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Abstract

In the present paper we show that a general-purpose word learn-
ing model can simulate several important findings from recent
experiments in language acquisition. Both the addition of back-
ground noise and varying the speaker have been found to in-
fluence infants’ performance during word recognition experi-
ments. We were able to replicate this behaviour in our artificial
word learning agent. We use the results to discuss both ad-
vantages and limitations of computational models of language
acquisition.

Index Terms: language acquisition, statistical learning, back-
ground noise

1. Introduction

Language acquisition, an arguably extremely complex task, is
approached by infants with at least some skills and capacities
that seem to emerge at a very young age. Some examples are
a neural processing system dedicated to language-like acoustic
input [1] and an ability to attend specifically to speech (rather
than non-speech sounds) [2]. Using these facilities, infants have
to detect meaningful patterns in the stream of speech that is of-
ten perceived under non-perfect conditions. Most every-day lin-
guistic input can be assumed to occur with at least some back-
ground noise, be it non-speech, such as the engine while driving
in a car, or speech, such as a television or a parent on the phone.

A few experiments have examined infants’ ability to focus
on a stream of speech and detect known structure under noisy
conditions. A word-segmentation experiment [3] showed that at
a signal-to-noise ratio (SNR) of 5 dB children at 7.5 months of
age succeed at recognising familiar frequent words such as dog
within passages against a competing voice, but fail to do so at
an SNR of 0 dB, that is when both the target voice and the com-
peting voice are equally loud. Turning to a even more frequent
and well-known word, Newman [4] investigated the recogni-
tion of the child’s own name in multi-talker babble across three
age groups. At the age of 5 and 9 months, infants successfully
recognised their name at an SNR of 10 dB, but not at a 5 dB
SNR. At the lower SNR, a stress-matched foil was confused
with the child’s name. Only at the age of 13 months, children
succeeded in this task at both SNRs and could discriminate be-
tween their name and a stress-matched foil.

All these experiments used a well-known word (the child’s
name or frequent words such as dog) with either an unfamil-
iar speaker or a speaker to which the child was familiarised as
part of the experiment. The identity of a speaker, however, has
been found to be detected and used by children at the age of 7.5
months [5] to an extent that seems to affect even the encoding
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of lexical items. The effect of speaker familiarity and a possible
tuning in on characteristics of the speaker’s voice was subse-
quently used by Barker and Newman [6] to assess a child’s abil-
ity to recognise words in multi-talker environments. 7.5 month
old infants were able to detect familiarised well-known target
words in passages spoken by their mother with a female voice
talking in the background at a 10 dB lower intensity. When
those passages were uttered by a stranger in similar conditions
infants failed to detect the familiarised words.

The results laid out above indicate some ability of infants
to segment and comprehend speech in noisy environments. At
the same time it is also evident that infants have not yet ac-
quired the specific skills that enable adults to understand speech
- even of unfamiliar speakers - in conditions where the SNR is
as low as — 5 dB [7]. Comparable research on human speaker
recognition in noise is sparse, but it has been shown that per-
formance degrades somewhat when the reference speech is
recorded over the fixed telephone network, while unknown sam-
ples are recorded in a mobile network [8].

In the present paper we employ a general-purpose word-
learning model in an attempt to simulate the effects of back-
ground noise and speaker identity on word recognition. Pre-
vious experiments computationally simulated cross-situational
word discovery using statistical information using this general-
purpose word-learning model (e.g. [9], [10]). One important
result is the successfully replication of infants’ ability to asso-
ciate meaning with words that appear across different situations
and within different utterances. Furthermore, the finding that
speaker-dependent information seems to be encoded by infants
during word learning [5] has also been replicated by this model.
More precisely, a training with four speakers in a block-wise
fashion led to a moderate improvement in accuracy for yet un-
trained speakers, whereas training with four intermixed speak-
ers led to a significantly higher improvement of learning across
the board [10].

In the research reported in this paper we investigate whether
the model can also simulate the results of the speech-in-noise
experiments alluded to above. By testing the model under noisy
conditions, we intend to gain further insight into the capabilities
and limitations of the model. One limitation is immediately ev-
ident (and was also an issue in previous experiments): With few
exceptions the performance of the model is expressed in terms
of the proportion of correctly recognised keywords within test
utterances. In order to compare these accuracy measures with
behavioural measurements obtained in experiments with infants
we need to make the assumption that word recognition accuracy
is related to looking times or listening preferences. However,
despite these limitations computational model simulations can
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provide insights in cognitive processes that cannot be directly
observed in infants [11].

Bearing these limitations in mind, we trained our model
with clean speech by one female speaker (the Mother), which
contained keywords in various carrier sentences. Subsequently,
we tested the recognition accuracy of those keywords with test
sentences from the Mother and another female speaker, the
Stranger. To draw upon one of the obvious advantages of com-
putational modelling, namely the possibility to investigate nu-
merous variables and their interaction with relative ease, we aim
not merely at reproducing the limited amount of known child
data. Rather, we vary the SNR in steps of 5 dB between 30
dB (which is effectively clean speech) and 0 dB. We also use
two different types of noise, pink noise and background babble
stemming from recordings in a cafeteria. All combinations of
those three factors, speaker identity, noise type and SNR, are
explored to yield a thorough assessment of the model’s perfor-
mance.

2. The model

The ACORNS (ACquisition Of Recognition and communica-
tioN Skills) project (http://www.acorns-project.org) [10] aimed
at investigating language acquisition using computational mod-
els. More precisely, to simulate cross-situational word discov-
ery within real acoustic speech utterances paired with keyword-
labels, a number of machine learning approaches were used.
Importantly, the computational models developed in ACORNS
learn from real speech input. No previous lexical, phonetic or
phonological information is provided to the learner, nor is infor-
mation on the number of various items to be learned from the
input given beforehand. Therefore, these models offer an ex-
cellent starting point for investigating the impact of background
noise on the performance of a learner.

In the current study, we use the Non-negative Matrix Fac-
torisation (NMF) [12] implementation of the ACORNS models.
This model can replicate the advantage of learning from multi-
ple speakers over learning from a single speaker [10].

Input is presented to the model by pairing an acoustic part
with a corresponding keyword label. In NMEF, this input is
coded as a vector v. = [vavk]. NMF simulates learning by
decomposing a high-dimensional input consisting of m vec-
tors (utterances) v of a total length n (representing the acoustic
va and keyword encoding vk features of an utterance) into the
product of two more compact internal matrices W - H ~ V by
minimising the Kullback-Leibler divergence between the input
and the dot product of the decomposed matrices. The size of the
internal matrices for W is n X r and for H itis r X m. The con-
stant r is chosen such that (m + n)r < mn, i.e. information is
compressed. W has the same internal structure as V', namely an
acoustic and a 'visual’ keyword-encoding part. Hence, it can be
assumed to store acoustic information associated to keywords.
H contains information about episodic activation of columns in
W during training. The particular version of NMF used here,
which updates the content of W after each input utterance, has
previously been described in [9]. This version can claim sub-
stantial cognitive plausibility, because it needs only to memo-
rise a small number of most recent utterances, in addition to the
internal representations in the matrix W of the words that are
being learned.

To assess the performance of the model during and after
training, a new utterance containing a previously learned key-
word is given in the form of va, without providing the corre-
sponding keyword part vk. The missing keyword information

has to be reconstructed by approximating vk ~ Wy, - h (again
by minimising the Kullback-Leibler divergence), where his es-
timated using the learned representations within WW. The recon-
structed keyword is compared against the original information
given in the test item in order to establish whether the correct
keyword was recognised.

3. The effect of noise and speaker identity
3.1. Training and testing

During training, the learner was presented with 500 utterances
containing one out of nine keywords within a carrier sentence
spoken by a female speaker, the Mother. Each sentence was ac-
companied by the corresponding keyword in form of a boolean
vector.

In the test phase, we aimed at assessing the model’s word
recognition accuracy for utterances spoken by the Mother or
by a new speaker, the Stranger. To this end, we generated two
test sets with a similar structure, one for each speaker. Each of
those test sets only contained utterances that were not part of the
training. 20 test items per keyword were used, resulting in 180
utterances per test set. Accuracy tests were conducted after 20
training steps, that is after 20 new utterances haven been used
successively to update the internal representations of the model,
up to the point when 200 utterances have been observed. For
the remainder of the experiment testing occurred after 50 train-
ing steps. These intervals allow for a sufficiently fine-grained
assessment during early parts of the learning, where the most
drastic changes of recognition accuracy have been found to oc-
cur [10]. During testing the learning is disabled. Therefore, the
same utterances can be used at each test step, and the test utter-
ances spoken by the Stranger remain equally unfamiliar during
the complete experiment. While this is certainly not ecologi-
cally plausible, we consider this as an important advantage of
computational modelling, because it enables us to make strict
comparisons that are impossible in infant experiments.

To assess the recognition ability of the learner in noisy en-
vironments, two types of noise, namely pink noise and back-
ground babble, with SNRs degrading from 30 dB to 0 dB in
steps of 5 dB, were added to the test items. The resulting acous-
tic signal was then transformed into the fixed-length vector re-
quired by NMF. In our implementation, each vector v, has
length n, = 110,002 and it is based on a Vector Quantiza-
tion coding of the MFCC vectors derived from an input utter-
ance. This high dimensionality is a consequence of the coding
scheme that captures co-occurrence counts of acoustic events at
specified time lags [13]. Note that it is not possible to resynthe-
sise the original speech signal from a vector va.

The addition of noise to the test items aims at paralleling the
infant experiments described in Sec. 1. During the infant exper-
iments, a change in listening behaviour was interpreted as the
expression of a preference based on word-recognition. In our
model, word recognition is assessed by accuracy scores. Hence,
an increase in accuracy implies a higher rate of recognition and
should therefore model the cause for the behaviour observed in
infant experiments.

3.2. Results

Generally, for both types of noise, the model performed in a
comparable manner; hence we only present the results of test-
ing with babble noise. All statements also apply to the pink
noise condition, unless noted otherwise. To control for possi-
ble idiosyncratic effects of both the training and the test set, we
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Figure 1: Recognition accuracies in babble noise; left panel shows the familiar speaker, the Mother; right panel the unfamiliar speaker,

the Stranger. SNRs are annotated at the final utterance.

ran a simulation with the roles of Mother and Stranger reversed.
This procedure yielded comparable results. To assess apparent
differences and similarities in the accuracy data we employed
the McNemar test [14]. We used the Bonferroni correction to
account for multiple comparisons and consequently multiplied
each p-value by the number of comparisons undertaken. A sig-
nificance level of @ = 0.01 was used.

Fig. 1 depicts the accuracy scores using both the Mother
(left) and the Stranger (right) test sets for the babble noise across
SNRs. The accuracy refers to the percentage of correctly recog-
nised keywords in the 180 test items (20 for each of the nine
keywords) in the held-out test set. Each line in the graph repre-
sents one SNR condition with the respective SNR value anno-
tated to the right of the panels.

Inspecting the two panels, it stands out that most learning
takes place within roughly the first 100 utterances, which cor-
responds to about eleven training sentences per keyword. The
highest overall accuracy within the first 100 training steps is
96%. This occurs in the case where the test items are spoken by
the Mother with virtually no added noise. Only comparatively
small improvements take place after the first 100 training items
with an average increase in accuracy of 4% (SE is 0.75%).

A comparison of the accuracy in word recognition for the
Mother’s versus the Stranger’s test items shows that utterances
spoken by the same speaker during both training and testing are
much easier to recognise than utterances spoken by an unfamil-
iar speaker. The highest accuracy for the Stranger is at 60%,
whereas the Mother’s test sentences lead to a recognition rate
of up to 99%. In both conditions, maximal performance oc-
curs when the SNR is at 30 dB, which corresponds to virtually
clean speech. For the Mother’s test sentences training and test-
ing occur under matched conditions, but using different carrier
sentences and different realisations of the keywords.

Adding noise to the test utterances of the Mother or the
Stranger leads to a graceful degradation of recognition accuracy.
There is a significant difference in accuracy for the Stranger be-
tween an SNR of 30 dB and of 25 dB. Decreasing the inten-
sity of the signal by 5 dB leads to a loss of accuracy at this
point already. This is not the case when assessing the Mother,
where recognition rates at 30 dB and at 25 dB SNR are indis-
tinguishable and at ceiling with up to 99% correctly recognised
test items. We thus consider the performance of the model at

ceiling when tested with the Mother’s speech at an SNR of 25
dB.

According to a McNemar test the accuracy of the Stranger
with clean speech (30 dB SNR) is indistinguishable from the
recognition performance of the Mother at SNR 15 dB. Thus, the
Mother has an advantage of at least 10 dB over the Stranger (rel-
ative to the 25 dB SNR for the Mother’s speech, which yields
accuracy scores equivalent to 30 dB SNR). For lower SNR val-
ues the advantage of the Mother over the Stranger decreases, but
remains statistically significant. Only at 0 dB, where the perfor-
mance of both Mother and Stranger is around chance level, the
advantage of the Mother disappears.

4. Discussion

In our study, we set out to model the effect of noise on infant
word recognition. The results presented above show that the
model is sensitive to noise in the test items and that it seems
to have tuned in on specific properties of one speaker. This
is evident in the overall advantage of the familiar speaker, the
Mother, across SNRs (excluding 0 dB). Furthermore, the ad-
dition of noise led to a gradual decrease in accuracy for both
speakers with chance performance being reached when the sig-
nal and the noise are of equal intensity.

When comparing the model’s performance to the behaviour
of infants in experimental settings, a number of findings laid
out in Sec. 1 have been replicated. First, we could show that
a known speaker has a general advantage over an unknown
speaker. This result is in line with the finding that words spoken
by a child’s own mother are recognised in a 10 dB SNR con-
dition, whereas a stranger’s voice does not elicit a behavioural
response under the same noise condition [6]. We could addi-
tionally quantify the difference between talkers with respect to
our model and found that the Mother has a 10 dB advantage
over the Stranger. Second, decreasing the SNR led to a graceful
degradation of the model’s performance, as opposed to a sud-
den breakdown of overall performance at a positive SNR. This
is in line with infant behaviour, who show a decreasing listening
preference with increased noise intensity [3].

Our model failed to improve strongly with a moderate
amount of additional training, be it for the known speaker in
noisy conditions or for the unfamiliar speaker. Contrastingly,



children’s performance improve with older age [4]. Hence, our
training data are not suitable for modelling a developmental tra-
jectory comparable to children’s increased linguistic skills, even
under noisy conditions. At the same time it is fair to say our
model learned more in the experiment than do infants in the
typical preferential looking experiment.

Two different but possibly interrelated explanations can be
used to account for the behaviour of the present model: On one
hand, as visible in Fig. 1, performance seems to reach a stable
level after about 100 training utterances. This apparent satura-
tion of learning is underlined by the continuously high and sta-
ble accuracy scores under matched conditions after the first 100
training steps. Thus, there is no need to drastically change the
internal representations of acoustic input during training. It has
to be noted that we cannot directly assess the actual form of the
internal representations due to the encoding of the acoustic sig-
nal in the form of co-occurrence counts of VQ-labels explained
in Sec. 3.1. Moreover, without any form of noise compensation
this encoding is not likely to be robust against additive noise.
Based on the performance of the model, however, we can still
assume that the representations are generalised enough to ex-
tend to new tokens of a given keyword.

On the other hand, the current model employs a single-
level representation to store and recognise acoustic informa-
tion. There is no hierarchical organisation or multi-level in-
formation flow. Hence, neither fully episodic information char-
acteristic for the speech of the Mother nor abstract knowledge
about speech and the native language can be used to aid word
recognition, especially in adverse conditions.

In children, knowledge about general properties and the
structure the native language has been found to surface around
the first birthday [4]. At the same time, multi-level representa-
tions of linguistic input seem to emerge. This is illustrated by a
difference in behaviour when confronted with identical stimuli
in two different tasks (e.g. [15]). When children have to merely
discriminate a native phonetic contrast in syllable-initial posi-
tion (e.g. bin versus din), they show the perceptual abilities to
do so. When one of those syllables is taught as a new word, in
contrast, children do not notice a switch. This seemingly con-
tradictory behaviour is assumed to originate in several layers
of internal representation encoding different levels of acoustic
detail. Each task consequently taps into a different level of gen-
eralisation.

Our model, unlike children, does not yet develop such a
multi-level analysis of acoustic input after sufficient training
and maturation. It consequently provides a snapshot rather than
a developmental account of child language acquisition. Other
current models use multi-level representations, recent examples
being PHOCUS and PUDDLE (as reviewed by [16]). How-
ever, the multi-level organisation is usually hand-crafted and
predefined, instead of being established from the input. Con-
sequently, the models also provide a snapshot, albeit of a later
developmental stage. Furthermore, most computational models
rely on symbolic input, often in the form of transcribed or oth-
erwise heavily pre-processed speech. Our learning system, in
contrast, has to discover meaningful information in the signal
as a blank slate and without additional information.

We are exploring several directions for allowing our model
to develop hierarchical representations. By doing so, we hope
to gain further insight into the very early stages of language
acquisition. However, it is not evident how that can be done
without wiring at least some aspects of a linguistic theory into
the architecture, even if that is something we would want to
avoid.

In summary, we have presented how a recent word-learning
model can reproduce major aspects of the findings from exper-
iments on infant language acquisition. The behaviour of the
model shows analogies to an early phase of word-learning in
infants, which is usually not covered by simulations of child
language acquisition.
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