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Abstract

Motivated by possible applications within the framework of anti-de Sitter gravity/Conformal
Field Theory (AdS/CFT) correspondence, charged black holes with AdS asymptotics, which are
solutions to Einstein-Gauss-Bonnet gravity in D dimensions, and whose electric field is described
by a nonlinear electrodynamics (NED) are studied.

For a topological static black hole ansatz, the field equations are exactly solved in terms of
the electromagnetic stress tensor for an arbitrary NED Lagrangian, in any dimension D and for
arbitrary positive values of Gauss-Bonnet coupling. In particular, this procedure reproduces the
black hole metric in Born-Infeld and conformally invariant electrodynamics previously found in the
literature. Altogether, it extends to D > 4 the four-dimensional solution obtained by Soleng in
logarithmic electrodynamics, which comes from vacuum polarization effects.

Fall-off conditions for the electromagnetic field that ensure the finiteness of the electric charge
are also discussed. The black hole mass and vacuum energy as conserved quantities associated to
an asymptotic timelike Killing vector are computed using a background-independent regularization
of the gravitational action based on the addition of counterterms which are a given polynomial in
the intrinsic and extrinsic curvatures.

1 Introduction

Gauge theories which are described by a nonlinear action for Abelian or non-Abelian fields have become
standard in the context of superstring theory. Indeed, it was proposed in Ref.[I] that all order loop
corrections to gravity should be summed up as a Born-Infeld (BI) type Lagrangian [2]. Furthermore,
the dynamics of D-branes is given in terms of a non-Abelian Born-Infeld action [3].

On the other hand, coupling nonlinear electrodynamics (NED) to gravity has been considered in
the literature as a plausible mechanism to obtain regular black hole solutions (see, for instance, [4]).
In this respect, the metric for static, spherically symmetric black holes for the BI theory minimally
coupled to Einstein gravity was derived in a number of papers [5 6]. Other gravitating NED models
supporting electrically charged black hole solutions have been also investigated, e.g., in Ref.[7] for
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the Euler-Heisenberg effective Lagrangian of QED, in Ref.[8] for a logarithmic Lagrangian, and in
Ref.[9] for a Lagrangian defined as powers of the Maxwell term. In the same spirit, as an example of
lower-dimensional models, it is worth mentioning the study of black holes generated by Coulomb-like
fields in (2 + 1) dimensions [10], and a similar treatment which includes torsion in Ref.[11].

Within the framework of AdS/CFT correspondence, higher-derivative corrections to either gravi-
tational or electromagnetic action in AdS space are expected to modify the dynamics of the strongly
coupled dual theory. In particular, in hydrodynamic models, the addition of R? terms changes the ratio
of shear viscosity over entropy density [12], violating the universal bound 1/47 proposed in Ref.[13].
In turn, it has been proved that higher-derivative terms for Abelian fields in the form of NED do
not affect this ratio [I4] (for hydrodynamic models dual to R-charged black holes see, e.g., Ref.[15]).
Also, in applications of the AdS/CFT conjecture to high T, superconductivity, higher curvature terms
violate a universal relation between the critical temperature of the superconductor and its energy gap
[16, 17]. While the Gauss-Bonnet term makes the condensation easier, the inclusion of Born-Infeld
electrodynamics produces the opposite effect [18].

Motivated by the recent results mentioned above, we study black hole solutions in Einstein-Gauss-
Bonnet gravity with negative cosmological constant coupled to an arbitrary NED theory. As it is
required in the context of AdS/CFT, we provide definitions for the conserved quantities following a
background-independent regularization procedure.

2 Action and equations of motion

We consider a fully-interacting theory of gravity minimally coupled to nonlinear electrodynamics in a
D-dimensional manifold M, which comes from the action

Iy = /de V=9Lo= Iy + INED. (2.1)
M

The pure gravity part of the bulk action with the metric g,,(x) as the dynamic field is given by

. 1 D — . 2 Uy UVAC
Iy = Toz / P2 /75 [R— 28 + o (B — 4R B + Rypo )] | (2.2)
M

which contains the Einstein-Hilbert (EH) action —linear in the curvature of spacetime—, a cosmological
term and a quadratic curvature correction given by the Gauss-Bonnet (GB) term. The cosmological
constant A is expressed in terms of the AdS radius £ as A = — (D — 1) (D —2) /2% and G is the
gravitational constant. The GB coupling constant « is of dimension [length]?, which takes only
positive values and it is related to the Regge slope parameter or string scale.

The matter and its interaction with gravity are described by an electrodynamics action which
is nonlinear in the quadratic term F? = g g"?F,, F),, where F},(z) is the Abelian field strength
associated to the gauge connection A,(x) as Fj,, = 0,4, — 0,A,. We shall assume an action for
nonlinear electrodynamics of the form

Inep = / i =g L(F?), (2.3)

M

where the Lagrangian density £(F?) is an arbitrary function of F?2.



We will consider the spacetimes whose dimension is D > 4. The case D = 4 is special because the
Euler-Gauss-Bonnet term becomes a topological invariant that does not contribute to the equations
of motion. In that sense, bulk dynamics in D = 4 leaves the GB coupling as completely arbitrary. It
is expected, however, that the GB term would modify the boundary dynamics of the theory and the
value of the Euclidean continuation of the action. Indeed, in four-dimensional AdS gravity, the only
consistent way of achieving the finiteness of both the conserved current and the Euclidean action is
setting o = £?/4. Furthermore, nonlinear electrodynamics in four dimensions is somewhat particular,
because one can consider a Lagrangian that depends additionally on another quadratic invariant
F*F = \/%79 elvAT e, which by itself is a topological term. For a recent discussion on electrostatic
configurations in four-dimensional gravitating NED, see Ref.[I9]. This type of Lagrangians clearly
cannot be generalized to the higher-dimensional cases we are interested in.

In order to find the equations of motion of Einstein-Gauss-Bonnet (EGB) gravity, we first note
that the gravitational action can be rearranged as

_ 1 D (1 pa) 1 ViV V3 SV
Igrav = 167G (D —2) (D — 3) /d rv—yg 5[1/1---1/4] ) Ry 0500
M
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pendix [A]) and we have used the identity

where the tensor ¢ denotes the totally antisymmetric product of p Kronecker deltas (see Ap-
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This is a convenient form to take the variation of the Riemann tensor as
5Ruuaﬁ = vﬂ(érﬁﬁ) - vﬁ((srﬁoc)
in terms of the Christoffel symbol. In addition, using the Bianchi identity for the Riemann curvature,

vajf] = VLR + VAR + VRS =0,

one can show that the gravitational action changes under an arbitrary variation of the metric as

1 _ v _
Mgrav = “16nC /deE V=g (9 159)# (Gy + HY) + / d’'a Ograv(0g,0L) , (2.6)
M oM

where G is the Einstein tensor with cosmological constant
1
Gﬁ:Rﬁ—ié‘V‘R—FA&ﬁ, (2.7)

and the contribution of the GB term to the variation of the bulk action is expressed in terms of the
Lanczos tensor
o
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The boundary term in (2.6) that appears from the variation of the bulk action reads
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M M
(2.10)

On the other hand, arbitrary variations of the metric and the gauge field A, in the NED action
produce

1 v dL _
0INED = /le’\/ —g [5 Ty (9_159)M —4v, <ﬁ FW) 5144 + / d° 'z ONnpp(4), (2.11)
oM

upon a suitable use of the Bianchi identity for the field strength, 8[MFV N = OuFA+0,Fy+0,F,, = 0.
The energy-momentum tensor for the matter content, T+ = %‘”N—ED, has the form

-9 Oguv
dL
T =6"L —4WF“AFV,\, (2.12)
and the surface term of the electromagnetic part is
d
/ dP 2 Onpp = 4/de Oy (y/—g d—li F“”éA,,) . (2.13)
oM M

The variation of the total action (2.1]) leads to the field equations plus a surface term
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where O is the total boundary term coming from the variation of the bulk action, i.e., ©g = O g4y +

ONED-
The equations of motion are then obtained as 01y/0g,, = 0 and §1y/dA, = 0, that is,

g = GP4HF —87GTV! =0, (2.15)
dr
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In general, the extremization of the action for the fully-interacting theory does not only require
the e.o.m to be satisfied, but also the vanishing of the surface term for given boundary conditions.
Therefore, a well-posed action principle leads to supplementing the Lagrangian by suitable boundary
terms, what will be discussed below.

The Einstein tensor G can be conveniently rewritten in terms of the AdS radius as

1 e Vv L[]
G, = 4 5[1/1/11/2} Rﬂlluzz + 2 5[#1#2] ’ (217)
Written in this compact form, the total equation of motion (215 is
_ 1 [Mul“'uzﬂ 1%0% V3. 1 1%0% [V3V4] 1 [V1V2} [V3V4]
&y = ) 5[1/1/1---1/4] aRﬂllﬂéRuélﬁl + (D —3) (D —4) RN11“22 5[#3#4] ™ 2 5[#1#2} 5[#3#4] —8rG T

(2.18)



The GB contribution Hf given by (2.8) modifies the cosmological constant in GY and therefore, the
asymptotic behavior of the solutions. This is particularly evident in absence of matter fields, by taking
the condition of maximally symmetric spacetimes with an effective AdS radius £y, i.e.,

1
af [aB]
Ry, =———90 R

- (2.19)
Gy |

The vacua of the theory are then solutions of global constant curvature, where ngf is a root of the
quadratic equation

1 1 1
eff eff
so that b D4 2
9 _ _
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The GB term, therefore, sets the equations of motion in the quadratic-curvature form

Q-] Y [v1v2] V3V [vaval | _
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For the discussion of the present paper, we shall consider solutions that satisfy the condition (ZI9]) in
the asymptotic region, i.e., tend asymptotically to a constant-curvature spacetime.
However, for different roots 62;})2 =+ Kijffp, there is only one branch of the theory of physical interest.

This is because the corresponding AdS radii can be expanded as

(G = a(D-3)(D—4)+0(?), (2.23)
(P = 2+0(), (2.24)

and, thus, 62;)2 reduces to the original AdS radius for vanishing GB coupling, whereas Ei}}p vanishes

if the GB term goes to zero.

EGB AdS gravity possesses a unique AdS vacuum when both effective AdS radii are equal, 62;?2 =

62;}2 = (%/2, case that corresponds to a GB coupling given by o = ¢2/4(D —3)(D —4). In five
dimensions, at that particular coupling value, the action features a group symmetry enhancement
from local Lorentz to AdSs, and it can be expressed as a Chern-Simons density for the latter group.

This gravity theory has particular dynamical features that will not be discussed here [20), 21].

3 Generic topological static black hole solution

A static black hole ansatz for the metric g,, in the coordinate set z# = (t,r,¢™) is given by

d 2
ds? = gu,,(x) dztdx” = —f2(r) dt® + fzzT) + Tzfymn(cp) de™dp™ . (3.1)




The boundary M is located at radial infinity (r — o00), and it is parameterized by 2! = (¢,¢™).
The metric v, with local coordinates ¢ describes a (D — 2)-dimensional Riemann space I'p_o with
constant curvature, that is,

ﬁ'rmmzmm (7) =k (’YM1n1’szn2 - ’lenzfyrmm) ’ (3’2)

where k = 0, +1 or —1, that corresponds to flat, spherical or hyperbolic transversal section, respec-
tively.

We will consider that the solution possesses an event horizon, defined as the largest root of the
equation f(r;) = 0. The non-vanishing components of the Riemann curvature RK; are

. 1
Rir = _5 (f2)// )
1 /
tn rn 2 n
= = - ) .
Rtm er o (f ) m (3 3)
R — i (k . f2) 5[mn}
ki 2 (k1] >
r
where prime denotes radial derivative. The Ricci tensor RY = Rﬁ:\\ has the components

R = Ri=— [P+ -2 ()]
Rl = g [r () + 0= (2R (3.4
and the Ricci scalar R = Rﬁg is
R= —T% 12 (1) +2(D =27 () + (D=2 (D-3) (/2 k)| . (3.5)

For a static solution with a topology equal to the one of the transversal section, we assume an
ansatz for the gauge field in the form

Ay =0(r) 5, (3.6)

with the associated field strength
Fu = E(r) (8,6, — 6,07, (3.7)

where the electric field is given by
E(r) = —¢/(r). (3.8)

We solve the electric potential in the static ansatz B.0)), (8.7), where F2 = —2FE?, using the only
non-vanishing component of the Maxwell-type equation ([2.16),

) <7~D—2E d—i > =0, (3.9)
dT dF F2—_9o[2
what leads to the generalized Gauss’ law
dl q
— =— . 3.10
dF? Foe_op2 rD—2 ( )
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Here, ¢ is an integration constant related to the electric charge. Notice that the first integral of
Eq.(3I0) does not depend explicitly on the metric, but only on the function E(r). The algebraic
equation in E can be solved as long as the explicit form of NED action is given, and implies that the
electric field should vanish for ¢ = 0.

We define the electric potential at infinity measured with respect to the event horizon r, as
@ = (00) — 4(r+).

On the other hand, integrating out Eq.(3.8]) one obtains the electric potential at the distance r
measured with respect to radial infinity,

T

o(r) = —/dvE(v)y (3.11)

[e.e]

such that the quantity of physical interest ® is the potential evaluated at the horizon,

B =—¢(ry). (3.12)

In order to solve the function f2(r) in the metric, we write the only independent components of
the Einstein and Lanczos tensors,

_ ’ 742
G = G::% r(f2)+(D—3)(f2—k)—(D—1)£—2],
— f2 , _ f2
H! = H;:a(D—2)(D—3)(D—4)kT3f [(fQ) —(D—5)k2Tf]. (3.13)

A necessary and sufficient condition on the NED Lagrangian density is the Weak Energy Condition
on the symmetric energy-momentum tensor

T ufu” <0, (3.14)

that ensures that an observer measures a non-negative energy density pygpp = —1),, uu” for a timelike
vector u#. For charged static black holes, the electromagnetic stress tensor satisfies T} = T, such
that the weak energy condition is equivalent to

aL
t e 2
Tt—TT’f—ﬁ—i—élEmzo, (3.15)
where the Lagrangian £ and its derivatives are evaluated at F? = —2E2.

The above inequality restricts the function £, but not its derivative. Indeed, in the asymptotic
region the generalized Gauss’ law implies E %E ~ ( and, assuming that electric field vanishes asymp-
totically, the weak energy condition leads to £ > 0 for large . On the other hand, the asymptotic
behavior of %g remains arbitrary. Indeed, for Maxwell electrodynamics and Born-Infeld-like La-
grangians, the expression %g is finite for r — oo. Also, for the Lagrangians of the type (F?2)?, the
derivative vanishes when p > 1, and it is divergent if p < 1. Additionally, one may demand the
finiteness of the total energy, that can be expressed as

/ dr P27 (r) < 00 (3.16)
0
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Note that the above requirement on the EM energy, applied to black hole solutions, also includes the
interior region protected by the horizon [22].
The equations of motion £ = £’ = 0 read

167G r?
5oy Il = (A + (D=3 (k)
72 k— f2 / k— f?
- (D—-1) =4+2a(D—-3)(D—-4) —— B —(D- . (31
(0-1) g +2 -3 0-1 L (- 0-5 5| e
One can show, using Eqgs.([3.9) and (317, that £ = 0 is identically satisfied.
The differential equation ([B.I7)) is integrable, because it can be cast in the form
2 /
D=3 (2 fP=kE\| _D-1 p,y 167G p 5,
[r (f —k:)<1—a(D—3)(D—4) = >] =@ " tp 5’ T, (3.18)
what leads to the general solution
2 2
9 fA—k r u 167G T (q,r)
—k)(l—-a(D-3)(D—-4) — | == — 3.19
(f )( a( )( ) 2 > 72 TD—3+(D_2)TD—3’ (3.19)

where p is an integration constant of dimension [mass x 16wG], and the function 7 (g, r) for an arbitrary
NED Lagrangian is given by

T

T(q,r) = /dv P21 (v)

= /dv <UD_2£(U) —4qE(v)>
- 1

= — (rD_lﬁ— grE+ (D —2) 4q¢>‘

— (3.20)

T
o0
The Gauss law ([3.10) has been used to eliminate d£/dF? from the integral, so that 7 depends on the
integration constant ¢q. For a general procedure for Lovelock gravity coupled to NED see, e.g., [23].

Electromagnetism does not deform the asymptotic region since the relation 7'(q, 00) = 0 is identi-
cally satisfied according to Eq.(3.20).

Then, the metric function in the static solution of EGB gravity coupled to NED is obtained solving
the quadratic equation (3.I9) in f2. The existence of a real root is ensured by the condition

(D —2)rP-1 1 1 H
Tar) s —ga <4a D-3)(D-4 & 7~D——1> : (3:21)

that is proved to be satisfied for sufficiently large r, as the r.h.s. is always positive (see the inequality
in (Eq2.27])). Thus, the metric possesses two branches,

r2

fe0) =k 4 s )

11\/1—40413—3) (D - 4) (%2 — e+ ggﬂf;%g)] :

(3.22)



The ground state . = 0, ¢ = 0 corresponds to two AdS vacua,

742

2 oac =k + 55 - (3.23)
Cegy

However, it has been shown in [24] that the vacuum f_%(r)mc is unstable and the graviton has negative
mass, while the solution f2(7),qc is stable and is free of ghosts. For a general solution, from (3.22)) in
the weak limit of GB coupling, we have

1 1 167G T (q,r
filr) = k+r2<a(D_3)(D_4)—£—2>+r5‘_3—(D_2)%_2,,+0(a), (3.24)

r? 1 167G T (q,r)

fz(r) = k+£_2_,r.D—3 (D—Z)TD—3

+0(a), (3.25)

because 7 does not depend on the constant «. The opposite sign in the mass parameter u in f_% (r)
indicates instabilities of the graviton so that it is not of physical interest for our discussion below.

On the other hand, the function f2(r) in the limit o — 0 describes static black holes of Einstein-
Hilbert AdS gravity coupled to NED. Because of this reason, henceforth, we consider only the negative
branch of the metric, f(r) = f_(r),

2 1 i 167G T (q,r) >

A e TRy [1_\/1_“(1)_3)@_4) (7= g
(3.26

When NED Lagrangian corresponds to the one of Maxwell electromagnetism Lpsqzwell (F 2) =

—F?2, the function T (q,7) in Eq.([326) becomes Tisazwell = %, what reproduces the charged
black hole solution first found in [25]. Expanding f? for large r, one can notice that the electromagnetic
part possesses the same fall-off as in Reissner-Nordstrom case.

In general, the contribution of NED to f? is smaller than the one of the mass term, and can
therefore be neglected for large r. Indeed, using Eq.(22]]), one can prove that, in the asymptotic

region, the metric function and its radial derivative behave as

Esz 1- 422—; (D —3)(D —4)rP=3 r2D—6
2r (D—=3)p 1 < 1 >
2\/
T By o : 3.28
7 Esz ! 1= 222£ (D —3) (D —4)rP-2 + r2D—5 ( )
off

This fact will make evident that the NED term 7 (q,r) in Eq.([3.26) does not produce additional
contributions to the energy of the system, as we shall discuss in Section

In absence of electromagnetic fields, we have that 7(0,7) = 0, what means that the solution (3.26])
reduces to the topological version of Boulware-Deser black holes in AdS spaces [24] 26, 27].

Different NED models have been proposed which possess particle-like solutions whose both elec-
tromagnetic and gravitational fields are regular everywhere. However, this does not imply that there
are no curvature singularities.



The interior of the black hole is described by the metric function obtained from Eq.(3.I8) as

r2

5 (D=3 (D=4 |'F

) = k+

c 7G [ dvvP=2Tr (v
j:\/1—4a(D—3)(D—4)<€i2—TD_1—|—16 Cilf)oilz)ﬂ,_lﬂ()) . (3.29)

where c is the integration constant. In consequence, when one imposes the finiteness condition on the
energy-momentum tensor at the origin,

T

: 1 D—-2 pr
TI’I—%W /dvv 17 (v) < 00, (3.30)
0

the metric function takes the value f2(0) = k & \/ For ¢ # 0, this is finite only in

a(D—3)(5—4)7‘D*5 :
five dimensions, otherwise ¢ must vanish. Further analysis is needed to relate ¢ to the asymptotic
mass parameter p, what would imply new conditions in order to remove the conical singularity at
the origin. One may also demand L to be single-valued, continuous and differentiable. For a more
detailed discussion on these issues for particular cases see, e.g., Refs.[19, 22].

So far, we have seen that for any nonlinear electrodynamics theory coupled to EGB AdS gravity,
both the metric (3:26]) and the electric potential (B.I1]) can be determined from the explicit form of
the Lagrangian £(F?). We illustrate this with a few examples in the next section.

4 Charged black holes in particular NED theories

4.1 Born-Infeld electrodynamics

Born-Infeld electrodynamics [2] is described by the Lagrangian density

F2
Lpr (F?) = 4b® (1— 1+@> , (4.1)

where the coupling parameter b (with dimension of mass) is related to the string tension o/ as b =
1/2wa’. This Lagrangian reduces to the Maxwell case in the weak-coupling limit b — oo. Generally
speaking, when a density £(F?) recovers the Maxwell theory in weak-coupling limit, i.e., £(F?) =
-F24+0 (1 / bz), it is said to be Born-Infeld-type.

The BI energy-momentum tensor has the form

F? AFHIF,
TH = 4b%6 (1 — /1 + — —1—7’»‘, (4.2)
2b2 F2
1+ 52
and it generates the electric field
E(r) = d (4.3)



The corresponding electric potential is given by the formula (3:I1]). Performing a variable change in
the integral, u = (r /1))2D ~4 it can be expressed in terms of the hypergeometric function F(q,r) =

2
o F (%, 2%__34; gg:z; —b2rgD,4> (see Appendix [B]), and the solution for the potential is

. q
(]5(7‘) - (D _ 3) TD_?’ f(Qa T) . (44)
Then, the integration constant ® = —¢(r;.) reads
q
o——-——L _ _Fgr). 45
(D—3)7‘_|[_)_3 (q +) ( )

In order to find the metric for the black hole with Born-Infeld electric charge, we solve explicitly
the integral (3.20)) as

4p2pD-1 q? 4(D —2)¢?
TBI(qar):ﬁ <1_ 1+b27‘2D_4> + (D—l() (D —)3)7’D_3 ‘F(qar)a (46)

and replacing in Eq.(3:26]), we obtain

742
i) = M D=3 (D=1 {1_

647G b? 2 647G ¢ F(q.7) 1/2
+ (D—l)(D—Q) <1_ 1+b2T2D_4>+(D—1)(D—3)T2D_4>] . (47)

This class of black holes has been discussed in Ref.[25]. The generalization to non-Abelian gauge fields
has been studied in Ref.[28]. In the limit of vanishing GB coupling, the metric reduces to the one of
topological Einstein-BI black holes in AdS spaces [29], 30, [31].

1 7
2 pD-1

1—4a(D—3)(D—4)<

4.2 Conformally invariant electrodynamics

Born-Infeld Lagrangian in higher dimensions is a physically sensible extension of four-dimensional
Maxwell electrodynamics. However, if one is interested in a generalization of the conformal invariance
property of 4D Maxwell theory, there exist NED actions given as power-law functions of the form

Lopp (F?) = —2x F?, (4.8)

where x is a positive coupling constant [32]. Then the conformal invariance g, — Q2g,, 4, — A,
is realized for the power p = D/4.
The energy-momentum tensor for A, reads

FHF,
TH = -2y (55 —dp T”) F% (4.9)

and it produces the electric field
(4.10)



B

where [ = % and ¢ = <(_21p);;1q)m. When one demands conformal invariance (p = D/4), the

electric field takes the 4D Maxwell’s form, E = §/r2, in any dimension.
Then, one can calculate explicitly the function ([B.20) in the metric,

2(D—-2)(=2)"¢*x 1
EICET

that, plugged in Eq.([3:26]), produces a line element which matches the form of the black holes found
in Ref.[9] for EGB AdS gravity.

Tcep(g,r) = — (4.11)

4.3 Logarithmic electrodynamics

NED Lagrangians that contain logarithmic terms in the electromagnetic field strength appear in the
description of vacuum polarization effects. These terms were obtained as exact 1-loop corrections for
electrons in a uniform electromagnetic field background by Euler and Heisenberg [7], and therefore
are a typical feature of quantum electrodynamics effective actions.

Furthermore, logarithmic ED Lagrangians come as a realization of the old idea of removing singu-
larities in the gravitational field, in a similar way as the BI electrodynamics removes divergences in the
electric field. They have also been used to describe an equation of state of radiation in an alternative
mechanism for inflation [33].

A simple example of a Bl-like Lagrangian with a logarithmic term, that can be added as a correction
to the original BI one, was discussed in Ref.[§] in asymptotically flat Einstein gravity in D = 4. This
model does not cancel the curvature singularity for small r, but makes the Kretschmann invariant
behave as 1/r*, which is a weaker singularity than in, e.g., Schwarzschild or Reissner-Nordstréom black
holes.

In an arbitrary dimension, the logarithmic ED lagrangian has the form

F2
2
ﬁLOg(F2) = —8b° In <1 + @) . (412)

It can be shown from Eq.(3I0) that the electric field has two branches, but only one features the

Maxwell limit (b — o0),
2b2 q2
E(r) = vl PPy [r2D—4 4 R (4.13)

Considering this, the electric potential reads

2b%rD=1 2 2q (D —2) F(q,r
P(r) = T (1 —/1+ bQTZD_4) - (Dq_( 0 (D)_ 3()qTD)_3 ; (4.14)

_ 1 D-3.3D-T7. Q2
where F(q,7) = 2} <§’ 2D—4’2D—4 _b2r2D*4>'

The electromagnetic contribution to the metric is then given by

8b27"D_1 2b2'r'D_2 B q2 Do
TLOQ(QJ‘) = - D_1 ln[ 7 (M—r
8b2 (2D - 3) T D—2 \/7q2 8q2 (D _ 2)2 ]_—(q 'I")
Tt 2 —\[rP S |+ ") (415
(D —1)? (r ' v* ) (D—1)*(D—3) rP-3 (4.15)
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Using the fact that F(0,7) = 1 = F(q,00), one can show explicitly that electromagnetism vanishes
asymptotically, that is, Tr0g(g, 00) = 0. Also, in the zero charge limit, 77,04(0, ) vanishes, as expected.

It is straightforward to write down the metric function f?(r) by plugging in the above expression
into EGB metric in Eq.([3:26). This general solution reduces to the one of Ref.[§] in 4D Einstein
gravity without cosmological constant.

A more realistic version of logarithmic NED action is given by the Hoffmann-Infeld model [34],
that do remove singularities in both gravitational and electric fields for static solutions. This theory
is described by the Lagrangian

Lrr = 4b? (1 — (F?) — log n(F2)) , (4.16)

-1
where n(F?) = —% <1 —4/1+ %) . It can be easily checked from the expansion n(F?) = 1 +

% + O(1/b*) that Lg(F?) is also a Bl-like Lagrangian in the weak-coupling limit. In D = 5, a

solution to this model was discussed in Ref.[22].

5 Variational principle and boundary terms

Any gravity theory is not defined only by its equations of motion in the bulk, but also by the set of
boundary conditions that guarantees that the action is truly stationary. In general, this implies that
the original bulk action must be supplemented by a boundary term (3,

I=1Iy+ / dP~lz 3, (5.1)
oM

such that the problem of a well-posed action principle reduces to the on-shell cancelation of the total
surface term of the theory, that is,

oI = / dP~1z (09 +8) =0. (5.2)
oM

In our case, the term Oy is given as the sum of Eqgs.(2.10) and (2.I3]) and, in principle, § can be split
in two parts, namely, 8 = Bgrav + BNED-

A gravitational action whose variation vanishes for a Dirichlet condition on the metric requires the
addition of (generalized) Gibbons-Hawking terms. This is particularly easy to see in Gauss-normal
coordinates

ds* = g, dx*dz” = N? (r) dr* + h;(r,x) do'da? . (5.3)

We will consider a manifold with a single boundary 0M at r = oo, parameterized by the coordinates
z', and such that h;; is the induced metric on it. The extrinsic properties of the boundary are given
in terms of the outward-pointing normal n, = (n,,n;) = (I, 6) In particular, we define the extrinsic
curvature as the Lie derivative of the induced metric along this normal,

1
Kij = —= £nh2] — _W héj . (54)
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As it is written in Appendix [C] different components of the Christoffel symbol can be expressed in
terms of the extrinsic curvature. In doing so, the surface term Oy = ©4yqy + O ngp has the form

= ! /—p sldriz] 1o\ ok i
S = 87G (D — 2) (D — 3) o i 2(h Sh), KF+0K}| x

6;15;2 +2a(D-2)(D-3) < R;llﬁ KﬁK;;)]

4V R NF”&A, , (5.5)

where the determinant of the metric satisfies \/—g = Nv/—h and R?l(h) is the intrinsic curvature of
the boundary, which is related to the spacetime Riemann tensor by R% = R?l — KZCK lj + K l’K ,Jg (see
Appendix [C]).

In order to cancel © ygp part of the surface term, it is a sufficient condition to take dA; = 0 at
OM. This means that 3 does not depend on the electromagnetic field, i.e., 8 = Bgrqn. On the other
hand, there is a systematic construction of generalized Gibbons-Hawking terms for Gauss-Bonnet and,
in general, any Lovelock theory [35] [36], which for the present case gives

Vv —h [717273] 1-4 i2 < @21 1 7 i
p= 87G (D —2) (D —3) Ofivinis] i1 953075 20 (D—2)(D~=3) R]22]33 T3 KpKg )|, (5.6)
or, in the form which is commonly found in the literature,
v—h ij 1 2 i ok o ij
b= |[K+2 (K K]Kij—gKQ —gKkKij—2g3Kij ,

where G = RY — %R h¥ is the Einstein tensor associated to the boundary metric.
In doing so, the corresponding Dirichlet variation of the action is

voh gl 15asd
167G (D — 3) (D — 4) liii2is]

+2a(D —3) (D —4) ( R23 _ %Kj;K;g))] +4V—h— NF"§A;. (5.7)

©¢ + 08

-1 7 12 o1
0o 50 +

J233

Notice that for a radial foliation of the spacetime, the on-shell variation of the action can be cast
in the form

oI = /dD Lev/—h < Jéh”—i—wéA) (5.8)
oM

where 7% and 7 are the canonical momenta conjugate to hi; and A;, respectively. If one uses 7 as
a quasilocal-stress tensor in AdS gravity, the conserved quantities derived from it are divergent in the
asymptotic region. In other words, a well-posed variational principle is not necessarily linked to the
problem of finiteness of the charges and action.

In the context of AdS/CFT correspondence, the standard way to deal with the regularization
problem in a background-independent way is the addition of local counterterms at the boundary,
which are constructed using holographic normalization. However, the inclusion of higher-curvature
terms in the action turns this procedure considerably more complicated. A practical method to

14



circumvent this obstacle in EGB-AdS gravity is to assume the same form of the counterterms as in
the EH case, but with arbitrary coefficients [37, [38], B9]. The coefficients are then fixed requiring the
convergence of the action for particular solutions of the theory. It is clear from this construction that
the series cannot be obtained for an arbitrary dimension.

The fact that in AdS gravity the leading-order of the asymptotic expansion of the extrinsic curva-
ture is proportional to the one of the boundary metric opens the possibility to consider counterterms
which depends on the extrinsic curvature, as well. In this alternative scheme (known as Kounterterm
regularization), the boundary terms are related to either topological invariants or Chern-Simons forms
in the corresponding dimensions. In this way, it is possible to skip the technicalities of holographic
procedures and to write down a general expression for them in any dimension,

I=1Ip+cp_1 / d°'x Bp_1, (5.9)
oM

where ¢p_1 is a given constant. For EH AdS gravity, the Kounterterm series was shown in Refs. [40), [41]
as a given polynomial of the extrinsic and intrinsic curvatures, which defines a well-posed action
principle. In general, the action (5.9)) varies as

§I = / dP 1z e = / AP’z (©grav + ONED +cp-10Bp_1) , (5.10)
oM oM

such that the boundary term in (5.9]) makes the action to have an extremum on-shell and solves the
regularization problem, as well.

For a given dimension, the series Bp_1 possesses the remarkable property of preserving its form
for EGB-AdS gravity [42] and, in general, any theory of the Lovelock type [43]. In what follows, we
use the explicit form of the boundary terms to construct the general variation of the action in tensorial
notation.

5.1 Even dimensions (D = 2n)

In even dimensions D = 2n > 4, the boundary term Bsg,_; in (5.9]) is given by the n-th Chern form
[42]

7,1 “19n— 1] J273

Boni = 2V—h / ol K“< Rizis _ t2K;§K;§> x

2 Jan—2J2n—1 J2n—2"J2n—1

. % <1 R’lZn 29201 _t2KZ2n 2K12n 1> , (511)

that is the scalar density whose derivative is locally equivalent to the Euler invariant (globally they
differ by the Euler characteristic of the manifold, x(M)). The integration in the continuous parameter
t generates the coefficients when the boundary term is expanded as a polynomial. The constant co,_1
in front of the boundary term Bs,_; which produces a well-defined variational principle is given in
terms of the effective AdS radius as

¢ a
Com_1 = — 16;6; 7(1 (;L”fi ol <1 _ 5@? (2n —2) (2n — 3)) . (5.12)
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It can been proven that the same choice of cy,_1 ensures the convergence of the Euclidean action.
The total surface term © can be read off from the on-shell variation of the action (5.I0]), that in this
case is

1

8Tam
2 167G (2n — 2)127-1

/ a2/ =Rl el (7 on) ) K 4 20K | x
oM

[7273] 3273 ) " ljags) [F2n—2j2n—1]

X [ (5[?2?3] +2a(2n — 2) (2n — 3) R2223> gliais] . glizn—zizn-]

9 \n—1 2 ion—219n—
~ (~£2) (1 fsz (20— 2) (20 - >)R;zzz---Rjznzj;1]
€,

2n—1 [ i
oM

The reader can easily check that imposing the asymptotically locally AdS condition for the spacetime,
ie.,

R+ e; o =0 at OM (5.14)
identically cancels the leading-order divergences in the gravitational part of the above variation. As
a remarkable feature of the addition of Kounterterms, all other divergent terms in (5.I3]) are exactly
cancelled out. In this way, the finite contribution is coupled to the conformal metric that is kept fixed
at the boundary. The NED part of the surface term vanishes for a Dirichlet boundary condition for
the transversal components of A,

0A; =0, at OM.. (5.15)

5.2 0Odd dimensions (D =2n+ 1)

The extrinsic regularization developed for odd-dimensional Einstein-Hilbert AdS gravity [40] can be
mimicked for EGB AdS theory, just replacing the AdS radius ¢ by the effective one £ in the boundary
terms. Thus, the Kounterterms series is given in terms of the parametric integrations

By = 2nv-— /ait/alséb1 o] g sia ( R ¢ K’3K’4 —5“6’4>

“don] TUJ1 g2 1374 £2 J3 774
- lRiQ'nfliZn B tZKlzn 1Kzgn + 522n 1 5i2n (5 16)
9 "Vi2n-1Jj2n Jon—1 52 Jon—1"Jon | ° :

The corresponding constant for this case incorporates the information of the theory through the GB
coupling in the form

£2 n—1 . .
S S ) (1_2a(2n 1) (2n ) /dt (1)

-1

167G n (2n — 1)! €2

6

1 2(—2)"" <1 2020 1) (2n — 2)) (5.17)
; : .

167G n (2n —1)!8(n, 1 O
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1\ 22n 1(n—1)!2 . .
where 3(n, 5) = —@n-mr 8 the Beta function for those arguments.

The total action varies on-shell as

/ e N/—h 5ﬁ J2n] [(h—léh)j; Kk +25K§;]5§3 %

~ion]

0on+1 on— 1167TG 2n — 1)1

[i314] izi [isi6] [t2n—112n]
X [ (6[J Ja] + 20 (277, —1)(2n-2) RJ?%Ji) 5[]5]6] ’ 6[)’27%1)'%}

1
2
igi [i3i4] i2n—1i2n t [t2n—112n]
+ 167G (2n — 1)lncz, / dt <Ry§fi e, 6[)3]4]) B (Rjinif;n T m])
0 €

+ncoy, / d2n$ [/ /dtt(s[jl ]2n][(h—15h)7];1 (Kk 5Z2 _5k KZZ) +25;25K;§:| %

J17J2

t2 1 t2
1314 _ 2 i3 14 13 $l4 . 12n—112n _ 2 12n—1 19n 12n—1 19n
( RJSJ4 t K K + @2 5)35J4 2 Rjzn 1J2n ¢ K.]2n 1K + @2 5J2n 15J2n

+4 / d*"z/—h WNF”&A (5.18)

Then, the surface term from the electromagnetic part vanishes when fixing the gauge potential at the
boundary, Eq.(5.13]).

Checking explicitly the cancellation of the leading-order divergences in the above action proves to
be slightly more complicated than in the even-dimensional case, but one may reason as follows: the
second and third lines cancel out when taking the condition on the asymptotic curvature (5.14]) for the
particular value of ¢, given by Eq.([5.17). On the other hand, for any asymptotically AdS spacetime,
the extrinsic curvature sz has a regular expansion in the asymptotic region, K ; = Zi‘f 5; + O (1)r).
This means that variations of the extrinsic curvature vanishes at the leading-order in the vicinity of
OM. These conditions guarantee a well-posed action principle for odd-dimensional EGB AdS gravity,
issue that was discussed previously in Ref.[42].

6 Conserved quantities

6.1 Electric charge

We will first derive the electric charge @) as a conserved quantity associated to U(1) gauge symmetry
A, = O\, drguw = 0, as its computation does not depend on the spacetime dimension. The gravi-
tational part of the surface term in Eq.(5.10]) is gauge-invariant, such that it implies the conservation
of the Noether current

Sl = /dDa;(‘)uJ“()\) = 4/de O <«/_—gF“”%8 A) (6.1)
M M
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where the current J* transforms as a vector density of weight +1. In the radial foliation (5.3]), the
electric charge is then the normal component of the above current

QN = /dD_lx%nuJ“()\), (6.2)

oM

which, using the fact that n, is covariantly constant, can be rewritten as

ac .. ; Al
V —h num I (9,,)\ = az ()\ V —h TLMFM ﬁ) - )\nu V —h&H. (63)
As a consequence, since E# = 0, we are able to write down the integrand in Eq.(6.2]) as a total
derivative. In order to use the Stokes’ theorem we take a timelike ADM foliation for the line element
on OM with the coordinates z* = (¢,4™), as

hijda'da? = —N2()dt? + o (dy™ + N™dt)(dy™ + N"dt),  V—h= N0, (6.4)

that is generated by the timelike normal vector w; = (ug, up,) = (—N , 6) The metric o,,, describes
the geometry of the boundary of spatial section at constant time ...
Setting A = 1, the U(1) charge reads

ac

D—2 ri
Yoo

For the static black hole metric BI) (where N = 1/f2 and N = f2) and the electromagnetic field
strength (B.7)), one obtains a general formula for NED electric charge

@ = —4Vol(T'p—») lim_ <rD_2E j—ﬁi) : (6.6)

Finally, using the generalized Gauss law (B.10), it is possible to define a finite electric charge of the
black hole

Q =4Vol(I'p-2) ¢, (6.7)
for an arbitrary NED Lagrangian. However, this definition does not guarantee only by itself that the
electric field is well-behaved in the asymptotic region.

6.2 Black hole mass

In order to calculate the conserved quantities associated to global isometries of the spacetime, we
first consider the action of diffeomorphisms dz* = £#(x) on the fields g,, and A, in terms of the Lie
derivative,

5{9#1/ = ~£§guu = - (Vugu + vug,u) s

0¢Ay = LA, =-0,(8"A))+EF,, (6.8)
what implies the transformation rule of the Christoffel symbol
£, = 5 (Rus+ Rs) ¢h — 5 (VaVig® + V, V%), (6.9)
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This leads to the transformation of the volume element, Jacobian and Lagrangian density Ly
defined by Eq.(21) as

b (dPz) = dPzo.¢r,

bev/—g = —vV—g Ve, (6.10)
Ly L Lo
0Ly = — Leguy + —== £T8 + L LA +€1D,L.
3 agwj E9u 8F;ﬁw &t p 8AM §4u H

Then the total action (0.9]) transforms under diffeomorphisms as

Sl = / Pz [£¢ (V=g Lo) + B (V=g Lo)] +eps / AP~ [£eBp_1 +0; (€Bp_1)]
M

oM

= / d’zn, <% OM(&) + V—=h&"Lo+ cp_1n" O; (giBD_1)> +
oM
1

—/dD.Z' vV —g <m gﬂyfgguy+4gu£5f1u> R (611)
M

where ©(¢) = & n,©#(¢) is the surface term in Eq.(5.10) evaluated in the corresponding Lie derivative
of the fields.

The Noether current derived from the diffeormorphic invariance, 6¢f = [ M dPz 0 JH (&) = 0 is,
therefore,

JH(E) = ©"(&) + V=g &"Lo+ cp1Nn* 8; (£'Bp-1) - (6.12)

The conservation law d,J# = 0 implies the existence of a conserved quantity, which corresponds to
the normal component of the current J*,

Qe = /dD_lx%nuJ“(ﬁ). (6.13)

oM

In general, it is not guaranteed that the Noether charge can be written as surface integral in (D — 2)
dimensions. However, for the action I, the radial component J" = %nuﬂ‘ in the foliation (B3 is
globally a total derivative on OM, i.e.,

o (VR (i +4) 619

The splitting in the above integrand is justified as follows: qg produces the mass and other conserved
quantities for black hole solutions. As we will show below, this part of the charge identically vanishes
for the vacuum states of the theory. The term qgo)i gives rise to a vacuum energy, which is present
only in odd dimensions.

Therefore, the conserved charges Q[€] of the theory for a given set of asymptotic Killing vectors
{¢} are expressed as integrals on Y, (whose metric has been defined in Eq.(6.4])),

Ql¢] = /dD_zy\/Euj 3 (q{ +qf0),~) : (6.15)

Yoo
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6.2.1 Even dimensions

In even dimensions, the expression for the surface term ©(¢) is obtained from (5.I3]) by replacing the
variations by the corresponding Lie derivative of the fields,

1 v —=h (5[]‘1'”]‘2"71}

J— H = 3 )
w 8" (®) 167G (2n — 2)12n=1 "liizn]

(W' eh)y) K, + 2K |

[i213] 921 [tai5] [t2an—2i2n—1]
x [ (5[j2j3] +2a(2n - 2) (2n - 3) Rjij?é) 5[j4j5] o 6[j2n—2j2n711}

2 -1 2 ii i2n—202n—
— (—tepy) (1 g (@2n—2)(2n - 3)) Riis Rjinijzzni]

eff
dL rip, A
+4v—thF LeA;. (6.16)
As a result of the Noether procedure, the integrand in the conserved charge (615 is
j o [Gg2-don—1] i1
% = 167G (2n — 2)12n=2 “liizn—1] Kt x

x [ (622 + 20 (2 — 2) (20— 3) Rizis ) ofiee) - oz -2izn

9233 ) “[jags] [F2n—2j2n—1]
-1 20 o 12n—2127n —
- ()" (1 2, (2n—2) (2n - 3)> R Rﬁn?f;nﬁ] : (6.17)
€

plus a NED contribution due to the last line in Eq.(6.16), what vanishes for black hole solutions, as
shown below. At the same time, qgo)l. = 0 for even dimensions.

The second and third lines in the expression (6.17]) can be seen as a polynomial of rank (n—1) in the

. 1 liaia] . . o 1 ¢li2is]
Riemann tensor and the Kronecker delta 7, 5[].2].3}, which can be factorized by Rjz ]33 + @ 5[j2j3]>.

As a consequence of the fact that for any maximally symmetric spacetime this factor vanishes, any
conserved quantity defined on it will be identically zero in even dimensions.

The energy of black hole solution to EGB AdS gravity coupled to NED (B.1]) is computed evaluating
the formula (G.I5) for the Killing vector £ = (1,0) and the unit normal u; = (—f,0) which defines a
constant-time slice,

— _ 1 2n—2 2n—2 ¢[mi--man_2] -t
M = Qla]= 167G (2n — 2)12n—2 / d VI 5["1"'"2n—2] Ky %

Ton—2

x [ (ol + 20 (20— 2) (2n — 3) Ry, ) olond o gfranen- )

[mimao mim2 | ¥ [mzmy) [man_—3man_2)]
20" (1= 2% on—2) (2n—3) | Rrm2 ... grensnan 6.18
- (_ eff) - ész ( n = )( n = ) mima """ tlmaoy _3mon_2 | - ( : )
€
From the explicit form of the extrinsic curvature
. 1 . —f 0
Ki=—— piky . — ( > , (6.19)
i oN T M 0o —Lgm
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and the boundary components of the Riemann tensor in Eq.([33]), one obtains a general formula for
the mass in even dimensions,

VolTans) . o s, o -
" % A S [1_204 (2n —2) (2n —3) fr2 _
n—1
_ <1 T e 3)) (%) ] | (6.20)

In order to relate the above expression to the integration constant u, one must consider the asymptotic
expansion of the metric function ([B.27)) in the following way,

2—k 1 m 1 < 1 )
I = - +0 | —— ), 6.21
2 G 1—2*(2n—3)(2n—4) ! rin—4 (6.21)

eff
n—1
f2—/<;> 1 (n—1)u 1 ( 1 >
= - +0 =), 6.22
( r? 65}}_2 1— —522(1 (2n —3) (2n —4) 55};747‘2"_1 rin—4 (622)
eff

and its derivative (3.28). When expanded, Eq.(6.20) might contain divergences of order r*"~1. Tt
is then a remarkable fact that the divergent terms cancel out for the particular value of cg,_1 in
Eq.(512), what leaves a finite result for the energy

2n — 2) VOl(an_Q) 1%

(
M = 167G ’

(6.23)

in agreement with the expression found in, e.g., Ref.[44].

Now we turn our attention to the NED contribution to the diffeomorphic transformation of the
action, that is, the last line in Eq.(6.16]). This part of the surface term produces, by virtue of the
Noether theorem, an additional piece with respect to the charge formula given by Eq.(6.I7), which is
written in any dimension as

Qnep €] = —4 / dD_2y\/5ujj—}£2NF’"j (£'4) . (6.24)

Yoo

However, when we evaluate Eq.([6.24) for the Killing vector £ = 9; and the static black hole metric,
we notice that

QNED [at] = —4q VOI(FD_Q) (25(00) = O, (625)

as anticipated in the discussion following the deduction of the charge formula.

21



6.2.2 0Odd dimensions

The form of the surface term O(§) in odd dimensions (D = 2n + 1) follows from the on-shell variation
of the action, Eq.(5.I8]). Its expression is slightly more complicated than in the even-dimensional case

1 v—h [j1-j2n]
— H — .?1 .?Zn
N nu©(¢) 167G (2n — 1)12n—1 Ofs-wizn]

|(h'£eh)y) K, +2£¢K0 | 072

[ (65228 + 20 (20— 1) (2n — 2) Rigi: ) ol . glien 1)

Jaga ) " ljsgel [F2n—1J2n]
+ 167G (2n — 1)!Inc dt | Rizi +—2 glisial [ gizn-ien —I-—t2 glezn—1izn]
HtE2n 7374 g2 [7374] j2n—1jon Esz [F2n—172n]
€,

+nen V-~ / a7 [(h—lah)j; (Fcf otz — o K2 -+ 20720K02 ]

J17)2

7374 €2 J37J4 92 " TJ2n—1J2n €2 J2n—1"J2n

2 2
( RZSZ4 t2K23K14 + - 523 524) . (1 R'{anli?n tQK'lZn lKlzn + - 5Z2n 1512n)

+4v/~h NF”,QAZ , (6.26)

where, for shortness’ sake, we have chosen not to use the explicit form of ¢z, given by Eq.(5.IT).
In odd dimensions, the Noether charge appears as the sum of two parts, since qgo)l. in Eq.(6I5) is
no longer vanishing. The first part takes the form
1

J = [.].72 .727L] i1 §19
%@ = 167G (2n — 1)12n—2 5[11 “i2n] K; 5

[7374] J3ja ) ~[jsJel [F2n—1J2n]

x [ (5[?31'.4} +2a(2n—1) (2n — 2) R’BM) glistel .. glizn—tizn]
1
167G (2 1)! dt | pisia 2 slisial ) [ pizn—tizn t? slian—12n] (6.27)
+ 1oml (2n = 1)inea, dsia T gz— [jsga] Jon—1jon T 2, Ozl | |
0

whereas the second one is given by

. t2
q i = ncyy, /dtt5[j.z2 ]2n] Kk:522 +Kk 512) < RZ3Z4 _ 2K13K24 + _513514)

“i2n ] T g2 J2%i J3ja g2, 934
2
. X 1 RZZn 1%92n _ tQKZZn lKlzn + t 5Z2n 15Z2n (6 28)
2 J2n—1J2n J2n—1 €2 J2n—1"J2n '

We recall the fact that the constant c, was chosen to cancel at least the leading-order divergence
in the variation of the action (5.I8). Thus, it can be readily checked that ¢} is identically zero for global
AdS spacetime which satisfies (2.19) in the bulk. This means that the second and third lines in the
expression (6.17)) are again a polynomial of rank (n—1) in the Riemann tensor and the Kronecker delta
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1 slizis] isis 1 gli2is] . : : : ;
7, 5[3'2]‘3]7 where R0 = 7, 5[;‘23'3} is a root of it. Therefore, any maximally symmetric spacetime

will have vanishing mass and angular momentum due to the fact that qzj = 0, such that all the
contributions to the vacuum energy will come necessarily from Eq.([6.28]), as shown below. On the
other hand, the presence of ¢y, in the formula of vacuum energy reflects the fact that its existence is
entirely due to the addition of the Kounterterm series (5.16I).

Proceeding as in the even-dimensional case, we compute the black hole mass evaluating the first

term in the formula (6.15)),

/ dP 2y ou & g
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M
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Using the Riemann tensor in Eq.(33]) and the extrinsic curvature for the generic black hole metric
given by Eq.(6.19), the above formula reduces to

Vol(Pon-1) . 2n—1( £2y/ 2=k
M e Tli)ngo r () 1= 2a(2n—1) (2n — 2) ot
1 1 9 9\ "1
+ 167G (2n — 1)! nCQn/dt <_72f + g—) . (6.29)
r Cers

0

It is straightforward to express the mass M in terms of the constant p in the metric, by means of
the expansion of the metric function in Eq.([6.21]), its derivative ([3.28]) and the last line in the above
relation,

1 n—1
kE—f2 1 201
/dt ( 21 ) T 167G (2n — D! nca, <1 a Ot (2n —1) (2n - 2)> X

2
0 eff
Zr (2n—1) 1 )
ff n 1
A\ 2 1 _ 4a(n-2)@2n=3) y2n +O<T4n—_3>- (6.30)

2
s

Unless the constant cg, is fixed as in Eq.(5I7), the formula (629) contains divergences of order r2".
Therefore, the boundary term co,, B, plays a double role: it cancels out the divergences in the Noether
charge, but also contributes with a finite piece to give the correct result for the mass

(2’1’L — 1) VOl(an_l) 1%

M = 167G ’

(6.31)
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what matches the one in Ref.[44]. In turn, the vacuum energy for AAdS black holes is reflected in the
formula (6.28]), that in the black hole ansatz (3.1]) adopts the form

Eyoe = / dD_zy \/Eut ft ql(eo)t

Yoo
= 2ncy, lim / a2t et p el (KEop — K ) x (6.32)
F277,71
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More explicitly, plugging in the components of the boundary curvature,

k nin
Rnlnz - 5[ 1 2] RI{ZL — 0, (634)

mims2 7,2 [mlmz]’
7*2 n—1
k + 62——f2 t2 . (6.35)

As the metric function and its derivative can be expanded as in Eqgs.([3.27) and (3.28]), we notice that
all the terms that depend on the parameter p vanish in the limit r — oco. As expected, the vacuum
energy depends only on the topological parameter k, the effective AdS radius and GB coupling, that
is,

the zero-point energy of the system is

| ()
Eyae = 2n (2n — 1)!eg, Vol (g —1) le /dtt <f2 — T)

0

Evac = (277, — 1)' anvol(rgn_l) k"

Py YolTan-1) o 5 (20 — DI ( 20

= R e (2n)! T2,

(2n—1)(2n — 2)) . (6.36)
eff

The above formula matches the vacuum energy in EGB gravity obtained in Ref.[42] by means of
Kounterterm regularization. This implies that for an arbitrary NED Lagrangian the fall-off of the
electromagnetic field is always such that it does not contribute to the total energy of the gravitational
configuration.

7 Conclusions

We have used counterterms for Einstein-Gauss-Bonnet gravity coupled to nonlinear electrodynamics in
the form of polynomials in the extrinsic and intrinsic curvatures of the boundary in order to regularize
the conserved charges in the AdS sector of the theory. It has been shown that this regularization
scheme (also known as Kounterterm method) provides finite values for the mass for charged static
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black holes with spherical, locally flat and hyperbolic transversal section in all dimensions, and the
correct vacuum energy in odd dimensions.

We have also analyzed the fall-off conditions that ensure the finiteness of the electric charge for
an arbitrary NED Lagrangian £(F?), which do not produce additional contributions to the mass of
black hole in Einstein-Gauss-Bonnet AdS gravity.

It is well-known that a vacuum energy for global AdS spacetime in odd dimensions appears only
in background-independent methods to compute conserved quantities. This is particularly important
from the semiclassical point of view in order to interpret the Noether charges as thermodynamic
variables, and to consistently incorporate the vacuum energy in the definition of internal energy of the
system [45], in a similar fashion as in Einstein-BI system [46] (for a thermodynamic analysis of the
same system using a background-subtraction method see Ref.[47]). The addition of a series of intrinsic
counterterms in pure EGB AdS gravity (see, eg., Refs.[37)138],[39]) presents the advantage of obtaining
the conserved quantities from a boundary stress tensor, that is, as holographic charges. However, the
explicit form of such series does not exist for a high enough dimension. On the contrary, an expression
for the Kounterterms is given by Egs.(5.11) and (5I6]) in all dimensions. In that respect, one would
like to see the above charges as coming from a quasilocal stress (Brown-York) tensor. There are good
reasons that make us think that this could be possible, despite the fact that the on-shell variation of
the action takes the form

5Ip = / dP~ 'z v/ ~h (% 7/ (h710h)! + AL 6K + Qi5AZ-> : (7.1)
oM

where one cannot directly define a quasilocal stress tensor as T% = (2/v/—h) (§Ip /Shi;).

Indeed, there are gravity theories where the surface term in 61 contains variations of the extrinsic
curvature (5K§», which cannot be eliminated by the addition of a generalized Gibbons-Hawking term,
and where a holographic stress tensor for AAdS spacetimes can be still read off from the variation
of the action. One example featuring this property is Topologically Massive Gravity in 3D, where
the surface term coming from the variation of the gravitational Chern-Simons term contains <5K]Z
It is known that there is no term that can be added to the action to trade it off by a piece along
0h;;. However, it can be shown that in the asymptotically AdS sector of the theory, there is a
contribution from the gravitational Chern-Simons term to the holographic stress tensor which couples
to the conformal structure g(g);;, even though a quasilocal stress tensor associated to dh;; cannot be
defined [48]. This follows from the fact that, for AAdS spaces, the leading order in the expansion of
the boundary metric is the same as the leading order of the extrinsic curvature. A quasilocal stress
tensor cannot be identified either in 4D AdS gravity when one adds the (topological) Gauss-Bonnet
term to the Einstein-Hilbert action. In this case, the Gauss-Bonnet term does not change the field
equations in the bulk but, as expected, it modifies the surface term in the variation of the action. In
this case, 01 also adopts the form of Eq.(7I]). However, the second term in (5.6]) —~which in D > 4 sets
a well-defined action principle when the metric is held fixed at the boundary — cannot be used for the
same purpose in four dimensions. One can show that the variation of the action produces a boundary
stress tensor 77 for AdS gravity (upon a suitable choice of the GB coupling) which is finite and the
same as the one prescribed by holographic renormalization [49]. This is a consequence of the fact that
the contribution v/—h AlSK ; vanishes identically when one performs an asymptotic expansion of the
fields.

The above examples give some indication on what should be the pattern in higher-dimensional
Einstein-Hilbert and Einstein-Gauss-Bonnet AdS case: in D = 2n dimensions, the term that contains
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5K§» should always vanish as we approach to the asymptotic region, such that the quasilocal stress

tensor can be read off directly from Eq.(7I)). On the other hand, in odd dimensions, Ag (5Kji- should
contribute with a finite piece to the holographic stress tensor which does not modify the Weyl anomaly.
We expect to provide a proof of the above claim elsewhere.
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A Kronecker delta of rank p

The totally-antisymmetric Kronecker delta of rank p is defined as the determinant

W O
V1 i) Vp
sl _ | %m0 2z (A.1)
[ R ' '
G o e O

A contraction of £ < p indices in the Kronecker delta of rank p produces a delta of rank p — k,

(N —p+k) 5[Vk+1“"/p]

v vp] sun s —
5[u1~~~uk~~up] O+ Oy = (N —p)! lHesromp]? (A-2)
where N is the range of indices.
B Hypergeometric function
We use an integral representation of the Gauss’ hypergeometric function,
I'(c) ub=t (1 — )0
F b;c;z) = d B.1
2471 (CL, ;G Z) P(b)P(C — b) / U (1 — Zu)a ) ( )

0

where ¢ is not a negative integer and either |z| < 1, or |z| = 1 with Re(c —a — b) > 0. In particular,
the following integral is solved in the text,

1
b—1
U 1 1
du —— == 9F [ =,b;b+1; — , b>0. B.2
/u\/l—l—zu b21<2 Z> (B.2)
0

The first derivative of the hypergeometric function is
d ab
d—2F1 (a,bye;2) = — oF) (a+ 1,0+ 1;¢+ 15 2), (B.3)
z c
and it expands for small z as

L a_b ala+1)bb+1) , 3
oF1(a,b;c;2) =14 - z+ et ) 22+ 0(z7). (B.4)
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C Gauss-normal coordinate frame

e

In Gaussian coordinates (5.3]), the only relevant components of the connection I'?,, are expressed in

pv
terms of the extrinsic curvature K;; = —ﬁ h;j as
1 - - N’

=~ K. Ty=-NKj, I =—. (C.1)
The radial foliation (5.3]) implies the Gauss-Codazzi relations for the spacetime curvature, as well,

ir 1 i i

K= N (ViK}, — ViK]) , (C.2)

. 1 . .

b= oy (E) - K K (C3)

Ry, = R{(h) - Ki K] + Kj K] =Rjj — K K], (C.4)

where V; = V;(h) is the covariant derivative defined in the Christoffel symbol of the boundary
r f] (9)=T f](h) and R (h) is the intrinsic curvature of the boundary.
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