)
can be rearranged and integrated to giveZ x

0

dyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðy2 � x2�Þðx2þ � y2Þ

q

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2þ � x2�

q F

�
sin�1

�
x

xþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2þ � x2�
x2 � x2�

s �
;

xþffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2þ � x2�

q �

¼ �
ffiffiffiffi
�

2

s
ðt� t0Þ: (2.19)

Here Fð�; kÞ denotes the Jacobi elliptic integral of the first
kind [16]

F ð�; kÞ ¼
Z sin�

0

dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1� x2Þð1� k2x2Þp
¼

Z �

0

d�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2sin2�

p : (2.20)

In the following, we will denote all elliptic integrals by
bold capital letters. The inverse of this elliptic integral is
given by the elliptic function snðu; kÞ such that
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F ð�; kÞ ¼ u , �ðu; kÞ ¼ sin�1½snðu; kÞ�: (2.21)

For the solutions (2.19), the parameter k and argument u
are given by

k2 ¼ x2þ
x2þ � x2�

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2E�

p � 1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2E�

p ; (2.22)

u ¼ ð1þ 2E�Þ1=4ðt� t0Þ: (2.23)

The relation between xðtÞ and the elliptic function is then

xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � x2�

p ¼ ksnðu; kÞ: (2.24)

Solving this gives an expression for x2 that is somewhat
unsatisfying since using it requires manually flipping the
sign of x. We can instead get a simpler expression if we
introduce the additional elliptic function

dn ðu; kÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2sn2ðu; kÞ

q
: (2.25)

The result is

x ¼ k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1� k2Þ
�ð1� 2k2Þ

s
sdðu; kÞ; (2.26)

where sdðu; kÞ ¼ snðu; kÞ=dnðu; kÞ.
We will now derive the osculating element equations for

the variables u and k. The physical variables E and t0 can
be obtained from these simply via

E ¼ 2k2ð1� k2Þ
�ð1� 2k2Þ2 ; (2.27)

dE

dt
¼ 4k

�ð1� 2k2Þ3
dk

dt
; (2.28)

t0 ¼ t�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2k2

p
u; (2.29)

dt0
dt

¼ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2k2

p du

dt
þ 2kuffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 2k2
p dk

dt
: (2.30)

To derive the equations of motion in the osculating element
form we need to differentiate sdðu; kÞwith respect to u and
k. This gives

@sd

@u
ðu; kÞ ¼ cnðu; kÞ

dn2ðu; kÞ ; (2.31)

@sd

@k
ðu; kÞ ¼ ucnðu; kÞ

kdnðu; kÞ �
E½�ðu; kÞ; k�cnðu; kÞ
kð1� k2Þdn2ðu; kÞ

þ ksnðu; kÞ
ð1� k2Þdnðu; kÞ ; (2.32)

where we have introduced the elliptic function cnðu; kÞ,
which is defined by the analogue of Eq. (2.21) but with
sin�1 replaced by cos�1, and where Eð�; kÞ is the elliptic
integral of the second kind [16]:

E ð�; kÞ ¼
Z sin�

0
dx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2x2

1� x2

s
¼

Z �

0
d�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2sin2�

p
:

(2.33)

Since the parameter k depends only on the energy, the
evolution equation can be derived directly from the equa-
tion for the energy evolution, which follows by differen-
tiation of Eq. (2.2a) and use of Eq. (2.1):

dE

dt
¼ 2 _x�aext: (2.34)

The evolution equation for u follows from differentiating
the orbit equation with respect to time and setting this
equal to the velocity of the unperturbed orbit, which is
given by Eq. (2.26):

dx

dt
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1� k2Þk2
�ð1� 2k2Þ2

s
@sd

@u
: (2.35)

Putting these elements together we find the equations for
the osculating evolution of the orbit

dk

dt
¼ �aextðx; _xÞð1� 2k2Þ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�

2
ð1� k2Þ

s
@sd

@u
; (2.36)

du

dt
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 2k2
p � �aextðx; _xÞð1� 2k2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�

2
ð1� k2Þ

s

�
�

1� 2k2 þ 2k4

kð1� k2Þð1� 2k2Þ sdðu; kÞ þ
@sd

@k

�
; (2.37)

where the perturbing force is to be evaluated for the
geodesic position and velocity,

x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2k2ð1� k2Þ
�ð1� 2k2Þ

s
sdðu; kÞ; (2.38)

_x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2k2ð1� k2Þ
�ð1� 2k2Þ2

s
@sd

@u
: (2.39)

We can now derive the adiabatic approximation to the
solution of Eqs. (2.36) and (2.37) following the steps
described at the end of Sec. II A. Eqs. (2.36) and (2.37)
have the same general form as dc =dt and da=dt in
Sec. II A. That is, we can write them as

_u ¼ !ðu; kÞ þ �gð1Þðu; kÞ þOð�2Þ; (2.40a)

_k ¼ �Gð1Þðu; kÞ þOð�2Þ; (2.40b)

where we have now redefined the functions !, gð1Þ, and
Gð1Þ. By comparing against the formula for _u, we find

!ðu; kÞ ¼ !ðkÞ ¼ ð1� 2k2Þ�1=2: (2.41)
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As a result, the averaging operation is greatly simplified:

hfðu; kÞik ¼ 1

UðkÞ
Z UðkÞ

0
dufðu; kÞ; (2.42)

where UðkÞ is the period in u for the general solution
(2.38)

U ðkÞ ¼ 4Fð	=2; kÞ ¼ 4KðkÞ: (2.43)

HereKðkÞ is the complete elliptic integral of the first kind.
Note however that this period depends on k, whereas, in the
previous parametrization, the period in c was simply 2	.

As before, the two functions we wish to average are !

and Gð1Þ. Since ! is independent of u,

�! ¼ h!ik ¼ !: (2.44)

To make further progress, we must specify the perturbing
force. We take this to be

aext ¼ �
 _xþ �x2: (2.45)

By substituting the Eqs. (2.38) and (2.39) for xðu; kÞ and
_xðu; kÞ into this expression, we find, omitting the argu-
ments for the elliptic functions, all of which depend on
both u and k,

Gð1Þðu;kÞ¼�
kð1�k2Þð1�2k2Þ
�
@sd

@u

�
2

þ�k2ð1�k2Þ3=2ð1�2k2Þ
ffiffiffiffi
2

�

s
sd2

@sd

@u
: (2.46)

The second term in this expression is symmetric about
zero, and has period U, so it vanishes under the averaging
operation. The first term is also periodic, but it does not
vanish under averaging since it is always positive.
Recalling the relation between @sd=@u and the other ellip-
tic functions (2.31),

�G ð1Þ ¼ hGð1Þik ¼ �
kð1� k2Þð1� 2k2Þ
�
cn2

dn4

�
k
; (2.47)

and exploiting the following identities,

sn 2 þ cn2 ¼ 1; (2.48)

dn 2 þ k2sn2 ¼ 1; (2.49)

we can rewrite �Gð1Þ as

�G ð1Þ ¼ 
ð1� 2k2Þ
�
1� k2

k
½ð1� k2Þhdn�4ik � hdn�2ik�

�
:

(2.50)

The averaging operations can be reduced to just one inte-
gral by using the identity [16]

Z
dudnm¼ 1

ðmþ1Þð1�k2Þ
�
k2dnmþ1sncnþðmþ2Þð2�k2Þ

�
Z
dudnmþ2�ðmþ3Þ

Z
dudnmþ4

�
: (2.51)

The first term in square brackets vanishes on the ends of the
interval f0;Ug, soZ U

0
dudnm ¼ 1

ðmþ 1Þð1� k2Þ
�

�
ðmþ 2Þð2� k2Þ

Z U

0
dudnmþ2 �ðmþ 3Þ

�
Z U

0
dudnmþ4

�
: (2.52)

which after using Eq. (2.51) gives

�Gð1Þ ¼
ð1�2k2Þ
��

2

3

2�k2

k
�1

k

�
hdn2ik�1�k2

3k

�
: (2.53)

The average can be written as an elliptic integral using [16]

Z
dudn2 ¼ E½�ðu; kÞ; k�; (2.54)

where Eðu; kÞ is the elliptic integral of the second kind
given in Eq. (2.33), and the amplitude function �ðu; kÞ is
given by Eq. (2.21). This leaves us with the final result

�Gð1Þ ¼ 
ð1� 2k2Þ
��

2

3

2� k2

k
� 1

k

�
EðkÞ
KðkÞ�

1� k2

3k

�
; (2.55)

where we have used U ¼ 4KðkÞ, and we use EðkÞ ¼
Eð	=2; kÞ to denote the complete elliptic integral of the
second kind.

C. Example force

We will illustrate the techniques described above for
an oscillator subject to the forcing term given in
Eq. (2.45), i.e.,

aext ¼ �
 _xþ �x2; (2.56)

with � ¼ 10�3, � ¼ 0:1, 
 ¼ 0:15, � ¼ 0:2 and initial
conditions xð0Þ ¼ 1:0, _xð0Þ ¼ 0. The analytic solutions to
the un-forced motion, as described in Secs. II A and II B,
were found to be essentially identical over the full integra-
tion time (as we would expect since these are both exact
solutions to the forced motion). In Fig. 1, we show the
significant disagreements between (i) using the analytic
solution to the un-forced motion as described in Sec. II B
(labeled ‘‘exact’’); and (ii) using the adiabatic approxima-
tion to the evolution, given by Eqs. (2.40), (2.44), and
(2.55) (labeled ‘‘adiabatic’’).
There was no significant disagreement when it came to

predicting the scale parameter k2, but there was significant
disagreement in what those formalisms predicted for the
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position xðtÞ, the phase u, and the time-offset t0. The top
panel in Fig. 1 shows that the adiabatic and exact positions
go completely out of phase around t ¼ 2000, after which
they then continue to pass in and out of phase with each
other. This is to be expected, since the adiabatic solution is
only an approximation. The bottom panel shows disagree-
ments in both the phase u and the time-offset t0. These
grow to several cycles by the end of the integration, while
the error in k2 (not shown) remains small throughout the
integration. This is also to be expected. Because of the
terms we omit, we would expect the error in k2 to scale like
�2, while the error in phase u, and correspondingly the
error in t0 from Eq. (2.29), will scale like �.

Given that the exact solutions obtained via the analytic
and phase solutions are the same, the choice of which
parametrization to use must be made on the basis of
practicality. The integration of the analytic form of the
equations is more computationally expensive, as the ellip-
tic functions must be evaluated at each integration step, so
the phase form of the equations is probably preferable if we
are interested only in the exact solution to xðtÞ. However,
the averaged functions required for the adiabatic approxi-
mation to the solution are most easily derived from the
analytic form of the equations, so this approach is better
when we are interested in deriving an approximate solution
to the equations.

III. OSCULATING ELEMENTS FOR ORBITS IN
THE KERR METRIC

A. Summary of notation

In Boyer-Lindquist coordinates ðt; r; �; �Þ, the Kerr
metric is

ds2 ¼ �
�
1� 2Mr

�

�
dt2 � 4asin2�Mr

�
dtd�

þ ð$4 � �a2sin2�Þ sin
2�

�
d�2 þ�d�2 þ �

�
dr2:

(3.1)

Here,

� � r2 þ a2cos2�; (3.2a)

� � r2 þ a2 � 2Mr; (3.2b)

$ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p
; (3.2c)

and M, a are the black hole mass and spin parameter.
Throughout the rest of this paper we use units in which
M ¼ 1, for simplicity.

We will make use of the Kinnersley null tetrad ~l, ~n, ~m,
~m	, which is given by

~l ¼ $2

�
@t þ @r þ a

�
@�; (3.3)

~n ¼ $2

2�
@t � �

2�
@r þ a

2�
@�; (3.4)

and

~m ¼ 1ffiffiffi
2

p ðrþ ia cos�Þ
�
ia sin�@t þ @� þ i

sin�
@�

�
:

(3.5)

The corresponding one-forms are

l ¼ �dtþ asin2�d�þ�

�
dr; (3.6)
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FIG. 1 (color online). Comparison between the exact and
adiabatic approaches to evolving the orbit, both from Sec. II B.
The top panel shows the exact solution xðtÞ (solid lines), as well
as the difference between the exact and adiabatic xðtÞ (dashed
lines). The insets show close-up views of the first/last 100s of the
same curves. The bottom panel shows the disagreement between
the exact and adiabatic predictions for the phase u (solid line)
and time-offset t0 (dashed line).
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n ¼ � �

2�
dtþ a�sin2�

2�
d�� 1

2
dr; (3.7)

and

m ¼ 1ffiffiffi
2

p ðrþ ia cos�Þ ð�ia sin�dtþ �d�þ i$2 sin�d�Þ:

(3.8)

The basis vectors obey the orthonormality relations
~l � ~n ¼ �1 and ~m � ~m	 ¼ 1, while all other inner products
vanish. The metric can be written in terms of the basis one-
forms as

g�� ¼ �2lð�n�Þ þ 2mð�m	
�Þ: (3.9)

We define the conserved energy per unit rest mass �:

E ¼ � ~u � @
@t

; (3.10)

the conserved z-component of angular momentum divided
by �M:

Lz ¼ ~u � @

@�
; (3.11)

and Carter constant divided by �2M2:

Q ¼ u2� � a2cos2�E2 þ cot2�L2
z þ a2cos2�: (3.12)

(From now on we will for simplicity call these dimension-
less quantities ‘‘energy,’’ ‘‘angular momentum,’’ and
‘‘Carter constant.’’) The geodesic equations can then be
written in the form [17]�
dr

d�

�
2 ¼ ½Eðr2 þ a2Þ � aLz�2 ��½r2 þ ðLz � aEÞ2 þQ�
� VrðrÞ; (3.13)

�
d�

d�

�
2 ¼Q� cot2�L2

z �a2cos2�ð1�E2Þ � V�ð�Þ; (3.14)

d�

d�
¼ csc2�Lz þ aE

�
r2 þ a2

�
� 1

�
� a2Lz

�
� V�ðr; �Þ;

(3.15)

dt

d�
¼ E

�ðr2 þ a2Þ2
�

� a2sin2�

�
þ aLz

�
1� r2 þ a2

�

�
� Vtðr; �Þ: (3.16)

Here � is the Mino time parameter [18], related to proper
time 
 by

d� ¼ 1

�
d
; (3.17)

and we use these equations to define the potentials VrðrÞ,
V�ð�Þ, V�ðr; �Þ and Vtðr; �Þ. Sometimes it will be conve-

nient to use, instead of the Carter constant Q, the quantity

K ¼ Qþ ðLz � aEÞ2: (3.18)

For the rest of this section we specialize to bound geo-
desics, which are periodic in r and �.

B. Change of variables

Eqs. (3.13), (3.14), (3.15), and (3.16) form a complete set
of equations that can be solved to obtain the geodesic
motion. However, it is difficult in practice to use the
variables r and � due to sign flips that occur in, for
example,

dr

d�
¼ �

ffiffiffiffiffiffiffiffiffiffiffi
VrðrÞ

q
;

at turning points. Therefore we follow Drasco and Hughes
in switching to an alternative set of variables [13,17].

1. Angular motion

We introduce the notation z ¼ cos2�, and note that the
effective potential can be written as

V�ðzÞ ¼ 1

1� z
½Qð1� zÞ � zL2

z � �zð1� zÞ�; (3.19)

where � ¼ a2ð1� E2Þ. We note that this � is different
from the variable appearing in the forced oscillator in
Sec. II. All subsequent references to � will assume this
new definition. We define z� and zþ with z� < zþ to be the
two roots, so that

V�ðzÞ ¼ 1

1� z
�ðz� � zÞðzþ � zÞ: (3.20)

These roots z� and zþ are functions ofE, Lz andQ, and are
positive with 0< z� < 1 and zþ > 1. The motion takes
place in the region 0 � z � z�.
We replace the angular variable �, which oscillates, with

another angular variable c �, which increases monotoni-
cally with time. The definition is given by

cos� ¼ ffiffiffiffiffiffi
z�

p
cosc �: (3.21)

Note that, for general forced motion, z� will change with
time, along with � and c �.

2. Radial motion

We define r1, r2, r3 and r4 to be the roots of the radial
potential VrðrÞ:
VrðrÞ ¼ ð1� E2Þðr1 � rÞðr� r2Þðr� r3Þðr� r4Þ: (3.22)

Here the roots are ordered as 0< r4 < r3 < r2 < r1, and
the motion takes place in the region r2 < r < r1. The roots
are functions of E, Lz and Q.
We replace the radial variable r, which oscillates, with

an angular variable c r, which increases monotonically
with time. The definition is given by
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r ¼ p

1þ e cosc r

; (3.23)

where the semilatus rectum p and eccentricity e are de-
fined by

r1 ¼ p

1� e
; r2 ¼ p

1þ e
: (3.24)

C. Forced motion using tetrad components of
acceleration and using convenient phase
and energy coordinates on phase space

We now turn to the forced geodesic equation

d2x�

d
2
þ ��

�


dx�

d


dx


d

¼ a�; (3.25)

where a� is the external four acceleration. In this subsec-
tion we derive our first formulation for integrating this
equation, which parametrizes the acceleration in terms of
its components on the Kinnersley null tetrad, and which
parametrizes the motion in terms of a convenient set of
coordinates on phase space that includes E, Lz and Q. The
formulation is analogous to that presented in Sec. II A for
the nonlinear oscillator model. In particular, the phase
variables used here are not conserved for geodesic motion.
Our second formulation will be derived in the next
subsection.

Eqs. (3.13), (3.14), (3.15), and (3.16) are still valid for
the forced geodesic equation. However, they must now be
supplemented with evolution equations for E, Lz and
Q (or K). We decompose the four acceleration on the
Kinnersley tetrad as

~a ¼ �an ~l� al ~nþ a	m ~mþ am ~m	: (3.26)

These four components are not all independent, since the
acceleration must be orthogonal to the four velocity. We
define

Ra ¼ 1ffiffiffi
2

p ðam þ a	mÞ; Ia ¼ iffiffiffi
2

p ðam � a	mÞ; (3.27)

and we take the three independent components to be an, Ra

and Ia. In Sec. III E we will show how the tetrad compo-
nents of the acceleration, ðan; al; a	m; amÞ, relate to the
acceleration components in Boyer-Lindquist coordinates,
ðat; ar; a�; a�Þ.

We similarly decompose the four velocity in terms of the
Kinnersley tetrad as

~u ¼ �un ~l� ul ~nþ u	m ~mþ um ~m	; (3.28)

and we define

Ru ¼ 1ffiffiffi
2

p ðum þ u	mÞ; Iu ¼ iffiffiffi
2

p ðum � u	mÞ: (3.29)

The components are given by the expressions

ul ¼ ur � F

�
; (3.30a)

un ¼ � F

2�
� �

2�
ur; (3.30b)

Ru ¼ r

�
u� þ aH cos�

�sin�
; (3.30c)

Iu ¼ a cos�

�
u� � rH

�sin�
; (3.30d)

where

H ¼ Lz � aEsin2�; (3.31)

and

F ¼ $2E� aLz: (3.32)

The orthonormality condition ~u � ~a ¼ 0 allows us to solve
for al:

al ¼ � ul
un

an þ 1

un
ðRaRu þ IaIuÞ: (3.33)

We also define the following three combinations of accel-
eration components:

AI ¼ rRa þ aIa cos�; (3.34a)

AII ¼ rIa � aRa cos�; (3.34b)

AIII ¼ RuRa þ IuIa: (3.34c)

We can now write down the evolution equations for the
energy, angular momentum and Carter constant. These are
(see Appendix A)

dE

d�
¼ uran�

un
� �AIII

2un
� a sin�AII; (3.35)

dLz

d�
¼ asin2�uran�

un
� asin2��AIII

2un
�$2 sin�AII;

(3.36)

and

dK

d�
¼ 2�2AIII: (3.37)

Equations of motion in terms of phase variables

We next replace the equations of motion (3.13) and
(3.14) for r and � with new equations of motion for c �

and c r, which are derived in Appendix A. The new equa-
tion for c � is
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dc �

d�
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðzþ � zÞ

q �
1þ ð1� z�Þ�AI cosc �

�
ffiffiffiffiffiffi
z�

p ðzþ � z�Þ sin�
�

þ cosc � sinc �Ha�ðAIII � 2uranÞ
2ðzþ � z�Þ�un

þ cosc � sinc �GAII

�ðzþ � z�Þ ; (3.38)

where z ¼ z�cos2c � and

G ¼ $2Lz

sin�
� a3ð1� z�Þ sin�E: (3.39)

The new equation for c r is

dc r

d�
¼ P þ CAIII sinc r

2ð1þ e cosc rÞun þ
D�AIIIP

2ð1þ e cosc rÞ2un
� aE sin� sinc rAII

1þ e cosc r

þ Pan
unð1þ e cosc rÞ2

�
�
ð1� eÞ2ð1� cosc rÞ�1F1

�1

þ ð1þ eÞ2ð1þ cosc rÞ�2F2

�2

�
; (3.40)

where

P ¼ p
ffiffiffiffiffi
J

p
=ð1� e2Þ; (3.41)

J ¼ð1�E2Þð1�e2Þþ2

�
1�E2�1�e2

p

�
ð1þecosc rÞ

þ
�
ð1�E2Þ3þe2

1�e2
� 4

p
þ½a2ð1�E2ÞþL2

zþQ�1�e2

p2

	
�ð1þecosc rÞ2; (3.42)

C ¼ Q1ð1� eÞ
�1

�Q2ð1þ eÞ
�2

; (3.43)

D ¼ ð1� eÞ2ð1� cosc rÞ�1

�1

þ ð1þ eÞ2ð1þ cosc rÞ�2

�2

;

(3.44)

Q 1 ¼ �2aLzrr1 � a4Eðrþ r1Þ þ a3Lzðrþ r1Þ
� a2Eðr3 þ r2r1 þ r31 þ rr1ð�2þ r1ÞÞ
� Err1ðrr1ðrþ r1Þ � 2ðr2 þ rr1 þ r21ÞÞ
� a2ð2a2E� 2Err1 þ aLzð�2þ rþ r1ÞÞcos2�;

(3.45)

Q 2 ¼ �2aLzrr2 � a4Eðrþ r2Þ þ a3Lzðrþ r2Þ
� a2Eðr3 þ r2r2 þ r32 þ rr2ð�2þ r2ÞÞ
� Err2ðrr2ðrþ r2Þ � 2ðr2 þ rr2 þ r22ÞÞ
� a2ð2a2E� 2Err2 þ aLzð�2þ rþ r2ÞÞcos2�;

(3.46)

E ¼ F1ð1� eÞðrþ r1Þ
�1

� F2ð1þ eÞðrþ r2Þ
�2

: (3.47)

Here, � ¼ V 0
rðrÞ, and subscripts 1 or 2 mean that a quantity

is evaluated at r ¼ r1 or r ¼ r2 (except for Q1 and Q2).

D. Forced motion using Boyer-Lindquist coordinate
components of acceleration and phase variables that

are conserved for geodesic motion

In this subsection we derive our second formulation for
integrating the forced geodesic equation, which is analo-
gous to that presented in Sec. II B above for the nonlinear
oscillator model. This formulation parametrizes the accel-
eration in terms of its Boyer-Lindquist coordinate compo-
nents. It parametrizes the motion in terms of two phases c 0

and �0 defined below, which are conserved for geodesic
motion, and three other parameters equivalent to E, Lz and
Q, namely, the orbital eccentricity e, semilatus rectum p
and angle of inclination � (defined in Ref. [14]). This
formulation is a generalization of the treatment of the
Schwarzschild problem described by Pound and Poisson
in [9].
In principle, we must evolve eight parameters, which are

the four constants of motion and the four initial phase
angles. However, one of these equations is eliminated by
using the orthogonality condition _x�a� ¼ 0, where a dot
denotes differentiation with respect to proper time, 
, and
a� is the acceleration. This condition is discussed in [9]
and comes from the definition of proper time.
In this section we will write the phase angles in the form

c r ¼ c � c 0, c � ¼ �� �0 and derive explicit equa-
tions for the time evolution of the initial-phase constants
c 0 and �0. The other parts of the phases, c and �, are
evolved using the standard geodesic expressions. While in
practice we will need c r and c � to evolve the orbit, we
decompose the equations this way to facilitate comparison
to [9] and to make it easier to identify the conservative
contributions from the perturbing force, which are essen-
tially h _c 0i, h _�0i.

1. Contravariant formulation

The Gaussian perturbation equations (1.3) carry over to
the relativistic case and gives Eqs. (27)–(32) in [9]. In the
Kerr case, we have two additional equations as the �
motion is no longer trivial. In [9], the equations were
integrated with respect to the anomaly. In the Kerr case,
as we have two anomalies, it will be more convenient to
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integrate the equations with respect to the coordinate
time, t. The equations of motion that are independent of
the force terms are

@r

@p
p0 þ @r

@e
e0 þ @r

@�
�0 þ @r

@c 0

c 0
0 þ

@r

@�0

�0
0 ¼ 0; (3.48)

@�

@p
p0 þ @�

@e
e0 þ @�

@�
�0 þ @�

@c 0

c 0
0 þ

@�

@�0

�0
0 ¼ 0; (3.49)

@�

@p
p0 þ @�

@e
e0 þ @�

@�
�0 þ @�

@c 0

c 0
0 þ

@�

@�0

�0
0 þ�0 ¼ 0;

(3.50)

@t

@p
p0 þ @t

@e
e0 þ @t

@�
�0 þ @t

@c 0

c 0
0 þ

@t

@�0

�0
0 þ T0 ¼ 0:

(3.51)

Here � and T denote the phase offsets for the evolution of
� and t. We can ignore these equations if we evolve t and
� explicitly using the geodesic expressions evaluated
along the instantaneous orbit, which amounts to evolving
t� T and ��� directly, as in the tetrad formulation. In
the above, we use a dash to denote differentiation with
respect to the parameter we use to define our orbit, which
we take to be t. We will use a dot to denote differentiation
with respect to the proper time 
. The remaining four
equations of motion are

@ _t

@p
p0 þ @ _t

@e
e0 þ @ _t

@�
�0 þ @ _t

@c 0

c 0
0 þ

@ _t

@�0

�0
0 ¼ at
0;

(3.52)

@ _r

@p
p0 þ @ _r

@e
e0 þ @ _r

@�
�0 þ @ _r

@c 0

c 0
0 þ

@ _r

@�0

�0
0 ¼ ar
0;

(3.53)

@ _�

@p
p0 þ @ _�

@e
e0 þ @ _�

@�
�0 þ @ _�

@c 0

c 0
0 þ

@ _�

@�0

�0
0 ¼ a�
0;

(3.54)

@ _�

@p
p0 þ @ _�

@e
e0 þ @ _�

@�
�0 þ @ _�

@c 0

c 0
0 þ

@ _�

@�0

�0
0 ¼ a�
0:

(3.55)

The terms @ _r=@p etc. denote differentiation of the geodesic
equations given earlier with respect to the various orbital
parameters. Following [9], we can use the orthogonality
condition to get rid of one of these equations, specifically
Eq. (3.52), and we will directly integrate � and t, which
means we do not need to consider Eqs. (3.50) and (3.51).

We can rearrange Eqs. (3.48) and (3.49) to give

c 0
0 ¼ � 1

@r=@c 0

�
@r

@p
p0 þ @r

@e
e0 þ @r

@�
�0
�
; (3.56)

�0
0 ¼ � 1

@�=@�0

�
@�

@p
p0 þ @�

@e
e0 þ @�

@�
�0
�
; (3.57)

where we have made use of the fact that the equation for r,
(3.24), is independent of �0 and the equation for �, (3.21),
is independent of c 0. The partial derivative @r=@� also
vanishes, but we include this term explicitly for simplicity
of notation in the following. We generalize [9] by writing

L aðxÞ ¼ @ _x

@a
� @r=@a

@r=@c 0

@ _x

@c 0

� @�=@a

@�=@�0

@ _x

@�0

: (3.58)

Substitution into Eqs. (3.53), (3.54), and (3.55) then gives

p0 ¼ 
0

D
ððLeð�ÞL�ð�Þ �Leð�ÞL�ð�ÞÞar

þ ðL�ðrÞLeð�Þ �L�ð�ÞLeðrÞÞa�
þ ðLeðrÞL�ð�Þ �Leð�ÞL�ðrÞÞa�Þ; (3.59)

e0 ¼ 
0

D
ððL�ð�ÞLpð�Þ �L�ð�ÞLpð�ÞÞar

þ ðLpðrÞL�ð�Þ �Lpð�ÞL�ðrÞÞa�
þ ðL�ðrÞLpð�Þ �L�ð�ÞLpðrÞÞa�Þ; (3.60)

�0 ¼ 
0

D
ððLpð�ÞLeð�Þ �Lpð�ÞLeð�ÞÞar

þ ðLeðrÞLpð�Þ �Leð�ÞLpðrÞÞa�
þ ðLpðrÞLeð�Þ �Lpð�ÞLeðrÞÞa�Þ; (3.61)

D ¼ LpðrÞðLeð�ÞL�ð�Þ �L�ð�ÞLeð�ÞÞ
�LeðrÞðLpð�ÞL�ð�Þ �L�ð�ÞLpð�ÞÞ
þL�ðrÞðLpð�ÞLeð�Þ �Lpð�ÞLeð�ÞÞ: (3.62)

The correct evolution equations for the phase constants c 0

and �0 may be found by substituting the preceding equa-
tions into (3.56) and (3.57). In the next section we will
describe an alternative form of these equations which
greatly simplifies the evolution of the constants of the
motion. We include the above equations for completeness
and to allow a direct comparison to the Schwarzschild
results described in [9].

2. Covariant formulation

The preceding section presented the equations in a con-
travariant formulation. We note that the equations for the
evolution of the phase constants, (3.56) and (3.57), appear
to be singular at turning points where @r=@c 0 ¼ 0 or
@�=@�0 ¼ 0. These are not real singularities, as the nu-
merator also vanishes at the turning points, but it requires
significant simplification to make this explicit. It is also
possible to derive an alternative set of equations to (3.52),
(3.53), (3.54), and (3.55) from a covariant formulation
of the equations. Pound and Poisson [9] chose the
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contravariant formulation in the Schwarzschild case, since
they found it easier to eliminate the singularities at turning
points in that formulation. However, there are advantages
to using the covariant formulation, since two of the cova-
riant velocity components are then equal to conserved
quantities, ut ¼ E, u� ¼ Lz. The osculation conditions

become

@x�G
@IA

_IA ¼ 0;
@vG

�

@IA
_IA ¼ f�; (3.63)

where

vG
� ¼ g��

dz�G
d�

; (3.64)

in which IA denotes the orbital elements, including the
phase constants. The first equation is the same as
Eqs. (3.48), (3.49), (3.50), and (3.51) which reduce to
(3.56) and (3.57). The second equation is the equivalent
of Eqs. (3.52), (3.53), (3.54), and (3.55), but in this case two
of the equations simplify significantly, namely,

_E ¼ ft; _Lz ¼ f�: (3.65)

In the Schwarzschild case, there is no equation for the �
motion and the radial equation follows from (3.65) through
the constraint _z�f� ¼ 0. In the Kerr case, we do need to
solve one of the radial or � equations, or some combination
of them. Alternatively, using the definition of the Carter
constant in terms of the Killing tensor, we can derive the
evolution equation for Q straightforwardly. The time evo-
lution of the related constantK defined in Eq. (3.18), can be
found from Eq. (A9) in Appendix A as _K ¼ K��u�a�.

The Killing tensor K�� can be written in terms of l�

and n� as

K�� ¼ 2�lð�n�Þ þ r2g��; (3.66)

from which we obtain

_K ¼ _E
2

�
ð$4E� a$2LzÞ þ _Lz

2

�
ða2Lz � a$2EÞ

� 2�urar; (3.67)

where we have used _E ¼ �at, and _Lz ¼ a�. An alterna-

tive expression for K�� in terms of m� and m	� exists and
is given in Appendix A as Eq. (A3). If we had used this
definition we would have found an equivalent expression
for _K that was a linear combination of _E, _Lz and a�. The
two expressions are equivalent, since the orthogonality
relation between the perturbation force and four velocity
always allows the elimination of one component of the
force.

These three equations provide an alternative way to
evolve the constants of the motion, E, Lz and Q, but we
must still evolve c 0 and �0 using (3.56) and (3.57) and
therefore we still need to deal with the turning points.

It is possible to derive an alternative form of these
expressions that is manifestly finite at turning points by
starting with the radial geodesic equation in the form

�2 _r2 ¼ Vrðr; Lz; E;QÞ: (3.68)

We need to show that the term

@r

@E
_Eþ @r

@Lz

_Lz þ @r

@Q
_Q; (3.69)

that appears in an alternative version of Eq. (3.56), is
proportional to r0. Differentiation of Eq. (3.68) with respect
to E yields

2�2 _r
@ _r

@E
þ 2�

�
2r

@r

@E
� 2a2 cos� sin�

@�

@E

�
_r2

¼ @Vr

@E
þ @Vr

@r

@r

@E
: (3.70)

Similar equations may be obtained by differentiating with
respect to Lz and Q. Multiplying the E equation by _E etc.
and adding the equations together, all terms on the left-
hand side are proportional to _r, while on the right-hand side
we get the expression (3.69) multiplied by @Vr=@r plus the
term

@Vr

@E
_Eþ @Vr

@Lz

_Lz þ @Vr

@Q
_Q ¼ 2 _r�2

�
€r� 1

2�2

@Vr

@r
þ

_�

�
_r

�
;

(3.71)

where the second equality follows from differentiation of
Eq. (3.68) with respect to time. The term in parentheses on
the right-hand side is what we would obtain if we were on a
geodesic, and therefore it necessarily equals ar in the
evolving case. The final expression is

_c 0¼2
_c geo

@Vr=@r

�
�2

�
_E
@ _r

@E
þ _Lz

@ _r

@Lz

þ _Q
@ _r

@Q

�

þ2�r _r

�
_E
@r

@E
þ _Lz

@r

@Lz

þ _Q
@r

@Q

�

�2�a2 cos�sin� _r

�
_E
@�

@E
þ _Lz

@�

@Lz

þ _Q
@�

@Q

�
��2ar

�
;

(3.72)

in which _c geo denotes the geodesic expression for dc =d


which we use to evolve c . It is clear that this expression is
indeed finite at radial turning points, provided that the
radial self-force is finite. In the Schwarzschild case, it
may be easily verified that Eq. (3.72) gives the same
expression as Eq. (3.56) when they are explicitly
simplified.
One important caveat is that, although expression (3.72)

is finite at radial turning points, it appears to diverge where
@Vr=@r ¼ 0, and this condition will be satisfied once
between each consecutive turning point. This is not a real
divergence, either, which is clear from the fact that the
original form of the equations did not show such a
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divergence. Therefore, if we were to substitute the various
terms into the above expression, we would find that the
necessary cancellations would occur to eliminate these
divergences. This simplification is a nontrivial calculation.
However, an alternative approach that is easier to imple-
ment numerically is to use both Eqs. (3.56) and (3.72)
without any attempt to simplify the expressions. By
switching from one expression to the other near turning
points we can avoid numerical round-off problems. This is
the implementation that we use in practice and from which
the results presented in Sec. IV were derived. We have
verified in practice that both expressions do yield the same
results at points where neither Vr nor @Vr=@r vanish.

3. Action-angle formulation

The method described above for evolving the equations
of motion in the covariant formulation can be readily
adapted to other problems and to other formulations of
the Kerr geodesic solutions. In particular, an action-angle
formulation of the Kerr solution exists [19], in which the
equations take the form

X ¼ AXðE; Lz; QÞFXðc X � c X0;E; Lz; QÞ; (3.73)

dc X

d�
¼ �XðE; Lz; QÞ; (3.74)

where X denotes ðt; r; �;�Þ and � is ‘‘Mino time.’’ The
function FX is periodic for r and �, with a period of 2	,1

and for t and � it is the sum of a secular piece and an
oscillatory term. The osculating element conditions give

�
FX

@AX

@E
þ AX

@FX

@E

�
dE

d�
þ

�
FX

@AX

@Lz

þ AX

@FX

@Lz

�
dLz

d�

þ
�
FX

@AX

@Q
þ AX

@FX

@Q

�
dQ

d�
¼ AXF

0
X

dc X0

d�
; (3.75)

where the dash denotes differentiation of FX with respect
to the phase argument c X � c X0. As before, this expres-
sion appears to be singular at turning points, where
F0
X ¼ 0. However, we can obtain an alternative expression

by considering the potential

�
dX

d�

�
2 ¼ VXðX;E; Lz; QÞ: (3.76)

Adding the derivative of this expression with respect to E
multiplied by dE=d� to the derivative with respect to Lz

multiplied by dLz=d� and the derivative with respect to Q
multiplied by dQ=d� gives

@VX

@X

��
FX

@AX

@E
þ AX

@FX

@E

�
dE

d�
þ

�
FX

@AX

@Lz

þ AX

@FX

@Lz

�
dLz

d�

þ
�
FX

@AX

@Q
þ AX

@FX

@Q

�
dQ

d�

�

þ @VX

@E

dE

d�
þ @VX

@Lz

dLz

d�
þ @VX

@Q

dQ

d�

¼ 2
dX

d�

�
@

@E

�
dX

d�

�
dE

d�
þ @

@Lz

�
dX

d�

�
dLz

d�
þ @

@Q

�
dX

d�

�
dQ

d�

�
:

(3.77)

The derivative of Eq. (3.76) with respect to Mino time is

2
dX

d�

d2X

d�2
¼ @VX

@X

dX

d�
þ @VX

@E

dE

d�
þ @VX

@Lz

dLz

d�
þ @VX

@Q

dQ

d�
;

(3.78)

which thus allows us to replace Eq. (3.75) with

@VX

@X
AXF

0
X

dc X0

d�
¼ dX

d�

��
@VX

@X
� 2

d2X

d�2

�
þ 2

�
@

@E

�
dX

d�

�
dE

d�

þ @

@Lz

�
dX

d�

�
dLz

d�
þ @

@Q

�
dX

d�

�
dQ

d�

��
:

(3.79)

The term in square brackets vanishes for geodesics and is
therefore proportional to the X component of the force
when the orbit is perturbed. At turning points F0

X and
dX=d� are both zero and cancel, so we obtain a new
form of the equation that is manifestly finite at turning
points, albeit singular where @VX=@X ¼ 0. As in the
Boyer-Lindquist case, these two alternative formulations
for the equations allow us to evolve the osculating element
equations directly without worrying about singular behav-
ior, just by switching between the two equivalent expres-
sions in the vicinity of the turning points.

E. Connection between Boyer-Lindquist and
tetrad formulations

The tetrad formulation of the osculation equations, de-
scribed in Sec. III C, is written in terms of acceleration
components, AI etc., that are adapted to the Kinnersley
tetrad, while the Boyer-Lindquist coordinate formulation,
described in Sec. III D, is written in terms of the Boyer-
Lindquist components of the acceleration. To identify the
accelerations between the two approaches, we first write
down the tetrad components of the acceleration in terms of
the Boyer-Lindquist components:

an ¼ $2

2�
at � �

2�
ar þ a

2�
a�; (3.80)

al ¼ $2

�
at þ ar þ a

�
a�; (3.81)

1The choice of periodicity is in a sense arbitrary, and different
periodicities could be obtained by rescaling the angular variable
c . We specify a period of 2	 for convenience.
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am ¼ 1ffiffiffi
2

p ðrþ ia cos�Þ
�
ia sin�at þ a� þ i

sin�
a�

�
;

(3.82)

a	m ¼ 1ffiffiffi
2

p ðr� ia cos�Þ
�
�ia sin�at þ a� � i

sin�
a�

�
:

(3.83)

The acceleration functions Ra ¼ ðam þ a	mÞ=
ffiffiffi
2

p
and Ia ¼

iðam � a	mÞ=
ffiffiffi
2

p
introduced in Sec. III C have components

Ra ¼ a2 sin� cos�

�
at þ r

�
a� þ a cot�

�
a�; (3.84)

Ia ¼ �ar sin�

�
at � a cos�

�
a� � r

sin��
a�; (3.85)

from which we obtain the tetrad acceleration components
in terms of the Boyer-Lindquist components of the accel-
eration

A I ¼ r2 � a2cos2�

�
a�; (3.86)

A II ¼ �a sin�at � 2ra cos�

�
a� � 1

sin�
a�; (3.87)

AIII ¼��asin�atþu�ðr2�a2cos2�Þ=��2�rcos�

�
a�

� �

sin�
a�; (3.88)

in which

� ¼ aEsin2�� Lz

�sin�
: (3.89)

In Sec. IV below we will consider a toy problem as an
illustration of the two methods. The force will be specified
in Boyer-Lindquist coordinates, and the preceding expres-
sions can be used to obtain the corresponding tetrad
components.

F. Features and drawbacks of the two formulations

In this final subsection we discuss some of the advan-
tages and disadvantages of our two formulations.

First, as discussed in the Introduction, earlier work on
methods of computing radiation reaction driven inspirals
focused on the adiabatic limit [13–15,20,21]. In this limit,
it is sufficient to use orbit-averaged forces, or, equivalently,
orbit-averaged proper time derivatives of the first integrals,
_E, _Lz and _Q. These quantities can be computed as func-
tions of E, Lz and Q, both in post-Newtonian expansions
and exactly using numerical black hole perturbation the-
ory. In this paper our focus is on developing methods that
allow going beyond the adiabatic limit. For this purpose,
orbit-averaged quantities are insufficient; one must use a

prescription for the perturbing force that depends on the
two nontrivial orbital phases. One could, in principle,
continue to use the quantities _E, _Lz and _Q to parametrize
the force, if these quantities are taken to be functions of
E, Lz and Q and of two additional phases. This would be
the most natural way to generalize the analyses of
Refs. [13–15,20,21].
However, such a parametrization turns out to have a

significant disadvantage compared to the parametrizations
used in this paper, when one is attempting to compute
approximate inspirals. Specifically, there are constraints
that the fluxes must satisfy at radial and polar turning
points, in order to ensure that the four acceleration be
finite. Approximate versions of the fluxes may violate the
constraints and lead to cusps in the motion at the turning
points. (This will be true, in particular, for orbit-averaged
fluxes.) The existence of these constraints can be seen from
the expression for the square of the four acceleration in
terms of _E, _Lz and _K, which is

~a2 ¼ 1

��u2r

�
1

2
_K�F �F

�

�
2þ 1

�u2�

�
1

2
_K�G �G

�
2� �F2

��
þ

�G2

�
:

(3.90)

Here F ¼ $2E� aLz, �F ¼ $2 _E� a _Lz, G ¼ a sin�E�
csc�Lz, and

�G ¼ a sin� _E� csc� _Lz. It can be seen that, at
radial turning points where ur ¼ 0, the fluxes must satisfy
the constraint _K ¼ 2F �F=�, while at polar turning points

the constraint is _K ¼ 2G �G.2

By contrast, in the tetrad formulation used here, the
magnitude of the acceleration is automatically finite. The
independent components of the four acceleration are
taken to be three of the four components on the
Kinnersley null tetrad, namely, an, am and a	m, with
the fourth component being determined by the orthogo-
nality of the four acceleration and the four velocity. In
terms of these three components, the square of the four
acceleration is

~a2 ¼ 4ulan
1þ 2jumj2

½ulan � u	mam � uma
	
m� þ 2jamj2; (3.91)

which is clearly always finite.3

Similarly, in our Boyer-Lindquist formulation, the ac-
celeration is again always finite, except in some special

2A similar phenomenon occurred in the nonlinear oscillator
model of Sec. II, where the time derivative of the energy was
constrained to vanish at turning points.

3A related issue is that the time derivative of the orbital
eccentricity e can diverge / 1=e as e ! 0, for forces parame-
trized in terms of _E, _Lz and _Q, unless the fluxes obey certain
constraints at e ¼ 0. This issue is discussed in detail in Ref. [14].
Again, this divergence is automatically excluded if one parame-
trizes the force in terms of its tetrad components: The eccen-
tricity can be written as a smooth function e ¼ eðx�; p�Þ on
phase space. Taking a proper time derivative gives de=d
 ¼
ma�@e=@p�, which is finite for finite accelerations.
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cases in the ergosphere. The independent components of
the acceleration are taken to be the spatial, contravariant
components ai ¼ ðar; a�; a�Þ, with at being determined by
orthonormality. The square of the four acceleration is then

~a 2 ¼
�
gij � 2

gtiuj
ut

þ gtt
uiuj

u2t

�
aiaj; (3.92)

which is always finite except in the ergosphere where it is
possible for ut to vanish.

We now turn to a discussion of a second issue, which is a
significant advantage of the Boyer-Lindquist formulation
over the tetrad formulation. This advantage is its simple
behavior under the discrete symmetries of the Kerr space-
time. Specifically, note that any four acceleration ~a ¼
~aðx�; u�Þ can be uniquely decomposed as the sum of a
dissipative piece and a conservative piece. For the dissipa-
tive piece, the components ar and a� are odd under
ur ! �ur, u� ! �u�, while the components at and a�

are even. For the conservative piece, the components ar

and a� are even, while the components at and a� are odd
[12]. It follows that, in the Boyer-Lindquist formulation,
wherein one specifies the components ar, a� and a� of the
four acceleration, it is straightforward to independently
specify the dissipative and conservative pieces.

By contrast, in the tetrad formulation presented here, the
independent variables are taken to be an, am and a	m, and
the decomposition into conservative and dissipative pieces
in terms of these variables is somewhat involved. In par-
ticular, if one is attempting to find useful approximations to
the conservative self-force, for example, by naı̈vely using
conservative post-Newtonian approximations to the quan-
tities an, am and a	m, the errors in the approximation will
generically lead to a self-force with both conservative and
dissipative pieces. This can be a problem since in the
adiabatic limit the effect of the dissipative self-force on
the motion is boosted relative to the conservative self-
force.

There are alternative parametrizations of the self-force
that combine the advantages of our two formulations, for
example,

a� ¼ ar̂e�r̂ þ a�̂e�
�̂
þ a?���
�u

�e
r̂ e
�
�̂
þ ðar̂ur̂ þ a�̂u�̂Þu�;

(3.93)

where ~er̂ and ~e�̂ are unit vectors in the directions of @r and
@�. Here the dissipative and conservative pieces of the

quantities ar̂, â�̂ and a? have simple transformation prop-
erties under discrete symmetries, and moreover the mag-
nitude of the four acceleration is

~a 2 ¼ ðar̂Þ2½1þ u2r̂� þ ða�̂Þ2½1þ u2
�̂
� þ a2?½1þ u2r̂ þ u2

�̂
�;

(3.94)

which is always finite. Useful approximation schemes can
be obtained by (i) formulating approximations in terms of

the three variables ar̂, a�̂ and a?; (ii) using the exact, Kerr

relations to compute an, am and a	m in terms of ar̂, a�̂ and
a?; and (iii) using the resulting expressions in the tetrad
formulation equations of motion (3.15), (3.16), (3.35),
(3.36), (3.37), (3.38), and (3.40). See Ref. [22] for an
application of this approach.

IV. EXAMPLE OF PERTURBED KERR
GEODESICS: ‘‘GAS-DRAG’’

As an example problem, we will suppose that the small
mass experiences a drag force proportional to velocity,
which could represent the behavior of an EMRI occurring
in the presence of gas. Here we derive the four acceleration
for such a force.
In a given frame of reference, the relativistic analog of

this simple drag force will have a term proportional to the
spatial part of the velocity, plus a term proportional to the
frame velocity constructed so that the force remains or-
thogonal to the total velocity. Let ~uZAMO be the velocity of
zero-angular-momentum observers (ZAMOs), and let ~u be
the velocity of the small mass. In the frame of a ZAMO, the
spatial part of the velocity of the small mass is

~u? ¼ ~uþ � ~uZAMO; (4.1)

where � ¼ ~u � ~uZAMO. The drag force then has the form

~a ¼ �
 ~u? þ � ~uZAMO � 
 ~uþ ð�� 
�Þ ~uZAMO; (4.2)

where 
 is the linear drag coefficient. Enforcing the con-
dition ~a � ~u ¼ 0 then determines the value of �:

� ¼ 
ð�2 � 1Þ
�

: (4.3)

Inserting this into the formula for the acceleration due to
drag (4.2) gives

~a ¼ �


�
~uþ ~uZAMO

~u � ~uZAMO

�
: (4.4)

Writing this explicitly in terms of Boyer-Lindquist coor-
dinates, we have

a� ¼ �


�
u� þ u�Z

uZtu
t

�
; (4.5)

where u� denotes the four velocity of the inspiraling object
and

utZ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr2 þ a2Þ2 � �a2sin2�

��

s
; (4.6)

u�Z ¼ 2arffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��ððr2 þ a2Þ2 � �a2sin2�Þp ; (4.7)

urZ ¼ u�Z ¼ 0; (4.8)
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FIG. 2 (color online). Evolution of the orbit under the influence of the ‘‘gas-drag’’ force. The panels show, as functions of Boyer-
Lindquist time t, the particle coordinates r (top left), � (top right) and � (middle left) and the orbital constants p (middle right),
e (bottom left) and � (bottom right). In each panel the solid curve was computed using the exact evolution, while the dashed curve was
computed using the adiabatic evolution. The plots showing �, p, and � have insets which show close-up views of the same data so that
the difference between the adiabatic and exact results can be seen.

FORCED MOTION NEAR BLACK HOLES PHYSICAL REVIEW D 83, 044037 (2011)

044037-17



uZt ¼ �
�
1� 2r

�

�
utZ �

2asin2�r

�
u�Z ; (4.9)

in which � ¼ r2 � 2Mrþ a2, � ¼ r2 þ a2cos2� as
before.

As a test case, we constructed an inspiral into a central
black hole with spin a ¼ 0:9 under the influence of this
gas-drag force with 
 ¼ 10�5. We took the initial orbital
parameters to be p=M ¼ 7, e ¼ 0:5, � ¼ 	=6,� ¼ t ¼ 0,
c r ¼ 1 and c � ¼ 2. The inspiral trajectory was con-
structed using both the Boyer-Lindquist and the tetrad
formulations. The evolutions were found to be identical,
as we would hope, and this gives us confidence that our
results are correct. In the following discussion, we will not
distinguish between the results obtained using the different
formulations as they differed only at the level of numerical
noise.

In Fig. 2 we show the evolution of the orbit under the
influence of the gas-drag force and initial conditions given
above. The six panels show the three Boyer-Lindquist
coordinates, ðr; �; �Þ, and the three constants that describe
the orbital shape, ðp; e; �Þ, as functions of the Boyer-
Lindquist time t. We see that the influence of the drag
force is to drive the inspiral of the object, but also to
increase the eccentricity of the orbit and decrease the
orbital inclination, i.e., to make the orbit more prograde.
The trajectories of the geodesic constants of motion,
ðp; e; �Þ, show oscillations on the orbital time scale, super-
imposed on a monotonic secular evolution on the radiation
reaction time scale. The secular part is the analog of the

averaged evolution, �Gð1Þ, described for the perturbed non-
linear oscillator in Sec. II. The panels in Fig. 2 also show
the solution to the adiabatic equations of motion for this
problem computed using Eqs. (2.8), (2.9), (2.10), (2.11),
(2.12), (2.13), (2.14), and (2.15). We see that the adiabatic
solution is a good approximation to the average evolution
along the inspiral, as expected, and, as we saw for the toy
problem in Sec. II, it provides a closer fit to the change in
the constants of the motion, in this case p, e and �, than for
the phase. In this case, although the adiabatic solution
remains in phase on average over the whole of the evolu-
tion seen in Fig. 2, within each cycle the adiabatic solution
goes in and out of phase with the true evolution. This arises
because the forcing term in this case is relatively large, and
so the orbit changes significantly between periapse and
apoapse as a result of the forcing term. The orbit evolved
using the instantaneous force therefore looks quite differ-
ent from the orbit evolved continuously by the orbital-
averaged force. Note that the orbits do come back into
phase after each complete cycle, as expected.

This example illustrates the application of the osculating
elements formalism to the computation of inspiral evolu-
tions in the Kerr spacetime, and it serves to demonstrate
that the two alternative formulations do indeed yield the
same results. However, even though the prescription for the
drag force was rather simple, Fig. 2 also illustrates some

qualitative effects of the drag force that could be used infer
the presence of such a drag from observations. For an orbit
evolving under the influence of gravitational radiation
reaction only, the eccentricity tends to decrease, except
toward the end of the inspiral just prior to plunge [23,24],
while the inclination tends to increase, i.e., the orbit be-
comes more retrograde [20,21,24]. We see here that the
effect of the drag force is qualitatively different, as it drives
increasing eccentricity and decreasing inclination. If ob-
served, this would provide a robust observational signature
for an orbit that was evolving under the influence of drag.
A decrease in orbital inclination due to hydrodynamic drag
was also seen in [25], in which a more sophisticated model
for the drag force was employed. It is gratifying that
this simple model produces this expected feature qualita-
tively. The same paper [25] found that the eccentricity
would increase in parts of the parameter space and de-
crease in other parts. For Newtonian orbits, the osculating
element equations predict that the eccentricity will remain
constant under the action of a simple drag force of this type
(see Appendix C). Increasing eccentricity has, however,
been seen in Newtonian simulations of binaries embedded
in a realistic disc [26–28]. In Appendix C we show that the
increase in eccentricity is an expected post-Newtonian
effect and give an explanation in the context of a
Schwarzschild black hole (BH). It is clear from that
discussion that this increase in eccentricity is a generic
feature of relativistic drag, and so this is an observational
prediction. If observed, an increasing eccentricity or
decreasing inclination would be a clear signature that the
observed inspiral was not occurring in a vacuum Kerr
background.

V. DISCUSSION

We have described two methods for integrating the
equations of motion for bound, accelerated orbits in the
Kerr spacetime, which are based on identifying the orbit
with a geodesic at each point. The first method parame-
trizes the position and velocity of the orbit in terms of the
conserved quantities (energy, axial angular momentum and
Carter constant) in addition to three angular variables
which increase monotonically and correspond to relativis-
tic generalizations of the anomalies of Keplerian motion.
The second method is the traditional ‘‘osculating element’’
technique which parametrizes the position and velocity of
the orbit in terms of the geodesic with the same position
and velocity. Practically, the second method differs from
the first only in the treatment of the three phase variables,
which are split up into a geodesic piece and a ‘‘phase
offset’’ piece that is constant for geodesics.
To illustrate the methods, we first analyzed, as a simpler

model, a forced anharmonic oscillator. This was written in
terms of a set of phase space coordinates. The forced
equations of motion contained an apparent divergence at
the turning points, but it was possible to reformulate the
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equations to eliminate the problematic terms and thus
obtain equations of motion in a form without divergences.
We discussed the adiabatic prescription for computing the
leading order motion, which corresponds to a gradual
evolution of the oscillator’s amplitude and fundamental
frequency driven by the phase space averaged forcing
function for the amplitude. We presented an alternative
analysis of this toy problem analogous to the osculating
orbit method in terms of the analytic solution to the un-
forced motion. By numerically integrating the equations,
we verified that both parametrizations gave the same re-
sults and compared these to the adiabatic approximation to
the solution.

Next, we showed that the equation of forced motion in
the Kerr spacetime could be reformulated in a similar
fashion. For the first method, it was advantageous to pa-
rametrize the force in terms of its components on the
Kinnersley tetrad instead of using the instantaneous time
derivatives of the conserved quantities. We derived a for-
mulation of the equations of motion in terms of phase
variables that was manifestly divergence-free at the turning
points. We then generalized the second method, of oscu-
lating orbits, to generic orbits in the Kerr spacetime and
showed how we could write down a divergent-free form of
equations of this type without explicit simplification.

As an application of our results, we considered the case
of a simple force that could represent a gas drag. Numerical
integrations of the equations of motion for a choice of
parameters verified that the two methods of parametrizing
the motion gave the same results. We identified a key
observational signature of the presence of a drag force,
namely, a decrease in the orbital inclination and an increase
in eccentricity, which is opposite to the increase in incli-
nation and decrease in eccentricity characteristic of the
gravitational radiation reaction forces during the early
stage of an inspiral.

The first of our two methods has been applied to the
study of transient resonances that occur in the radiation-
reaction-driven inspirals of point particles into spinning
black holes, using approximate post-Newtonian expres-
sions for the self-force [22]. Other applications of this
work will include the construction of accurate trajectories
for orbits evolving under the action of the self-force, once
self-force data for generic orbits are available. This will be
essential for the construction of accurate gravitational
waveforms for EMRIs, which will be needed for LISA
data analysis. The formalism can also be used to estimate
the magnitude of any secular changes in the orbital pa-
rameters that arise from the action of external perturbing
forces. These could arise from gravitational perturbations
from distant objects, such as stars or a second massive
black hole, or from the presence of other material in the
spacetime, such as the gas drag which we considered in a
simple way here. It will be very important to have a
quantitative understanding of the importance of all these

effects if intermediate-mass-ratio inspirals or EMRIs are to
be used to carry out high-precision mapping of the space-
time around Kerr black holes and for tests of general
relativity. Finally, the results described here will be useful
to augment existing kludge models for inspiral waveforms.
In particular, these methods will allow us to extract the
secular part of the evolution of both the orbital constants of
the motion and the phase constants, from self-force calcu-
lations. It is straightforward to include secular changes to
the orbital parameters in the kludge framework [13], and
by doing this it should be possible to ensure that the kludge
waveform stays in phase with the true waveform for long
stretches of the inspiral. It will be important to have
accurate but cheap-to-calculate waveform models avail-
able when the data from gravitational wave detectors are
analyzed, as this data analysis will rely heavily on matched
filtering using template waveforms.
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APPENDIX A: DERIVATION OF TETRAD
EQUATIONS OF MOTION IN TERMS

OF RADIAL AND POLAR
ANGULAR VARIABLES

In this Appendix we derive the forms Eqs. (3.35), (3.36),
(3.37), (3.38), and (3.40) of the equations of motion for
forced motion in Kerr, in the tetrad formulation, and using
the angular variables c r and c � instead of r and �.

1. Evolution equations for first integrals E, Lz, K

The evolution equations (3.35), (3.36), and (3.37) for the
conserved quantities E, Lz and K are obtained as follows.
We start from the standard expressions for the first integrals
in terms of the Killing vectors and Killing tensors:

�� ¼ ���
t ; (A1)

�� ¼ ��
�; (A2)

K�� ¼ 2�mð�m?�Þ � a2cos2�g��; (A3)
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and take proper time derivatives. Using the tetrad decom-
position (3.26) of the acceleration together with the ex-
pressions (3.6), (3.7), and (3.8) for the basis covectors gives

dE

d

¼ � ~a � @

@t

¼ �
�
an þ �

2�
al

�
� iar sin�ffiffiffi

2
p

�
ðam � a?mÞ

þ a2 sin� cos�ffiffiffi
2

p
�

ðam þ a?mÞ: (A4)

Here, we have used the fact thatm given in Eq. (3.8) can be
written as

m ¼ 1ffiffiffi
2

p
�
½�ðirþ a cos�Þ sin�dtþ ðr� ia cos�Þ�d�

þ ðirþ a cos�Þd��: (A5)

Noting that am ¼ ðRa � iIaÞ=
ffiffiffi
2

p
, and eliminating al with

the aid of Eq. (3.33) transforms Eq. (A4) to the form

dE

d

¼ � an

un

�
un � �

2�
ul

�
� �

2�un
ðRaRu þ IaIuÞ

� a sin�

�
ðrIa � a cos�RaÞ: (A6)

Using the expressions (3.30) for the tetrad components un
and ul of the four velocity and converting from 
 deriva-
tives to � derivatives using Eq. (3.17) then leads to the final
form given in Eq. (3.35).

Similarly, we obtain Eq. (3.36) by starting from

dLz

d

¼ ~a � @

@�

¼ �asin2�

�
an þ �

2�
al

�
�$2r sin�

�
Ia

þ a$2 sin� cos�

�
Ra; (A7)

and eliminating al using Eq. (3.33) to obtain

dLz

d

¼ �asin2�

an
un

�
un þ �

2�
ul

�

� asin2�

2�un
ðRaRu þ IaIuÞ �$2r sin�

�
Ia

þ a$2 sin� cos�

�
Ra: (A8)

The form quoted in Eq. (3.36) is then obtained from this
using Eqs. (3.30) as before.

The evolution of the Carter constant is obtained very
simply from the expression for the Killing tensor to be

dK

d

¼ 2K��u�a� ¼ 2�ðRuRa þ IuIaÞ; (A9)

where we have used the orthogonality relation
g��u�a� ¼ 0 and written the combination ðu?mam þ
uma

?
mÞ in terms of Ru and Ra. Combining this with the

definition (3.34c) of AIII yields Eq. (3.37).

2. Polar motion

To obtain the equation of motion (3.38) for c �, we start
by differentiating its definition (3.21) with respect to �:

sin�cos�

�
d�

d�

�

¼ z� sinc �cosc �

��
dc �

d�

�
� 1

2z�
cotc �

�
dz�
d�

��
: (A10)

The equation of motion (3.14) for � can be rewritten in the
form �

d�

d�

�
2 ¼ �z�sin2c �

ðzþ � z�cos2c �Þ
ð1� z�cos2c �Þ

: (A11)

We now take the square root of this equation. From the
definition (3.21) of c � and noting that c � monotonically
increases, we see that ðd�=d�Þ> 0 for 0< c � < 	 and
ðd�=d�Þ< 0 for 	< c � < 2	, so we must choose the
positive square root on the right-hand side. Combining
Eq. (A10) and the square root of Eq. (A11) now leads to
an equation of motion for c � in the form

dc �

d�
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðzþ � z�cos2c �Þ

q
þ cotc �

2z�
dz�
d�

: (A12)

Next, we can obtain an expression for dz�=d� in terms
of dPi=d
, where Pi ¼ ðE;Lz; KÞ are the constants of
motion, as follows. Using the chain rule gives dz�=d� ¼
ð@z�=@PiÞðdPi=d�Þ. Differentiating V� in the form given
in Eq. (3.20) with respect to Pi at fixed z and evaluating the
result at z� relates dz�=dPi to ð@V�=@PiÞz� , which can be

computed from Eq. (3.19). This yields

�ðzþ � z�Þ
ð1� z�Þ

dz�
d�

¼ dQ

d�
� 2Lz

�
z�

1� z�

�
dLz

d�

þ 2a2Ez�
dE

d�
: (A13)

Now switching from the Carter constant Q to K ¼ Qþ
ðLz � aEÞ2 and using that d� ¼ d
=�, we obtain

�ðzþ � z�Þ
�

dz�
d�

¼ ð1� z�ÞdKd
 � 2ðLz � að1� z�ÞEÞ

�
�
dLz

d

� að1� z�ÞdEd


�
: (A14)

The expressions for the evolution of Pi in Eqs. (3.35),
(3.36), and (3.37) can now be used to obtain the explicit
dependence on c � of dz�=d� given by Eq. (A14) by direct
substitution. This gives

GAIR et al. PHYSICAL REVIEW D 83, 044037 (2011)

044037-20



�ðzþ�z�Þdz�d�

¼2�H�uran
un

az�sin2c �

þ
�
2ð1�z�Þðr2þa2z�cos2c �Þ2�az�H�

�sin2c �

un

�

�ðRuRaþIuIaÞþ2H�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�z�cos2c �

q
ðr2þa2z�Þ

�ðrIa�acos�RaÞ; (A15)

where H� ¼ H ðz�Þ ¼ Lz � að1� z�ÞE. This can be
written as

�ðzþ � z�Þ dz�d�

¼ �H�
un

az�sin2c �½ðRuRa þ IuIaÞ � 2uran�
þ 2½ð1� z�Þðr2 þ a2z�cos2c �Þ2Ru

�H�a
ffiffiffiffiffiffi
z�

p ðr2 þ a2z�Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2�cos2c �

q
cosc ��Ra

þ 2½ð1� z�Þðr2 þ a2z�cos2c �Þ2Iu
þH�rðr2 þ a2z�Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2�cos2c �

q
�Ia: (A16)

Substituting the expressions for the four velocity compo-
nents Eqs. (3.30) and the definition (3.31) of H into the
coefficients of Ra and Ia inside the square brackets and
expanding them out gives

�ðzþ�z�Þdz�d�
¼�H�

un
az�sin2c �½AIII�2uran�

þ2ð1�z�Þ�u�ðacos�IaþrRaÞ

þ 2rz�sin2c �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�z�cos2c �

p
�½$3Lz�a3Eð1�z�Þð1�z�cos2c �Þ�
�ðrIa�acos�RaÞ: (A17)

Using that u� ¼ ðd�=d�Þ, with ðd�=d�Þ given by the
positive square root of Eq. (A11) and inserting Eq. (A17)
into the equation of motion for c � of Eq. (A12) leads to the
final result quoted in Eq. (3.38).

3. Radial motion

We now give a derivation of the radial equation of
motion (3.40) which is similar to the above derivation of
the equation (3.38) of polar motion. From the definitions

(3.13) and (3.22) of the radial potential we have�
dr

d�

�
2 ¼ F2 ��ðr2 þ KÞ
¼ ð1� E2Þðr1 � rÞðr� r2Þðr� r3Þðr� r4Þ; (A18)

where F was defined in Eq. (3.32). We parametrize the
roots of the right-hand side by Eq. (3.24) for the turning
points r1 and r2 of the bound motion, and by

r3 ¼ p3

1� e
; r4 ¼ p4

1þ e
(A19)

for the other two roots. Substituting the definition (3.23) of
c r into Eq. (A18) and using Eqs. (3.24) and (A19) gives,
after some algebra,�

dr

d�

�
2 ¼ ð1� E2Þp2e2sin2c r

ð1� e2Þ2ð1þ e cosc rÞ4
� ½pð1� eÞ � p3ð1þ e cosc rÞ�
� ½pð1þ eÞ � p4ð1þ e cosc rÞ�: (A20)

By differentiating the definition (3.23) of c r we obtain

dc r

d�
¼ ð1þ e cosc rÞ2

ep sinc r

�
dr

d�

�
þ cotc r

e

�
de

d�

�

� 1þ e cosc r

ep sinc r

�
dp

d�

�
: (A21)

We note that c r is chosen to monotonically increase,
which means dc r=d� > 0. We specialize to the conven-
tion that c r ¼ 0 at r ¼ r2 and c r ¼ 	 at r ¼ r1, so that r
increases for 0< c r < 	 and decreases for	< c r < 2	,
and we choose the positive square root in Eq. (A20).
Substituting Eq. (A20) for dr=d� in Eq. (A21) shows
that the geodesic term becomes

dc r

d�









geodesic
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� E2

p

ð1� e2Þ ½pð1� eÞ � p3ð1þ e cosc rÞ�1=2

� ½pð1þ eÞ � p4ð1þ e cosc rÞ�1=2¼ P :

(A22)

Here one can check that Eq. (A22) is just a reparametriza-
tion of Eq. (3.42) by substituting the radial potential in the
form given in Eq. (3.13) in terms of Pi into Eq. (A21), since
P ¼ ðdr=dc rÞ�1

ffiffiffiffiffi
Vr

p
, expressed in terms of c r.

The nongeodesic terms in Eq. (A21) are obtained as
follows. From Eq. (3.24) for r1 and r2 it follows that
2p�1 ¼ r�1

1 þ r�1
2 and 2ð1� eÞ�1 ¼ r1=r2 þ 1, and thus

2
dp

d�
¼ p2

�
dr1=d�

r21
þ dr2=d�

r22

�
¼ ð1� eÞ2 dr1

d�
þ ð1þ eÞ2 dr2

d�
; (A23a)

2
de

d�
¼ p2

�
dr1=d�

r21r2
� dr2=d�

r22r1

�
¼ ð1� e2Þ

p

�
ð1� eÞ dr1

d�
� ð1þ eÞ dr2

d�

�
: (A23b)
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Substituting Eqs. (A23) into Eq. (A21) gives

dc r

d�
¼ P þ 1

2ep sinc r

�
ð1� eÞ2ðcosc r � 1Þ dr1

d�

� ð1þ eÞ2ð1þ cosc rÞdr2d�

�
: (A24)

Next, expressions for the derivatives of the turning
points r1 and r2 can be computed in terms of dPi=d�
by using that ðdr1;2=d�Þ ¼ ð@r1;2=@PiÞdPi=d�.
Differentiating the radial potential with respect to Pi at
fixed r and evaluating the result at r1 and r2 gives

@Vr

@Pi









r1

¼ð1�E2Þðr1� r2Þðr1� r3Þðr1� r4Þ@r1@Pi

; (A25)

@Vr

@Pi









r2

¼�ð1�E2Þðr1�r2Þðr2�r3Þðr2�r4Þ@r2@Pi

: (A26)

We note that one can see from Eqs. (3.22), (A18), (A25),
and (A26) that the coefficients of @r1;2=@Pi can be ex-

pressed in terms of the r-derivative of Vr at fixed Pi

evaluated at the turning points as

@Vr

@Pi









r1;2

¼ � @Vr

@r









r1;2

@r1;2
@Pi

; (A27)

¼ ��ðr1;2Þ@r1;2@Pi

: (A28)

Here �ðrÞ � V 0
rðrÞ, which can be computed from Eq. (A18)

to be

�ðrÞ ¼ 4EFr� 2r�� 2ðr�MÞðr2 þ KÞ; (A29)

where the definition (3.32) of F has been used. Using the
derivatives of Eq. (A18) with respect to Pi then results in
the following expressions for dr1;2=d�:

dr1;2
d�

¼ � 2F1;2

�1;2

�
$2

1;2

dE

d�
� a

dLz

d�

�
þ�1;2

�1;2

dK

d�
: (A30)

With this, Eq. (A21) becomes

dc r

d�
¼ P þ 1

2ep sinc r

(
ð1� eÞ2ðcosc r � 1Þ

�
�
� 2F1

�1

�
$2

1

dE

d�
� a

dLz

d�

�
þ�1

�1

dK

d�

�
� ð1þ eÞ2ðcosc r þ 1Þ

�
�
� 2F2

�2

�
$2

2

dE

d�
� a

dLz

d�

�
þ�2

�2

dK

d�

�)
: (A31)

The next step is to substitute the expressions (3.35), (3.36),
and (3.37) for the derivatives of the first integrals into
Eq. (A31). After some algebra we obtain

2ep sinc r

�
dc r

d�
� P

�
¼ 2�

ur
un

an

�
ð1� eÞ2ð1� cosc rÞ�1F1

�1

þ ð1þ eÞ2ð1þ cosc rÞ�2F2

�2

�

þ Rað1� eÞ2ð1� cosc rÞ
�
Ru

�
�1F1�

��1un
þ 2��1

�1

�
þ 2F1a

2 sin� cos�ðr2 � r21Þ
�1�

�

þ Iað1� eÞ2ð1� cosc rÞ
�
Iu

�
�1F1�

��1un
þ 2��1

�1

�
� 2F1ar sin�ðr2 � r21Þ

�1�

�
þ Rað1þ eÞ2ð1þ cosc rÞ½ð1 $ 2Þ� þ Iað1þ eÞ2ð1þ cosc rÞ½ð1 $ 2Þ�; (A32)

where�1 ¼ $2
1 � a2sin2�. Noting that ur ¼ ��1ðdr=d�Þ and using the definition (A22) of P gives an explicit expression

for ur:

ur ¼ pe sinc rP
�ð1þ e cosc rÞ2

: (A33)

Also, from the definitions (3.23) and (3.24), we have that

ðr� r1Þ ¼ � peð1þ cosc rÞ
ð1� eÞð1þ e cosc rÞ ; (A34)

ðr� r2Þ ¼ peð1� cosc rÞ
ð1þ eÞð1þ e cosc rÞ : (A35)

Substitution of Eq. (A33) and (3.30) together with further algebraic manipulations on Eq. (A32) lead to
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dc r

d�
¼ P

�
1þ an

unð1þ e cosc rÞ2
�
ð1� eÞ2ð1� cosc rÞ�1F1

�1

þ ð1þ eÞ2ð1þ cosc rÞ�2F2

�2

�	

þ ð1� eÞ2ðcosc r � 1Þ
2ep sinc r

�
1

�1un
ð�1F1�� ��1FÞ ����1ur

�1un

�
ðRuRa þ IuIaÞ

þ ð1� eÞ2ðcosc r � 1ÞF1a sin�

�1ep sinc r

ðrþ r1Þðr� r1Þða cos�Ra � rIaÞ

þ ð1þ eÞ2ð1þ cosc rÞ
2ep sinc r

�
1

�2un
ð�2F2�� ��2FÞ ����2ur

�2un

�
ðRuRa þ IuIaÞ

þ F2a sin�ð1þ eÞ2ð1þ cosc rÞ
�2ep sinc r

ðrþ r2Þðr� r2Þða cos�Ra � rIaÞ: (A36)

We can simplify the coefficients of Ra and Ia by expanding the term ð�1F1����1FÞ using the explicit expressions in
Eq. (3.2) to obtain an explicit factor of ðr� r1Þ:
ð�1F1�� ��1FÞ

ðr� r1Þ ¼ �ðrþ r1Þ½a3ðaEþ zLzÞ þ Eðr2 þ r21Þða2 � 2MrÞ � 2a2EMrz� 4a2EMrþ 2aLzMrþ Er2r21�
� Q1; (A37)

where z ¼ cos2�, as before. We similarly define Q2 by replacing 1 ! 2 in Eq. (A37). Substituting Eqs. (A37) as well as
Eqs. (A33) and (A35) into Eq. (A36) and using the definitions (3.34) yields after simplifications

dc r

d�
¼ P

�
1þ an

unð1þ e cosc rÞ2
�
ð1� eÞ2ð1� cosc rÞ�1F1

�1

þ ð1þ eÞ2ð1þ cosc rÞ�2F2

�2

�	

þ ð1� eÞ2ð1� cosc rÞ
2 sinc r

�
��1PAIII sinc r

�1unð1þ e cosc rÞ2
þ Q1AIIIð1þ cosc rÞ

ð1þ e cosc rÞð1� eÞ �
2F1a sin�ðrþ r1ÞAIIð1þ cosc rÞ

�1ð1� eÞð1þ e cosc rÞ
	

þ ð1þ eÞ2ð1þ cosc rÞ
2 sinc r

�
��2PAIII sinc r

�2unð1þ e cosc rÞ2
� Q2AIIIð1� cosc rÞ

ð1þ e cosc rÞð1þ eÞ þ
2F2a sin�ðrþ r2ÞAIIð1� cosc rÞ

�2ð1þ eÞð1þ e cosc rÞ
	
:

This can be further simplified to be

dc r

d�
¼P

�
1þ an

unð1þecosc rÞ2
�
ð1�eÞ2ð1�cosc rÞ�1F1

�1

þð1þeÞ2ð1þcosc rÞ�2F2

�2

�	

þ AIII sinc r

2ð1þecosc rÞun
�
Q1ð1�eÞ

�1

�Q2ð1þeÞ
�2

�

þ �AIIIP
2ð1þecosc rÞ2un

�
ð1�e2Þð1�cosc rÞ�1

�1

þð1þeÞ2ð1þcosc rÞ�2

�2

�

�asin�sinc rAII

1þecosc r

�
F1ð1�eÞðrþr1Þ

�1

�F2ð1þeÞðrþr2Þ
�2

�
: (A38)

APPENDIX B: ADIABATIC LIMIT

In this Appendix, we derive our method of obtaining the
leading order, adiabatic solutions to the forced geodesic
equations in Kerr. This method was used to obtain the
numerical adiabatic solutions that are plotted and discussed
in Sec. IV above. The starting point is the specific form
(3.35), (3.36), (3.37), (3.38), (3.39), and (3.40) of the forced

geodesic equations derived in Sec. III C above, which have
the general form

_c �¼!�ðc �;JÞþ�gð1Þ� ðc ;JÞþOð�2Þ; 1���N;

_J�¼�Gð1Þ
� ðc ;JÞþ�2Gð2Þ

� ðc ;JÞþOð�3Þ; 1���M:

(B1)
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Here c ¼ ðc 1; . . . ; c NÞ are a set of angular variables, and
J ¼ ðJ1; . . . ; JMÞ are a set of quantities that are conserved
for the unperturbed system. Dots denote derivatives with
respect to �. The functions !� determine the frequencies
of the unperturbed motion (geodesic motion for the Kerr

application), and the functions gð1Þ� , Gð1Þ
� and Gð2Þ

� represent

the external perturbations on the system.4 These functions
are all periodic in each phase variable with period 2	. In
the special case when the frequencies !� are independent
of the phase variables c , the variables c � and J� are
(generalized versions of) action-angle variables. This spe-
cial case is actually fully general; one can always perform a
redefinition of the phase variables to achieve this. This case
of action-angle variables was studied in detail in Ref. [12],
where the form of the adiabatic and postadiabatic solutions
were derived.

Here we will generalize the analysis of Ref. [12] to the
more general system of Eqs. (B1), since our system of
Eqs. (3.35), (3.36), (3.37), (3.38), (3.39), and (3.40) in Kerr
is of this form. We start by describing the result for the
adiabatic limit, and then we outline its derivation. The
adiabatic solutions are given by the following set of steps:

(1) We define the averaging operation, for any function
fðc Þ of c , by

hfiJ �
R
2	
0

dc 1

!1ðc 1;JÞ . . .
R
2	
0

dc N

!Nðc N;JÞ fðc 1; . . . ; c NÞR
2	
0

dc 1

!1ðc 1;JÞ . . .
R
2	
0

dc N

!Nðc N;JÞ
:

(B2)

The subscript J on the left-hand side is a reminder
that the averaging operation depends on the value
of J.

(2) We define the averaged frequencies and forcing
functions

�!�ðJÞ � h!�ðc �; JÞiJ; (B3)

and

�G ð1Þ
� ðJÞ � hGð1Þ

� ðc ; JÞiJ: (B4)

(3) We solve a set of ordinary differential equations in
the slow time parameter

~� ¼ ��; (B5)

for two sets of auxiliary functions ���ð~�Þ and J �ð~�Þ.
This set of ordinary differential equations is

d ���

d~�
¼ �!�ðJ ð~�ÞÞ; (B6a)

dJ �

d~�
¼ �Gð1Þ

� ðJ ð~�ÞÞ: (B6b)

Note that for this step, one does not need to specify a
value of �.

(4) We can then write down the adiabatic solutions:

J�ð�; �Þ ¼ J �ð��Þ; (B7a)

c �ð�; �Þ ¼ ��

�
1

�
���ð��Þ;J ð��Þ

�
; (B7b)

where the function��ð�; JÞ is defined implicitly by
the equation

�

2	
¼

R��ð�;JÞ
0

dc
!�ðc ;JÞR

2	
0

dc
!�ðc ;JÞ

(B8)

and satisfies

��ð�þ 2	; JÞ ¼ ��ð�; JÞ þ 2	: (B9)

We now turn to the derivation of this result. We start by
rewriting the differential Eqs. (B1) in terms of the new
variables ð��; J�Þ, defined implicitly by the relation

c �ð��; JÞ � ��ð��; JÞ: (B10)

All of the functions appearing in the differential equations
are expressed as functions of the new phases ��; they must
be periodic functions of each �� by virtue of the property
(B9). Using the definitions (B8), (B2), and (B3), the result
can be written in the form

_�� ¼ �!�ðJÞ þ �
�!�ðJÞ

!�ð��; JÞg
ð1Þ
� ð�; JÞ þOð�2Þ;

1 � � � N; (B11a)

_J� ¼ �Gð1Þ
� ð�; JÞ þ �2Gð2Þ

� ð�; JÞ þOð�3Þ;
1 � � � M: (B11b)

This system of equations is now in a form to which the
results of Ref. [12] can be applied; the variables ð��; J�Þ
are generalized action-angle variables. The averaging op-
eration defined in [12], a straightforward averaging with
respect to the phases ��, coincides with the definition (B2)
used here, because of the definition (B10). The results of
Ref. [12] now imply that the leading order solution for J� is
of the form given by Eqs. (B7a) and (B6b). They also imply
that the leading order solution for �� is of the form
��ð�; �Þ ¼ ���ð��Þ=�, where ��� satisfies the differential
equation (B6a). Combining this with the definition (B10)
now yields the result (B7b).

4Note that the notation !�ðc �; JÞ means that each !� de-
pends on only a single phase variable c �, and does not depend
on the phase variables c � with � � �. The adiabatic limit of the
more general system of equations with !� ¼ !�ðc ; JÞ would
be considerably more complicated.
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APPENDIX C: PERTURBATION OF
KEPLERIAN ORBITS

Here we derive the osculating element equations for a
Keplerian orbit experiencing a force in the plane of the
orbit, f ¼ ��r=r3. In this case, we can take the orbital
plane to be the x-y plane. The orbit is described by four
parameters—the semimajor axis, a, the eccentricity, e, the
argument of perihelion, !, and the time of pericenter
passage, T0. (The restriction to a plane gets rid of the
other two orbital constants.) The orbit is elliptical and
described by

r ¼ að1� e2Þ
1þ e cosðu�!Þ ¼ að1� e cosEÞ; (C1)

_u ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�

a3ð1� e2Þ3
s

ð1þ e cosðu�!ÞÞ2; (C2)

in which u is the argument. It is usual to call v ¼ u�!
the true anomaly and E defined by the first equation above
is the eccentric anomaly. The time of pericenter passage is
given implicitly by

Z v0

0

dv0

ð1þ e cosv0Þ2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�

a3ð1� e2Þ3
s

ðt0 � T0Þ; (C3)

where v0 ¼ vðt0Þ.
Under the action of a force in the orbital plane with

radial component R0 and tangential component S0, the
Gaussian perturbation equations predict the following evo-
lution equations for the four orbital elements [10]:

_a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
að1� e2Þ

�

s
2a

1� e2

�
e sinvR0 þ p

r
S0
�
; (C4)

_e ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
að1� e2Þ

�

s
½sinvR0 þ ðcosvþ cosEÞS0�; (C5)

_! ¼ 1

e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
að1� e2Þ

�

s �
� cosvR0 þ

�
1þ r

p

�
sinvS0

�
; (C6)

_T0 ¼ �a2ð1� e2Þ
�e

��
cosv� 2e

r

p

�
R0 �

�
1þ r

p

�
sinvS0

�

� 3

2

_a

a
ðt� T0Þ: (C7)

If we consider the true anomaly, v, then, since v ¼ u�!,
_v ¼ _u� _!. By the definition of the osculating elements,
the value of _u is always given by the geodesic value, and so
we see that the evolution of the true anomaly differs from
integrating the instantaneous time-evolving geodesic equa-
tion by the _! term. This can also be seen by differentiating
the orbit equation and using that both r and _r are consistent
with the instantaneous geodesic to obtain

_v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�að1� e2Þp

r2
þ _e

e

cosv

sinv
�

�
_a

a
� 2 _ee

1� e2

��
1þ e cosv

e sinv

�
:

(C8)

The first term is the geodesic _v, while the other terms arise
as a result of the perturbation. Although this equation looks
singular at turning points, sinv ¼ 0, substitution of the
expressions for _a, _e and the geodesic equations gives the
necessary calculations, and the expression reduces to � _!,
as it should.

APPENDIX D: DRAG FORCE IN
SCHWARZSCHILD GEOMETRY

In order to understand the effect that leads to an increase
of eccentricity we can consider a Schwarzschild BH sys-
tem, in which the same effect is seen, but which is easier to
analyze and to understand. The osculating element equa-
tion for the evolution of the eccentricity, Eq. (3.60), in the
case of a nonrotating BH reduces to Eq. (37) in [9] and has
the form

de

dv
¼ Rðp; e; vÞar þT ðp; e; vÞa�: (D1)

We use a drag force to perturb the orbit which takes a very
simple form ar ¼ �
ur, a� ¼ �
u�. The velocities, in
Schwarzschild coordinates, are

ur ¼ e sinv

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p� 6� 2e cosv

pðp� 3� e2Þ

s
; (D2)

u� ¼ ð1þ e cosvÞ2
pM

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p� 3� e2

p : (D3)

The equation for de=dv is integrable for this perturbing
force if changes to e and p are ignored over the orbit and
the result can expressed in terms of elliptic integrals.
However, this is quite messy and we are primarily inter-
ested in the leading order correction to the orbit. We make
a weak field expansion (M=p 
 1) of the terms entering
this equation:

R � p2

M

�
R0ðe; vÞ þM

p
R1ðe; vÞ þOðM2=p2Þ

�
; (D4)

T � p3M

�
T 0ðe; vÞ þM

p
T 1ðe; vÞ þOðM2=p2Þ

�
; (D5)

here we do not go beyond the first correction to the
Keplerian term. Similarly, we find for the velocities

ur ¼
ffiffiffiffiffi
M

p

s
ur0ðe; vÞ

�
1þM

p
ur1ðe; vÞ þOðM2=p2Þ

�
; (D6)
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u� ¼
ffiffiffiffiffiffiffi
M3

p3

s
u�0 ðe; vÞ

�
1þM

p
u�1 ðe; vÞ þOðM2=p2Þ

�
: (D7)

The explicit form of the terms in these expansions is

ur0 ¼ e sinv; ur1 ¼
�
� 3

2
� e cosvþ 1

2
e2
�
; (D8)

u�0 ¼ ð1þ e cosvÞ2; u�1 ¼
�
3

2
þ 1

2
e2
�
; (D9)

R 0 ¼ sinv

ð1þ e cosvÞ2 ; R1 ¼ 3R0ð1� e2Þ; (D10)

T 0 ¼ ðe cosvþ 2Þ cosvþ e

ð1þ e cosvÞ4 ; (D11)

T 1 ¼ 2eþ 6 cosvþ 2ecos2v� e2cos3v� 5e2 cosv� 3e3cos2v� e3

ð1þ e cosvÞ4 : (D12)

The leading order terms give us the Newtonian perturba-
tion of the eccentricity (C5) with perturbing force compo-
nents R0 ¼ �
 _r, S0 ¼ �
r _�. Overall, the Newtonian
term is �

de

dv

�
00

¼ �2
p3=2 eþ cosv

ð1þ e cosvÞ2 : (D13)

This equation can be integrated over an orbit, keeping e, p
on the right-hand side constant, to give

�eðvÞ ¼ �2
p3=2 sinv

1þ e cosv
: (D14)

It is clear that in the Newtonian case there is no a secular
change in the eccentricity. Note also that the individual
components (radial and azimuthal) of the perturbation are
not zero after integration over one orbit, but they are
exactly equal and opposite in sign. We now consider the
first relativistic corrections. First, we note that the pertur-
bations R1 and u�1 are independent of v, and so we can
reabsorb these into a redefinition of 
 ! 
0 where


0 ¼
�
1þ 1

2p
ð3þ e2Þ

��
1þ 3

p
ð1� e2Þ

�

;

and so the rescaled leading order term still averages to
zero, as it is proportional to the Newtonian expression.
There remain two perturbations, one that comes from the
radial velocity perturbation, R0u

r
1, and one that comes

from the relativistic correction to the orbit’s response to
the azimuthal perturbation, u�0 T 1. The velocity perturba-
tion contributes

�
de

dv

�
01

¼ �
0 p1=2esin2v

ð1þ e cosvÞ2

�
�
1

2
ð�3� 2e cosvþ e2Þ � 1

2
ð3þ e2Þ

�

¼ 
0p1=2 esin
2vð3þ e cosvÞ

ð1þ e cosvÞ2 : (D15)

Note that this term is always positive, and so it will lead to
an increase in the eccentricity. This can be interpreted as an
additional radial force which acts at each point of the orbit
in the direction of motion slowing down the effective radial
velocity in the force, which leads to the increase of
eccentricity.

The second part of the perturbation, u�0 T 1, contributes�
de

dv

�
10

¼ 
0ep1=2½1� e2 þ cos2vð1þ e cosvÞ
� eðcosvþ eÞ�ð1þ e cosvÞ�2: (D16)

Note that the last term is proportional to the Newtonian
term and therefore averages to zero, so we can ignore this
term. The remaining part is always positive and also drives
an increase in eccentricity. This time the extra term can be
interpreted as an additional azimuthal force which further
boosts the effective azimuthal velocity in the force and
once again leads to the increase in the eccentricity.
We note that both of these perturbations, and also the

Keplerian term, are proportional to eccentricity, and they
will not drive a circular orbit to become eccentric. In fact,
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the contribution from the relativistic correction to the
velocity is equal to that coming from the correction to
the orbital response. Taking the difference,�
de

dv

�
01
�
�
de

dv

�
10
¼
0 ep1=2

ð1þecosvÞ2 ½eðcosvþeÞ
þ2sin2v�2cos2vð1þecosvÞ�: (D17)

The first term in the square bracket is proportional to the
Newtonian term and therefore vanishes after averaging.
The remaining term can be integrated analytically,

Z v

0
dv0 sin

2v0 � cos2v0ð1þ e cosv0Þ
ð1þ e cosv0Þ2 ¼ � sinv cosv

1þ e cosv
;

(D18)

which is also zero after integration over one orbit. We
conclude that the leading order relativistic correction in

the perturbation equation predicts the increase in eccen-
tricity that we observe numerically. This secular change
comes equally from the first order correction to the radial
velocity and the first order correction to the orbital re-
sponse to an azimuthal perturbation. The relativistic cor-
rections can be thought of as an extra force which slows
down the effective radial motion and accelerates the effec-
tive azimuthal motion that enter the drag force. The radial
drag force is correspondingly reduced, while the azimuthal
drag force is increased and both drive a secular increase in
eccentricity. The equality of the two parts of the force may
reflect some hidden symmetry in the equations. The re-
sponse of the orbit to a perturbation depends on the veloc-
ity at each point along the orbit, and we are using that same
velocity to prescribe the perturbation in this case, which
might explain why the net contribution from the two terms
is equal. However, the osculating element equations are not
explicit in how they depend on the instantaneous velocity,
so this is only a speculation.
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