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bMax-Planck-Institut für Gravitationsphysik, Albert-Einstein-Institut,

Am Mühlenberg 1, 14476 Golm, Germany.

olivera.miskovic@ucv.cl, rodrigo.olea@ucv.cl

January 7, 2012

Abstract

Motivated by possible applications within the framework of anti-de Sitter gravity/Conformal
Field Theory (AdS/CFT) correspondence, charged black holes with AdS asymptotics, which are
solutions to Einstein-Gauss-Bonnet gravity in D dimensions, and whose electric field is described
by a nonlinear electrodynamics (NED) are studied.

For a topological static black hole ansatz, the field equations are exactly solved in terms of
the electromagnetic stress tensor for an arbitrary NED Lagrangian, in any dimension D and for
arbitrary positive values of Gauss-Bonnet coupling. In particular, this procedure reproduces the
black hole metric in Born-Infeld and conformally invariant electrodynamics previously found in the
literature. Altogether, it extends to D > 4 the four-dimensional solution obtained by Soleng in
logarithmic electrodynamics, which comes from vacuum polarization effects.

Fall-off conditions for the electromagnetic field that ensure the finiteness of the electric charge
are also discussed. The black hole mass and vacuum energy as conserved quantities associated to
an asymptotic timelike Killing vector are computed using a background-independent regularization
of the gravitational action based on the addition of counterterms which are a given polynomial in
the intrinsic and extrinsic curvatures.

1 Introduction

Gauge theories which are described by a nonlinear action for Abelian or non-Abelian fields have become
standard in the context of superstring theory. Indeed, it was proposed in Ref.[1] that all order loop
corrections to gravity should be summed up as a Born-Infeld (BI) type Lagrangian [2]. Furthermore,
the dynamics of D-branes is given in terms of a non-Abelian Born-Infeld action [3].

On the other hand, coupling nonlinear electrodynamics (NED) to gravity has been considered in
the literature as a plausible mechanism to obtain regular black hole solutions (see, for instance, [4]).
In this respect, the metric for static, spherically symmetric black holes for the BI theory minimally
coupled to Einstein gravity was derived in a number of papers [5, 6]. Other gravitating NED models
supporting electrically charged black hole solutions have been also investigated, e.g., in Ref.[7] for
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the Euler-Heisenberg effective Lagrangian of QED, in Ref.[8] for a logarithmic Lagrangian, and in
Ref.[9] for a Lagrangian defined as powers of the Maxwell term. In the same spirit, as an example of
lower-dimensional models, it is worth mentioning the study of black holes generated by Coulomb-like
fields in (2 + 1) dimensions [10], and a similar treatment which includes torsion in Ref.[11].

Within the framework of AdS/CFT correspondence, higher-derivative corrections to either gravi-
tational or electromagnetic action in AdS space are expected to modify the dynamics of the strongly
coupled dual theory. In particular, in hydrodynamic models, the addition of R2 terms changes the ratio
of shear viscosity over entropy density [12], violating the universal bound 1/4π proposed in Ref.[13].
In turn, it has been proved that higher-derivative terms for Abelian fields in the form of NED do
not affect this ratio [14] (for hydrodynamic models dual to R-charged black holes see, e.g., Ref.[15]).
Also, in applications of the AdS/CFT conjecture to high Tc superconductivity, higher curvature terms
violate a universal relation between the critical temperature of the superconductor and its energy gap
[16, 17]. While the Gauss-Bonnet term makes the condensation easier, the inclusion of Born-Infeld
electrodynamics produces the opposite effect [18].

Motivated by the recent results mentioned above, we study black hole solutions in Einstein-Gauss-
Bonnet gravity with negative cosmological constant coupled to an arbitrary NED theory. As it is
required in the context of AdS/CFT, we provide definitions for the conserved quantities following a
background-independent regularization procedure.

2 Action and equations of motion

We consider a fully-interacting theory of gravity minimally coupled to nonlinear electrodynamics in a
D-dimensional manifold M, which comes from the action

I0 =

∫

M

dDx
√−gL0 = Igrav + INED . (2.1)

The pure gravity part of the bulk action with the metric gµν(x) as the dynamic field is given by

Igrav =
1

16πG

∫

M

dDx
√−g

[

R− 2Λ + α
(

R2 − 4RµνR
µν +RµνλσR

µνλσ
)]

, (2.2)

which contains the Einstein-Hilbert (EH) action –linear in the curvature of spacetime–, a cosmological
term and a quadratic curvature correction given by the Gauss-Bonnet (GB) term. The cosmological
constant Λ is expressed in terms of the AdS radius ℓ as Λ = − (D − 1) (D − 2) /2ℓ2 and G is the
gravitational constant. The GB coupling constant α is of dimension [length]2, which takes only
positive values and it is related to the Regge slope parameter or string scale.

The matter and its interaction with gravity are described by an electrodynamics action which
is nonlinear in the quadratic term F 2 = gµλgνρFµνFλρ, where Fµν(x) is the Abelian field strength
associated to the gauge connection Aµ(x) as Fµν = ∂µAν − ∂νAµ. We shall assume an action for
nonlinear electrodynamics of the form

INED =

∫

M

dDx
√−gL(F 2) , (2.3)

where the Lagrangian density L(F 2) is an arbitrary function of F 2.
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We will consider the spacetimes whose dimension is D > 4. The case D = 4 is special because the
Euler-Gauss-Bonnet term becomes a topological invariant that does not contribute to the equations
of motion. In that sense, bulk dynamics in D = 4 leaves the GB coupling as completely arbitrary. It
is expected, however, that the GB term would modify the boundary dynamics of the theory and the
value of the Euclidean continuation of the action. Indeed, in four-dimensional AdS gravity, the only
consistent way of achieving the finiteness of both the conserved current and the Euclidean action is
setting α = ℓ2/4. Furthermore, nonlinear electrodynamics in four dimensions is somewhat particular,
because one can consider a Lagrangian that depends additionally on another quadratic invariant
F ∗F = 1√

−g
ǫµνλσFµνFλσ , which by itself is a topological term. For a recent discussion on electrostatic

configurations in four-dimensional gravitating NED, see Ref.[19]. This type of Lagrangians clearly
cannot be generalized to the higher-dimensional cases we are interested in.

In order to find the equations of motion of Einstein-Gauss-Bonnet (EGB) gravity, we first note
that the gravitational action can be rearranged as

Igrav =
1

16πG (D − 2) (D − 3)

∫

M

dDx
√−g δ

[µ1···µ4]
[ν1···ν4]

(

1

2
Rν1ν2

µ1µ2
δν3µ3

δν4µ4

+
D − 2

D ℓ2
δν1µ1

δν2µ2
δν3µ3

δν4µ4
+

α (D − 2) (D − 3)

4
Rν1ν2

µ1µ2
Rν3ν4

µ3µ4

)

, (2.4)

where the tensor δ
[µ1···µp]
[ν1···νp] denotes the totally antisymmetric product of p Kronecker deltas (see Ap-

pendix A) and we have used the identity

R2 − 4RµνR
µν +RµνλσR

µνλσ =
1

4
δ
[µ1···µ4]
[ν1···ν4] R

ν1ν2
µ1µ2

Rν3ν4
µ3µ4

. (2.5)

This is a convenient form to take the variation of the Riemann tensor as

δRµ
ναβ = ∇α(δΓ

µ
νβ)−∇β(δΓ

µ
να)

in terms of the Christoffel symbol. In addition, using the Bianchi identity for the Riemann curvature,

∇[µR
αβ
νλ] = ∇µR

αβ
νλ +∇λR

αβ
µν +∇νR

αβ
λµ = 0 ,

one can show that the gravitational action changes under an arbitrary variation of the metric as

δIgrav = − 1

16πG

∫

M

dDx
√−g

(

g−1δg
)ν

µ
(Gµ

ν +Hµ
ν ) +

∫

∂M

dD−1xΘgrav(δg, δΓ) , (2.6)

where Gµ
ν is the Einstein tensor with cosmological constant

Gµ
ν = Rµ

ν − 1

2
δµνR+ Λ δµν , (2.7)

and the contribution of the GB term to the variation of the bulk action is expressed in terms of the
Lanczos tensor

Hµ
ν = −α

8
δ
[µµ1···µ4]
[νν1···ν4] R

ν1ν2
µ1µ2

Rν3ν4
µ3µ4

, (2.8)

= −α

2
δµν

(

R2 − 4RαβRαβ +RαβλσRαβλσ

)

+2α
(

RRµ
ν − 2RµλRλν − 2Rµ

λνσR
λσ +RµαλσRναλσ

)

. (2.9)
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The boundary term in (2.6) that appears from the variation of the bulk action reads
∫

∂M

dD−1xΘgrav = − 1

16πG

∫

M

dDx ∂µ

[√−g δ
[µµ1µ2µ3]
[νν1ν2ν3]

gναδΓν1
µ1α

(

αRν2ν3
µ2µ3

+
1

(D − 2) (D − 3)
δν2µ2

δν3µ3

)]

.

(2.10)
On the other hand, arbitrary variations of the metric and the gauge field Aµ in the NED action

produce

δINED =

∫

M

dDx
√−g

[

1

2
T µ
ν

(

g−1δg
)ν

µ
− 4∇µ

(

dL
dF 2

Fµν

)

δAν

]

+

∫

∂M

dD−1xΘNED(δA) , (2.11)

upon a suitable use of the Bianchi identity for the field strength, ∂[µFνλ] = ∂µFνλ+∂µFνλ+∂µFνλ = 0.

The energy-momentum tensor for the matter content, T µν = 2√
−g

δINED

δgµν
, has the form

T µ
ν = δµν L − 4

dL
dF 2

FµλFνλ , (2.12)

and the surface term of the electromagnetic part is
∫

∂M

dD−1xΘNED = 4

∫

M

dDx ∂µ

(√−g
dL
dF 2

FµνδAν

)

. (2.13)

The variation of the total action (2.1) leads to the field equations plus a surface term

δI0 = −
∫

M

dDx
√−g

[

1

16πG
Eµ
ν

(

g−1δg
)ν

µ
+ 4 Eµ δAµ

]

+

∫

∂M

dD−1xΘ0(δg, δΓ, δA) , (2.14)

where Θ0 is the total boundary term coming from the variation of the bulk action, i.e., Θ0 = Θgrav +
ΘNED.

The equations of motion are then obtained as δI0/δgµν = 0 and δI0/δAµ = 0, that is,

Eµ
ν ≡ Gµ

ν +Hµ
ν − 8πGT µ

ν = 0 , (2.15)

Eµ ≡ ∇ν

(

Fµν dL
dF 2

)

= 0 . (2.16)

In general, the extremization of the action for the fully-interacting theory does not only require
the e.o.m to be satisfied, but also the vanishing of the surface term for given boundary conditions.
Therefore, a well-posed action principle leads to supplementing the Lagrangian by suitable boundary
terms, what will be discussed below.

The Einstein tensor Gµ
ν can be conveniently rewritten in terms of the AdS radius as

Gµ
ν = −1

4
δ
[µµ1µ2]
[νν1ν2]

(

Rν1ν2
µ1µ2

+
1

ℓ2
δ
[ν1ν2]
[µ1µ2]

)

. (2.17)

Written in this compact form, the total equation of motion (2.15) is

Eµ
ν = −1

8
δ
[µµ1···µ4]
[νν1···ν4]

[

αRν1ν2
µ1µ2

Rν3ν4
µ3µ4

+
1

(D − 3) (D − 4)

(

Rν1ν2
µ1µ2

δ
[ν3ν4]
[µ3µ4]

+
1

ℓ2
δ
[ν1ν2]
[µ1µ2]

δ
[ν3ν4]
[µ3µ4]

)]

− 8πGT µ
ν .

(2.18)
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The GB contribution Hµ
ν given by (2.8) modifies the cosmological constant in Gµ

ν and therefore, the
asymptotic behavior of the solutions. This is particularly evident in absence of matter fields, by taking
the condition of maximally symmetric spacetimes with an effective AdS radius ℓeff , i.e.,

Rαβ
µν = − 1

ℓ2eff
δ
[αβ]
[µν] . (2.19)

The vacua of the theory are then solutions of global constant curvature, where ℓ2eff is a root of the
quadratic equation

α (D − 3) (D − 4)
1

ℓ4eff
− 1

ℓ2eff
+

1

ℓ2
= 0 , (2.20)

so that

ℓ
(±)2
eff =

2α (D − 3) (D − 4)

1±
√

1− 4α
ℓ2 (D − 3) (D − 4)

, α ≤ ℓ2

4 (D − 3) (D − 4)
. (2.21)

The GB term, therefore, sets the equations of motion in the quadratic-curvature form

− α

8
δ
[µµ1···µ4]
[νν1···ν4]



Rν1ν2
µ1µ2

+
1

ℓ
(+)2
eff

δ
[ν1ν2]
[µ1µ2]







Rν3ν4
µ3µ4

+
1

ℓ
(−)2
eff

δ
[ν3ν4]
[µ3µ4]



 = 8πGT µ
ν . (2.22)

For the discussion of the present paper, we shall consider solutions that satisfy the condition (2.19) in
the asymptotic region, i.e., tend asymptotically to a constant-curvature spacetime.

However, for different roots ℓ
(+)2
eff 6= ℓ

(−)2
eff , there is only one branch of the theory of physical interest.

This is because the corresponding AdS radii can be expanded as

ℓ
(+)2
eff = α (D − 3) (D − 4) +O(α2) , (2.23)

ℓ
(−)2
eff = ℓ2 +O(α) , (2.24)

and, thus, ℓ
(−)2
eff reduces to the original AdS radius for vanishing GB coupling, whereas ℓ

(+)2
eff vanishes

if the GB term goes to zero.

EGB AdS gravity possesses a unique AdS vacuum when both effective AdS radii are equal, ℓ
(+)2
eff =

ℓ
(−)2
eff = ℓ2/2, case that corresponds to a GB coupling given by α = ℓ2/4 (D − 3) (D − 4). In five
dimensions, at that particular coupling value, the action features a group symmetry enhancement
from local Lorentz to AdS5, and it can be expressed as a Chern-Simons density for the latter group.
This gravity theory has particular dynamical features that will not be discussed here [20, 21].

3 Generic topological static black hole solution

A static black hole ansatz for the metric gµν in the coordinate set xµ = (t, r, ϕm) is given by

ds2 = gµν(x) dx
µdxν = −f2(r) dt2 +

dr2

f2(r)
+ r2γmn(ϕ) dϕ

mdϕn . (3.1)
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The boundary ∂M is located at radial infinity (r → ∞), and it is parameterized by xi = (t, ϕm).
The metric γnm with local coordinates ϕm describes a (D− 2)-dimensional Riemann space ΓD−2 with
constant curvature, that is,

R̃m1m2n1n2(γ) = k (γm1n1γm2n2 − γm1n2γm2n1) , (3.2)

where k = 0, +1 or −1, that corresponds to flat, spherical or hyperbolic transversal section, respec-
tively.

We will consider that the solution possesses an event horizon, defined as the largest root of the
equation f(r+) = 0. The non-vanishing components of the Riemann curvature Rµν

λρ are

Rtr
tr = −1

2

(

f2
)′′

,

Rtn
tm = Rrn

rm = − 1

2r

(

f2
)′

δnm , (3.3)

Rmn
kl =

1

r2
(

k − f2
)

δ
[mn]
[kl] ,

where prime denotes radial derivative. The Ricci tensor Rµ
ν = Rµλ

νλ has the components

Rt
t = Rr

r = − 1

2r

[

r
(

f2
)′′

+ (D − 2)
(

f2
)′
]

,

Rn
m = − 1

r2
δnm

[

r
(

f2
)′
+ (D − 3)

(

f2 − k
)

]

, (3.4)

and the Ricci scalar R = Rµν
µν is

R = − 1

r2

[

r2
(

f2
)′′

+ 2 (D − 2) r
(

f2
)′
+ (D − 2) (D − 3)

(

f2 − k
)

]

. (3.5)

For a static solution with a topology equal to the one of the transversal section, we assume an
ansatz for the gauge field in the form

Aµ = φ (r) δtµ , (3.6)

with the associated field strength

Fµν = E(r)
(

δtµδ
r
ν − δtνδ

r
µ

)

, (3.7)

where the electric field is given by
E(r) = −φ′(r) . (3.8)

We solve the electric potential in the static ansatz (3.1), (3.7), where F 2 = −2E2, using the only
non-vanishing component of the Maxwell-type equation (2.16),

E t = − d

dr

(

rD−2E
dL
dF 2

∣

∣

∣

∣

F 2=−2E2

)

= 0 , (3.9)

what leads to the generalized Gauss’ law

E
dL
dF 2

∣

∣

∣

∣

F 2=−2E2

= − q

rD−2
. (3.10)
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Here, q is an integration constant related to the electric charge. Notice that the first integral of
Eq.(3.10) does not depend explicitly on the metric, but only on the function E(r). The algebraic
equation in E can be solved as long as the explicit form of NED action is given, and implies that the
electric field should vanish for q = 0.

We define the electric potential at infinity measured with respect to the event horizon r+ as
Φ = φ(∞)− φ(r+).

On the other hand, integrating out Eq.(3.8) one obtains the electric potential at the distance r
measured with respect to radial infinity,

φ(r) = −
r
∫

∞

dv E(v) , (3.11)

such that the quantity of physical interest Φ is the potential evaluated at the horizon,

Φ = −φ(r+) . (3.12)

In order to solve the function f2(r) in the metric, we write the only independent components of
the Einstein and Lanczos tensors,

Gt
t = Gr

r =
D − 2

2r2

[

r
(

f2
)′
+ (D − 3)

(

f2 − k
)

− (D − 1)
r2

ℓ2

]

,

Ht
t = Hr

r = α (D − 2) (D − 3) (D − 4)
k − f2

r3

[

(

f2
)′ − (D − 5)

k − f2

2r

]

. (3.13)

A necessary and sufficient condition on the NED Lagrangian density is the Weak Energy Condition
on the symmetric energy-momentum tensor

Tµν u
µuν ≤ 0 , (3.14)

that ensures that an observer measures a non-negative energy density ρNED = −Tµν u
µuν for a timelike

vector uµ. For charged static black holes, the electromagnetic stress tensor satisfies T t
t = T r

r , such
that the weak energy condition is equivalent to

T t
t = T r

r = L+ 4E2 dL
dF 2

≥ 0 , (3.15)

where the Lagrangian L and its derivatives are evaluated at F 2 = −2E2.
The above inequality restricts the function L, but not its derivative. Indeed, in the asymptotic

region the generalized Gauss’ law implies E dL
dF 2 ≃ 0 and, assuming that electric field vanishes asymp-

totically, the weak energy condition leads to L ≥ 0 for large r. On the other hand, the asymptotic
behavior of dL

dF 2 remains arbitrary. Indeed, for Maxwell electrodynamics and Born-Infeld-like La-

grangians, the expression dL
dF 2 is finite for r → ∞. Also, for the Lagrangians of the type (F 2)p, the

derivative vanishes when p > 1, and it is divergent if p < 1. Additionally, one may demand the
finiteness of the total energy, that can be expressed as

∞
∫

0

dr rD−2 T r
r (r) < ∞ . (3.16)
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Note that the above requirement on the EM energy, applied to black hole solutions, also includes the
interior region protected by the horizon [22].

The equations of motion E t
t = Er

r = 0 read

16πGr2

D − 2
T r
r = r

(

f2
)′
+ (D − 3)

(

f2 − k
)

− (D − 1)
r2

ℓ2
+ 2α (D − 3) (D − 4)

k − f2

r

[

(

f2
)′ − (D − 5)

k − f2

2r

]

. (3.17)

One can show, using Eqs.(3.9) and (3.17), that Em
n = 0 is identically satisfied.

The differential equation (3.17) is integrable, because it can be cast in the form

[

rD−3
(

f2 − k
)

(

1− α (D − 3) (D − 4)
f2 − k

r2

)]′
=

D − 1

ℓ2
rD−2 +

16πG

D − 2
rD−2T r

r , (3.18)

what leads to the general solution

(

f2 − k
)

(

1− α (D − 3) (D − 4)
f2 − k

r2

)

=
r2

ℓ2
− µ

rD−3
+

16πGT (q, r)

(D − 2) rD−3
, (3.19)

where µ is an integration constant of dimension [mass×16πG], and the function T (q, r) for an arbitrary
NED Lagrangian is given by

T (q, r) =

r
∫

∞

dv vD−2 T r
r (v)

=

r
∫

∞

dv
(

vD−2L(v)− 4qE(v)
)

=
1

D − 1

(

rD−1L − qrE + (D − 2) 4qφ
)∣

∣

∣

r

∞
. (3.20)

The Gauss law (3.10) has been used to eliminate dL/dF 2 from the integral, so that T depends on the
integration constant q. For a general procedure for Lovelock gravity coupled to NED see, e.g., [23].

Electromagnetism does not deform the asymptotic region since the relation T (q,∞) = 0 is identi-
cally satisfied according to Eq.(3.20).

Then, the metric function in the static solution of EGB gravity coupled to NED is obtained solving
the quadratic equation (3.19) in f2. The existence of a real root is ensured by the condition

T (q, r) ≤ (D − 2) rD−1

16πG

(

1

4α (D − 3) (D − 4)
− 1

ℓ2
+

µ

rD−1

)

, (3.21)

that is proved to be satisfied for sufficiently large r, as the r.h.s. is always positive (see the inequality
in (Eq.2.21)). Thus, the metric possesses two branches,

f2
±(r) = k +

r2

2α (D − 3) (D − 4)

[

1±
√

1− 4α (D − 3) (D − 4)

(

1

ℓ2
− µ

rD−1
+

16πGT (q, r)

(D − 2) rD−1

)

]

.

(3.22)
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The ground state µ = 0, q = 0 corresponds to two AdS vacua,

f2
±(r)vac = k +

r2

ℓ
(±)2
eff

. (3.23)

However, it has been shown in [24] that the vacuum f2
+(r)vac is unstable and the graviton has negative

mass, while the solution f2
−(r)vac is stable and is free of ghosts. For a general solution, from (3.22) in

the weak limit of GB coupling, we have

f2
+(r) = k + r2

(

1

α (D − 3) (D − 4)
− 1

ℓ2

)

+
µ

rD−3
− 16πGT (q, r)

(D − 2) rD−3
+O(α) , (3.24)

f2
−(r) = k +

r2

ℓ2
− µ

rD−3
+

16πGT (q, r)

(D − 2) rD−3
+O(α) , (3.25)

because T does not depend on the constant α. The opposite sign in the mass parameter µ in f2
+(r)

indicates instabilities of the graviton so that it is not of physical interest for our discussion below.
On the other hand, the function f2

−(r) in the limit α → 0 describes static black holes of Einstein-
Hilbert AdS gravity coupled to NED. Because of this reason, henceforth, we consider only the negative
branch of the metric, f(r) ≡ f−(r),

f2(r) = k +
r2

2α (D − 3) (D − 4)

[

1−
√

1− 4α (D − 3) (D − 4)

(

1

ℓ2
− µ

rD−1
+

16πGT (q, r)

(D − 2) rD−1

)

]

.

(3.26)
When NED Lagrangian corresponds to the one of Maxwell electromagnetism LMaxwell

(

F 2
)

=

−F 2, the function T (q, r) in Eq.(3.26) becomes TMaxwell =
2q2

(D−3)rD−3 , what reproduces the charged

black hole solution first found in [25]. Expanding f2 for large r, one can notice that the electromagnetic
part possesses the same fall-off as in Reissner-Nordstrom case.

In general, the contribution of NED to f2 is smaller than the one of the mass term, and can
therefore be neglected for large r. Indeed, using Eq.(2.21), one can prove that, in the asymptotic
region, the metric function and its radial derivative behave as

f2 = k +
r2

ℓ2eff
− µ

1− 2α
ℓ2
eff

(D − 3) (D − 4)

1

rD−3
+O

(

1

r2D−6

)

, (3.27)

(f2)′ =
2r

ℓ2eff
+

(D − 3)µ

1− 2α
ℓ2
eff

(D − 3) (D − 4)

1

rD−2
+O

(

1

r2D−5

)

. (3.28)

This fact will make evident that the NED term T (q, r) in Eq.(3.26) does not produce additional
contributions to the energy of the system, as we shall discuss in Section 6.2.

In absence of electromagnetic fields, we have that T (0, r) = 0, what means that the solution (3.26)
reduces to the topological version of Boulware-Deser black holes in AdS spaces [24, 26, 27].

Different NED models have been proposed which possess particle-like solutions whose both elec-
tromagnetic and gravitational fields are regular everywhere. However, this does not imply that there
are no curvature singularities.
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The interior of the black hole is described by the metric function obtained from Eq.(3.18) as

f2
in(r) = k +

r2

2α (D − 3) (D − 4)

[

1±

±
√

1− 4α (D − 3) (D − 4)

(

1

ℓ2
− c

rD−1
+

16πG
∫ r
0 dv vD−2 T r

r (v)

(D − 2) rD−1

)



 , (3.29)

where c is the integration constant. In consequence, when one imposes the finiteness condition on the
energy-momentum tensor at the origin,

lim
r→0

1

rD−1

r
∫

0

dv vD−2 T r
r (v) < ∞ , (3.30)

the metric function takes the value f2
in(0) = k ±

√

c
α(D−3)(D−4)rD−5 . For c 6= 0, this is finite only in

five dimensions, otherwise c must vanish. Further analysis is needed to relate c to the asymptotic
mass parameter µ, what would imply new conditions in order to remove the conical singularity at
the origin. One may also demand L to be single-valued, continuous and differentiable. For a more
detailed discussion on these issues for particular cases see, e.g., Refs.[19, 22].

So far, we have seen that for any nonlinear electrodynamics theory coupled to EGB AdS gravity,
both the metric (3.26) and the electric potential (3.11) can be determined from the explicit form of
the Lagrangian L(F 2). We illustrate this with a few examples in the next section.

4 Charged black holes in particular NED theories

4.1 Born-Infeld electrodynamics

Born-Infeld electrodynamics [2] is described by the Lagrangian density

LBI

(

F 2
)

= 4b2

(

1−
√

1 +
F 2

2b2

)

, (4.1)

where the coupling parameter b (with dimension of mass) is related to the string tension α′ as b =
1/2πα′. This Lagrangian reduces to the Maxwell case in the weak-coupling limit b → ∞. Generally
speaking, when a density L(F 2) recovers the Maxwell theory in weak-coupling limit, i.e., L(F 2) =
−F 2 +O

(

1/b2
)

, it is said to be Born-Infeld-type.
The BI energy-momentum tensor has the form

T µ
ν = 4b2δµν

(

1−
√

1 +
F 2

2b2

)

+
4FµλFνλ
√

1 + F 2

2b2

, (4.2)

and it generates the electric field

E(r) =
q

√

q2

b2
+ r2D−4

. (4.3)
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The corresponding electric potential is given by the formula (3.11). Performing a variable change in
the integral, u = (r/v)2D−4, it can be expressed in terms of the hypergeometric function F(q, r) =

2F1

(

1
2 ,

D−3
2D−4 ;

3D−7
2D−4 ;−

q2

b2r2D−4

)

(see Appendix B), and the solution for the potential is

φ(r) =
q

(D − 3) rD−3
F(q, r) . (4.4)

Then, the integration constant Φ = −φ(r+) reads

Φ = − q

(D − 3) rD−3
+

F (q, r+) . (4.5)

In order to find the metric for the black hole with Born-Infeld electric charge, we solve explicitly
the integral (3.20) as

TBI(q, r) =
4b2rD−1

D − 1

(

1−
√

1 +
q2

b2r2D−4

)

+
4 (D − 2) q2

(D − 1) (D − 3) rD−3
F(q, r) , (4.6)

and replacing in Eq.(3.26), we obtain

f2(r) = k +
r2

2α (D − 3) (D − 4)

{

1−
[

1− 4α (D − 3) (D − 4)

(

1

ℓ2
− µ

rD−1

+
64πGb2

(D − 1) (D − 2)

(

1−
√

1 +
q2

b2r2D−4

)

+
64πGq2F(q, r)

(D − 1) (D − 3) r2D−4

)]1/2






. (4.7)

This class of black holes has been discussed in Ref.[25]. The generalization to non-Abelian gauge fields
has been studied in Ref.[28]. In the limit of vanishing GB coupling, the metric reduces to the one of
topological Einstein-BI black holes in AdS spaces [29, 30, 31].

4.2 Conformally invariant electrodynamics

Born-Infeld Lagrangian in higher dimensions is a physically sensible extension of four-dimensional
Maxwell electrodynamics. However, if one is interested in a generalization of the conformal invariance
property of 4D Maxwell theory, there exist NED actions given as power-law functions of the form

LCED

(

F 2
)

= −2χF 2p, (4.8)

where χ is a positive coupling constant [32]. Then the conformal invariance gµν → Ω2gµν , Aµ → Aµ

is realized for the power p = D/4.
The energy-momentum tensor for Aµ reads

T µ
ν = −2χ

(

δµν − 4p
FµλFνλ

F 2

)

F 2p , (4.9)

and it produces the electric field

E(r) =
q̃

rβ
, (4.10)
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where β = D−2
2p−1 and q̃ =

(

(−1)p+1q
2p pχ

)
β

D−2
. When one demands conformal invariance (p = D/4), the

electric field takes the 4D Maxwell’s form, E = q̃/r2, in any dimension.
Then, one can calculate explicitly the function (3.20) in the metric,

TCED(q, r) = −2 (D − 2) (−2)p q̃2pχ

β (β − 1)

1

rβ−1
, (4.11)

that, plugged in Eq.(3.26), produces a line element which matches the form of the black holes found
in Ref.[9] for EGB AdS gravity.

4.3 Logarithmic electrodynamics

NED Lagrangians that contain logarithmic terms in the electromagnetic field strength appear in the
description of vacuum polarization effects. These terms were obtained as exact 1-loop corrections for
electrons in a uniform electromagnetic field background by Euler and Heisenberg [7], and therefore
are a typical feature of quantum electrodynamics effective actions.

Furthermore, logarithmic ED Lagrangians come as a realization of the old idea of removing singu-
larities in the gravitational field, in a similar way as the BI electrodynamics removes divergences in the
electric field. They have also been used to describe an equation of state of radiation in an alternative
mechanism for inflation [33].

A simple example of a BI-like Lagrangian with a logarithmic term, that can be added as a correction
to the original BI one, was discussed in Ref.[8] in asymptotically flat Einstein gravity in D = 4. This
model does not cancel the curvature singularity for small r, but makes the Kretschmann invariant
behave as 1/r4, which is a weaker singularity than in, e.g., Schwarzschild or Reissner-Nordström black
holes.

In an arbitrary dimension, the logarithmic ED lagrangian has the form

LLog(F
2) = −8b2 ln

(

1 +
F 2

8b2

)

. (4.12)

It can be shown from Eq.(3.10) that the electric field has two branches, but only one features the
Maxwell limit (b → ∞),

E(r) =
2b2

q

(

rD−2 −
√

r2D−4 +
q2

b2

)

. (4.13)

Considering this, the electric potential reads

φ(r) = − 2b2rD−1

q (D − 1)

(

1−
√

1 +
q2

b2r2D−4

)

− 2q (D − 2) F(q, r)

(D − 1) (D − 3) rD−3
, (4.14)

where F(q, r) = 2F1

(

1
2 ,

D−3
2D−4 ;

3D−7
2D−4 ;−

q2

b2r2D−4

)

.

The electromagnetic contribution to the metric is then given by

TLog(q, r) = −8b2rD−1

D − 1
ln

[

2b2rD−2

q2

(
√

r2D−4 +
q2

b2
− rD−2

)]

+
8b2 (2D − 3) r

(D − 1)2

(

rD−2 −
√

r2D−4 +
q2

b2

)

+
8q2 (D − 2)2 F(q, r)

(D − 1)2 (D − 3) rD−3
. (4.15)
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Using the fact that F(0, r) = 1 = F(q,∞), one can show explicitly that electromagnetism vanishes
asymptotically, that is, TLog(q,∞) = 0. Also, in the zero charge limit, TLog(0, r) vanishes, as expected.

It is straightforward to write down the metric function f2(r) by plugging in the above expression
into EGB metric in Eq.(3.26). This general solution reduces to the one of Ref.[8] in 4D Einstein
gravity without cosmological constant.

A more realistic version of logarithmic NED action is given by the Hoffmann-Infeld model [34],
that do remove singularities in both gravitational and electric fields for static solutions. This theory
is described by the Lagrangian

LHI = 4b2
(

1− η(F 2)− log η(F 2)
)

, (4.16)

where η(F 2) = − F 2

4b2

(

1−
√

1 + F 2

2b2

)−1

. It can be easily checked from the expansion η(F 2) = 1 +

F 2

8b2
+ O(1/b4) that LHI(F

2) is also a BI-like Lagrangian in the weak-coupling limit. In D = 5, a
solution to this model was discussed in Ref.[22].

5 Variational principle and boundary terms

Any gravity theory is not defined only by its equations of motion in the bulk, but also by the set of
boundary conditions that guarantees that the action is truly stationary. In general, this implies that
the original bulk action must be supplemented by a boundary term β,

Ĩ = I0 +

∫

∂M

dD−1xβ , (5.1)

such that the problem of a well-posed action principle reduces to the on-shell cancelation of the total
surface term of the theory, that is,

δĨ =

∫

∂M

dD−1x (Θ0 + δβ) = 0 . (5.2)

In our case, the term Θ0 is given as the sum of Eqs.(2.10) and (2.13) and, in principle, β can be split
in two parts, namely, β = βgrav + βNED.

A gravitational action whose variation vanishes for a Dirichlet condition on the metric requires the
addition of (generalized) Gibbons-Hawking terms. This is particularly easy to see in Gauss-normal
coordinates

ds2 = gµν dx
µdxν = N2 (r) dr2 + hij(r, x) dx

idxj . (5.3)

We will consider a manifold with a single boundary ∂M at r = ∞, parameterized by the coordinates
xi, and such that hij is the induced metric on it. The extrinsic properties of the boundary are given
in terms of the outward-pointing normal nµ = (nr, ni) = (N,~0). In particular, we define the extrinsic
curvature as the Lie derivative of the induced metric along this normal,

Kij = −1

2
£nhij = − 1

2N
h′ij . (5.4)
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As it is written in Appendix C, different components of the Christoffel symbol can be expressed in
terms of the extrinsic curvature. In doing so, the surface term Θ0 = Θgrav +ΘNED has the form

Θ0 =
1

8πG (D − 2) (D − 3)

√
−h δ

[jj1j2]
[ii1i2]

[

1

2

(

h−1δh
)i

k
Kk

j + δKi
j

]

×

×
[

δi1j1δ
i2
j2
+ 2α (D − 2) (D − 3)

(

1

2
Ri1i2

j1j2
−Ki1

j1
Ki2

j2

)]

+4
√
−h

dL
dF 2

NF riδAi , (5.5)

where the determinant of the metric satisfies
√−g = N

√
−h and Rij

kl(h) is the intrinsic curvature of

the boundary, which is related to the spacetime Riemann tensor by Rij
kl = Rij

kl −Ki
kK

j
l +Ki

lK
j
k (see

Appendix C).
In order to cancel ΘNED part of the surface term, it is a sufficient condition to take δAi = 0 at

∂M. This means that β does not depend on the electromagnetic field, i.e., β = βgrav . On the other
hand, there is a systematic construction of generalized Gibbons-Hawking terms for Gauss-Bonnet and,
in general, any Lovelock theory [35, 36], which for the present case gives

β =

√
−h

8πG (D − 2) (D − 3)
δ
[j1j2j3]
[i1i2i3]

Ki1
j1

[

δi2j2δ
i3
j3
+ 2α (D − 2) (D − 3)

(

1

2
Ri2i3

j2j3
− 1

3
Ki2

j2
Ki3

j3

)]

, (5.6)

or, in the form which is commonly found in the literature,

β =

√
−h

8πG

[

K + 2α

(

K

(

KijKij −
1

3
K2

)

− 2

3
Ki

kK
k
j K

j
i − 2GijKij

)]

,

where Gij = Rij − 1
2 Rhij is the Einstein tensor associated to the boundary metric.

In doing so, the corresponding Dirichlet variation of the action is

Θ0 + δβ =

√
−h

16πG (D − 3) (D − 4)
δ
[j j1j2j3]
[i i1i2i3]

(h−1δh)ijK
i1
j1

[

δi2j2δ
i3
j3

+

+ 2α (D − 3) (D − 4)

(

1

2
Ri2i3

j2j3
− 1

3
Ki2

j2
Ki3

j3

)]

+ 4
√
−h

dL
dF 2

NF riδAi . (5.7)

Notice that for a radial foliation of the spacetime, the on-shell variation of the action can be cast
in the form

δĨ =

∫

∂M

dD−1x
√
−h

(

1

2
πijδhij + πiδAi

)

, (5.8)

where πij and πi are the canonical momenta conjugate to hij and Ai, respectively. If one uses πij as
a quasilocal-stress tensor in AdS gravity, the conserved quantities derived from it are divergent in the
asymptotic region. In other words, a well-posed variational principle is not necessarily linked to the
problem of finiteness of the charges and action.

In the context of AdS/CFT correspondence, the standard way to deal with the regularization
problem in a background-independent way is the addition of local counterterms at the boundary,
which are constructed using holographic normalization. However, the inclusion of higher-curvature
terms in the action turns this procedure considerably more complicated. A practical method to
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circumvent this obstacle in EGB-AdS gravity is to assume the same form of the counterterms as in
the EH case, but with arbitrary coefficients [37, 38, 39]. The coefficients are then fixed requiring the
convergence of the action for particular solutions of the theory. It is clear from this construction that
the series cannot be obtained for an arbitrary dimension.

The fact that in AdS gravity the leading-order of the asymptotic expansion of the extrinsic curva-
ture is proportional to the one of the boundary metric opens the possibility to consider counterterms
which depends on the extrinsic curvature, as well. In this alternative scheme (known as Kounterterm
regularization), the boundary terms are related to either topological invariants or Chern-Simons forms
in the corresponding dimensions. In this way, it is possible to skip the technicalities of holographic
procedures and to write down a general expression for them in any dimension,

I = I0 + cD−1

∫

∂M

dD−1xBD−1 , (5.9)

where cD−1 is a given constant. For EH AdS gravity, the Kounterterm series was shown in Refs.[40, 41]
as a given polynomial of the extrinsic and intrinsic curvatures, which defines a well-posed action
principle. In general, the action (5.9) varies as

δI =

∫

∂M

dD−1xΘ =

∫

∂M

dD−1x (Θgrav +ΘNED + cD−1 δBD−1) , (5.10)

such that the boundary term in (5.9) makes the action to have an extremum on-shell and solves the
regularization problem, as well.

For a given dimension, the series BD−1 possesses the remarkable property of preserving its form
for EGB-AdS gravity [42] and, in general, any theory of the Lovelock type [43]. In what follows, we
use the explicit form of the boundary terms to construct the general variation of the action in tensorial
notation.

5.1 Even dimensions (D = 2n)

In even dimensions D = 2n > 4, the boundary term B2n−1 in (5.9) is given by the n-th Chern form
[42]

B2n−1 = 2n
√
−h

1
∫

0

dt δ
[j1···j2n−1]
[i1···i2n−1]

Ki1
j1

(

1

2
Ri2i3

j2j3
− t2Ki2

j2
Ki3

j3

)

×

· · · ×
(

1

2
Ri2n−2i2n−1

j2n−2j2n−1
− t2K

i2n−2

j2n−2
K

i2n−1

j2n−1

)

, (5.11)

that is the scalar density whose derivative is locally equivalent to the Euler invariant (globally they
differ by the Euler characteristic of the manifold, χ(M)). The integration in the continuous parameter
t generates the coefficients when the boundary term is expanded as a polynomial. The constant c2n−1

in front of the boundary term B2n−1 which produces a well-defined variational principle is given in
terms of the effective AdS radius as

c2n−1 = − 1

16πG

(−ℓ2eff )
n−1

n (2n − 2)!

(

1− 2α

ℓ2eff
(2n − 2) (2n− 3)

)

. (5.12)
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It can been proven that the same choice of c2n−1 ensures the convergence of the Euclidean action.
The total surface term Θ can be read off from the on-shell variation of the action (5.10), that in this
case is

δI2n =
1

16πG (2n − 2)!2n−1

∫

∂M

d2n−1x
√
−h δ

[j1···j2n−1]
[i1···i2n−1]

[

(

h−1δh
)i1
k
Kk

j1 + 2δKi1
j1

]

×

×
[

(

δ
[i2i3]
[j2j3]

+ 2α (2n− 2) (2n− 3)Ri2i3
j2j3

)

δ
[i4i5]
[j4j5]

· · · δ[i2n−2i2n−1]
[j2n−2j2n−1]

−
(

−ℓ2eff
)n−1

(

1− 2α

ℓ2eff
(2n− 2) (2n− 3)

)

Ri2i3
j2j3

· · ·Ri2n−2i2n−1

j2n−2j2n−1

]

+4

∫

∂M

d2n−1x
√
−h

dL
dF 2

NF riδAi . (5.13)

The reader can easily check that imposing the asymptotically locally AdS condition for the spacetime,
i.e.,

Rαβ
µν +

1

ℓ2eff
δ
[αβ]
[µν] = 0 , at ∂M , (5.14)

identically cancels the leading-order divergences in the gravitational part of the above variation. As
a remarkable feature of the addition of Kounterterms, all other divergent terms in (5.13) are exactly
cancelled out. In this way, the finite contribution is coupled to the conformal metric that is kept fixed
at the boundary. The NED part of the surface term vanishes for a Dirichlet boundary condition for
the transversal components of Aµ,

δAi = 0 , at ∂M . (5.15)

5.2 Odd dimensions (D = 2n+ 1)

The extrinsic regularization developed for odd-dimensional Einstein-Hilbert AdS gravity [40] can be
mimicked for EGB AdS theory, just replacing the AdS radius ℓ by the effective one ℓeff in the boundary
terms. Thus, the Kounterterms series is given in terms of the parametric integrations

B2n = 2n
√
−h

1
∫

0

dt

t
∫

0

ds δ
[j1···j2n]
[i1···i2n] K

i1
j1
δi2j2

(

1

2
Ri3i4

j3j4
− t2Ki3

j3
Ki4

j4
+

s2

ℓ2eff
δi3j3δ

i4
j4

)

×

· · · ×
(

1

2
Ri2n−1i2n

j2n−1j2n
− t2K

i2n−1

j2n−1
Ki2n

j2n
+

s2

ℓ2eff
δ
i2n−1

j2n−1
δi2nj2n

)

. (5.16)

The corresponding constant for this case incorporates the information of the theory through the GB
coupling in the form

c2n = − 1

16πG

(−ℓ2eff )
n−1

n (2n − 1)!

(

1− 2α (2n− 1) (2n− 2)

ℓ2eff

)





1
∫

0

dt
(

1− t2
)n−1





−1

= − 1

16πG

2(−ℓ2eff )
n−1

n (2n − 1)!β(n, 12)

(

1− 2α (2n− 1) (2n− 2)

ℓ2eff

)

, (5.17)
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where β(n, 12) =
22n−1(n−1)!2

(2n−1)! is the Beta function for those arguments.
The total action varies on-shell as

δI2n+1 =
1

2n−116πG (2n − 1)!

∫

∂M

d2nx
√
−h δ

[j1···j2n]
[i1···i2n]

[

(

h−1δh
)i1
k
Kk

j1 + 2δKi1
j1

]

δi2j2 ×

×
[

(

δ
[i3i4]
[j3j4]

+ 2α (2n− 1) (2n− 2) Ri3i4
j3j4

)

δ
[i5i6]
[j5j6]

· · · δ[i2n−1i2n]
[j2n−1j2n]

+ 16πG (2n − 1)!nc2n

1
∫

0

dt

(

Ri3i4
j3j4

+
t2

ℓ2eff
δ
[i3i4]
[j3j4]

)

· · ·
(

R
i2n−1i2n
j2n−1j2n

+
t2

ℓ2eff
δ
[i2n−1i2n]
[j2n−1j2n]

)





+nc2n

∫

∂M

d2nx
√
−h

1
∫

0

dt t δ
[j1···j2n]
[i1···i2n]

[

(

h−1δh
)i1
k

(

Kk
j1δ

i2
j2
− δkj1K

i2
j2

)

+ 2δi2j2δK
i2
j2

]

×

×
(

1

2
Ri3i4

j3j4
− t2Ki3

j3
Ki4

j4
+

t2

ℓ2eff
δi3j3δ

i4
j4

)

· · ·
(

1

2
Ri2n−1i2n

j2n−1j2n
− t2K

i2n−1

j2n−1
Ki2n

j2n
+

t2

ℓ2eff
δ
i2n−1

j2n−1
δi2nj2n

)

+4

∫

∂M

d2nx
√
−h

dL
dF 2

NF riδAi . (5.18)

Then, the surface term from the electromagnetic part vanishes when fixing the gauge potential at the
boundary, Eq.(5.15).

Checking explicitly the cancellation of the leading-order divergences in the above action proves to
be slightly more complicated than in the even-dimensional case, but one may reason as follows: the
second and third lines cancel out when taking the condition on the asymptotic curvature (5.14) for the
particular value of c2n given by Eq.(5.17). On the other hand, for any asymptotically AdS spacetime,
the extrinsic curvature Ki

j has a regular expansion in the asymptotic region, Ki
j = 1

ℓeff
δij + O (1/r).

This means that variations of the extrinsic curvature vanishes at the leading-order in the vicinity of
∂M. These conditions guarantee a well-posed action principle for odd-dimensional EGB AdS gravity,
issue that was discussed previously in Ref.[42].

6 Conserved quantities

6.1 Electric charge

We will first derive the electric charge Q as a conserved quantity associated to U(1) gauge symmetry
δλAµ = ∂µλ, δλgµν = 0, as its computation does not depend on the spacetime dimension. The gravi-
tational part of the surface term in Eq.(5.10) is gauge-invariant, such that it implies the conservation
of the Noether current

δλI =

∫

M

dDx ∂µJ
µ(λ) = 4

∫

M

dDx ∂µ

(√−g Fµν dL
dF 2

∂νλ

)

, (6.1)
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where the current Jµ transforms as a vector density of weight +1. In the radial foliation (5.3), the
electric charge is then the normal component of the above current

Q [λ] =

∫

∂M

dD−1x
1

N
nµJ

µ(λ) , (6.2)

which, using the fact that nµ is covariantly constant, can be rewritten as

√
−hnµ

dL
dF 2

Fµν∂νλ = ∂i

(

λ
√
−hnµF

µi dL
dF 2

)

− λnµ

√
−h Eµ . (6.3)

As a consequence, since Eµ = 0, we are able to write down the integrand in Eq.(6.2) as a total
derivative. In order to use the Stokes’ theorem we take a timelike ADM foliation for the line element
on ∂M with the coordinates xi = (t, ym), as

hij dx
idxj = −Ñ2(t)dt2 + σmn(dy

m + Ñmdt)(dyn + Ñndt) ,
√
−h = Ñ

√
σ , (6.4)

that is generated by the timelike normal vector ui = (ut, um) = (−Ñ ,~0). The metric σmn describes
the geometry of the boundary of spatial section at constant time Σ∞.

Setting λ = 1, the U(1) charge reads

Q = 4

∫

Σ∞

dD−2y
√
σ uiNF ri dL

dF 2
. (6.5)

For the static black hole metric (3.1) (where N = 1/f2 and Ñ = f2) and the electromagnetic field
strength (3.7), one obtains a general formula for NED electric charge

Q = −4Vol(ΓD−2) lim
r→∞

(

rD−2E
dL
dF 2

)

. (6.6)

Finally, using the generalized Gauss law (3.10), it is possible to define a finite electric charge of the
black hole

Q = 4Vol(ΓD−2) q , (6.7)

for an arbitrary NED Lagrangian. However, this definition does not guarantee only by itself that the
electric field is well-behaved in the asymptotic region.

6.2 Black hole mass

In order to calculate the conserved quantities associated to global isometries of the spacetime, we
first consider the action of diffeomorphisms δxµ = ξµ(x) on the fields gµν and Aµ in terms of the Lie
derivative,

δξgµν = £ξgµν ≡ − (∇µξν +∇νξµ) ,

δξAµ = £ξAµ ≡ −∂µ (ξ
νAν) + ξνFµν , (6.8)

what implies the transformation rule of the Christoffel symbol

£ξΓ
α
µν =

1

2

(

Rα
µνβ +Rα

νµβ

)

ξβ − 1

2
(∇µ∇νξ

α +∇ν∇µξ
α) . (6.9)
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This leads to the transformation of the volume element, Jacobian and Lagrangian density L0

defined by Eq.(2.1) as

δξ
(

dDx
)

= dDx ∂µξ
µ ,

δξ
√−g = −√−g∇µξ

µ , (6.10)

δξL0 =
∂L0

∂gµν
£ξgµν +

∂L0

∂Γβ
µν

£ξΓ
β
µν +

∂L0

∂Aµ
£ξAµ + ξµ∂µL0 .

Then the total action (5.9) transforms under diffeomorphisms as

δξI =

∫

M

dDx
[

£ξ

(√−gL0

)

+ ∂µ
(√−g ξµL0

)]

+ cD−1

∫

∂M

dD−1x
[

£ξBD−1 + ∂i
(

ξiBD−1

)]

=

∫

∂M

dD−1xnµ

(

1

N
Θµ(ξ) +

√
−h ξµL0 + cD−1 n

µ ∂i
(

ξiBD−1

)

)

+

−
∫

M

dDx
√−g

(

1

16πG
Eµν£ξgµν + 4 Eµ£ξAµ

)

, (6.11)

where Θ(ξ) = 1
N nµΘ

µ(ξ) is the surface term in Eq.(5.10) evaluated in the corresponding Lie derivative
of the fields.

The Noether current derived from the diffeormorphic invariance, δξI =
∫

M dDx ∂µJ
µ(ξ) = 0 is,

therefore,
Jµ(ξ) = Θµ(ξ) +

√−g ξµL0 + cD−1Nnµ ∂i
(

ξiBD−1

)

. (6.12)

The conservation law ∂µJ
µ = 0 implies the existence of a conserved quantity, which corresponds to

the normal component of the current Jµ,

Q [ξ] =

∫

∂M

dD−1x
1

N
nµJ

µ(ξ) . (6.13)

In general, it is not guaranteed that the Noether charge can be written as surface integral in (D − 2)
dimensions. However, for the action I, the radial component Jr = 1

N nµJ
µ in the foliation (5.3) is

globally a total derivative on ∂M, i.e.,

Jr = ∂j

(√
−h ξi

(

qji + qj(0)i

))

. (6.14)

The splitting in the above integrand is justified as follows: qji produces the mass and other conserved
quantities for black hole solutions. As we will show below, this part of the charge identically vanishes
for the vacuum states of the theory. The term qj(0)i gives rise to a vacuum energy, which is present
only in odd dimensions.

Therefore, the conserved charges Q[ξ] of the theory for a given set of asymptotic Killing vectors
{ξ} are expressed as integrals on Σ∞ (whose metric has been defined in Eq.(6.4)),

Q[ξ] =

∫

Σ∞

dD−2y
√
σ uj ξ

i
(

qji + qj
(0)i

)

. (6.15)
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6.2.1 Even dimensions

In even dimensions, the expression for the surface term Θ(ξ) is obtained from (5.13) by replacing the
variations by the corresponding Lie derivative of the fields,

1

N
nµΘ

µ(ξ) =

√
−h

16πG (2n− 2)!2n−1
δ
[j1···j2n−1]
[i1···i2n−1]

[

(

h−1£ξh
)i1
k
Kk

j1 + 2£ξK
i1
j1

]

×

×
[

(

δ
[i2i3]
[j2j3]

+ 2α (2n− 2) (2n − 3)Ri2i3
j2j3

)

δ
[i4i5]
[j4j5]

· · · δ[i2n−2i2n−1]
[j2n−2j2n−1]

−
(

−ℓ2eff
)n−1

(

1− 2α

ℓ2eff
(2n− 2) (2n − 3)

)

Ri2i3
j2j3

· · ·Ri2n−2i2n−1

j2n−2j2n−1

]

+4
√
−h

dL
dF 2

NF ri£ξAi . (6.16)

As a result of the Noether procedure, the integrand in the conserved charge (6.15) is

qji =
1

16πG (2n − 2)!2n−2
δ
[jj2···j2n−1]
[i1···i2n−1]

Ki1
i ×

×
[

(

δ
[i2i3]
[j2j3]

+ 2α (2n − 2) (2n− 3)Ri2i3
j2j3

)

δ
[i4i5]
[j4j5]

· · · δ[i2n−2i2n−1]
[j2n−2j2n−1]

−
(

−ℓ2eff
)n−1

(

1− 2α

ℓ2eff
(2n− 2) (2n− 3)

)

Ri2i3
j2j3

· · ·Ri2n−2i2n−1

j2n−2j2n−1

]

, (6.17)

plus a NED contribution due to the last line in Eq.(6.16), what vanishes for black hole solutions, as
shown below. At the same time, qj(0)i = 0 for even dimensions.

The second and third lines in the expression (6.17) can be seen as a polynomial of rank (n−1) in the

Riemann tensor and the Kronecker delta 1
ℓ2
eff

δ
[i2i3]
[j2j3]

, which can be factorized by

(

Ri2i3
j2j3

+ 1
ℓ2
eff

δ
[i2i3]
[j2j3]

)

.

As a consequence of the fact that for any maximally symmetric spacetime this factor vanishes, any
conserved quantity defined on it will be identically zero in even dimensions.

The energy of black hole solution to EGB AdS gravity coupled to NED (3.1) is computed evaluating
the formula (6.15) for the Killing vector ξi = (1,~0) and the unit normal ui = (−f,~0) which defines a
constant-time slice,

M ≡ Q [∂t] = − 1

16πG (2n− 2)!2n−2

∫

Γ2n−2

d2n−2ϕ
√
γ f r2n−2 δ

[m1···m2n−2]
[n1···n2n−2]

Kt
t ×

×
[

(

δ
[n1n2]
[m1m2]

+ 2α (2n − 2) (2n− 3)Rn1n2
m1m2

)

δ
[n3n4]
[m3m4]

· · · δ[n2n−3n2n−2]
[m2n−3m2n−2]

−
(

−ℓ2eff
)n−1

(

1− 2α

ℓ2eff
(2n− 2) (2n− 3)

)

Rn1n2
m1m2

· · ·Rn2n−3n2n−2
m2n−3m2n−2

]

. (6.18)

From the explicit form of the extrinsic curvature

Ki
j = − 1

2N
hikh′kj =

( −f ′ 0

0 − f
r δ

m
n

)

, (6.19)
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and the boundary components of the Riemann tensor in Eq.(3.3), one obtains a general formula for
the mass in even dimensions,

M =
Vol(Γ2n−2)

16πG
lim
r→∞

r2n−2(f2)′
[

1− 2α (2n− 2) (2n− 3)
f2 − k

r2
−

−
(

1− 2α

ℓ2eff
(2n − 2) (2n− 3)

)

ℓ2n−2
eff

(

f2 − k

r2

)n−1
]

. (6.20)

In order to relate the above expression to the integration constant µ, one must consider the asymptotic
expansion of the metric function (3.27) in the following way,

f2 − k

r2
=

1

ℓ2eff
− µ

1− 2α
ℓ2
eff

(2n − 3) (2n− 4)

1

r2n−1
+O

(

1

r4n−4

)

, (6.21)

(

f2 − k

r2

)n−1

=
1

ℓ2n−2
eff

− (n− 1)µ

1− 2α
ℓ2
eff

(2n− 3) (2n − 4)

1

ℓ2n−4
eff r2n−1

+O
(

1

r4n−4

)

, (6.22)

and its derivative (3.28). When expanded, Eq.(6.20) might contain divergences of order r2n−1. It
is then a remarkable fact that the divergent terms cancel out for the particular value of c2n−1 in
Eq.(5.12), what leaves a finite result for the energy

M =
(2n− 2)Vol(Γ2n−2)µ

16πG
, (6.23)

in agreement with the expression found in, e.g., Ref.[44].
Now we turn our attention to the NED contribution to the diffeomorphic transformation of the

action, that is, the last line in Eq.(6.16). This part of the surface term produces, by virtue of the
Noether theorem, an additional piece with respect to the charge formula given by Eq.(6.17), which is
written in any dimension as

QNED [ξ] = −4

∫

Σ∞

dD−2y
√
σ uj

dL
dF 2

NF rj
(

ξiAi

)

. (6.24)

However, when we evaluate Eq.(6.24) for the Killing vector ξ = ∂t and the static black hole metric,
we notice that

QNED [∂t] = −4qVol(ΓD−2)φ(∞) = 0 , (6.25)

as anticipated in the discussion following the deduction of the charge formula.
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6.2.2 Odd dimensions

The form of the surface term Θ(ξ) in odd dimensions (D = 2n+1) follows from the on-shell variation
of the action, Eq.(5.18). Its expression is slightly more complicated than in the even-dimensional case

1

N
nµΘ

µ(ξ) =

√
−h

16πG (2n− 1)!2n−1
δ
[j1···j2n]
[i1···i2n]

[

(

h−1£ξh
)i1
k
Kk

j1 + 2£ξK
i1
j1

]

δi2j2 ×

×
[

(

δ
[i3i4]
[j3j4]

+ 2α (2n− 1) (2n− 2) Ri3i4
j3j4

)

δ
[i5i6]
[j5j6]

· · · δ[i2n−1i2n]
[j2n−1j2n]

+ 16πG (2n − 1)!nc2n

1
∫

0

dt

(

Ri3i4
j3j4

+
t2

ℓ2eff
δ
[i3i4]
[j3j4]

)

· · ·
(

R
i2n−1i2n
j2n−1j2n

+
t2

ℓ2eff
δ
[i2n−1i2n]
[j2n−1j2n]

)





+nc2n
√
−h

1
∫

0

dt t δ
[j1···j2n]
[i1···i2n]

[

(

h−1δh
)i1
k

(

Kk
j1δ

i2
j2
− δkj1K

i2
j2

)

+ 2δi2j2δK
i2
j2

]

×

×
(

1

2
Ri3i4

j3j4
− t2Ki3

j3
Ki4

j4
+

t2

ℓ2eff
δi3j3δ

i4
j4

)

· · ·
(

1

2
Ri2n−1i2n

j2n−1j2n
− t2K

i2n−1

j2n−1
Ki2n

j2n
+

t2

ℓ2eff
δ
i2n−1

j2n−1
δi2nj2n

)

+4
√
−h

dL
dF 2

NF ri£ξAi , (6.26)

where, for shortness’ sake, we have chosen not to use the explicit form of c2n given by Eq.(5.17).
In odd dimensions, the Noether charge appears as the sum of two parts, since qj(0)i in Eq.(6.15) is

no longer vanishing. The first part takes the form

qji =
1

16πG (2n − 1)!2n−2
δ
[jj2···j2n]
[i1···i2n] Ki1

i δi2j2 ×

×
[

(

δ
[i3i4]
[j3j4]

+ 2α (2n − 1) (2n− 2) Ri3i4
j3j4

)

δ
[i5i6]
[j5j6]

· · · δ[i2n−1i2n]
[j2n−1j2n]

+ 16πG (2n − 1)!nc2n

1
∫

0

dt

(

Ri3i4
j3j4

+
t2

ℓ2eff
δ
[i3i4]
[j3j4]

)

· · ·
(

R
i2n−1i2n
j2n−1j2n

+
t2

ℓ2eff
δ
[i2n−1i2n]
[j2n−1j2n]

)



(6.27)

whereas the second one is given by

qj(0)i = nc2n

1
∫

0

dt t δ
[jj2···j2n]
[ki2···i2n]

(

Kk
i δ

i2
j2
+Kk

j2δ
i2
i

)

(

1

2
Ri3i4

j3j4
− t2Ki3

j3
Ki4

j4
+

t2

ℓ2eff
δi3j3δ

i4
j4

)

× · · ·

· · · ×
(

1

2
Ri2n−1i2n

j2n−1j2n
− t2K

i2n−1

j2n−1
Ki2n

j2n
+

t2

ℓ2eff
δ
i2n−1

j2n−1
δi2nj2n

)

. (6.28)

We recall the fact that the constant c2n was chosen to cancel at least the leading-order divergence
in the variation of the action (5.18). Thus, it can be readily checked that qji is identically zero for global
AdS spacetime which satisfies (2.19) in the bulk. This means that the second and third lines in the
expression (6.17) are again a polynomial of rank (n−1) in the Riemann tensor and the Kronecker delta
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1
ℓ2
eff

δ
[i2i3]
[j2j3]

, where Ri2i3
j2j3

= − 1
ℓ2
eff

δ
[i2i3]
[j2j3]

is a root of it. Therefore, any maximally symmetric spacetime

will have vanishing mass and angular momentum due to the fact that qji = 0, such that all the
contributions to the vacuum energy will come necessarily from Eq.(6.28), as shown below. On the
other hand, the presence of c2n in the formula of vacuum energy reflects the fact that its existence is
entirely due to the addition of the Kounterterm series (5.16).

Proceeding as in the even-dimensional case, we compute the black hole mass evaluating the first
term in the formula (6.15),

M =

∫

Σ∞

dD−2y
√
σ ut ξ

t qtt

= − 1

16πG (2n− 1)! 2n−2
lim
r→∞

∫

Γ2n−2

d2n−2ϕ
√
γ f r2n−1 δ

[m1···m2n−1]
[n1···n2n−1]

Kt
tδ

n1
m1

×

×
[

(

δ
[n2n3]
[m2m3]

+ 2α (2n− 1) (2n − 2)Rn2n3
m2m3

)

δ
[n4n5]
[m4m5]

· · · δ[n2n−2n2n−1]
[m2n−2m2n−1]

+ 16πG (2n − 1)!nc2n

1
∫

0

dt

(

Rn2n3
m2m3

+
t2

ℓ2eff
δ
[n2n3]
[m2m3]

)

· · ·
(

Rn2n−2n2n−1
m2n−2m2n−1

+
t2

ℓ2eff
δ
[n2n−2n2n−1]
[m2n−2m2n−1]

)



 .

Using the Riemann tensor in Eq.(3.3) and the extrinsic curvature for the generic black hole metric
given by Eq.(6.19), the above formula reduces to

M =
Vol(Γ2n−1)

16πG
lim
r→∞

r2n−1(f2)′
[

1− 2α (2n− 1) (2n− 2)
f2 − k

r2
+

+ 16πG (2n − 1)!nc2n

1
∫

0

dt

(

k − f2

r2
+

t2

ℓ2eff

)n−1


 . (6.29)

It is straightforward to express the mass M in terms of the constant µ in the metric, by means of
the expansion of the metric function in Eq.(6.21), its derivative (3.28) and the last line in the above
relation,

1
∫

0

dt

(

k − f2

r2
+

t2

ℓ2eff

)n−1

= − 1

16πG (2n − 1)!nc2n

(

1− 2α

ℓ2eff
(2n− 1) (2n− 2)

)

×

×



1−
ℓ2eff
2

(2n − 1) µ

1− 4α(2n−2)(2n−3)
ℓ2
eff

1

r2n



+O
(

1

r4n−3

)

. (6.30)

Unless the constant c2n is fixed as in Eq.(5.17), the formula (6.29) contains divergences of order r2n.
Therefore, the boundary term c2nB2n plays a double role: it cancels out the divergences in the Noether
charge, but also contributes with a finite piece to give the correct result for the mass

M =
(2n− 1)Vol(Γ2n−1)µ

16πG
, (6.31)
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what matches the one in Ref.[44]. In turn, the vacuum energy for AAdS black holes is reflected in the
formula (6.28), that in the black hole ansatz (3.1) adopts the form

Evac =

∫

Σ∞

dD−2y
√
σ ut ξ

t qt(0)t

= 2nc2n lim
r→∞

∫

Γ2n−1

d2n−1ϕ
√
γ r2n−1f δ

[m1···m2n−1]
[n1···n2n−1]

(

Kt
t δ

n1
m1

−Kn1
m1

)

× (6.32)

1
∫

0

dt t

(

1

2
Rn2n3

m2m3
− t2Kn2

m2
Kn3

m3
+

t2

ℓ2
δn2
m2

δn3
m3

)

× · · ·

· · · ×
(

1

2
Rn2n−2n2n−1

m2n−2m2n−1
− t2Kn2n−2

m2n−2
Kn2n−1

m2n−1
+

t2

ℓ2
δn2n−2
m2n−2

δn2n−1
m2n−1

)

. (6.33)

More explicitly, plugging in the components of the boundary curvature,

Rn1n2
m1m2

=
k

r2
δ
[n1n2]
[m1m2]

, Rtn
tm = 0 , (6.34)

the zero-point energy of the system is

Evac = 2n (2n− 1)!c2nVol(Γ2n−1) lim
r→∞

1
∫

0

dt t

(

f2 − r
(

f2
)′

2

)[

k +

(

r2

ℓ2eff
− f2

)

t2

]n−1

. (6.35)

As the metric function and its derivative can be expanded as in Eqs.(3.27) and (3.28), we notice that
all the terms that depend on the parameter µ vanish in the limit r → ∞. As expected, the vacuum
energy depends only on the topological parameter k, the effective AdS radius and GB coupling, that
is,

Evac = (2n− 1)! c2nVol(Γ2n−1) k
n

= (−k)n
Vol(Γ2n−1)

8πG
ℓ2n−2
eff

(2n− 1)!!2

(2n)!

(

1− 2α

ℓ2eff
(2n− 1) (2n− 2)

)

. (6.36)

The above formula matches the vacuum energy in EGB gravity obtained in Ref.[42] by means of
Kounterterm regularization. This implies that for an arbitrary NED Lagrangian the fall-off of the
electromagnetic field is always such that it does not contribute to the total energy of the gravitational
configuration.

7 Conclusions

We have used counterterms for Einstein-Gauss-Bonnet gravity coupled to nonlinear electrodynamics in
the form of polynomials in the extrinsic and intrinsic curvatures of the boundary in order to regularize
the conserved charges in the AdS sector of the theory. It has been shown that this regularization
scheme (also known as Kounterterm method) provides finite values for the mass for charged static
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black holes with spherical, locally flat and hyperbolic transversal section in all dimensions, and the
correct vacuum energy in odd dimensions.

We have also analyzed the fall-off conditions that ensure the finiteness of the electric charge for
an arbitrary NED Lagrangian L(F 2), which do not produce additional contributions to the mass of
black hole in Einstein-Gauss-Bonnet AdS gravity.

It is well-known that a vacuum energy for global AdS spacetime in odd dimensions appears only
in background-independent methods to compute conserved quantities. This is particularly important
from the semiclassical point of view in order to interpret the Noether charges as thermodynamic
variables, and to consistently incorporate the vacuum energy in the definition of internal energy of the
system [45], in a similar fashion as in Einstein-BI system [46] (for a thermodynamic analysis of the
same system using a background-subtraction method see Ref.[47]). The addition of a series of intrinsic
counterterms in pure EGB AdS gravity (see, eg., Refs.[37, 38, 39]) presents the advantage of obtaining
the conserved quantities from a boundary stress tensor, that is, as holographic charges. However, the
explicit form of such series does not exist for a high enough dimension. On the contrary, an expression
for the Kounterterms is given by Eqs.(5.11) and (5.16) in all dimensions. In that respect, one would
like to see the above charges as coming from a quasilocal stress (Brown-York) tensor. There are good
reasons that make us think that this could be possible, despite the fact that the on-shell variation of
the action takes the form

δID =

∫

∂M

dD−1x
√
−h

(

1

2
τ ji
(

h−1δh
)i

j
+∆j

i δK
i
j +ΩiδAi

)

, (7.1)

where one cannot directly define a quasilocal stress tensor as T ij = (2/
√
−h) (δID/δhij).

Indeed, there are gravity theories where the surface term in δI contains variations of the extrinsic
curvature δKi

j , which cannot be eliminated by the addition of a generalized Gibbons-Hawking term,
and where a holographic stress tensor for AAdS spacetimes can be still read off from the variation
of the action. One example featuring this property is Topologically Massive Gravity in 3D, where
the surface term coming from the variation of the gravitational Chern-Simons term contains δKi

j .
It is known that there is no term that can be added to the action to trade it off by a piece along
δhij . However, it can be shown that in the asymptotically AdS sector of the theory, there is a
contribution from the gravitational Chern-Simons term to the holographic stress tensor which couples
to the conformal structure g(0)ij , even though a quasilocal stress tensor associated to δhij cannot be
defined [48]. This follows from the fact that, for AAdS spaces, the leading order in the expansion of
the boundary metric is the same as the leading order of the extrinsic curvature. A quasilocal stress
tensor cannot be identified either in 4D AdS gravity when one adds the (topological) Gauss-Bonnet
term to the Einstein-Hilbert action. In this case, the Gauss-Bonnet term does not change the field
equations in the bulk but, as expected, it modifies the surface term in the variation of the action. In
this case, δI also adopts the form of Eq.(7.1). However, the second term in (5.6) –which in D > 4 sets
a well-defined action principle when the metric is held fixed at the boundary – cannot be used for the
same purpose in four dimensions. One can show that the variation of the action produces a boundary
stress tensor τ ji for AdS gravity (upon a suitable choice of the GB coupling) which is finite and the
same as the one prescribed by holographic renormalization [49]. This is a consequence of the fact that
the contribution

√
−h∆j

i δK
i
j vanishes identically when one performs an asymptotic expansion of the

fields.
The above examples give some indication on what should be the pattern in higher-dimensional

Einstein-Hilbert and Einstein-Gauss-Bonnet AdS case: in D = 2n dimensions, the term that contains
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δKi
j should always vanish as we approach to the asymptotic region, such that the quasilocal stress

tensor can be read off directly from Eq.(7.1). On the other hand, in odd dimensions, ∆j
i δK

i
j should

contribute with a finite piece to the holographic stress tensor which does not modify the Weyl anomaly.
We expect to provide a proof of the above claim elsewhere.
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A Kronecker delta of rank p

The totally-antisymmetric Kronecker delta of rank p is defined as the determinant

δ
[ν1···νp]
[µ1···µp]

:=

∣

∣

∣

∣

∣

∣

∣

∣

∣

δν1µ1
δν2µ1

· · · δ
νp
µ1

δν1µ2
δν2µ2

δ
νp
µ2

...
. . .

δν1µp
δν2µp

· · · δ
νp
µp

∣

∣

∣

∣

∣

∣

∣

∣

∣

. (A.1)

A contraction of k ≤ p indices in the Kronecker delta of rank p produces a delta of rank p− k,

δ
[ν1···νk···νp]
[µ1···µk···µp]

δµ1
ν1 · · · δµk

νk
=

(N − p+ k)!

(N − p)!
δ
[νk+1···νp]
[µk+1···µp]

, (A.2)

where N is the range of indices.

B Hypergeometric function

We use an integral representation of the Gauss’ hypergeometric function,

2F1 (a, b; c; z) =
Γ(c)

Γ(b)Γ(c− b)

1
∫

0

du
ub−1 (1− u)c−b−1

(1− zu)a
, (B.1)

where c is not a negative integer and either |z| < 1, or |z| = 1 with ℜe(c − a− b) > 0. In particular,
the following integral is solved in the text,

1
∫

0

du
ub−1

√
1 + zu

=
1

b
2F1

(

1

2
, b; b+ 1;−z

)

, b > 0 . (B.2)

The first derivative of the hypergeometric function is

d

dz
2F1 (a, b; c; z) =

ab

c
2F1 (a+ 1, b+ 1; c+ 1; z) , (B.3)

and it expands for small z as

2F1(a, b; c; z) = 1 +
ab

c
z +

a (a+ 1) b (b+ 1)

2c (c+ 1)
z2 +O(z3) . (B.4)
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C Gauss-normal coordinate frame

In Gaussian coordinates (5.3), the only relevant components of the connection Γα
µν are expressed in

terms of the extrinsic curvature Kij = − 1
2N h′ij as

Γr
ij =

1

N
Kij , Γi

rj = −NKi
j , Γr

rr =
N ′

N
. (C.1)

The radial foliation (5.3) implies the Gauss-Codazzi relations for the spacetime curvature, as well,

Rir
kl =

1

N

(

∇lK
i
k −∇kK

i
l

)

, (C.2)

Rir
kr =

1

N

(

Ki
k

)′ −Ki
l K

l
k , (C.3)

Rij
kl = Rij

kl(h)−Ki
k K

j
l +Ki

l K
j
k ≡ Rij

kl −K
[i
[kK

j]
l] , (C.4)

where ∇i = ∇i(h) is the covariant derivative defined in the Christoffel symbol of the boundary
Γk
ij(g) = Γk

ij(h) and Rij
kl(h) is the intrinsic curvature of the boundary.
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