
UNIVERSITÉ DE FRANCHE-COMTÉ
CENTRE LUCIEN TESNIÈRE

FRANCE

THE UNIVERSITY OF WOLVERHAMPTON
SCHOOL OF LAW, SOCIAL SCIENCES AND

COMMUNICATIONS
UNITED KINGDOM

Binyam Gebrekidan Gebre

Part of Speech Tagging for Amharic

A Project submitted as part of a programme of study for the award of MA

Natural Language Processing & Human Language Technology

Supervisors:

Prof. Sylviane Cardey
Prof. Ruslan Mitkov

June 2010

Declaration Form

UNIVERSITY OF WOLVERHAMPTON

SCHOOL OF LAW, SOCIAL SCIENCES AND COMMUNICATIONS

MA NATURAL LANGUAGE PROCESSING & HUMAN LANGUAGE TECH-

NOLOGY

Name:

Date:

Title:

Module Code:

Presented in partial fulfilment of the assessment requirements for the above

award.

Supervisor:

Declaration:

i. This work or any part thereof has not previously been presented in any

form to the University or to any other institutional body whether for as-

sessment or for other purposes. Save for any express acknowledgements,

references and/or bibliographies cited in the work, I confirm that the intel-

lectual content of the work is the result of my own efforts and of no other

person.

ii. It is acknowledged that the author of any project work shall own the copy-

right. However, by submitting such copyright work for assessment, the

author grants to the University a perpetual royalty-free licence to do all

or any of those things referred to in section 16(i) of the Copyright Designs

and Patents Act 1988 (viz: to copy work; to issue copies to the public; to

perform or show or play the work in public; to broadcast the work or to

make adaptation of the work.

iii. This project did not involve contact with human subjects, and hence did

not require approval from the LSSC Ethics Committee.

Signed: Date:

i

Abstract

Amharic, the second most spoken Semitic language, is a written language that

poses its own challenges to natural language processing. One basic NLP task is

part of speech tagging, which is the process of assigning tags to words in text.

Tags can be as simple as noun, verb, adjective, etc or as complex as noun singular

feminine, verb past tense third person, etc. POS tagging is not useful by itself

but is generally accepted to be the first step to understanding a natural language.

Most NLP tasks and applications including parsing, information extraction, ma-

chine translation, speech synthesis/recognition heavily depend on it.

Ambiguity is the reason POS tagging is not an easy problem. All languages have

some form of ambiguities. Resolving ambiguities requires efficient and accurate

methods. Previous attempts of POS tagging Amharic texts resulted in perfor-

mances worse than those reported for Arabic, Hebrew and English.

In this dissertation, theoretical and practical POS tagging issues have been dis-

cussed with the view to improving POS tagging performance for Amharic, which

was never above 90%. Knowledge of Amharic morphology, the given annotated

data and the tagging algorithms have been examined and shown to play criti-

cal roles in the final performance result. With the experiments carried out using

state-of-the-art machine learning algorithms, POS tagging accuracies for Amharic

have crossed above the 90% limit for the first time.

The reasons for such relatively higher performance have come from three factors:

usage of partially cleaned version of a corpus, good feature selection, resulting

from morphological study of the language, and parameter tuning, resulting from

understanding the tagging algorithms and experimenting with them.

Key words: Language, Semitic, Amharic, Part of speech, POS, tagging, HMM,

CRF, SVM, Brill, TnT, NLTK

Acknowledgements

This dissertation would not have been initiated and completed without the con-

stant support, guidance and encouragement of my co-supervisors: Professor Syl-

viane Cardey and Prof. Ruslan Mitkov, who are both renowned experts in natural

language processing research areas. In the first year of my research in France,

Prof. Madame Cardey helped me in choosing and formulating my topic. She

helped me focus and structure my dissertation. In the second year of the re-

search in the United Kingdom, Prof. Ruslan Mitkov encouraged me to attend

many seminars which he made it possible so that I deepen my research knowledge

and despite his busy schedule, he also periodically checked my progress and gave

me guidance to make sure that I did my best. I am forever grateful to both of

my supervisors.

Special thanks also go to Prof. Peter Greenfield, Prof. Izabella Thomas, Prof.

Henri Madec, Dr. Lucia Specia and Dr. Constantin Orasan for contributing

directly or indirectly to this research. Gabriel Sekunda and Dilber DeVitre also

deserve special mentions for being kind and helpful to me in administrative and

other matters.

I am also grateful to my classmates and friends whom I met both in France

and the United Kingdom for making the two-year masters programme more il-

luminating and more enjoyable. My classmates were international with diverse

nationalities and cultures who showed me that human groups are more similar

than history depicts it.

Last but not least, I would like to thank the European Union. This project

was supported by the European Commission, Education & Training, Erasmus

Mundus: EMMC 2008-0083, Erasmus Mundus Masters in NLP & HLT pro-

gramme.

i

Contents

1 Introduction 2

1.1 Background . 2

1.2 Research Focus and Research Objectives 5

1.3 Value of this Research . 5

1.4 Organization of the Dissertation 6

2 Literature Review 7

2.1 Introduction . 7

2.2 Rule-based Taggers . 9

2.3 Machine Learning-based Taggers 9

2.4 Hybrid Taggers . 10

2.5 Work on Related Languages . 12

2.6 Previous Work on Amharic . 18

3 Tagging Models 24

3.1 Introduction . 24

3.2 Hidden Markov Based Models . 24

3.3 Conditional Random Fields . 28

3.4 Support Vector Machines . 29

3.5 Brill Tagging . 30

4 Amharic Morphology 34

4.1 Introduction . 34

4.2 Amharic Orthography . 35

4.3 Amharic Morphology . 36

4.4 NLP Challenges in Amharic . 45

5 Research Methods 48

5.1 Introduction . 48

5.2 The ELRC Tagset . 48

ii

5.3 Limitations of the Tagset . 51

5.4 The POS Tagged News Corpus 52

5.5 Preparing the Dataset . 54

5.6 The Tagging Process . 60

5.7 Training and Test Data . 65

6 Results 67

6.1 Introduction . 67

6.2 Evaluation Methods in NLP . 68

6.3 Evaluation Metrics . 70

6.4 POS Tagging Results . 72

6.5 Results Analysis . 76

7 Conclusions 81

7.1 Introduction . 81

7.2 Summary of Results . 82

7.3 Limitations . 83

7.4 Recommendations . 84

iii

List of Figures

3.1 Transformation-based Error-driven Learning 31

4.1 Finite State Automata that Recognizes Amharic Nouns 37

5.1 Tag Distribution in the WIC Corpus 59

iv

List of Tables

2.1 State-of-the-art POS Tagging Accuracies for English 11

2.2 Previous POS Tagging Accuracies for Amharic 21

4.1 Examples of Morphological Changes for Amharic Nouns 37

4.2 Examples of ’sbr’ Productions to Form Amharic Words 38

5.1 The ELRC POS Tagset . 50

5.2 Distribution of the Number of Tokens in a Single ”Word” 56

5.3 Ambiguity Distribution in the WIC Corpus 58

5.4 10-fold Cross Validation Data . 66

6.1 POS Accuracy Results Achieved by CRF 73

6.2 POS Accuracy Results Achieved by SVM 73

6.3 Brill Tagger Minimum Score and Rules Trade-off 75

6.4 Best Brill Tagger Results: Min-Score = 6, Max-Rules = 50 75

6.5 Accuracy Results Achieved by HMM (TnT) 76

6.6 Precision, Recall and F measure Results for CRF and SVM 78

6.7 Confusion Matrix for CRF in Percentage 79

6.8 Confusion Matrix for SVM in Percentage 79

7.1 Best POS Tagging Accuracies for 3 Semitic Languages 83

1

Chapter 1

Introduction

• Background

• Research Focus and Research Objectives

• Value of this Research

• Organization of the Dissertation

1.1 Background

With the ever increasing availability of information and knowledge in many lan-

guages and with the ever increasing interaction between cultures, the need for

language technologies is becoming more necessary than ever before. Natural lan-

guage processing is a multidisciplinary area where the goal is to design and build

software that will analyze, understand and generate all languages that humans

use naturally. This exciting area has long been the center of attention of some

researchers for a long time now. In fact, one of the earliest applications for

computers was machine translation, translating from one language into another

by computers. Recent applications cover other aspects of natural language pro-

cessing including speech recognition/synthesis, information extraction/retrieval,

question answering and other emerging applications.

Much of the research in natural language processing has been dedicated to resource-

rich languages like English, French and other major European and Asian lan-

guages. African languages have, however, received far too little attention. In

fact, most are being spoken by less and less people. One exception that is seeing

2

an increase in use and number of speakers is Amharic, a language that is mainly

spoken in Ethiopia. Currently, it has an estimated 30 million speakers(Gambäck

et al., 2009), which puts it in second position as the most spoken Semitic language

in the world (after Arabic). Amharic is also spoken in Egypt, Israel, and Sweden

by some 2.7 million emigrants (Wikipedia, 2010).

The number of speakers of the language is on the rise for two reasons. First, it

is the working language of the federal democratic republic of Ethiopia, a country

with more than 85 million people (CIA, 2010). Second, unlike most other African

languages, Amharic is a written language with its own alphabet and written

materials, actively being used everyday.

However, even under these favorable conditions, Amharic has been one of the

under-resourced languages both in terms of electronic resources and processing

tools. Recently, however, there have been independent attempts to develop them.

One outcome of such an attempt is the publicly available medium-sized part-of-

speech-tagged news corpus (Demeke and Getachew, 2006) and a morphological

analyzer (Gasser, 2009b). The availability of these resources has encouraged

researchers to process the language by using and applying different NLP models

that have proven effective for analyzing English and other most-studied languages.

One basic task in natural language processing is part-of-speech tagging or POS

tagging for short. It is the process of assigning a part-of-speech tag like noun,

verb, pronoun, preposition, adverb, adjective or other lexical class markers to each

word in a text. POS tagging is not useful by itself but it is generally accepted

to be the first step to understanding a natural language. Most other tasks and

applications heavily depend on it.

In addition to that, any NLP problem can be reduced to a tagging problem and

so POS tagging serves as a prototype problem. For example, machine translation

can be seen as the tagging of words in a given language by words of another

language; speech recognition can be seen as the tagging of signals by letters and

so on. In general, the input-output relationship can be as complex as sequences,

sets, trees and others that can be imagined. POS tagging represents the simplest

of these problems.

At first thought, the solution to this POS tagging problem may seem trivial,

but it is actually a very hard problem. There is no known method that solves

the problem with complete accuracy for any language. The reason for this is

partly related to inconsistencies of our understanding of categories of words. Even

trained human annotators do not agree as to the category of a word 3-4% of the

3

times(Marcus et al., 1993). The other reason arises from language ambiguities

and the ineffectiveness of the resolving methods.

Language expressions are ambiguous and computers do not have the common-

sense and the world knowledge that humans have when they communicate. For

example, I made her duck has at least 5 meanings (Jurafsky et al., 2000)

1. I cooked waterfowl for her.

2. I cooked waterfowl belonging to her.

3. I created the (plaster?) duck she owns.

4. I caused her to quickly lower her head or body.

5. I waved my magic wand and turned her into undifferentiated waterfowl.

These different meanings are caused by a number of ambiguities. The first one

is part of speech ambiguity. Duck can be a verb or a noun and her can be a

dative pronoun or a possessive adjective. The other ambiguities are related to

semantics and syntax (ie make can mean cook or create and it can take one or

two arguments).

To a human being, the intended meaning of the above sentence is clear depending

on the circumstances but for a computer it is far from obvious. Therefore, the

purpose of tagging is to give the computer as much information and knowledge

as necessary to enable it to assign each word the correct tag as used in the given

context.

Tags are designed to be more abstract representation of words. A set of tags

(tagset) is chosen and designed to give linguistic information about words. Be-

sides categorizing words into major classes (nouns, verbs, etc), the linguistic in-

formation may include distinctions between verbs in different tenses and between

nouns with different genders and numbers (singular/plural), etc. In any case, the

nature and number of tags are debatable as they are highly dependent on the

purpose and the nature of the given language. Designing a tagset by itself is a

research problem which requires its own careful analysis.

In POS tagging problems, it is usually assumed that the tags have already been

designed. Given a finite tagset for a given language, the computational problem

is to map words of a given text to their correct tags based on context and lexical

information. In other words, the infinite words are classified into finite tags.

4

There are three approaches to solving this classification problem based on two

fundamental concepts- rules and statistics. Rule-based taggers use handcrafted

linguistically-motivated rules. Stochastic taggers, by contrast, use probabilistic

mathematical models and a corpus. The third approach combines the best of

both concepts. None of them is perfect for all languages and for all purposes.

The relevance and effectiveness of each approach depends on the purpose and the

given language.

This dissertation explores some selected tagging methods and tests their effec-

tiveness on Amharic, a morphologically-rich language.

1.2 Research Focus and Research Objectives

The objective of this dissertation is to develop a part of speech tagger for Amharic.

This task entails the examination of Amharic morphology from computational

point of view to identify the word and context features that can be used to form

the features that are required in the state-of-the-art POS tagging systems.

The goals of the dissertation are:

1. Develop a tokenizer and a tagger for Amharic

2. Explore state-of-the-art tagging methods

3. Examine Amharic morphology

4. Implement and adapt the tagging methods on Amharic

5. Evaluate and report results

1.3 Value of this Research

This research advances the knowledge of NLP issues in Amharic and hence Semitic

languages. The challenges faced and the experiments done in this dissertation

will highlight future directions to take in computational studies of and resource

development for under-resourced languages in general and Semitic languages in

particular. This dissertation also highlights some of what needs to be done in

developing language independent tools and applications. For example, vowel

5

patterns embedded in Amharic roots have special functions that could be useful

in syntax and semantics processing, but these patterns cannot be easily extracted

with existing language independent tools.

1.4 Organization of the Dissertation

The first chapter attempts to motivate the topic of part of speech tagging for

Amharic. It also outlines the goals to be achieved and the value it is expected to

contribute to NLP research.

Chapter 2 discusses previous research work in the area of POS tagging for

Semitic languages and English. It discusses the different tagging approaches

in the literature and reports the best results for English, Arabic, Hebrew and

Amharic.

Chapter 3 presents and discusses the mathematics behind the tagging models.

It discusses briefly the mathematics in the selected widely used machine learning

algorithms, namely Hidden Markov Models, Conditional Random Fields, Support

Vector Machines and Transformation-based Error-driven Learning.

Chapter 4 examines Amharic orthography, morphology and discusses the chal-

lenges and opportunities they present in natural language processing. Particu-

larly, the vowel patterns are extensively covered to motivate their use as features

in the machine learning algorithms covered in chapter 3.

Chapter 5 attempts to address the issues in the POS tagging process. It starts

by presenting and evaluating the ELRC tagset and the POS tagged corpus (WIC).

It discusses the errors and inconsistencies in the corpus and presents the correc-

tions made. It also discusses the steps in the tagging process from tokenization,

feature extraction to disambiguation. Tools and programming language used are

also briefly presented.

Chapter 6 presents and analyzes the results using standard evaluation meth-

ods widely used in NLP. Specifically, accuracy, precision, recall, f-measure and

confusion matrix are the metrics or the methods used to report and analyze the

results obtained in chapter 6.

Chapter 7 provides the conclusion to the dissertation with summaries of results,

limitations and recommendations.

6

Chapter 2

Literature Review

• Introduction

• Rule-based Taggers

• Machine Learning-based Taggers

• Hybrid Taggers

• Work on Related Languages

• Previous Work on Amharic

2.1 Introduction

There is much literature in the issues surrounding part of speech tagging for

most major languages. It has been the topic of many publications including

masters and PhD dissertations. These research works, by their presence, show

how important and difficult POS tagging is and they also show that there is no

one method that works for all languages. Every human language family poses

its challenges and requires specific methods. The major issues surrounding POS

tagging have been the following:

• Resources

• Tokenization

• Tagset design

7

• Tagging algorithms

• Evaluation

• Problem areas

– Ambiguity

– Unknown words

– Proper nouns (in languages where there is no concept of capitalization)

Some of the POS tagging challenges posed by the above issues are shared by most

languages; others are specific to given one or more languages. Some issues are

resolved with simple methods for some languages, but with more sophisticated

methods for other languages. For example, with respect to resources, English has

huge labeled/unlabeled electronic corpora - and so tagging methods take advan-

tage of that. Amharic, on the other hand, has a limited resource and so tagging

methods should be designed to overcome the lack of it. However, even with com-

parable resources, languages still pose challenges in many other ways. Some are

morphologically or syntactically more complex than others. Some have writing

systems which make automatic identification of word boundaries more difficult.

These differences in resources and in nature have motivated researchers to design

and experiment with different tagging methods and have reported results with

different accuracies.

The highest tagging accuracies reported so far are for English. In fact, POS

tagging is generally considered to be a solved problem for English. Accuracies

have reached around 97%. For other languages especially those less-resourced

ones, there is an unsatisfied need for new or adapted methods. This is partly

the reason why much of recent research into POS tagging has been dedicated to

developing or adapting existing methods for such languages.

Even though the literature of POS tagging is full of many methods, they all fall

into three categories - rule-based, stochastic and hybrid taggers. Methods that

rely on handcrafted language dependent rules are classified as rule-based taggers

whereas methods that use probabilistic mathematical models and a corpus are

classified as stochastic taggers. Methods that combine the best of both prob-

abilistic and rule-based approaches are classified as hybrid taggers. All these

methods differ in design and how they handle the major issues in tagging, which

are usually lack of linguistic resources, ambiguity, unknown word and sometimes

proper names. In this chapter, we will discuss the major tagging methods and

some results for English and Semitic languages.

8

2.2 Rule-based Taggers

Rule-based taggers generally depend on rules hand-written by humans. The first

rule-based taggers used a two-stage architecture (Greene and Rubin, 1971). In

the first stage, a dictionary is used to assign a set of possible parts of speech to a

particular instance of a word. This dictionary does not contain all word variants,

but only the word stems. This means that some morphological analysis is done

before accessing the dictionary. In the second stage, a set of disambiguating rules

is applied to narrow down the choice of tags to just one in cases where words

receive multiple parts of speech.

The first rule-based tagger based on the above two-level architecture is called

TAGGIT (Greene and Rubin, 1971), which was developed on the Brown corpus1.

The tags assigned were from a set of some 77 tags (the Brown tagset). Its basic

idea is to associate with each word a set of potential tags, and then use the

context to choose the correct one. The mechanism for the initial assignment of

tags to a word relied on a lexicon, a word-ending list, and a set of other rules for

dealing with capitalized words, etc. This tagger achieved an accuracy of 70%.

Similarly, the ENGTWOL rule-based tagger (Voutilainen, 1995) is based on the

same two-stage architecture. It employs 139 tags and 56,000 entries for English

word stems. The lexicon includes separate entries for a word with multiple parts

of speech but does not include inflected and derived forms. For the second stage,

it applies more than 1000 constraint rules to disambiguate words which receive

multiple parts of speech.

The above two-stage architecture is the most common approach but not the only

one. A French rule-based tagger called Labelgram (Cardey and Greenfield, 2003)

applies only disambiguating rules based on syntax and word endings to tag French

words without using a dictionary. This method has been successfully applied for

English and Spanish (Birocheau, 2003; Morgadinho, 2004).

2.3 Machine Learning-based Taggers

The second approach to POS tagging is based on machine learning techniques.

The general idea in this approach is to calculate corpus-learned probabilities for

all tag sequences for a given sequence of words and then choose the sequence

1The Brown corpus has 1 million English words

9

with the highest probability. Such stochastic methods have been used since the

1960s (Stolz et al., 1965; Bahl and Mercer, 1976; Marshall, 1983; Garside, 1987;

Church, 1988; Derose, 1988) and many others. If the corpus used to calculate the

probabilities is labeled (ie if a large text is available where every word is tagged

with its corresponding part of speech as used in the text), then the algorithm used

to develop the tagging model is called a supervised machine learning algorithm.

If, on the other hand, only unlabeled corpus is available (ie a text with no POS

tags for each word), then unsupervised machine learning algorithms are used.

Algorithms that use small labeled corpus and then large unlabelled corpus are

called semi-supervised algorithms.

All of these different classes of learning algorithms have been applied to part of

speech tagging. Specifically, the most common taggers use variations of Hidden

Markov Models, Maximum Entropy, Conditional Random Fields and Support

Vector Machines. These methods have been shown to perform with the highest

accuracies. Table 2.1 shows the state-of-the-art POS tagging accuracy results for

English tested on the Wall Street Journal corpus.

Memory based learning algorithms have also been applied to POS tagging with

accuracies comparable to the state-of-the-art (Daelemans et al., 1996; 1998; Zavrel

and Daelemans, 1999). Combining taggers with the objective of outperforming

the best tagger has been tried too(Brill and Wu, 1998; Aires et al., 2000; Halteren

et al., 2001; De Pauw et al., 2006; Sjöbergh, 2003; Loftsson, 2006; Shacham,

2007; Spoustová et al., 2007). With few exceptions, the combined taggers have

outperformed their best component.

Advantages of machine learning-based taggers include ease of repeatability of

experiments using different algorithms and the ability to learn rules or patterns

that may escape human ingenuity. Their disadvantages are that they usually

require large annotated data, which is expensive and laborious to build.

2.4 Hybrid Taggers

Hybrid taggers combine the best of both probabilistic and rule-based methods.

These methods are also called transformation-based taggers. A relatively recent

successful transformation based tagger is Brill’s tagger (Brill, 1992). Like the

rule-based taggers, words are assigned tags based on a set of disambiguating

rules and like the stochastic taggers, these rules are automatically learned from

pre-labeled data.

10

Table 2.1: State-of-the-art POS Tagging Accuracies for English

System name Short description Unknown Overall

TnT Hmm-based (Brants, 2000) 85.86 96.46

GENiA Tagger
Maximum entropy cyclic
dependency network (Tsu-
ruoka et al., 2005)

- 97.05

Averaged Per-
ceptron

Theory and Experiments
with Perceptron Algo-
rithms, Collins (2002)

- 97.11

Maxent easiest-
first

Maximum entropy bidirec-
tional easiest-first inference
(Tsuruoka, 2005)

- 97.15

SVMTool
SVM-based tagger and tag-
ger generator(Giménez and
Marquez, 2004)

89.01 97.16

Stanford Tagger
1.0

Maximum entropy cyclic
dependency network
(Toutanova et al., 2003)

89.04 97.24

LTAG-spinal
Bidirectional perceptron
learning (Shen et al., 2007)

- 97.33

The Brill tagger has two stages: in the first stage, the tagger gives the most

common tag to each known word (without context). Capitalized unknown words

are tagged as nouns and the non-capitalized unknown words are given the most

common tag based on affix and other lexical cues. In the second stage, the tagger

iteratively learns the most effective rules to correct errors, thereby incrementally

improving its performance. The resulting rules can then be applied to a new

corpus after passing it through the baseline tagging (i.e. after assigning the most

frequent tag for each word).

An experiment on 1.1 million words of the Penn Treebank Wall Street Journal

showed that this transformation-based tagger can achieve an overall tagging ac-

curacy of 96.6% (Brill, 1995) using 690 transformation rules learned from 950k

words (86.3%). 447 of the 690 rules were contextual rules learned from 600k

words and the rest 243 rules were learned from 350k words and were used to tag

unknown words. The tagging accuracy for unknown words is 82%.

Another hybrid tagger is the CLAWS tagger, which started in the 1980s and after

a number of modifications, the latest version is now called CLAWS4 (Garside and

Smith, 1997). CLAWS (the Constituent Likelihood Automatic Word-tagging Sys-

tem) is used to POS tag 100 million words of the British National Corpus (BNC),

which consists of words of English written texts and spoken transcriptions, sam-

pled from a comprehensive range of text genres. Two tagsets are used

11

• C7: A detailed tagset of 146 tags

• C5: A less refined tagset of 61 tags

As a hybrid system, the CLAWS4 tagger has both probabilistic and rule-based

components. In the rule-based part, a number of tests are applied to assign

potential parts of speech tags for a given word. These tests are 8 in total and

include looking up the word in a lexicon to assign potential parts of speech. It is

important to note at this point that these rules are different from Brill’s rules as

the latter are not learned automatically but engineered by humans.

The probabilistic component of CLAWS4 is a variation of an HMM tagger, where

the goal is to choose the tag sequence that maximizes P (w/t)p(t/t′). The result of

applying the rules to each word in the text is that each word receives one or more

part-of-speech tags. If a given word receives multiple tags, then the probabilistic

component is applied to choose a single tag. CLAWS4 operates with an accuracy

rate of some 96-97 percent across the whole range of texts in the BNC.

2.5 Work on Related Languages

Amharic belongs to the Semitic family of languages which include Arabic, He-

brew, Tigrigna, Maltese and many others. These languages share a number of

common characteristics and so experiences and results obtained in NLP tasks for

one of these languages can be useful for the others. With respect to POS tagging,

these languages share common problems.

The first common problem arises from their nature of word formation and the

writing systems. The major Semitic languages have been written languages for

a long time now. Their writing systems allow words to be delimited by space.

However, the words in these languages are different from those of English. They

are formed by the concatenation of lexical units, most of which may belong to

various word classes (POS). In other words, two or more words in English can be

considered as one word in Semitic languages.

For that reason, the process of POS tagging for these languages is more com-

plicated. It is not very clear from the beginning what the POS tagging units

should be as the words are the concatenation of various morphemes with poten-

tial boundary ambiguities. Should the words as they appear in text (separated

by space) be POS tagged or the morphemes? The answer to that question de-

12

termines the tokenization algorithm and the tagset design. Both extreme and

intermediate approaches have been tried for Hebrew (Bar-Haim et al., 2005) as

is discussed in section 2.5.2.

The second potential POS tagging problem in Semitic languages comes from the

nature of their writing systems. For example, capital letters are non-existent in

most of these languages making the task of identifying proper nouns more difficult.

Arabic and Hebrew also have another problem. They leave out short vowels and

write only consonants and long vowels expecting readers to fill out the missing

vowels from the context. This problem increases ambiguity for both Arabic and

Hebrew. Amharic, however, does not have such a problem. Consonants and

vowels in Amharic are inseparable.

Given the similarities and the fact that Arabic and Hebrew have seen more re-

search work in the NLP community since recently, it will be important to examine

such works to set standards against which to compare Amharic NLP resources

and tools.

2.5.1 Related work on Arabic

Arabic, as the most spoken Semitic language with hundreds of millions of speakers

as first or second language, it is receiving considerable attention in NLP research.

Arabic comes in many dialects. Much of the research in Arabic has, however,

concentrated on the Modern Standard Arabic (henceforth Arabic). It has a larger

and modern vocabulary with relatively simplified and standardized grammars.

An Arabic word, like words in other Semitic languages, is usually composed of

a stem, plus affixes and clitics. The stem usually consists of a consonantal root

and a template. The affixes include inflectional markers for tense, gender, and/or

number. The clitics include one or more of conjunctions, prepositions, determin-

ers, pronouns and possessive pronouns. Some of these attach to the beginning of

a stem (proclitics) and others attach to the end of the stem (enclitics).

For such a language, designing a POS tagger requires first designing a different

tagset than English. Khoja (2001) designed a tagset of 131 tags. Similarly,

Buckwalter’s Aramorph (Buckwalter, 2002), an Arabic morphological analyzer,

uses 135 morphological labels. Both tagsets are similar as they are based on

some basic tags. For example, Khoja’s tagset is based on five main tags: noun,

verb, particle, residual information and punctuation, which are first extended to

13

35 to account for clitics which, with further sub categorization, became 131 tags.

In the subcategorized tags is included information about verb aspects (perfect,

imperfect, imperative), person, number and gender. For example, VPPl2M

will be the tag of the Arabic word ksrtm which means ”you [plural, masculine]

broke”. V stands for verb, P for perfective, Pl for plural, 2 second person and

M for masculine. Nouns and personal pronouns are tagged in a similar fashion.

The particle category included prepositions, adverbs, conjunctions, interjections,

exceptions and negative markers. Separate tags are also used to indicate dates,

numbers, punctuation marks and abbreviations.

Khoja is also credited for introducing the first Arabic POS tagger called APT.

He developed a hybrid type of tagger, where both rules and statistics are used.

Lacking in annotated corpora for his experiment at the time, Khoja built and

manually tagged 50,000 words extracted from the Saudi Al-Jazirah newspaper.

However, instead of using the 131 tagset, he used the collapsed version, 35, as it

was more laborious to manually tag the corpus using the larger set.

The initial tagging stage in his approach (in APT) involved looking up a word

in a lexicon. If it is found, then it is given all the possible tags of that word as

specified in the lexicon. If the word is not found in the lexicon as it is usually

the case because of the complex morphology of the language, it is reduced to its

stem or root form by the process of stemming. Rules are used in the stemming

process to strip off the affixes. In most cases, a combination of affixes is used to

determine the tag of the word. In some cases, a single affix can determine the

tag of a word. For example, the definite article prefix in a word indicates that

the word is actually a noun. The pattern of the root of the word is also used to

determine its tag.

The stemming process in APT is not perfect for three reasons. Firstly, some

”affixes” that look like real affixes are actually part of the stem/root and not

affixes. Second, word formation by the concatenation of lexical units sometimes

entails spelling changes and these are not accounted for by the stemmer. Third,

the lexicon, which he built himself, was small as it is derived from 50,000 words.

In spite of such shortcomings, the stemmer achieved an accuracy of 97% using a

dictionary of 4,748 triliteral and quadrilateral roots.

The statistical part of APT is used to disambiguate words that received mul-

tiple tags (ambiguous words and unknown words). He used a Viterbi decoding

algorithm that finds efficiently the sequence of tags that maximizes the product

of the lexical probabilities and the transition probabilities, which were calculated

14

from his 50,000-token corpus. Tested on a text of four corpora of total size 85,159

tokens, he obtained an average accuracy of 90%. Given that on average 70-80%

words are unknown and that even after stemming 20% of the words in test corpora

are unknown, the result is not bad but it can be reasonably assumed that with

better stemming algorithms and larger lexicon files, the result could be improved.

Later efforts resulted in AraMorph (Buckwalter, 2002), a more sophisticated Ara-

bic morphological analyzer with a larger lexicon. It gives multiple morphological

analyses of words using 135 morphological labels. This analyzer contains three

lexicon files and three compatibility tables. The lexicon files contain all Arabic

prefixes, stems and suffixes. The three compatibility tables contain information

about permissible prefix-stem, prefix-suffix and stem-suffix pairs. The morpho-

logical analyzer has six functions: tokenization, word segmentation, dictionary

look-up, compatibility check, analysis report and second look up (for orthographic

variants).

The morphological analyzer works as follows: words are segmented into different

prefixes, stems and suffixes and these are checked against the lexicon files and

the compatibility tables. If the segments are available in the lexicon files and if

they are compatible, then the analysis is reported. If the analysis does not return

anything, the orthography is checked and alternative spellings are created and

the process repeats.

This morphological analyzer has been effectively used to develop the Arabic Tree-

bank. The Arabic Treebank is an annotated data constructed by manually choos-

ing the right analysis from the output of AraMorph.

Both Diab et al. (2004) and Habash and Rambow (2005) applied SVM classifiers

using the Arabic Treebank distribution. Their main difference is that the former

did not use features extracted from AraMorph but from the words themselves

whereas the latter used features extracted from morphological analyses returned

by a modified version of AraMorph, called ALMORGEANA (Habash, 2005),

a lexeme-based morphological generator and analyzer using the lexical files of

AraMorph.

Specifically, the features in Diab’s experiment are extracted from a window of

five words (current word and the previous and the next two words). The features

include every character N-gram (N ≤ 4) that occurs in the focus token, the five

tokens themselves, their type from the set {alpha, numeric}, and POS tags of

previous tokens. The class labels for Diab’s are the collapsed tagset of 24.

15

Habash’s approach to use morphological analysis was inspired by the conclusion of

Hajič (2000) who showed using 5 Eastern European (plus English) that for highly

inflectional languages ”the use of an independent morphological dictionary is the

preferred choice [over] more annotated data”.

The training data consists of a set of all possible morphological analyses for each

word, with the unique correct analysis marked. Using this data, SVM classifiers

are trained for ten morphological features. These classifiers are then applied on

every analysis returned by the morphological analyzer to choose the correct one.

The classifiers are combined by different mechanisms, one of which is choosing

the analysis that has the majority of agreements with the classifiers. Testing on

two 12,000 words derived from Arabic Treebank shows an accuracy score of 97.6%

where Diab et al. (2004) reported a score of 95.5% on a similar test corpus. It is

difficult to attribute this increase in performance to just morphological analysis

because the experimental setup was not exactly the same. However, the results

are comparable because they use the same collapsed tagset (24) and the training

and test sets are approximately equal. In Habash’s case, the training was done

on 120,000 tokens and 12,000 tokens were used for development and another set

of 12,000 for testing. In Diab’s case, the development set, training set and test

set are derived from 4519 sentences from the Arabic Treebank. 4000 randomly

distributed sentences are used for training; 119 for development set and the rest

400 are used for evaluation.

It is interesting to note that most of POS tagging errors that are encountered

result from confusing adjectives, JJ, with nouns, NN, or vice versa. For example,

50% of the errors in Diab’s experiment are the result of the confusion between

adjectives and nouns.

2.5.2 Related work on Hebrew

Hebrew is a Semitic language that has received more attention from the NLP

community next to Arabic. Most research before 2000 for Hebrew tagging cen-

tered on unsupervised techniques driven primarily because of lack of annotated

data (Levinger, 1992; Levinger et al., 1995; Carmel and Maarek, 1999; Adler,

2001).

For example, Adler applied HMM for Hebrew segmentation and POS tagging.

The HMM parameters are learned from an untagged corpus using the Baum-

Welch algorithm (Baum, 1972). Adler outlines the different possible levels of

16

segmentation and POS tagging for Hebrew. The first one is the usage of word-

level tags, which determines the level of segmentation and the tag of each word.

The second one is the usage of morpheme-level tags, with second order Markov

model. This too determines the level of segmentation and the nature of the tags

for each morpheme. Tests on the word-level tagging achieved an accuracy of 82%.

The morpheme-level tagging was not tested.

Adler’s approaches to segmentation and POS tagging have been taken up by Bar-

Haim et al. (2005); Bar-haim et al. (2008). They developed a segmenter and a

tagger for Hebrew based on Hidden Markov Models (HMMs) and compared the

two approaches empirically.

Their approach to segmenting and tagging is also similar to that taken by Khoja

(2001) for Arabic. A Hebrew morphological analyzer (Segal, 2000) is used to

assign a set of possible candidate analyses to each word, where each candidate

analysis consists of a segmentation of the word into morphemes. Words that re-

ceive multiple analyses from the morphological analyzer are disambiguated using

the parameters learned in the Hidden Markov Model. However, Bar-haim’s work

is different from that of Khoja because the experiments for Hebrew were done for

two different levels of segmentation, namely word-level and tag-level.

HMM parameters are learned for both word-level tokenization and morpheme-

level tokenization. Second order Markov model is used for morpheme-level tag-

ging and first order Markov model for the word-level tagging. The different orders

of Markov models are chosen in order to minimize the data sparsity problem. The

lexical and the language model probabilities are calculated from the Hebrew Tree-

bank (Simaan et al., 2001). This corpus is a syntactically and morphologically

annotated corpus collected and built from articles from a daily newspaper called

Ha’aretz. Words along with their pos-tagged morphemes are extracted from the

Treebank version that contains 35,848 tokens and 48,332 morphemes.

In addition to the manually tagged corpus, which is not more than 4% of the

Wall Street Journal, 337,651 tokens are used to improve the lexical probability

estimations. To avoid probabilities of zeros (on average, 31.3% on average of the

test words do not appear in the training corpus), the standard backoff smoothing

method of Katz (1987) is employed. All of these tasks are done using SRILM

(Stolcke, 2002), a toolkit for constructing language models and for disambigua-

tion.

A tagset of 28 is used for training, which comes from the morphologically tagged

corpus by leaving out person, gender, number and tense features. A further

17

collapsed version of size 21 is used by grouping some tags together for testing,

which should normally reduce tagging errors.

5-fold cross validation using a training set of about 1,598 sentences (on average,

28,738 words and 39,282 morphemes) and test set of 250 sentences shows an accu-

racy of 88.50% for POS tagging and 96.74% for segmentation when tokenization

is done at word level. For tokenization done at morpheme level, accuracy for POS

tagging is 89.27% and 96.55% for segmentation. From the results the following

hypothesis is formulated.

”Morpheme-level taggers outperform word-level taggers in their tag-

ging accuracy, since they suffer less from data sparseness. However,

they lack some word-level knowledge that is required for segmenta-

tion.”

Error analysis of the tagging methods shows that the most common error type

is related to definiteness marker h. This error is more common in morpheme

tagging than in word tagging. In order to handle the problems associated with

the h, a modified model was developed that improved the accuracy to 89.59% for

tagging and to 97.05% for segmentation.

It is interesting to note that Mansour (2008) adapted this tagger into Arabic by

replacing the Hebrew morphological analyzer with an Arabic one and achieved

an accuracy of 96.3% over 26 tags on a 89k token corpus.

2.6 Previous Work on Amharic

NLP research on Amharic has started fairly recently and has been constrained

by lack of linguistic resources and an authoritative body to define and develop

them. Unlike Arabic and Hebrew, which have syntactically annotated Treebanks,

Amharic does yet have a Treebank. Even so, NLP researchers from native speak-

ers to non-speakers have shown interest in the language and developed prototypes

by applying some of the state-of-the-art tagging models (Getachew, 2001; Adafre,

2005; Gambäck et al., 2009; Tachbelie and Menzel, 2009).

Getachew (2001) is the pioneer for Amharic POS tagging experiments. He de-

veloped a tagging prototype using Hidden Markov models, which he trained and

tested on a text of one page.

18

His contribution also included the definition of a tagset. He suggested using

25 tags. This tagset has served as a basis for the tagsets used by subsequent

researchers. The tagset he used are N,NV, NB, NP, NC, V, AUX, VCO, VP, VC,

J, JC, JNU, JPN, JP, PREP, ADV, ADVC, C, REL, ITJ, ORD, CRD, PUNC,

and UNC. One good design strategy in designing a tagset is to start with major

classes and to extend these with subclasses. Evaluating Getachew’s tagset on this

strategy shows that his tagset can be reduced to a smaller tagset with the capacity

to capture a more abstract description of the language such as N* (nouns), V*

(verbs), J* (adjectives), etc. For example, NP, NV etc can be reduced to N.

Similarly, VCO, VP and VC can be reduced to V. In some cases, however, it is

not clear how to find the major classes from the tags themselves. For example,

REL (for relative verbs) is a kind of verb but it is not possible to see that from

the tag itself.

Getachew’s tagset also defines the context of its usage. The tags are used when

words are tagged as they appear in text, separated by space. Because Amharic

words usually consist of stems with prefixes and suffixes attached to them, he

could have as well designed a tagset that would apply after splitting the word

into prefixes, a stem and suffixes. Instead, he designed a tagset that deals with

the words as the smallest units for tagging, which implied, in order not to lose

information, that the tagset include information about the constituting prefixes

and suffixes which usually belong to different word classes (POS). The tag NPC,

for example, indicates that the word is a noun prefixed by a preposition and

suffixed by a conjunction.

Adafre (2005), who did the next POS tagging experiment for Amharic, revised

Getachew’s tagset and reduced it to ten. The ten POS tags are Noun (N),

Verb (V), Auxiliary verbs (AUX), Numerals (NU), Adjective (AJ), Adverb (AV),

Adposition (AP), Interjection (I), Residual (R), and Punctuation (PU).

In addition to reducing the tag size, Adafre made also two important modifica-

tions to Getachew’s tagging approach. From the tag descriptions of Getachew,

it can be seen that grammatical functions take precedence over morphology in

deciding the POS category of a word. This can also be inferred from his decision

to take words that form collocations as one unit for tagging. So Adafre’s first

modification is to consider the words in collocations as separate units for tagging,

avoiding the need of identifying them.

The second modification is related with tagging a ye+NOUN Amharic construc-

tion. To such a word, Getachew’s approach assigns the tag JPN, signifying that it

19

functions as an adjective. For example, yetaywan sahn (=A Taiwan made plate)

is given JPN. However, the ye+NOUN construction can be seen as a simple

morphological variant of the NOUN and so be tagged as such. So, in Adafre’s

case, this would be categorized under noun subclasses rather than under adjective

subclasses. This has the advantage of simplicity and improving performance as

ye + NOUN is also used in other functions (eg: possession).

The motivation for reducing the tagset from 25 to 10 is lack of annotated re-

sources. The more refined that the tags are, the more annotated data is needed

for learning an accurate tagging model. As there were no POS annotated data at

the time, Adafre collected five news articles and manually annotated them, which

he then used for both training and testing of a stochastic model based conditional

random fields (Lafferty, 2001).

He obtained an average accuracy of 74% on a 5-fold cross-validation where one

file is used for testing and the other files for training. The reason for the poor

performance (compared to the state-of-the-art results) is the small size of the

dataset. 80% of the words in the test files consist of unseen words. From this result

and successful experiences in other experiments for large datasets, it became

clear that Amharic POS-annotated data is necessary to achieve performances

comparable to the state-of-the-art results.

In 2006, a medium-sized corpus of reportedly 210,0002 tokens annotated with

parts of speech was released (Demeke and Getachew, 2006). The corpus consists

of 1065 news articles collected from Walta Information Center (WIC), a private

news agency located in Addis Ababa. It is tagged with 313 parts of speech and

is publicly available on the Internet. This corpus has been a useful resource for

the recent experiments on Amharic POS tagging.

Gambäck et al. (2009) and Tachbelie and Menzel (2009) applied different state-of-

the-art tagging methods using the WIC corpus and obtained worse performances

than the best results for Arabic or English.

Gambäck conducted detailed experiments using TnT (Brants, 2000), SVMTool

(Giménez and Marquez, 2004) and Mallet (McCallum, 2002) on three different

tagsets. The overall accuracies using the ELRC4 tagset are 85.56% for TnT,

88.30% for SVM and 87.87% for MaxEnt as shown in table 2.2. Similarly, Tach-

belie and Menzel (2009) also conducted similar experiments using TnT and SVM-

2actual counting reveals a number less than that
330 is reported, actual counting shows 31
4Ethiopian Languages Research Center

20

Table 2.2: Previous POS Tagging Accuracies for Amharic

Tagger Known Unknown Overall

TnT 90.00 52.13 85.56
SVM 89.58 78.68 88.30

MaxEnt 89.44 76.05 87.87
Basline 35.50

Tool models with overall accuracies of 82.99% for TnT and 84.44% for SVM.

For both sets of experiments, the best performances are achieved by SVM but

Gambäck’s SVM performs better (88.30% against 84.44%).

Those poor performances (compared to English or Arabic) can be explained by

four reasons. First, the corpus used is small; it is one-sixth of the size of the WSJ

corpus. Second, the taggers use no more knowledge source than a pre-tagged

training corpus. Third, the quality of the corpus is poor. Tagging errors and

inconsistencies are considerable in the corpus. Fourth, little parameter tuning of

the algorithms was done to suit the WIC corpus.

Except for Adafre (2005), who used dictionaries of affixes and some 15,000 entries

(Aklilu, 1987) with their POS tags (Noun, Verb, Adjectives, Adverb, and Adposi-

tion), all other previous POS experiments for Amharic used language independent

features. The features include a subset of the following:

• Lexical features consist of

– the current word

– the two words to the left and to the right of the current word

• Morphological/syntactical features

– Prefixes and suffixes of length from 1 to 4/5

– All digits

– Is word capitalized

– Contains digits

– Contains hyphen

– The previous two tags

Such features are quite effective for most languages but more can be done by

examining more morphological features of the given language. For Amharic, one

21

feature that is important and not included by previous experiments is the vowel

patterns embedded in words. For example, kebad and kelal are adjectives and

share the same e,a vowels. Verbs also show similar vowel patterns. manbebu (that

he read), madregu (that he did), mabedu(that he became mad), etc all share a,

e, u vowel patterns. Another feature that may prove useful is the radicals (the

consonants in the words). For example, sebere (he broke), sebro (having broken

(he)), sebra (having broken(she)) can be reduced to just the radical sbr and

be treated as a verb. Both the vowel pattern and the radical features have the

advantage of reducing data sparsity problem and so language modeling techniques

would perform better by capturing them.

On the other hand, the feature of capital letters that is so important in identifying

names of people and places in English does not help in Amharic as the capital-

ization concept does not exist in the writing system. For that reason, it is not

important to have it as a feature for learning. However, language independent

tools include it. In fact, in SERA5, the letters in lower or upper cases account

for different letters.

The right features are not sufficient for performance improvement if the quality

of the corpus is poor. The WIC corpus has significant errors and tagging incon-

sistencies. This problem has been acknowledged by researchers who worked on

it and they have made efforts to correct some of them. For example, Gambäck’s

experiments were done on a partially corrected WIC corpus. The corrections in-

cluded tagging non-tagged words, removing double tags, treating consistently ’”’

and ’/’ as punctuation, retagging some wrongly tagged words and some spellings

errors. However, they acknowledge that tagging inconsistencies related to time

and number expressions had been left as they were. Therefore, this type of error

and others left unnoticed have contributed to the relatively poor performance.

This dissertation will attempt to improve performance by doing three things. The

first one is based on cleaning the corpus. This step is crucial and will determine

the performance of any method. This is probably the reason Tachbelie and Menzel

(2009) got worse results than Gambäck et al. (2009) as the former did not make

any effort to clean the corpus. The second thing involves feature selection. The

usual features used for POS tagging will be used. In addition, however, the vowel

patterns and the radicals, which are characteristics unique to Semitic languages,

will be included. The third is by applying the state-of-the-art tagging machine

learning algorithms and doing necessary parameter tuning as much as possible.

Algorithms used are conditional random fields, support vector machine, Brill

5System for Ethiopic Representation in ASCII

22

tagging and TnT.

All of these things combined have contributed to the most accurate part of speech

tagger ever reported for Amharic.

23

Chapter 3

Tagging Models

• Introduction

• Hidden Markov Based Models

• Conditional Random Fields

• Support Vector Machines

• Brill Tagging

3.1 Introduction

Part of speech tagging can be done either using handcrafted linguistically-motivated

rules or by stochastic methods. While rules are specific for languages, stochastic

or machine learning based tagging methods are independent of languages. In this

chapter, we will discuss the mathematical probabilistic models that have proven

useful in part-of-speech tagging.

3.2 Hidden Markov Based Models

A hidden Markov model (HMM) is a finite state automaton with stochastic state

transitions and observations. The automaton models a probabilistic generative

process whereby a sequence of observations is produced by starting in some state,

emitting an observation selected by that state, passing to a new state, emitting

another observation-and so on until a designated destination state is reached.

24

More formally, an HMM model is characterized by the following (Rabiner, 1989).

1. N , the number of states in the model. Generally the states are intercon-

nected in such a way that any state can be reached from any other state.

The hidden states often represent important physical aspects. In part of

speech tagging, the states represent the tags. We denote the individual

states as T = tl, t2, ..., tN , and the state at time t as qt.

2. V , the number of distinct observation symbols per state, i.e., the discrete

alphabet size. The observation symbols correspond to the physical output

of the system being modeled. For part of speech tagging, the observation

symbols are the words of a given language. We denote the individual sym-

bols as W = wl, w2, ..., wM

3. The state transition probability distribution A = {aij} where

aij = P (qt+1 = tj/qt = ti), 1 ≤ i, j ≤ N

aij ≥ 0

When there are no connections between states, the corresponding aij tran-

sition probability is zero. For all other cases, it is greater than zero.

4. The observation symbol probability distribution in state j, B = {bj(k)},
where

bj(k) = P (wk/qt = tj) 1 ≤ i, j ≤ N, 1 ≤ k ≤ V

5. The initial state distribution π = {πi}, where

πi = P (q1 = ti), 1 ≤ i ≤ N

The above enumeration shows that HMM models have two parameters and three

probability distributions. The two parameters are N (number of states) and V

(vocabulary size) and the three probability distributions are A, B and π. The

three probability distributions are henceforth referred to as λ where

λ = (A,B, π)

Given an HMM model with values for N , V and λ, there are three problems that

are of interest as formulated by Rabiner (1989):

Problem 1 Given the observation sequence O = O1O2...OT and a model λ =

25

(A,B, π), how do we efficiently compute P (O/λ)? In other words, what is

the probability of the observation sequence, given the model?

Problem 2 Given the observation sequence O = O1O2...OT and a model λ =

(A,B, π), how do we choose the underlying state sequence Q = q1q2...qT ?

Problem 3 How do we adjust the probability distributions λ = (A,B, π) to

maximize P (O/λ)?

Such are the questions that can be raised about an HMM model. Solving the

first problem is important in comparing two or models. We choose a model that

gives high probability to observation sequences. Solution to the second problem

is important in discovering the underlying hidden state sequences that could have

given rise to the observation. The solution to the third problem has the advantage

of giving us the best model for the observations.

Usually, the relevant problem for part of speech tagging is the second problem.

The problem in part of speech tagging is that of discovering the underlying tag

sequences for a given sequence of words.

More formally, given a sequence of words W = w1, w2...wi...wn where wi ∈
V (Vocabulary), what is the most probable sequence of tags T = t1, t2...ti...tn

where ti ∈ T (Tagset) that could have given rise to these words?

To solve this problem, we need to have appropriate values for the model λ =

(A,B, π) and an efficient algorithm to search through the space of tag sequences

for the optimal one. The values for λ can be estimated from a tagged corpus.

POS tagging algorithms that are based on HMM differ in the ways they estimate

values for λ = (A,B, π).

Viterbi algorithm, a dynamic programming based algorithm, is used to find the

best sequence (Viterbi, 1967), which basically involves solving the following prob-

ability function.

T ∗ = arg max
T

P (T/W)

= arg max
T

P (T)P (W/T) Bayes’ Theorem (3.1)

P (T) and P (W/T) in equation 3.1 are the transition probabilities and observa-

tion(lexical) probabilities, respectively. arg max tells us that the function returns

the tag sequence that maximizes the probability function value. Transition prob-

26

ability captures more of context and tag dependencies.

P (T) = P (t1, t2 . . . tn)

= P (t1)P (t2/t1)P (t3/t2t1) . . . P (tn/tn−1tn−2 . . . t1) Chain Rule (3.2)

Equation 3.2 assumes that the current tag depends all previous tags. It is hard

to find values for such an assumption. There is too little annotated data for this

to work. So, what is common to do in this case is to assume that the current tag

depends on some fixed number of previous tags. Depending on this fixed number,

we have unigram, bigram and N-gram in general. Unigram means the current tag

does not depend on previous tags. Bigram means the current tag depends on the

previous tag and so on. For example, for the bigram case, the equation becomes

as shown below.

Transition probability:

P (T) = P (t1)P (t2/t1)P (t3/t1t2)P (t4/t2t3) . . . P (tn/tn−2tn−1) (3.3)

≈
n∏
i=1

P (ti/ti−2ti−2) (3.4)

Lexical probability:

P (W |T) = P (w1/t1 − tn)P (w2/w1t1 − tn) . . . P (wn/w1 − wn−1t1 − tn) (3.5)

≈ P (w1/t1)P (w2/t2)P (w3/t3) . . . P (wn/tn)

≈
n∏
i=1

P (wi/ti) (3.6)

Equation 3.5 implies current word is determined by the tag sequence and all pre-

vious words, whereas equation 3.6 assumes current word is determined completely

by its tag. The values for the transition and lexical probabilities are estimated

by the maximum likelihood estimate given below for the bigram case.

P (ti/ti−1) =
Count(ti−1, ti)

Count(ti−1)
A parameter (3.7)

P (wi/ti) =
Count(ti, wi)

Count(ti)
B parameter (3.8)

Using the above two equations, A and B parameters can easily be calculated

by counting and dividing. In counting, it is possible that for some sequences of

tokens we may get zero. This can be bad because it implies particular tokens

can never occur. However, this is not necessarily true. It may just mean that

the training corpus did not have the tokens. How we deal with this count zero

27

problems also determines the kind of our HMM model. The methods that try

to solve this problem are called smoothing techniques and there are so many of

them (Lidstone, 1920; Johnson, 1932; Good, 1953; Katz, 1987; Church and Gale,

1991; Chen and Goodman, 1999).

3.3 Conditional Random Fields

Conditional Random Fields (CRFs) are conditional probability distributions that

take the form of exponential models (Lafferty, 2001). CRFs relax certain assump-

tions about the input and output sequence distributions. CRFs can contain any

number of feature functions that can inspect the entire input sequence at any

point during inference.

P (t/w) =
1

Z(w)
exp(

n∑
j=1

k∑
i=1

λifi(tj−1, tj, w1:n, j)) (3.9)

Z is the normalization factor to make P (t/w) a valid probability function over

tag sequences and is equal to

Z =
∑
t∈T

exp(
n∑
j=1

k∑
i=1

λifi(tj−1, tj, w1:n, j)) where T is the set of tags

Indices j = 1 to n represent word positions in a sentence.

Indices i = 1 to k represent the feature functions.

λi is the weight for feature fi. The λis are the parameters of the CRF model that

must be learned. The feature functions fis are the key components of CRF. The

general form of a feature function for a linear chain is

fi(tj−1, tj, w1:n, j)

This function looks at a pair of adjacent states tj−1tj, the whole input sequence

w1:n, and the current word position in the sentence (j). For example,

fi(tj−1, tj, w1:n, j) =

1 if j = n and tj = ”VERB”

0 otherwise
(3.10)

The above feature function is inspired by Amharic syntax. The last word in an

Amharic sentence is a verb and so it will be on for a word at the end of a sentence

and off for all other positions.

28

For a feature function fi that is active, the following conditions hold:

• If λi > 0, it increases the probability of the tag sequence t1:n.

• If λi < 0, it decreases the probability of the tag sequence t1:n.

• If λi = 0, it has no effect on the probability of the tag sequence t1:n.

The difference between Maximum entropy models (Ratnaparkhi, 1996) and CRF

is that a MEMM uses per-state exponential models for the conditional probabil-

ities of next states given the current state, while a CRF has a single exponential

model for the joint probability of the entire sequence of labels given the obser-

vation sequence. In other words, CRFs solve the label bias problem (Lafferty,

2001).

The per-state normalization requires that all the mass that arrives at a state must

be distributed among all the successor states. An observation can affect which

destination states get the mass, but not how much total mass to pass on. This

causes a bias toward states with fewer outgoing transitions. In the extreme case,

a state with a single outgoing transition effectively ignores the observation. This

is a bias problem.

3.4 Support Vector Machines

SVM is a practical machine learning algorithm used for binary classification

(Boser et al., 1992; Cortes and Vapnik, 1995). In its basic form, SVM learns

a linear hyperplane that separates the set of positive examples from the set of

negative examples with maximal margin (to increase generalization capacity of

the model). The margin is defined as the distance between the hyperplane and

the nearest of the positive and negative examples.

Given a set of m training examples {(x1, y1), (x2, y2), . . . (xm, ym)}, where xi ∈ Rn

and yi ∈ {−1,+1}, the problem is to find two parameters a weight vector w and a

bias b such that the margin between the support vectors of positive and negative

examples is maximum. Finding the right dividing hyperplane requires solving the

29

following optimization problem.

min
w,b,ξ

1

2
wTw + C

l∑
i=0

ξi (3.11)

subject to yi(w
Tφ(xi) + b) ≥ 1− ξi,

ξi ≥ 0

φ is a mathematical function that maps feature vectors xi into higher and pos-

sibly infinite dimensional feature space. In this feature space a linear decision

surface (a hyperplane) with a maximal margin is constructed whose special prop-

erties ensure high generalization ability of the learning machine. C > 0 is the

penalty parameter of the error term. Larger C values tend to overfit training

data, whereas smaller values tend to underfit it.

φ functions for the input vectors are not directly calculated but a kernel trick is

applied (MA et al., 1964). In other words, a kernel function that is equivalent to

the transformed dot product of input vectors is used. Mathematically,

K(xi, xj) = φ(xi)
Tφ(xj) (3.12)

Commonly used kernels are:

Linear: K(xi, xj) = xTi xj

Polynomial: K(xi, xj) = (γxTi xj + r)d

Radial Basis Function (RBF): K(xi, xj) = exp(−γ‖xi − xj‖2), γ > 0

Sigmoid: K(xi, xj) = tanh(γxTi xj + r)

γ, r, and d are kernel parameters that are chosen depending on the given corpus.

Since SVMs are binary classifiers and part-of-speech tagging is a multiclass clas-

sification problem, we will need as many SVMs as there are tags by adopting the

one-versus-rest approach. If we have T tags, we will have T SVMs. For a new

test data xi, we will choose the SVM that is the most confident.

3.5 Brill Tagging

In stochastic tagging methods, tagging information is stored in thousands of lexi-

cal and contextual probabilities. The advantage of this is that tagging information

30

Figure 3.1: Transformation-based Error-driven Learning

is automatically learned from a corpus, saving the cost of laborious manual rule

engineering. However, the same method has also a number of disadvantages: one,

the tagging information stored is too much or too big; two, the information stored

is a bunch of numbers with little linguistic meaning. The Brill (1992) tagger at-

tempts to overcome those disadvantages by reducing the amount of information

required for tagging and by using linguistically meaningful rules and still avoiding

having to construct the rules manually.

The paradigm of Brill tagging is based on a more general learning technique called

transformation-based error-driven learning. Figure 3.1 shows a simple graphical

representation of the learning process. This learning process involves two impor-

tant components. First, words of a given text are passed through an initial state

tagger. The initial state tagger can be as simple as a tagger that assigns random

tags or the same tag for all words or the most likely tag for each word. The result

of the initial state tagger is a tagged text. The second component of Brill tagger

takes the tagged text and applies transformations to make it more like the truth,

which is text manually tagged by humans.

The transformations are tagging corrections that are applied when certain con-

texts or lexical properties are satisfied and they are instantiated from the following

patch templates (Brill, 1992; 1995):

31

Change tag a to tag b when:

1. The preceding (following) word is tagged z.

2. The word two before (after) is tagged z.

3. One of the two preceding (following) words is tagged z.

4. One of the three preceding (following) words is tagged z.

5. The preceding word is tagged z and the following word is tagged y.

6. The preceding (following) word is tagged z and the word two before (after)

is tagged y.

7. The current word is (is not) capitalized.

8. The previous word is (is not) capitalized.

9. The preceding (following) word is w.

10. The word two before (after) is w.

11. One of the two preceding (following) words is w.

12. The current word is w and the preceding (following) word is x.

13. The current word is w and the preceding (following) word is tagged z.

a, b, z and y belong to the set of parts of speech and w and x are words in the

training set.

Every instantiation of the transformation template is then applied to every tag-

ging error observed by comparing the output of the initial state tagger to the

truth. Each such transformation may result in correcting x number of errors and

introducing y number of errors. The real reduction in errors comes by subtracting

y from x to get a score s(s = x − y). The patches with the highest s scores (ie.

resulting in higher error reductions) are chosen and become part of the set of

rules that will finally be used to tag a new text.

The same approach can be used to tag unknown words. The only change that has

to be made in the mentioned procedure is to add new transformation templates.

Here are the templates for tagging unknown words as outlined by Brill.

Change the tag of an unknown word from X to Y if:

32

1. Deleting(Adding) the prefix (suffix) x, |x| ≤ 4, results in a word x.

2. The first/last (1,2,3,4) of the word are x.

3. Word W ever appears immediately to the left(right) of the word.

4. Character Z appears in the word.

The templates shown above were originally made for English, where the mor-

phology is less complex and where the word order is quite predictable. In other

languages, where much of the tagging information is in parts of the words, there

is a need for new templates. In this case, the templates suggested by Brill for

tagging unknown words can be extended for tagging known words too. This can

be done by creating templates that look at the affixes of words before and after

the current word.

33

Chapter 4

Amharic Morphology

• Introduction

• Amharic Orthography

• Amharic Morphology

• NLP Challenges in Amharic

4.1 Introduction

Parting of speech tagging using stochastic methods can be done without directly

using the morphology of the language by relying heavily on the size of the train-

ing corpus and this may achieve reasonably accurate results for morphologically

less complex languages. However, for morphologically complex languages like

Amharic, a significant performance improvement can be achieved by integrating

the essential morphological elements in the features that are learned by stochastic

methods. In this chapter, we will explore briefly Amharic orthography and mor-

phology with the view to finding vowel patterns that will be used in improving

POS tagging accuracies.

34

4.2 Amharic Orthography

Amharic is written in Ethiopic1 or Fidel, which is the writing system also used

by Tigrigna2. Unlike Arabic, Hebrew and Syriac, which have their vowel signs

written independently above, below, or within the letters, the Ethiopic writing

system attaches its vowel signs to the body of the consonant, so that there are as

many modifications of the form of each consonant as there are vowels.

The Ethiopic alphabet has 33 basic characters. Each such character is modified in

some regular fashion to reflect the seven vowels of the language. Therefore, there

are in total 33 ∗ 7 = 231 characters. Even though Amharic alphabet is Unicode

standard3, it is sometimes convenient to represent it in ASCII. Written in SERA

(Firdyiwek and Yaqob, 1997) (System for Ethiopic Representation in ASCII), the

basic characters which can also be called the consonants of the language are in

alphabetic order:

C = {h, l,H,m, s, r,′ s, x, q, b, t, c,′ h, n,N, a, k,K,w,′ a, z, Z, y, d, j, g, T, C, P, S,′ S, f, p}

The vowels are:

V = {e, u, i, a, E, I, o}

Out of the 33 basic consonants, Amharic identifies 28 unique sounds. This implies

that, in some cases, more than one consonant is used to represent the same sound.

These are:

• {h, H, h’}

• {s, s’}

• {S,’S} and

• {a, a’ }

The above sets represent different sounds. The letters in each set represent the

same sound. It is important to recognize these letters in natural language pro-

cessing tasks. For example, an Amharic word that has the letter h can be written

in three equivalent ways and must be treated as one for NLP tasks.

1Ethiopic is the name used outside Ethiopia to refer to the writing system; Fidel is more
familiar to Ethiopians.

2Semitic language spoken in northern Ethiopia and Eritrea
3Ethiopic (U+1200 - U+137F), Ethiopic Extended (U+2D80 - U+2DDF), Ethiopic supple-

ment(U+1380 - U+139F)

35

As the Ethiopic alphabet does not distinguish between lower and upper cases and

as there are more sounds than can be handled by the 26 Latin letters, differences

in letter case have been used to represent different sounds. The alphabet can

be thought of a 33x7 matrix table of symbols for all possible consonant-vowel

combinations (CV) where the rows are the consonants and the columns are the

vowels.

Some punctuation marks used in Amharic are like those of English. However,

there are important differences. Four points (2 consecutive colons) are used to

mark the end of a sentence and where English uses comma, Amharic uses a colon

with a bar.

Amharic is a SOV language where words are separated by space. Except in

poems, the head verb is usually at the end of a sentence. Unlike Arabic and

Hebrew, Amharic is written from left to right.

4.3 Amharic Morphology

Words in Amharic text can be classified into ’native’ and ’borrowed’ words. We

refer to words that have not been borrowed from other languages as ’native’. We

refer to words that have come from other languages as ’borrowed’. Such words are

like ’kompiwter’ for a computer and ’mobayl’ for a mobile phone. ’Native’ words

can further be divided into derived words and non-derived words or primitives.

Primitives and ’borrowed’ words can be put in one class for natural language

processing applications. This class usually consists of nouns.

Nouns in Amharic can be inflected for gender, number, definiteness, and case.

The definite article and conjunctions attach to the end of a noun, while preposi-

tions are mostly prefixed. A regular expression that recognizes all morphological

changes for a noun is given below.

Surfaceform1 = (prep OR genitive) AND noun AND (fm OR pl)?

AND definiteness AND case and conj

Surfaceform2 = prep AND noun AND (fm OR pl)?

AND (definiteness OR possession) AND case AND conj

Noun surface form = surfaceform1 OR surfaceform2

36

Table 4.1: Examples of Morphological Changes for Amharic Nouns

Amharic English

bET house
bET-u the house
bET-u-n the accusative case
bET-u-m the house also
bET-u-na the house and
bET-na house and
bET-cew their house
bET-oc houses
ye-bET-oc-E my house’s
ke-bET-u from the house
ye-bET-um the house’s also
ye-bET-oc-achu your houses’
le-bEt-oc-can for our houses
be-bEt-wa by her house

Figure 4.1: Finite State Automata that Recognizes Amharic Nouns

If there is a genitive marker, there is no possession marker. That is the reason we

have surface form1 and surface form2. We have used one of the most important

properties of regular expressions4 to combine the two regular expressions to form

another one. Figure 4.1 is the finite state automata version of the regular expres-

sion described above and table 4.1 shows examples of the morphological changes

that a given noun can undergo.

Like many other Semitic languages, derived Amharic words are based mostly

but not exclusively on tri-consonantal roots/radicals. In the previous section, we

have said that Amharic unique consonants are 28. This gives us 283 = 21,952

possible tri-consonantal roots. There are also a considerable number of frequent

bi-consonantal roots, in theory 282 = 784. So in total, we have 22,734 bi- and

tri-consonantal roots. Different words and stems are formed by inserting vocalic

patterns in these roots. For example, the verb root sbr for break has among others

the forms listed in table 4.2. As can be seen from the table, the vowel patterns

can take the form of [e,a,i], [0,a,i], etc. The process of inserting vocalic patterns

in the roots is called intercalation or interdigitation. By their ordered presence

and absence, the vocalic patterns are going to be useful in identifying the correct

4Union, intersection, etc operations on regular expressions give us other regular expressions

37

tags for words. After intercalation (interdigitation), the words or stems undergo

the more familiar morphological changes that result from concatenation. Thus,

the resulting different word forms reflect, among other things, subject, gender,

number, object, possession, negation, tense, beneficative, malfactive, etc. The

Table 4.2: Examples of ’sbr’ Productions to Form Amharic Words

’sbr’ forms Meaning

sebari one who breaks
sbari a fragment
sebara broken
sebere he broke
asebere he made somebody break something
sebabere he breaks something again and again
tesebere it has got broken
asabere he helped in breaking something
asebabere he helped in breaking something into pieces
seberku I broke
seberec she broke
seberu they broke
sebern we broke
seberk you broke
seberachu you(pl) broke
Isebralehu I will break
sebrealehu I have been breaking
Iyeseberku I am breaking
siseber while it was being broken
yemiseber something that can be broken
mesberia an instrument for breaking

interesting problem with respect to Amharic derived words and especially verbs

is whether one can come up with a regular expression/relation to represent all

valid forms of a root (example: ’sbr’). This problem is challenging as there are

some phonological changes, which need to be identified and encoded. However,

this has just been done recently in Indiana University by Gasser (2009b).

In the following subsections, we will look into the details of word formation with

emphasis on the vocalic patterns (Ymam, 2007). In the word derivations, C

represents one of the thirty-three consonants. The set {e, u, i, a, I, o} represents

the vowels. In writing, CI is equivalent to C. Amharic pronunciation does not

allow the first two consonants of a word to follow one another without a vowel

’I’. Native speakers of the language pronounce this vowel when it is necessary

(even though it is not normally written). ’C?’ means C may or may not occur. A

geminate C is written as CC. 0(zero) represents the absence of a vowel. The word

derivation rules shown hereafter have matrix-like operations where ’+’ means

38

concatenation and ’T’ means transpose. In most cases, instead of the general

formulas, the right hand sides of the rules represent instances and their meanings.

4.3.1 Derived nouns

Nouns are derived from other nouns, adjectives and verb roots.

1. noun/adjective + net ⇒ abstract noun

Example: (deg + net ⇒ degnet /kind + ness ⇒ kindness)

2. noun/ adjective + et ⇒ abstract noun

Example: (xum + et ⇒ xumet/appintment(post))

3. Noun + eNa ⇒ fereseNa/horse-rider

4.
[
C CC? C

]
+
[
I I? 0

]T
+ et/ox/at/o/ot/ota/na ⇒ noun

Example: srk(root for stealing) + ox ⇒ srkox/theft

5.
[
C CC? C

]
+
[
I a 0

]T
+ E ⇒ wdasE/praise

6.
[
C CC

]
+
[
I 0

]T
+ Et ⇒ skEt/success

7.
[
C C C

]
+
[
I I? 0

]T
+ it ⇒ tnbit/prophecy

8.
[
C C C

]
+
[
I 0 0

]T
+ iya ⇒ gTmiya/match

9.
[
C C C

]
+
[
I 0 0

]T
+ a ⇒ Cfra/follower

10.
[
C C C

]
+
[
e 0 0

]T
⇒ serg/wedding

11.
[
C CC? C

]
+
[
e e 0

]T
⇒ qereT /tax

12.
[
C C C

]
+
[
e e 0

]T
+ a ⇒ sebera/breaking- event

13.
[
C C? C

]
+
[
e a 0

]T
+ i ⇒ sebari/breaker (’do’-er nouns)

14.
[
C CC C

]
+

[
I a 0

]T
+ i ⇒ sbari/(the broken thing) (’do’-ee nouns

of the type ’appointee’)

15.
[
C CC? C

]
+
[
e? e 0

]T
+ i ⇒ mesber/(the action of breaking)

39

16. me +
[
C C C

]
+
[
0 e 0

]T
+ iya ⇒mesberiya/(noun for the instrument

by which things are ’done’)

17. a +
[
C1 C2 C2 C3

]
+
[
e a e 0

]T
⇒ asebaber/ (noun for the way of

’doing’ things, in this case way of breaking)

The vowel patterns which may indicate that a particular word is a noun are

[I,a,E], [I,E], [I,I,i], [I,0,I,a], [I,0,a], [e,0,0], [e,e,0], [e,e,a], [e,a,i], [I,a,i], [e,e,e,0],

[e,0,e,i,a], and [a,e,a,e,0]. The suffixes for most nouns are -net, -et, -ox, -at, -o,

-ot, -ota, -na and -eNa.

4.3.2 Derived adjectives

Adjectives are derived from nouns and verb roots (Ymam, 2007).

1. noun + eNa ⇒ hayleNa/powerful (character adjectives)

2. noun + ama ⇒ terarama/mountainous (descriptive adjectives)

3. noun + awi ⇒ hagerawi/national (scope adjectives)

4.
[
C CC? CC?

]
+
[
e a 0

]T
+ a ⇒ sebara/broken

5.
[
C CC? C

]
+
[
e e 0

]T
⇒ derek/dry (character adjectives)

6.
[
C C C

]
+
[
I u 0

]T
⇒ nSuh/clean

7.
[
C C C

]
+
[
e a 0

]T
⇒ kebad/heavy, kelal/light

(content adjectives)

The vowel patterns which may indicate that a particular word is an adjective are

[e,a,0], [e,e,0], [I,u,0] and [e,a,0]. The suffixes for most adjectives are -eNa, -ama,

and -awi. From the vowel patterns and suffixes for adjectives and nouns, we can

see that [e,e,0] and -eNa are shared between the two. In this case, we have to

look for other means of distinguishing them. One simple way, which may serve

as a baseline, is to say it is a noun, because there are a lot more nouns than

adjectives.

40

4.3.3 Derived verbs

Amharic verb stems are used with different prefixes and suffixes. These affixes

may express tense, mood, aspect and person. The verbs may also agree with

the person, gender and number of their subjects and objects. The following

derivations are used to form the stems to which the prefixes and suffixes are

added(Ymam, 2007).

1.
[
C CC C

]
+
[
e e 0

]T
⇒ lebes-/dressed

It is a stem for verbs that express past events (past aspect) and ’lebes-

’ makes sense where there is an inflection for the subject (’lebesku’ = I

dressed)

2. a +
[
C CC C

]
+
[
e e 0

]T
⇒ alebes-

dressed somebody (active)

3. as +
[
C CC C

]
+
[
e e 0

]T
⇒ aslebes-

(causative: got somebody to dress somebody else)

4. te +
[
C CC C

]
+
[
e e 0

]T
⇒ teseber-/broken

(passive)

5. a +
[
CC CC C

]
+
[
a e 0

]T
⇒ asaber-

(participative : participate in breaking)

6. te +
[
C CC C

]
+
[
a e 0

]T
⇒ tesaber-

(reciprocal: one broke the other)

7. a +
[
C CC C

]
+
[
a e 0

]T
⇒ asaber-

(caused others for reciprocal action)

8.
[
C1 C2 C2 C3

]
+
[
e a e 0

]T
⇒ sebaber-

(repetitive : breaking happened repetitively)

9.
[
C1C1 C2 C2C2 C3

]
+
[
e a e 0

]T
⇒ asebaber-

(participative in the repetitive action)

10. te +
[
C1 C2 C2C2 C3

]
+
[
e a e 0

]T
⇒ tesebaber -

(repetitive reciprocal)

11. a +
[
C1 C2 C2C2 C3

]
+
[
e a e 0

]T
⇒ asebaber -

(caused others for repetitive reciprocal)

41

12.
[
C1 C2C2 C3C3

]
+
[
I I 0

]T
⇒ sbr al-/adereg-

(sudden events/actions: are used to form compound verbs with intransitive

al- and transitive adereg-. sbr ale = got suddenly broken, sbr aderege = he

broke it suddenly)

13.
[
C1 C2 C3

]
+
[
e e 0

]T
⇒ seber al-/adereg-

(slow actions: the opposite of the previous(12). Verb derivations 12 and 13

have adverbial functions)

Except for some phonological changes and hence letters, the vowel patterns for

most verb stems are regular. Some of the patterns are [e,e,0], [a,e,e,0], [e,e,e,0],

[a,a,e,0], [e,a,e,0], [a,a,e,0], [e,a,e,0], [a,e,a,e,0] and [e,e,a,e,0]. It is interesting to

note the vowels for the stems consist mostly of only ’e’,’a’ and few ’I’s. The other

vowels appear when these stems are combined with their suffixes.

4.3.4 Derived adverbs

Adverbs in Amharic are very few. Adverbial functions are often accomplished

with noun phrases, prepositional phrases and subordinate clauses. One exception

to this is the derivation of adverbs from a few adjectives by adding ’Na’.

Example kfu/bad + Na ⇒ kfuNa/badly.

4.3.5 Compound words

There are a considerable number of compound words for nouns, verbs, adjectives

and adverbs.

Compound nouns

1. noun + e + noun

Example bEte mengst/palace

bEte krstian/church

liqe member/chairman

2. noun + noun ⇒ ayer menged/ airlines

42

3. noun + verb ⇒ alem akef / international

4. verb + verb ⇒ arso ader/farmer

Most non-verb words do not end in the vowel e, but when they do, they are part

of a compound noun. This is an important indicator for identifying compound

words.

Compound adjectives

noun + e + adjectives ⇒ Igere qelal/fast

Just like the e in compound nouns above, the presence of e at the end of words is

a key indication that the current and the following words form compound words.

Compound verbs

Compound verbs are formed with the verb stems al- and adereg- as shown in the

verb derivation rules 12 and 13.

Example 1 sbr ale:: (= It got broken suddenly.)

Example 2 seber aderge:: (= He broke it slowly.)

Another group of compound verbs consists of three words. The first two words

are either opposites of each other or duplicates and the last word is the verb al-

or adereg.

Example 1 bq Tlq ale:: (= He appeared and disappeared.)

Example 2 weTa weTa ale:: (= He went out repetitively.)

The main indicator words for the presence of compound verbs are al- or adereg-.

If the previous two words are duplicates or antonyms, then they are parts of the

compound. A dictionary of antonyms can help us to find out if the previous two

words are opposites or the cheapest way would be to see if the previous two words

form collocations. If we are sure that not any of the above conditions are true,

then we decide that only the left hand word is part of the compound.

43

Compound adverbs

Compound adverbs are quite few in number and are formed by repeating an

adjective.

Example tnx tnx wha iTeTal::

(word to word translation: little little water he drinks)

Identifying compound adverbs involves seeing if bigrams of the same elements

exist and the following word is not al- or adereg- (in which case it will be a

compound verb).

4.3.6 Pronouns, prepositions and conjunctions

Pronouns, prepositions and conjunctions in Amharic can be individual words or

be bound to other words as affixes. They belong to a closed class. No new words

are derived from them. In the accusative and genitive, free personal pronouns take

the affixes for nouns. The small number of independent pronouns and prepositions

can be easily identified by using a dictionary. The bound prepositions are mostly

proclitics (prefixes). Conjunctions are enclitics (suffixes). Common proclitics

are le-(=for), ke-(=from), be-(=by or with) and ye-(=of). The enclitics are -

na(=and) and -m(=also). Looking at the first two letters of a word may be

enough to identify the proclitics and enclitics. However, there is a trap. Some

words already have these letters as constituting letters.

Example 1 ketema (= city)

it starts with ke-, but there is no preposition in the word

Example 2 buna (= coffee)

it finishes with -na, but there is no conjunction in the word

The solution to this problem is to take out the proclitics and/or enclitics and see

if the remaining letters form a word that is an entry in a dictionary. If it does,

then the clitics are prepositions or conjunctions. If that is not the case, then the

word does not have clitics.

44

4.4 NLP Challenges in Amharic

Amharic poses its own challenges to natural language processing at all levels

of linguistic studies: phonology, morphology, syntax, semantics and discourse.

With respect to part of speech tagging, the challenges result mainly from the

complexity of the morphology , lack of resources and the nature of the writing

system.

POS taggers, especially those based on rules, need to do morphological analysis

with support of a dictionary. The complete and efficient way to perform these

operations is to use finite state methods. The two challenges in modeling the mor-

phology of most natural languages(becomes three for Semitic languages including

Amharic) are related to:

• morphotactics

• the phonological/orthographical alternations

• interdigitation (for Semitic languages)

Morphotactics is the study of how morphemes combine together to make well-

formed words. The variations /alternations are the discrepancies between the un-

derlying or morphophonemic strings and their surface realization (Beesley, 1998).

A finite state machine is a model of computation that consists of a set of states,

a start state, an input alphabet, an accept state and a transition function that

maps input symbols and current states to a next state. Computation begins in

the start state with an input string. It changes to new states depending on the

transition function. If next state is the accept state, the machine has accepted

the input symbols. There are many variants of this basic model. Of interest with

respect to morphology generation is a machine having outputs associated with

transitions. This machine is called Finite State Transducer (FST) and it is this

machine that will help us generate information on input symbols (example: all

possible tags for a word).

Regular expressions/relations are convenient and concise methods of representing

words and their variations. They can then be compiled into FSA/FST. A detailed

analysis of these methods as applied to Amharic and Tigrigna are outlined in

Gasser (2009b).

Outside morphological issues, there is a particular ambiguity issue with respect

45

to proper nouns in Amharic. Proper nouns that are easily recognized in English

by the case of the initial letter cannot be recognized in Amharic as the Ethiopic

writing system does not include capital letters. What makes this even more

problematic for NLP is the fact that names of most Ethiopian people or even

locations have meaning and can be nouns, verbs, adjectives, adverbs and even

phrases with all their inflectional variations. Examples 1 and 2 show ambiguities

related to proper nouns.

Example 1: adis abeban ywedal::

The last word in an Amharic sentence is a verb which comes right before the

2 colons. In this example, the verb is ywedal, which means he likes. This

sentence can have the following three interpretations in the most unusual

contexts.

1. He likes Addis Ababa. (Addis Ababa is the capital city of Ethiopia)

2. Addis likes Abeba. (Addis and Abeba are names of people)

3. He likes a new flower. (adis = new, abeba = a flower)

Example 2: habtE Tefa::

1. Habtay is missing.

(Habtay is missing. (Habtay is a name of a person)

2. I lost my wealth.

(habt = wealth, E is possession marker for first person singular I)

In addition to the class of ambiguities related to proper nouns, there is another

class of ambiguities related to gemination. The same Amharic written words can

be pronounced differently in different contexts as a result of gemination. Gem-

ination happens when a spoken consonant is pronounced for an audibly longer

period of time than a short consonant. Even though the Ethiopic writing system

does not have symbols for long or short vowels, native speakers do not have diffi-

culty in identifying when the same letter should be pronounced longer or shorter.

The importance of gemination distinction cannot be overemphasized in speech

synthesis, word sense disambiguation and other applications. Examples 1 and 2

show its importance.

1. ale is an Amharic verb which means there is or he said depending on

the length of pronunciation of the second letter l (longer or shorter, respec-

tively).

46

2. wana can be an adjective (main) or a noun (swimming) when n is pro-

nounced longer or shorter, respectively.

For part of speech tagging, the absence of gemination markers increases the num-

ber of ambiguous words but in another sense, the problem of the same word

having different parts of speech is not a new kind of problem.

47

Chapter 5

Research Methods

• Introduction

• The ELRC Tagset

• Limitation of the Tagset

• The POS Tagged News Corpus

• Preparing the Dataset

• The Tagging Process

• Training and Test Data

5.1 Introduction

In the previous chapters, we discussed the state-of-the-art stochastic tagging

methods and Amharic morphology. In this chapter, we will discuss the tagset,

the annotated corpus and the issues surrounding the application of the tagging

methods on the corpus. The issues include cleaning the corpus, tokenization,

feature extraction, training and testing procedures.

5.2 The ELRC Tagset

A part of speech tag is a symbol or an abbreviation that is used to give linguistic

information as to the class of a given word in a given language. Knowing a

48

particular word as a noun or a verb tells us how that word can be used and the

morphological changes it may be subjected to. The nature, universality (across

languages) and the number of tags are always debatable but their existence in

some form is incontestable. Any given language can benefit a lot by categorizing

the words of the language into some predefined classes (tags).

The kind of information that each tag carries and the total number of these

tags (tagset) depend on the purpose and the given language. For English, for

example, there are generally eight word classes as in traditional grammars (noun,

verb, adjective, adverb, determiner, preposition, conjunction, interjection). Other

more refined and carefully designed models have much larger numbers: 45 for the

Penn Treebank (Marcus et al., 1993), 87 for the Brown corpus (Francis, 1980),

64 for the C5 tagset and 146 for the C7 tagset (Leech et al., 1994).

The design of a tagset and the availability of a corpus that uses that tagset

determines its importance and its usage. For Amharic, there is a medium-sized

POS tagged corpus consisting of 1,065 news articles (210,000 tokens) using a 31

tagset (Demeke and Getachew, 2006).

The tagset design was constrained from the beginning by lack of finance, expertise

and time (Demeke and Getachew, 2006). Under such constraints, the primary

of objective of the tagset design is to give each word as much basic grammatical

information as possible.

The ELRC tagset is based on 11 basic tags, most of which have further been

refined to provide more linguistic information, thus increasing the tagset to 31.

The tags for nouns are VN (Verbal Noun), NP (Noun with Preposition), NC

(Noun with Conjunction), NPC (Noun with Preposition and Conjunction) and

N (for any other Noun). There are similar patterns for Verbs, ADJectives,

PRONouns and NUMerals. Additional tags under the verbs category are AUX

(for AUXiliary) and VREL (for RELative Verbs). The latter tags lose the dis-

tinction between AUX and VREL when they are attached with prepositions

and/or conjunctions. Numerals are divided into cardinals and ordinals repre-

sented by the NUMCR and NUMOR tags. The numeral distinction between

cardinals and ordinals is lost too when either is attached with prepositions and/or

conjunctions. The rest of the tags are PREP for prepositions, CONJ for con-

junctions, ADV for adverbs, PUNC for punctuation, INT for interjection and

UNC for unclassified (difficult to classify). Table 5.1 shows a complete list of the

tags in the ELRC POS tagset.

49

Table 5.1: The ELRC POS Tagset

Basic Tag Tag Definition

Noun

VN Verbal noun
NP Noun with preposition
NC Noun with conjunction
NPC Noun preposition and conjunction
N Any other noun

Verb

AUX Auxiliary verb
VREL Relative verb
VP Verb with preposition
VC Verb with conjunction
VPC Verb preposition and conjunction
V Any other verb

Adjective

ADJP Adjective with preposition
ADJC Adjective with conjunction
ADJPC Adjective with preposition and conjunction
ADJ Any other adjective

Pronoun

PRONP Pronoun with preposition
PRONC Pronoun with conjunction
PRONPC Pronoun with preposition and conjunction
PRON Any other pronoun

Numeral

NUMCR Cardinal numbers
NUMOR Ordinal numbers
NUMP Numeral with preposition
NUMC Numeral with conjunction
NUMPC Numeral with preposition and conjunction

Preposition PREP Prepositions
Conjunction CONJ Conjunctions
Adverb ADV Adverbs
Interjection INT Interjections
Punctuation PUNC Punctuation
Unclassified UNC Unclassified

50

5.3 Limitations of the Tagset

For a morphologically complex language like Amharic, 31 tags do not give much

information to reliably develop applications of machine translation, information

retrieval, information extraction and speech synthesis/recognition. Some tags

that may be critical depending on the target application are missing. Thirty-one

tags may not seem far off from 45 tags of the Penn POS tagset, which gives

practically useful information for English. However, in reality the ELRC tagset

has only 18 unique POS tags if tagging is done at the level of morphemes instead

of words as they appear in a text. Preposition and conjunction affixes that appear

with nouns also appear with verbs, adjectives, pronouns and numerals. Therefore,

instead of having multiple information in tags such as found in NPC (Noun,

Preposition and Conjunction), there will be one tag with one basic information

for each morpheme. The the same 31 tagset can then be expressed with the 18

simplified tagset.

The new tagset will look like this P,C,ADJ,ADV,AUX,VREL,V,PRON, CONJ,

INT,N,VN,NUMOR,NUMCR,NUM,PREP,PUNC,UNC. From this tagset, it is

clear to see the kinds of information missing. Nouns in Amharic have gender and

number and they may also come attached with determiners as shown in figure

4.1. Those distinctions are not, however, reflected in the ELRC tags for nouns.

In fact, a less important distinction between nouns is made; the POS tag for

noun VN indicates that the word is the noun form (starts with m(e)) of a verb.

Similarly, the ELRC tags for adjectives and verbs do not reflect the variations in

gender and number.

Another critical POS tag that is missing from the ELRC tagset is the tag for

proper nouns. Identification of names of people and places, which is critical

in information extraction, is considered as a noun in the ELRC tagset. The

presence of a proper noun tag is even more important in the context of Amharic,

where the idea of letter case distinction does not exist and where most Ethiopian

names are just normal words in the language. Thus, most proper nouns that are

easily recognized in English by the case of the initial letter cannot be recognized

in Amharic. These names can be nouns, verbs, adjectives, adverbs and even

phrases with all their inflectional variations. (See section 4.4 for illustration of

ambiguities related to proper nouns)

51

5.4 The POS Tagged News Corpus

The part of speech tagged corpus that is used for experiments and evaluations has

come from a website dedicated to providing resources to Amharic NLP researchers

(http://nlp.amharic.org/resources/corpora-collections/).

Publicly available since June 2008, this corpus has reportedly 210,0001 tagged

tokens of 1,065 news articles collected from Walta Information Center (WIC)

from 1998-2002. It was developed by Ethiopian Languages Research Center of

Addis Ababa University. The corpus is available in Fidel and SERA (Firdyiwek

and Yaqob, 1997). Fidel is the name of the alphabet in which Amharic is written;

SERA is the ASCII encoding or transliteration for Amharic alphabets.

The document structure of the corpus is defined in DTD (Document Type Defi-

nition) and is shown below:

<! DOCTYPE amnews94 [

<! ELEMENT amnews94(document+) >

<! ELEMENT document (filename, title, dateline, body) >

<! ELEMENT filename (#PCDATA) >

<! ELEMENT title (fidel, sera) >

<! ELEMENT fidel (#PCDATA) >

<! ELEMENT sera (#PCDATA) >

<! ELEMENT dateline EMPTY >

<! ELEMENT body (fidel, sera) >

<! ATTLIST dateline place CDATA #IMPLIED >

<! ATTLIST dateline month CDATA #IMPLIED >

<! ATTLIST dateline date CDATA #IMPLIED >

] >

The above DTD text defines that ’amnews94’ is the root element of one or more

documents. Each document has four data elements, namely file name, title, date

and body whose values are parsed character data (represented by #PCDATA).

The title and the body of each document are represented both in Ethiopic Script

(Fidel) and SERA. The ’dateline’ with attributes for place, month and date refer

to the place, month and year of the reported news. The values for the attributes

of the ’dateline’ are optional character data (represented as CDATA #IMPLIED).

1Actual counting of the tokens gives a number < 210,000

52

Example of the tagged corpus for a single news article (in SERA) is shown below.

<document>

<filename> mes07a2.htm </filename>

<title>

<fidel>

... (title in Ethiopic script)

</fidel>

<sera>

beborena <NP> yeohdEd <NP> tehadso <N>

wyyt <N> tejemere <V> ::<PUNC>

</sera>

</title>

<dateline place="negelE" month="meskerem" date="7/1994/(WIC)/" />

<body>

<fidel>

... (body in Ethiopic script)

</fidel>

<sera>

beborena <NP> zonna <N> 13 <NUMCR> weredawoc <N> lemigeNu <VP>

yemengst <NP> serateNoc <N> yetezegaje <VREL> yeohdEd <NP>

tehadso <N> wyyt <N> zarE <ADV> mejemerun <VN> yezonu <NP>

mestedadr <N> mkr <N> bEt <N> astaweqe <V> :: <PUNC> yemkr <NP>

bEtu <N> Sehefi <N> ato <ADJ> mehemed <N> jlo <N> IndegeleSut <VP>

leamst <NUMP> qenat <N> bemiqoyew <VP> bezihu <PRONP> tehadso <N>

yeabyotawi <ADJP> dEmokrasiyawi <ADJ> tyaqE <N> beityoPya <NP>

, <PUNC> yeabyotawi <NP> dEmokrasi <N> yelmat <NP> merhowoc <N>

, <PUNC> stratEjiwocna <NC> yesratu <NP> adegawoc <N> bemilu <NP>

rIsoc <N> lay <PREP> wyyt <N> ykahEdal <V> :: <PUNC> yeamelekaketn

<NP> trat <N> lemamTat <NP> bemikahEdew <VP> yetehadso <NP> wyyt

<N> kezon <NP> memriyawocna <NC> kewereda <NP> shfet <N> bEtoc <N>

yetewTaTu <VREL> ke2 xi 500 <NUMP> belay <NP> yemengst <NP>

serateNoc <N> ysatefalu <V> teblo <V> IndemiTebeq <VP> Sehefiw <N>

lewalta <NP> InformExn <N> maIkel <N> gelSewal <V> :: <PUNC>

</sera>

<copyright> copyright 1998 - 2002 Walta Information Center

</copyright>

</body>

</document>

53

The project of developing the tagged corpus started in September 2005 and lasted

about four months. A number of organizations and individuals participated in the

project. Walta Information Center (WIC) generously made the news documents

available for research and Argaw and Asker (2005) preprocessed it and provided

an electronic copy to ELRC, where it was tagged. Nine people, most of them

from the Center, were involved in the actual manual tagging of the 1065 news

documents. One technical assistant and four other administrative support staff

were also involved at various levels during the project.

The corpus has limitations with respect to scope(representativeness) and quality.

Both these limitations are almost inherent to all linguistic resources. There is no

corpus that is 100% representative of a language and there are also limits as to

the extent of the quality (human inter-annotator agreement). So the differences

between language resources become that of a degree or extent. Some annotated

data are bigger and come from different genres. Others may be smaller and

come from one or few varieties of text. In addition, annotated data may be

of high quality by following strict standards of annotation. Examination of the

WIC corpus reveals that it leaves more to be desired on the two criteria. The

WIC corpus has only one category (genre) - news, which limits its coverage of the

different aspects of the language. It also has quite a few errors and inconsistencies

that need to be cleaned up before further processing.

5.5 Preparing the Dataset

Even though 210k tagged tokens were reported for the WIC corpus, the actual

number without cleaning the corpus is 200545, a difference of 9455 (about 5%).

Part of the reason for this discrepancy is caused by tagging errors. The errors are

such that some tokens have multiple tags and other tokens do not have tags at all,

which makes us think that they constitute multi-unit tokens. Some punctuation

marks (quotation marks and forward slash) are considered as part of some tokens

(eg: ”bodigardna” < NC >). This kind of error accounts for almost half of the

errors. Other errors, probably associated with typing, include some tags without

angle brackets <TAG> and so can be mistaken for tokens. Eight headlines and

one sentence are not tagged at all or they are just tagged as multi-word units.

However, in reality the tag is the correct tag of only the last word in the headline

or sentence).

In addition to the aforementioned errors, there are serious inconsistencies with

54

respect to what constitutes a word and what tags should be assigned for a word

under the same contexts. Some inconsistencies could have easily been avoided

if clear annotation guidelines were followed. For example, words in collocations,

which are sometimes treated as one unit, other times as separate words, could

have been treated as one or the other. The inconsistencies with the same words

being tagged differently in similar contexts is a common problem in annotating a

corpus. However, this kind of inconsistency could have also been minimized just

to the most difficult ones if strict annotation guidelines were followed.

Therefore, given the above errors and inconsistencies, it is safe to assume that

the inter-annotator agreement, the measuring metric for the agreement between

annotators annotating the same text, can be assumed to be low for the WIC

corpus.

Any POS tagging method cannot be expected to have less error rates than the

fraction of errors or discrepancies introduced by the annotators. Since our ob-

jective is to improve performance, the best strategy is to start with a cleaned

version of the corpus before designing the tagging method. With this view, an

effort has been made to correct as many errors and inconsistencies as possible.

Correction of the simple errors mentioned earlier resulted in an increase of the

total number of token-tag pairs from 200545 to 200766. (an increase of 0.11%).

Correcting the inconsistencies proved more sophisticated and laborious. The first

inconsistency problem is related to tokenization and POS tagging of time, number

and name expressions. In some cases, the words are considered as independent

tokens. In other cases under similar conditions, they are tagged as multi-word

tokens. The following examples show that.

1. ... abrikaw <N> 85 neTb 7 miliyen <NUMCR> br <N>

yeteTara <VREL> trf <N> ageNe <V> :: <PUNC> ...

2. ... yeskWar <NP> mrtoc <N> 85 <NUMCR> miliyen <N>

733 <NUMCR> xi <N> br <N> ...

3. ... <N> be3 <NUMP> neTb <N> 9 <NUMCR> miliyen <N> br <N> ...

From the three extracts from the WIC corpus, we can see that numbers have

not been treated in a principled manner. In one extreme case, they have been

treated as one multi-word token. In the other extreme, each constituting unit is

considered as separate tokens. In other cases, they have been mixed between the

two. Though less common, this case is true also with named entities likes names

of people and places.

55

Table 5.2: Distribution of the Number of Tokens in a Single ”Word”

tokens 2 3 4 5 6 7
instances 4622 485 170 11 2 1

The percentage of multi-word tokens in the WIC corpus is less 3%. There are

around 5291(2.6%) tokens that have at least two constituting words separated

by space. Words separated by hyphen are not considered as multi-word tokens.

Some multi-word tokens had hyphens and space (332). For our purpose, the space

has been deleted.

The number of words that make up the multi-word units ranges from two to

seven. The distribution of the number of words in multi-word units is skewed

towards two. As can be seen in table 5.2 , 87% of the multi-word tokens consist

of two words. More than three quarters of these (76%) are noun-associated tags

(N, NP and NPC) and 11% are number associated tags. The rest 13% (with more

than 2 constituting words) are almost equally numbers and nouns. Here are a

few examples that show the nature of the multi-word tokens.

1. ... 1 miliyon1 meto 80 xi 786 <NUMCR> ...

2. ... 6 miliyen 1 meto xi <NUMCR> ...

3. ... 1 miliyen 3 meto xi <NUMCR> ...

4. ... tu si ze sen rayz <N> ...

5. ... 1 miliyen 576 xi 189 <NUMCR> ...

6. ... abdula bin abdul muse al turki <N> ...

7. ... instityut of internaxnal kapasiti biyolding for afrika <N> ...

8. ... sle Ec ay vi Edsm <NPC> ...

It is interesting to note that example 7 is a long institution name in English

encoded in SERA. It represents ’Institute of International Capacity Building for

Africa’. In the corpus, it is POS tagged as N. This and many others like that

should have been tokenized and each word treated as foreign word (FW) or un-

classified. Otherwise, the tokenization problem will be more complex and will

require named entity recognition techniques.

Outside manual correction, there are a number of alternatives to solving that

problem. One solution is to throw out the multi-word tokens. However, this will

have a bad effect as it will introduce noise in the syntax (context) of the language.

Leaving out the sentences that contain them is also not a good idea as the corpus

is already small and so it will make it even smaller (increase data sparsity). The

good solution is to tokenize them on space and give the constituting words tags

56

that together they had in the first place. This has the advantage of decreasing

sparsity (improving the language model). This can be done easily automatically.

One trap that we should avoid falling into is that when prepositions and conjunc-

tions are attached with the beginning or last words in the multi-word tokens, then

the middle words should have tags with the preposition and/or conjunction tags

stripped off because in Amharic, prepositions and conjunctions are attached with

the beginning or last words of the multi-word tokens. Applying the suggested

method increases token-tag pairs from 200766 to 206929 (an increase of 3.07%).

It must be noted, however, that this method will not solve all problems as there

are tokens of a unit already attached together for no reason (eg: 2xi represents 2

thousands and should have been written as 2 xi).

The second inconsistency problem is related to tokens receiving multiple tags

under the same conditions. An attempt has been done to identify and correct

them. One technique that we have used it to list all the tokens and the frequency

of its association with each tag it is assigned. A closer examination of this list for

a given word reveals that some tags are wrongly assigned. The following examples

show how many times a particular tag has been assigned to a given word.

" [(’PUNC’, 502), (’N’, 8), (’NP’, 3),

(’ADJP’, 2), (’AUX’, 1), (’VREL’, 1)]

, [(’PUNC’, 3543), (’N’, 3), (’NP’, 2), (’NPC’, 2)]

10 [(’NUMCR’, 121), (’NUMP’, 2), (’NUMC’, 1),

(’NUMPC’, 1), (’PREP’, 1), (’PUNC’, 1)]

13 [(’NUMCR’, 45), (’N’, 1), (’NP’, 1), (’NUMOR’, 1)]

bemehonum [(’NP’, 118), (’NPC’, 72), (’CONJ’, 61), (’PRONP’, 8),

(’VP’, 6), (’VN’, 4), (’VPC’, 3)]

Indihum [(’PRONP’, 503), (’PRONPC’, 21), (’PREP’, 4),

(’PRON’, 3), (’ADV’, 2), (’PRONC’, 2)]

The punctuation mark (”) has been tagged as <PUNC> correctly 97% of the

times. In the rest 3%, it has been assigned the wrong tags. Similarly, the punc-

tuation mark (,) is correctly tagged as PUNC in 99.8% times, but it is also tagged

incorrectly in few other instances. Such errors are not limited to few cases, but

in fact, most frequent multi-tag tokens have some extra tags assigned incorrectly

57

Table 5.3: Ambiguity Distribution in the WIC Corpus

tags per token # tokens Percentage

1 153211 74.04
2 34107 16.48
3 10544 5.10
4 4122 1.99
5 2057 0.99
6 1393 0.67
7 941 0.45
8 427 0.21
9 127 0.06

infrequently.

An effort has been made to correct some of the errors. About 552 tokens have

been correctly retagged as prepositions and 893 tokens as nouns, verbs and their

variants. Similarly, about 980 numbers and punctuation marks have also been

correctly tagged. For multi-tag tokens, token-tag pair with frequency of appear-

ance of one has been replaced by the tag with the highest frequency of at least

10 (≈ double the average frequency of each word in the WIC corpus). With this

method, 1209 tokens have been retagged with the tag of the highest frequency.

Before using the corrected data to train and test algorithms, let’s see how hard

tagging is in Amharic. On average, how many words have different tags?

Statistics of the WIC corpus

Number of sentences = 8067, each sentence contains about 25.7 words

Number of unique word-tag pairs = 37486

Type token ratio = 5.5, each word type occurs on average 5.5 times

The number of word types = 32480

Ambiguity ratio = count(unique token-tag pairs)/ count(unique tokens) = 1.2

Table 5.3 shows the number of the same tokens having multiple tags ranging from

one through nine. From the table, it can be seen that 74% of the tokens have

only one tag, a little less than double of what it was before correction (38%).

23% of the tokens have from 2 to 4 tags, a reduction by half (50%). Only 2% of

the tokens have 5 or more tags. Before correction, it was 8%.

The tag distribution is skewed towards noun and noun variants. Graph 5.1 shows

the counts of each tag type in the WIC corpus. N, NP, VN ,NC and NPC make

up 58% of the tags for the tokens. Verb related tags make up 18% of the tokens.

58

N
N

P
V

P
P
U

N
C V

A
D

J
N

U
M

C
R

V
R

E
L

P
R

E
P

V
N

N
C

N
U

M
P

A
D

V
N

P
C

A
D

JP
P
R

O
N

P
C

O
N

J
P
R

O
N

A
U

X
V

P
C

N
U

M
O

R
A

D
JC V
C

U
N

C
A

D
JP

C
P
R

O
N

P
C

P
R

O
N

C
N

U
M

P
C

N
U

M
C

P
R

E
P
C

IN
T

Samples

0

10000

20000

30000

40000

50000

60000

70000

80000

C
o
u
n
ts

Figure 5.1: Tag Distribution in the WIC Corpus

59

5.6 The Tagging Process

For the experiments in this dissertation, we use customizable open source im-

plementations of some selected machine learning algorithms, notably CRF++

(Kudo, 2007), LIBSVM (Chang and Lin, 2001) and NLTK (Loper and Bird,

2002). CRF++ is a C++ open source implementation of Conditional Random

Fields (CRFs) for segmenting/labeling sequential data. LIBSVM is a C++ and

Java implementations of support vector based classification and regression algo-

rithms. It is interfaced with many languages. LIBSVM comes with a Python

interface (via SWIG), which we used for our experiments. NLTK, Natural Lan-

guage Toolkit, is a suite of open source program modules (with documentation)

covering symbolic and statistical natural language processing algorithms. It is

easy to learn, use and modify. TnT and Brill implementations in NLTK have

been used for POS tagging experiments in this dissertation.

Each of these tools, albeit critical, is only one aspect of the stochastic tagging

process, which usually involves, either explicitly or implicitly, the following tasks.

Step 1: Tokenization It is a necessary preprocessing step in all tagging systems

and it is used to identify the basic units in the language before a set of

possible tags can be assigned. The natural text is divided into units. Here,

we have used the term units instead of words in order to avoid confusion. In

English, the units are usually the words which are separated from each other

by space. For Amharic, it can be more complicated than that. The choice

of units for Amharic will determine the tagset and tokenization algorithm.

Step 2: Feature Extraction Unlike in rule-based systems where rules and a

lexicon are used to assign the correct tags, in probabilistic tagging methods,

features are extracted from the annotated data to learn a tagging model.

The kind and number of features are chosen carefully to achieve high accu-

racies. We will discuss the features used in our POS tagging experiments

for Amharic.

Step 3: Disambiguation Words may receive multiple tags but only one is cor-

rect. The disambiguation step attempts to find the correct tag for every

token. We will apply a number of machine learning algorithms whose brief

theories have been discussed in chapter 3, namely conditional random fields,

support vector machines, TnT (HMM-based) and Brill tagging.

60

5.6.1 Tokenization

The process of breaking up a text into its constituent meaningful units is known

as tokenization or segmentation. Tokenization can occur at a number of different

levels: a text could be broken up into paragraphs, sentences, words/morphemes,

syllables or phonemes. The algorithms used for tokenization will vary depending

on the level of tokenization, the language given and the purpose. For part of

speech tagging, sentence and word or morpheme tokenizations are relevant.

Segmentations of Amharic text into sentences and words are not hard problems.

Unlike English where identifying the period does not help much in marking the

end of a sentence, two colons are sufficient to find the end of a sentence in Amharic.

Like English, Amharic sentences can be segmented into words by using the space

character. However, the meaning of words for English and Amharic are not the

same. English words as seen separated by space usually have one POS associated

with each. By contrast, Amharic words as seen separated by space represent

concatenated morphemes, with each morpheme capable of having its own POS.

In general, Amharic words consist of zero or more prefixes, one or more space

separated stems/words and zero or more suffixes. The prefixes and suffixes are

usually members of a closed class which include prepositions and conjunctions.

These affixes are finite in number. The following regular expression summarizes

it all.

Amharic word = prefix∗[STEM|WORD]+suffix∗

Given the form of Amharic words as shown above, three approaches can be

adopted in segmenting the words, some of which are the intermediates of the

other two extremes.

The first approach is taking the space separated elements as words consisting of

only one big ’morpheme’. This decision will determine the nature of POS tags

and the tagging algorithms. If words that have prepositions and/or conjunctions

are considered as the units of tokenization, then the tagset will be complex and

will not conform to conventional tags like NN for nouns, JJ for adjective, etc.

The tags will become, instead, more complex so that they can represent ’words’

using such tags as NP or NPC (Noun with preposition or noun with preposition

and conjunction). This has also the effect of the tags being more determined by

the nature of the given language than by universal abstract tags. Another disad-

vantage of this approach is that a usage of dictionary will severely be restricted as

all words in a text cannot possibly be in the dictionary of the language. So that

61

means if we implement a rule-based system, the need for morphological analysis

will be difficult to avoid. The advantage of this approach is its simplicity; it is

simple to implement. All that is needed to tokenize a text is the identification of

the space as the delimiter of tokens.

The second approach is separating the words into their smallest constituting

morphemes, which are generally agreed to be the smallest meaningful units. This

approach too has significant effects on the design of a tagset and the tokenization

and tagging algorithms. The tagset will constitute more tags that are less depen-

dent on the given language. So the tagset of a given language can be compared

with that of another language, which by itself can be important for language uni-

versals studies. The tagging algorithms for this tagset can make effective use of

a dictionary or tagged corpus. Data sparsity will be less of a problem than in the

first approach. The main disadvantage of this approach is that the tokenization

by itself is a hard problem. Identifying the morphemes that constitute the words

by itself becomes a tagging problem. There will be many more ambiguities. Does

’Windows’ have one morpheme or two morphemes? The answer does not come

with an easy algorithm. Because ’Windows’ can be a word referring to Microsoft

Windows or it could be just the plural of window at the start of a sentence.

The third approach is choosing somewhere in between the two extremes. This

means for some selected morphemes, there will be tokenization and for others we

leave them as part of the word. As can be imagined, this too determines the

tagset design and the tagging algorithms.

The level of difficulty in identifying the morphemes is not the same in all ap-

proaches. The second and third approaches will have to deal with many more

ambiguities of identifying the morphemes. All the three approaches should deal

with the problem of identifying compound words or idioms in a principled man-

ner.

The kind of approach chosen determines the design and development of the

tagset. Taking the first approach, Ethiopian Languages Research Center (ELRC)

of Addis Ababa University have designed a tagset of 312 elements (Demeke and

Getachew, 2006). The same approach is used here except that multi-word tokens

are consistently treated as separate units for the sake of simplicity.

230 is reported, but actual counting gives 31

62

5.6.2 Feature Extraction

After tokenization comes the need for extracting the word and context features

of a given unit in a format suitable for classification algorithms. The input to

the tagging algorithms are represented in terms of values for attributes and the

attributes are used to encode information about morphological, syntactic and

semantic clues that are usually used by linguists to determine the category of a

word. The informative attributes for POS tagging a text of a given language are

the following:

Morphological: Words of different POS tags have different affixes associated

with them. For example, plural nouns in Amharic usually end in oc. This

knowledge helps us guess the word class of a word that ends in oc. The

vowel patterns in the words as shown in chapter 4 also are indicative of the

POS tags.

Syntactic: Unlike English, Amharic has much of the information about syntax

in the words themselves with words usually placed in SOV order. Even so,

there is considerable information to be gained from positions of words in

a sentence. For example, the main verb in Amharic is always at the end

of the sentence unless the text is a poem. Adjectives come before nouns.

Adverbs come before verbs.

Semantics: Even though semantics is hard to formalize, words by virtue of their

meaning and functions in the language are given different POS tags. For

example, prepositions or closed class words in general do not undergo mor-

phological changes and their positions in a sentence can be ambiguous. So,

in such cases the semantics can be used to determine the lexical category

of words.

Here are the features that capture most of the morphology, syntax and semantics

of a given word extracted from a window of 5 words from a given Amharic text.

• the current word, the previous/following word, the word before/after the

previous/following word {String}

• prefixes and suffixes of length ≤ five {String}

• vowel patterns{String}

• radicals (consonants){String}

63

• is punctuation(word){True, False}

• has punctuation(word){True, False}

• is alphabetic(word) {True, False}

• is alphanumeric(word){True, False}

• is digit(word){True, False}

• has digit(word){True, False}

• has e suffix(previous word){True, False}

The novel features are the vowel patterns and radicals.

5.6.3 Disambiguation as Classification

Given the features of a given word, the next step is to assign it the correct tag.

Classification in machine learning is the task of assigning the correct class label for

a given input. In this sense, part of speech tagging can be seen as a classification

problem where the classes are the different POS tags and the inputs are the words

represented as a set of feature values. This way of looking at the problem enables

us to use some of the state-of-the-art classification algorithms.

There are a number of machine learning algorithms but they all fall into one of

these: supervised, unsupervised and semi-supervised algorithms. This catego-

rization is made based on the availability and usage of labeled or unlabelled data.

Any machine learning algorithm requires some kind of data for training. The

training examples used in the learning task consist of a set of data records, which

are described by a feature vector X = x1, x2, x3, . . . xn where n is the number of

features or attributes. The dataset has also a special target attribute O, which

can have values that are either discrete or continuous.

Given a dataset D, the objective of learning is to produce a classification/prediction

function to relate values of features in X and values in O. The learned func-

tion/classifier can then be used to predict O values of future data. If the O

values are known during training, it is called supervised learning. If the O values

are unknown and the learning algorithm needs to automatically generate them,

it is called unsupervised learning. The third learning category relies on a small

labeled data and a large unlabeled data and is called semi-supervised learning.

64

Based on whether the output O values taking on continuous or discrete values,

supervised learning is divided into regression and classification. For part of speech

tagging, the O values are discrete as there are only a finite number of them.

The dataset D is divided into training data and test data. The training data is

used by a learning algorithm to learn a model. The test data is used to assess

the model accuracy. In the following series of experiments, we have performed

10-fold cross validation.

5.7 Training and Test Data

The annotated data available for our experiments is the WIC corpus, which has

about ≈ 207k tokens. How much of it and which portion of it should be used for

training and testing are important questions to answer as the variations in these

tasks determine the performance of algorithms. Trained on the given portion of

the corpus and tested on the remaining portion, two or more supervised machine

learning algorithms will usually perform differently for many reasons. Some of the

reasons are attributed to randomness and others to the power of the algorithm. It

is important to distinguish the sources of variations so that we know better which

algorithms actually perform better. Here are some possible sources of variation

that must be noted (Dietterich, 1998).

The first source of variation is randomness of the test data. Two learning al-

gorithms may perform differently on a given randomly-selected test data even

though, on average, they both perform identically if they are tested many times

using each time a randomly-selected data. The second source of variation comes

from the variation in the selection of the training data. The given algorithms may

differ in performance on a given randomly-selected training data even though, on

average, they achieve the same accuracy. The third source of variation is depen-

dent on the inner workings of algorithms. Some learning algorithms are initialized

to random state or default values. The fourth source of variation is associated

with the errors in the test data itself. If the test data has x fractions of mislabeled

data, then any learning algorithm will not achieve an error rate of less than x

fraction. Probably, these are not the only sources of information. There could be

others including the sensitivity of the learning algorithms to noise, ie. errors in

the training data.

In this dissertation, to make our results more consistent and the comparisons

between algorithms more reliable, k-fold cross-validation and statistical tests

65

Table 5.4: 10-fold Cross Validation Data
Tokens # Test Tokens

Fold Training Testing # Known # Unknown
1 186406 20523 17927 2596
2 185832 21097 18581 2516
3 186724 20205 18043 2162
4 186154 20775 18458 2317
5 186500 20429 18081 2348
6 186719 20210 18108 2102
7 185788 21141 18795 2346
8 185372 21557 19132 2425
9 186615 20314 18085 2229
10 186251 20678 18444 2234

Average 186236.1 20692.9 18365.4 2327.5

are applied. Specifically, a 10-fold cross-validation is applied. In 10-fold cross-

validation, the whole corpus is partitioned into 10 samples and each sample is

kept for testing while the rest 9 (joined together) are used for training. In other

words, training is done 10 times each time one sample left out for testing. The

ten results are then averaged to give a final result. The advantage of this method

is that each sample is used for both training and testing in the repeated processes

of training and testing.

A good statistical test should conclude that the two algorithms are different

if only if their average performances are different without being fooled by the

above sources of variation. Statistical calculations can answer this question: If

the algorithms really have the same average accuracies, what is the probability

of observing such a large difference or larger between observed average accuracies

for the 10 experiments? The answer to this question is called the P value. The P

value is the probability of observing a difference as large or larger than observed

if the null hypothesis were true. The null hypothesis simply states that there is

no difference in accuracy between the algorithms.

The (≈ 207k) sized corpus consists of 8067 sentences. The corpus is divided into

training and test data. The training data is the 90% portion of the data and

the remaining 10% is the test data. Table 5.4 shows the number of tokens in

the training and test sets. The numbers of tokens in each fold is not the same

because the partition is made at a sentence level. Except for the last fold, which

has 804 sentences, each fold has 807 sentences. Each fold is also divided into

known tokens and unknown tokens. About 11.25% of the test tokens are unseen

in the training data.

66

Chapter 6

Results

• Introduction

• Evaluation Methods in NLP

• Evaluation Metrics

• POS Tagging Results

• Results Analysis

6.1 Introduction

Natural language systems are designed and developed to perform specific tasks

as required and expected by users or other systems. A machine translation sys-

tem is expected to give a correct translation for a given input. An information

retrieval system (search engine) is expected to retrieve correctly ranked relevant

documents. Similarly, a part of speech tagger is expected to assign a correct tag

to a given instance of a word. In general, for a given input, the NLP system is

expected to give a correct output. What constitutes correct output and how we

can measure it is, however, not an easy task and so is an active area of research

in natural language processing. For example, given that two human translators

do not translate the same French text into the same English text, how can a

translation produced by a machine be measured for correctness? The answer

is not trivial. Similarly, how can we measure the correctness of a POS tagger,

which is naturally an easier problem than machine translation? Apart from out-

put correctness, there are other issues to raise about NLP systems: how easy are

67

they to use by non-experts, how well do they plug into other components, can

they be ported and maintained by someone who did not participate in the system

development?

Therefore, raising one or more questions of accuracy, user-friendliness, efficiency,

modularity, portability, robustness and maintainability is important depending

on the purpose. Evaluation is the process of measuring one or more of the above

qualities of an algorithm or a system. It has an important role in natural language

processing for both system developers and technology users. With evaluation,

system developers are much better equipped with the knowledge of what com-

ponents to improve in the system in order to achieve the desired goals. It helps

researchers communicate their results and compare them with previous research

work. For users, evaluation provides them with the necessary information they

need to easily compare alternative systems and choose the one that meets their

requirements.

In this chapter, we will discuss the kind of evaluation methods used in reporting

and analyzing POS tagging results.

6.2 Evaluation Methods in NLP

Given the importance of evaluation for both system developers and end users, it

is necessary to clearly formulate the evaluation methods. Depending on the eval-

uation procedures, there are different kinds of evaluation techniques (Palmer and

Finin, 1990). In the following subsections we will discuss the different approaches

available in evaluation methods.

6.2.1 Intrinsic vs. extrinsic evaluation

NLP systems consist of a number of subsystems, each subsystem having its own

input/output pairs. The performance improvements made in the whole system

with changes in any one subsystem can be evaluated into two ways. The first one

is to evaluate the subsystem as an isolated system using pre-defined input/output

pairs or gold standard. This approach is called intrinsic evaluation. The second

approach is to characterize the subsystem performance in terms of its function in

a more complex system. This method is called extrinsic evaluation. The extrinsic

performance of the system is then characterized in terms of its utility with respect

68

to the overall task of the complex system or the human user. For example, these

two methods can be applied in part of speech tagging. A POS tagger can be

evaluated as an isolated system or as a part of another bigger system, such as a

parser. An intrinsic evaluation would run the POS tagger on some POS-tagged

data, and compare the system output of the POS tagger to the gold standard

(correct) output. An extrinsic evaluation would run the parser with different

POS taggers and observe the performance changes in the parser with changes in

the POS tagger.

6.2.2 Black-box vs. glass-box evaluation

Black-box evaluation is primarily focused on what a system does (Palmer and

Finin, 1990). It measures system performance on a given task in terms of well-

defined input/output pairs. The system performance is expressed in terms of

parameters that refer to accuracy, user-friendliness, speed, reliability, efficiency,

portability and maintainability. Most important of all these parameters is usually

the accuracy. The accuracy refers to how well the system output matches with

the gold standard. The reason the evaluation technique is called black box is that

it does not require understanding the inner workings of the system for evaluation.

Glass-box evaluation, by contrast, examines the design and inner workings of the

system and so is carried out by system developers. It evaluates the linguistic

resources it uses (quality, coverage), the algorithms that are implemented, their

efficiency, etc. In other words, glass-box evaluation examines the relevant lin-

guistic theories and how well they are implemented. Given the complexity of the

approach and NLP systems, it is usually difficult to measure performance only

on the basis of glass-box evaluation. The advantage of this approach is that it

is more informative with respect to error analysis and future modifications and

improvements of the system.

A black-box evaluation of a subsystem of a system can be considered as part of the

glass-box evaluation of the whole system. For example, if part of speech tagger is

a component of a bigger system. We can develop a test set that has input/output

pairs to measure the performance of the tagger (black-box evaluation). Since it is

an evaluation of a component that cannot perform an application independently

of others and since it will give information about the component’s coverage that

is independent of the coverage of any system in which it might be embedded, this

can be seen as providing glass-box information for such an overall system.

69

6.2.3 Automatic vs. manual evaluation

Evaluation can be done automatically or manually. Automatic evaluation refers

to comparing the output of an NLP system with the gold standard. With this

approach, we can do evaluation as many times as we change the system as long

as we have the gold standard. However, the cost of building the gold standard is

high both in terms of time and human resource requirement. The gold standard

is built over a long period of time by trained humans. One difficulty in building

the gold standard is the agreement between annotators with respect to how they

deal with complex annotation tasks. They do not usually agree as is, for example,

evident in the part of speech tagged corpus used in this dissertation.

The alternative to automatic evaluation is manual evaluation, which is performed

by human judges. These human judges are instructed to estimate one or more

qualities of the output of a system based on a number of criteria. Here too, the

judges will not give the same ratings to the same outputs. There is bound to be

variations. Manual evaluation is expensive and cannot easily be repeated as fast

as we can as in automatic evaluation.

6.3 Evaluation Metrics

In this dissertation, we will do mainly an intrinsic, black-box and automatic

evaluation. We evaluate the different POS tagging algorithms as isolated systems

(intrinsic). Within the isolated system, we are going to do black-box evaluation

as we will only compare the outputs of the system for given inputs with the gold

standard. This intrinsic black-box evaluation is done automatically using the

gold standard instead of human judges.

The most commonly used evaluation metrics in POS tagging are accuracy, error

rate, precision, recall and f-measure.

Accuracy is the ratio of the number of correct outputs to the total number of

outputs for given inputs. Error rate is the ratio of errors to the total number of

outputs.

Mathematically,

Accuracy = number of correct outputs/ number of total input-output pairs

70

Error rate = number of incorrect outputs/number of total input-output pairs

Precision and recall are concepts first widely used in evaluation of information

retrieval systems. In information retrieval, precision is defined as the number

of relevant documents retrieved by a search engine divided by the total number

of documents retrieved by that search, and recall is defined as the number of

relevant documents retrieved by a search divided by the total number of existing

relevant documents including those which should have been retrieved.

Precision and recall can be used in evaluating POS tagging as well. In this case,

precision is the number of items correctly labeled as belonging to the class of

interest (true positives) divided by the total number of items labeled correctly or

incorrectly as belonging to that class (true positives + false positives). Recall, by

contrast, is the number of items correctly labeled items (true positives) divided

by the total number of items that actually belong to the class which includes

items not correctly identified as belonging to that class (false negatives).

Mathematically,

P =
tp

tp+ fp
(6.1)

R =
tp

tp+ fn
(6.2)

Precision and recall are inversely related. When one is increased, the other de-

creases. For example, in part of speech tagging, if we are focusing on nouns and

we say all words are nouns, then we get a 100% recall, whereas the precision

decreases significantly as there are many words that are not nouns. Similarly, if

we classify words that we know for sure are nouns as nouns and classify the rest

as non-nouns, then precision is 100%, but recall decreases.

Usually, precision and recall are combined to give one value called the f-measure.

The f-measure is the weighted harmonic mean of precision and recall. Mathemat-

ically,

F1 =
2PR

P +R
(6.3)

Equation 6.3 is the harmonic mean of precision and recall, where both measures

are given equal importance.

Related to the concepts of precision and recall are type I and type II errors. Type

I error (false alarm rate) is the error associated with classifying items as belonging

71

to a given class when they are not. For example, a verb may be classified as a

noun, when actually it is not a noun. Type II error (miss rate) is the error

associated with classifying an item that actually belongs to a given class as not

belonging to that class. For example, a noun misclassified as a verb when it is

a noun is a Type II error. Equation 6.4 shows the mathematical relationships

between the two errors and precision and recall.

Type I = 1− precision (6.4)

Type II = 1− recall

Two or more algorithms can be compared on one or more of the above evaluation

metrics. For part of speech tagging, accuracy is the most informative of them all

but the other measures also have their importance as we will see in the following

subsections.

6.4 POS Tagging Results

CRF++, LIBSVM, Brill and TnT1 have all been applied for our POS tagging

experiments using the WIC corpus. For good comparison, CRF and SVM are

treated together as they use exactly the same features. Similarly, Brill and TnT

are also treated together as they are similar in terms of their dependence on

neighboring words/tags and their mechanisms in handling unknown words.

6.4.1 Baselines

The simplest tagger that can serve as a baseline in Amharic part of speech tagging

is to tag all new tokens as N, which is the most frequent tag in the WIC corpus.

This achieves an accuracy of about 36%. This is too low to be used as a baseline

as most algorithms have much higher accuracies. Another baseline is assigning

the most frequent tag of every word seen in the 90% of the training corpus and

assigning N to unseen words. This achieves about 81% accuracy on the remaining

data (10%). All the algorithms applied in this dissertation achieve much higher

accuracies than 81%.

1Brill and TnT are available in NLTK

72

Table 6.1: POS Accuracy Results Achieved by CRF

Tested on Known tokens Unknown tokens Overall

Fold1 91.00 78.35 89.40
Fold2 90.03 77.70 88.56
Fold3 91.10 77.70 89.67
Fold4 93.12 80.84 91.75
Fold5 94.18 84.03 93.01
Fold6 91.40 78.50 90.06
Fold7 94.49 85.64 93.51
Fold8 95.26 85.53 94.16
Fold9 94.12 83.85 92.99
Fold10 88.06 73.05 86.43

Average 92.28 80.52 90.95

Table 6.2: POS Accuracy Results Achieved by SVM

Tested on Known tokens Unknown tokens Overall

Fold1 90.75 78.97 89.26
Fold2 89.74 77.50 88.28
Fold3 90.51 77.70 89.14
Fold4 92.25 80.70 90.97
Fold5 93.08 84.16 92.06
Fold6 91.17 78.54 89.86
Fold7 93.48 85.51 92.60
Fold8 94.41 86.10 93.47
Fold9 93.45 83.54 92.36
Fold10 87.87 73.23 86.29

Average 91.67 80.59 90.43

6.4.2 CRF++ and LIBSVM

Both CRF and SVM have been trained and tested on the same dataset using

exactly the same features. Parameters have also been selected for both. The

critical parameter in both cases is the penalty parameter C. A too small value

for C causes underfitting and a too large value causes overfitting. In other words,

a small value for C will allow a larger number of training errors, while a large

value will minimize training errors. For CRF, C = 0.05 and for SVM, C = 0.5

have been experimentally found to give higher accuracies. These smaller C values

have been chosen for a good reason. The WIC corpus has a number of training

errors and so using a larger C can only make the algorithm learn the errors too.

A smaller C value basically ignores some errors. An additional critical parameter

for SVM is the kernel type. Here, the LINEAR2 kernel has been found to give

2Other kernels tried did not improve performances much and required more parameter space
searching.

73

higher accuracies.

On a 10-fold cross-validation, CRF achieves an average accuracy of 90.95%, while

SVM achieves 90.43% under exactly the same conditions. The difference might

seem too little, but a statistical significance test proves otherwise. This difference

of 0.52 can happen by chance once in thousands, which is less than 0.05 (the

conventional level of significance).

The accuracies of both algorithms for each fold are shown in tables 6.1 and 6.2.

As can be seen from the tables, SVM achieves a slightly higher average accuracy

of 80.59% than SVM (80.52%) on unknown tokens, which leads to the conclusion

that SVM generalizes better. However, a statistical significance test shows that

the difference is too little to reach that conclusion (0.461 > p = 0.05). On the

other hand, CRF achieves relatively higher on known tokens which explains its

slight overall higher accuracy.

6.4.3 Brill and TnT

As tables 6.4 and 6.5 show, Brill and TnT taggers achieve average accuracies

of about 87%, which is 3% less than CRF and SVM. The tables also show the

accuracies of each tagger on different folds for known and unknown tokens. On

average, Brill achieves an accuracy of 87.41%, 0.32% higher than TnT (highly

statistically significant) but both achieve the same average accuracy on unknown

tokens. This is to be expected as they have been designed in these experiments to

use the same techniques for handling unknown words. The same simple regular

expression tagger that POS tags based on affixes has been used both in Brill as

part of the initial state tagger and in TnT as part of the unknown words tagger.

The reason Brill performs better on average is because it has significant higher

performance on tagging known tokens (91.90% against 91.54%). This is also to

be expected given that TnT depends on using the statistics of previous two tags

and the association of words and tags, while Brill uses much more information

from the left and the right neighboring tags and words.

The Brill tagger has two important parameters: the maximum number of rules

and the minimum score. The values for these parameters must be chosen care-

fully by experimenting. Table 6.3 shows the relative increases and decreases of

these parameters and the resulting performance. As can be seen in the table,

increasing and decreasing both parameters too much decreases performance. For

74

Table 6.3: Brill Tagger Minimum Score and Rules Trade-off

Minimum Max. # of Rules
score 50 100 150 200

3 87.39 87.38 87.38 87.38
4 87.40 87.40 87.40 87.40
5 87.40 87.41 87.41 87.41
6 87.41 87.41 87.41 87.41
9 87.39 87.39 87.39 87.39
12 87.39 87.39 87.39 87.39
15 87.39 87.39 87.39 87.39

Table 6.4: Best Brill Tagger Results: Min-Score = 6, Max-Rules = 50

Tested on Initial tagger Known tokens Unknown tokens Overall

Fold1 85.51 90.91 48.77 85.58
Fold2 85.00 89.82 50.60 85.14
Fold3 86.48 90.89 50.56 86.57
Fold4 87.64 92.38 50.32 87.69
Fold5 88.74 93.37 53.58 88.80
Fold6 87.29 91.15 54.14 87.30
Fold7 89.63 94.01 54.94 89.67
Fold8 89.85 94.55 53.03 89.88
Fold9 89.47 93.80 54.69 89.51
Fold10 83.92 88.13 49.15 83.92

Average 87.35 91.90 51.98 87.41

example, for minimum score of 3 and maximum number of 50 rules, the average

accuracy is 87.39% and for the minimum score of 15 and maximum number of 200

rules, the same performance is obtained. Intermediate values usually have better

performances. Table 6.4 is one best combination for the given possibilities. It

achieves an accuracy of 87.41% with minimum score of 6 and a maximum number

of 50 rules. Other combinations with the same performance may have more rules

or lower minimum score, which makes the training slower and the tagger more

complex.

One of the interesting features of Brill tagging is that we can see which rules

are contributing the most to improving the tagging accuracies. Brill tagging as

discussed in chapter 3 has transformation templates which examine the neighbor-

ing words and tags. One of the interesting rules it formed from the WIC corpus

is related to tagging the Amharic word adis (= new), which is usually used as

adjective and is tagged as such by the initial stage tagger. However, when it is

followed by abeba3, it should be tagged as noun. Brill has been able to learn

that automatically. Here is an extract example of that rule and a few others that

3adis abeba is the capital city of Ethiopia

75

Table 6.5: Accuracy Results Achieved by HMM (TnT)

Tested on Known tokens Unknown tokens Overall

Fold1 90.60 48.77 85.30
Fold2 89.56 50.64 84.92
Fold3 90.36 50.60 86.11
Fold4 92.11 50.37 87.45
Fold5 92.98 53.49 88.44
Fold6 90.80 54.09 86.98
Fold7 93.63 54.99 89.34
Fold8 94.14 53.03 89.51
Fold9 93.44 54.69 89.19
Fold10 87.82 49.15 83.64

Average 91.54 51.98 87.09

have been produced by the Brill tagger.

B |

S F r O | Score = Fixed - Broken

c i o t | R Fixed = \# tags changed incorrect->correct

o x k h | u Broken = \# tags changed correct->incorrect

r e e e | l Other = \# tags changed incorrect->incorrect

e d n r | e

------------------+--

39 39 0 0 | ADJ -> N if the following word is ’abeba’

|

17 17 0 1 | NUMCR -> N if the following word is ’aleqa’

|

11 28 17 0 | NP -> ADJP if the following word is ’melk’

|

8 18 10 0 | ADJ -> N if the following word is ’mesqel’

6.5 Results Analysis

In addition to the accuracy results just reported in the previous section, precision

and recall can also be used to examine closely the performance of the algorithms

with respect to each tag. Table 6.6 shows the precision, recall and f measure

for the two best performing algorithms (CRF and SVM). The average precision,

recall and f measures of SVM are slightly larger than the corresponding values for

76

CRF but a statistically significance test shows that the difference is not significant

(p = 0.75, 0.08, 0.44 > 0.05).

Tags INT (for interjection) and PREPC (preposition with conjunction) are not

predicted by both tagging models even wrongly, hence 0 values for recall and

undefined for precision4 and f measure5. In addition, CRF did not predict NUMC

(number with conjunction) even by mistake. In both models, punctuation marks

have been identified correctly 100% of the times. CRF predicted 76% of the

adjectives correctly as adjectives and of those words it tagged as adjectives, 86%

are correctly adjectives and 14% are non-adjectives. The corresponding values

for SVM are 77% and 83%. Using the same table, similar comparisons can be

made for other tags too.

Precision and recall values of table 6.6 may be important for comparing the

tagging models based on their performance for each tag but it is less useful for

understanding the most performance decreasing errors. The same table shows

that PRONC (pronoun with conjunction) is not identified in 99% of the cases and

it seems huge. However, its effect to performance decrement is little compared to

nouns which are identified 97% of the times. The highest performance decreasing

errors can be seen from a table of confusion usually called confusion matrix.

Tables 6.7 and 6.8 show confusion matrices for both CRF and SVM. Confusions

between nouns and other tags account for most of the errors in both tagging

models. More than 44% of the errors in CRF resulted from taking non-nouns

and their variants (ie: NP,NC, and NPC) as noun families. The corresponding

percentage for SVM is a little less (39.05%). From these confusions, the bigger

portions are taken by confusions between nouns and adjective families, which

account for more than 19% in CRF and 18% for SVM.

In both tagging models, non-noun families are taken to be noun families more

than the other way round. For example, in CRF, 7.7% of the error rates resulted

from confusing ADJs for Ns, whereas 4.51% resulted from confusing Ns for

ADJs. The corresponding values for SVM are 6.59% and 4.89%. This should

not come as a surprise if we closely examine the morphology of the words. The

same affixes are shared by noun families and most of the non-noun families.

A noun phrase that consists of only the head noun gets affixes such as preposi-

tions, definite article, and the case marker. However, if a noun phrase contains

prenominal constituents such as adjectives, numerals, and other nouns, then the

4the precision formula will involve division by zero
5the f measure will also involve division by zero if recall is zero

77

Table 6.6: Precision, Recall and F measure Results for CRF and SVM

CRF SVM
Tags Recall Precision F Recall Precision F

ADJ 0.76 0.86 0.81 0.77 0.83 0.80
ADJC 0.55 0.72 0.62 0.60 0.66 0.63
ADJP 0.44 0.68 0.53 0.47 0.61 0.53
ADJPC 0.25 0.71 0.37 0.31 0.44 0.36
ADV 0.65 0.81 0.72 0.65 0.79 0.71
AUX 0.82 0.94 0.88 0.81 0.92 0.86
CONJ 0.83 0.90 0.87 0.83 0.89 0.86
INT 0 - - 0 - -
N 0.97 0.95 0.96 0.96 0.96 0.96
NC 0.91 0.85 0.88 0.91 0.85 0.88
NP 0.94 0.89 0.91 0.92 0.89 0.91
NPC 0.83 0.74 0.78 0.81 0.74 0.77
NUMC 0 - - 0.50 0.76 0.60
NUMCR 0.98 0.99 0.99 0.99 0.99 0.99
NUMOR 0.89 0.91 0.90 0.94 0.91 0.93
NUMP 0.96 0.95 0.96 0.97 0.96 0.96
NUMPC 0.07 0.23 0.11 0.30 0.44 0.35
PREP 0.94 0.97 0.95 0.94 0.96 0.95
PREPC 0 - - 0 - -
PRON 0.66 0.70 0.68 0.66 0.69 0.67
PRONC 0.01 0.04 0.02 0.11 0.21 0.14
PRONP 0.82 0.72 0.77 0.83 0.72 0.77
PRONPC 0.01 0.33 0.02 0.05 0.22 0.08
PUNC 1.00 1.00 1.00 1.00 1.00 1.00
UNC 0.08 0.28 0.12 0.08 0.19 0.11
V 0.93 0.92 0.93 0.92 0.91 0.92
VC 0.35 0.63 0.45 0.38 0.60 0.46
VN 0.90 0.88 0.89 0.89 0.87 0.88
VP 0.76 0.84 0.80 0.75 0.80 0.77
VPC 0.56 0.67 0.61 0.59 0.62 0.60
VREL 0.86 0.77 0.81 0.80 0.74 0.77
Average 0.60 0.67 0.62 0.64 0.68 0.65

78

Table 6.7: Confusion Matrix for CRF in Percentage

ADJ N NP NC V VP VREL Others Row-sum

ADJ 0 7.7 1.09 0.08 0.14 0.36 0.49 2 11.86
ADJP 0.23 0.08 4.88 0 0 0.51 0.3 0.55 6.55
ADV 0.25 0.94 1.36 0.07 0.5 0.58 0.07 0.66 4.43
CONJ 0 0.26 0.38 0.02 0.1 0.05 0 0.41 1.22
N 4.51 0 3.06 1.66 0.69 0.32 0.09 2.61 12.94
NC 0 1.32 0.15 0 0.02 0.01 0.01 0.87 2.38
NP 0.19 1.71 0 0.2 0.08 3.42 1.22 4.44 11.26
NPC 0 0.01 1.23 0.41 0 0.08 0.01 0.46 2.2
PRONP 0.02 0.05 0.83 0 0 0.04 0 0.47 1.41
PREP 0.06 1 0.26 0.05 0.03 0.02 0.04 0.41 1.87
PRON 0.13 0.3 0.19 0 0 0.1 0.03 1.17 1.92
V 0.13 1.82 0.14 0.04 0 1.56 0.44 0.86 4.99
VN 0.01 2.19 0.21 0.23 0.08 0.1 0.1 0.02 2.94
VP 0.04 0.56 6.06 0.07 2.64 0 7.91 2.36 19.64
VPC 0 0.02 0.05 0.35 0 0.73 0.06 0.79 2
VREL 0.05 0.09 1.14 0.02 0.5 3.75 0 0.5 6.05
Others 0.12 0.7 0.5 0.81 0.48 0.32 0.22 2.45 5.6
Col. sum 5.74 18.75 21.53 4.01 5.26 11.95 10.99 21.03 99.26

Table 6.8: Confusion Matrix for SVM in Percentage

ADJ N NC NP V VP VREL Others Row-sum

ADJ 0 6.59 0.05 0.98 0.16 0.33 0.44 2.04 10.59
ADJC 0.03 0.03 0.3 0.01 0 0 0 0.11 0.48
ADJP 0.42 0.07 0.01 4.05 0 0.52 0.29 0.63 5.99
ADV 0.31 0.86 0.06 1.18 0.49 0.51 0.07 0.79 4.27
N 4.89 0 1.76 2.91 0.8 0.32 0.07 2.97 13.72
NP 0.5 1.89 0.2 0 0.1 3.98 1.32 5.04 13.03
CONJ 0 0.19 0.03 0.39 0.1 0.07 0 0.42 1.2
NC 0.01 1.09 0 0.15 0.02 0.03 0.01 0.96 2.27
NPC 0.01 0.02 0.41 1.06 0.01 0.06 0.01 0.7 2.28
PREP 0.03 0.9 0.04 0.2 0.03 0.02 0.04 0.48 1.74
PRON 0.14 0.21 0 0.16 0.01 0.08 0.03 1.23 1.86
PRONP 0.08 0.02 0 0.51 0 0.03 0.01 0.65 1.3
V 0.19 1.38 0.03 0.12 0 1.95 0.56 0.94 5.17
VN 0.02 1.84 0.24 0.22 0.09 0.37 0.13 0.06 2.97
VP 0.1 0.47 0.08 5.87 2.69 0 7.84 2.64 19.69
VPC 0 0.01 0.31 0.07 0.01 0.65 0.04 0.72 1.81
VREL 0.13 0.09 0.03 0.86 0.53 5.47 0 0.65 7.76
Others 0.13 0.45 0.31 0.34 0.43 0.34 0.23 2.4 4.63
Col. sum 6.99 16.11 3.86 19.08 5.47 14.73 11.09 23.43 100.76

79

stated affixes appear on the prenominal constituents. This phenomenon blurs

the morphological distinctions that would otherwise have been useful for distin-

guishing nouns against their constituents. That is why, for example, ADJs are

mistaken for Ns more than the other way round in both CRF and SVM.

The largest error percentage resulted from confusion between VPs (verb with

preposition) and VREL (verb relative). In CRF, mistaking VPs for VREL

accounts for 7.91% of the total errors. The corresponding value for SVM is

7.84%. Closer examination of the results shows that the POS taggers did not

actually predict wrong tags at least in some cases. The problem is that the

predictions were made against wrongly assigned tags in the test set. In fact,

some of the confusions between some pairs can be shown to be errors in the test

set. For example, yehonu has been tagged as both VP and VREL in the same

test under similar conditions, making either prediction wrong for the other.

80

Chapter 7

Conclusions

• Introduction

• Summary of Results

• Limitations

• Recommendations

7.1 Introduction

In this dissertation, theoretical and practical POS tagging issues have been dis-

cussed with the view to improving part of speech tagging performance for Amharic,

which was never above 90%. Knowledge of Amharic morphology, the given an-

notated data and the tagging algorithms have been examined and shown to play

critical roles in the final performance result. With the experiments carried out

on WIC corpus(≈ 207k), POS tagging accuracies for Amharic have crossed above

the 90% limit for the first time.

The improvement in performance is attributed to a combination of three factors.

First, the POS tagged corpus (WIC) has been cleaned up to minimize the pre-

existing tagging errors and inconsistencies. Second, the vowel patterns and the

roots, which are characteristics of Semitic languages, have been used to serve as

important elements of the feature set. Third, state-of-the-art of machine learn-

ing algorithms have been used and parameter tuning has been done whenever

necessary and as much as possible.

81

This work is not different from previous work on the first factor as much as it is

with the other two factors. The tagging errors and inconsistencies in the WIC

corpus have been acknowledged by all previous researchers and their experiments

were done on their ”cleaned” version of it. In this sense, this work can only

be different from them in the kind and degree of the clean-up. It is, however,

definitely different on the other factors.

Even though most of the features used are not different to those used in most

machine learning-based tagging methods, two other unique features have been

included - the vowel patterns and the radicals. The vowel patterns are the letters

without the consonants and the radicals are the consonants without the vowels.

These additional features have reduced to some degree the impact of the data

sparsity problem (the problem of not observing enough data), thereby contribut-

ing to the performance improvement.

The last factor that contributed to performance improvement is the choice of the

values for the parameters in the selected algorithms. Previous experiments that

applied similar tools used default parameter values. The experiments carried

out in this dissertation, however, used selected parameters, different from the

default values, and have been observed to have significant impact on the final

performance results. Of particular importance is the penalty parameter C that

controls the underfitting/overfitting phenomena of machine learning algorithms.

Specifically, smaller C values have been chosen in order to minimize the effect of

training errors in the learned models.

This work is also different from previous Amharic POS tagging experiments in

the methods applied. Brill tagging has been applied for the first time and has

resulted in encouraging results. The current patch templates in Brill are based

on the words and tags surrounding the focus word. For Semitic languages, more

benefit can be obtained by extending the templates to look at the affixes of the

neighboring words.

7.2 Summary of Results

The highest POS tagging accuracies have been achieved by both conditional ran-

dom fields and support vector machines, followed by Brill and TnT. The CRF

tagger achieved an average accuracy of 90.95% on a 10-fold cross-validation while

under the same conditions, SVM achieved an average of 90.43%. The difference

is statistically significant (p = 0.00052 < 0.05). Brill and TnT achieved compa-

82

Table 7.1: Best POS Tagging Accuracies for 3 Semitic Languages

Language Tag Training Test Method Result (in %)

Arabic 24 132k 12k SVM 97.6 (Habash and Rambow, 2005)
Arabic 24 4119 s 4k s SVM 95.5 (Diab et al., 2004)
Hebrew 21 39k 9k HMM 89.59 (Bar-Haim et al., 2005)
Amharic 30 180k 20k SVM 88.30 (Gambäck et al., 2009)
Amharic 31 186k 21k CRF 90.95
Amharic 31 186k 21k CRF 90.43
Amharic 31 186k 21k Brill 87.41
Amharic 31 186k 21k TnT 87.09

rable accuracies. Brill achieved an average overall accuracy of 87.41%, which is

statistically higher (p = 0.00355 < 0.05) than 87.09% for TnT.

Table 7.1 shows the aforementioned results in the context of results for two related

languages, namely Arabic and Hebrew. As can be seen from the table, Amharic

is not badly positioned with respect to the size of the tagged corpus. In fact, it is

the biggest but its quality is probably the worst. Even so, the accuracy obtained

for a tagset of 31 is encouraging. The results reported in the table for Arabic and

Hebrew are for a tag size of 24, which should favor higher accuracy results.

Error analysis using confusion matrices for both CRF and SVM shows that be-

tween 39% and 45% of the errors resulted from confusions of non-noun families for

noun-families. Closer examination of their morphology shows that both families

share the same affixes. A noun phrase that consists of only the head noun gets

affixes of prepositions, conjunctions, etc. However, if the noun phrase contains

prenominal constituents such as adjectives, the affixes appear on the constituents,

thereby blurring the morphological distinctions necessary to distinguish them.

7.3 Limitations

As explained above, POS tagging performances for Amharic have been improved

because of contributions from three factors. The relative contributions of each

factor has, however, not been shown. Of particular importance for research is

the second factor which is related to the vowel patterns and radicals in Semitic

languages. These features have been included in the featuresets learned by the

tagging models. It would have more interesting if performance results were also

available for featuresets that excludes them on known and unknown words. Re-

sults with and without the vowel patterns/radicals would have clearly shown their

83

significance.

Another limitation of this dissertation is related to the question: how much more

annotated data contributes how much more performance. In other words, the

relationship between corpus size and performance has not been demonstrated.

Interestingly, this could be related to the vowel patterns and radicals. In what

data range sizes is the effect of the vowel patterns or radicals more visible? Such

and other data size related issues could have been further explored.

The last limitation is inadequacy of the POS tagging accuracies. Even though,

the results obtained in our experiments are higher than previous results. It is

still far behind Arabic and English, where accuracies are above 97%1.

7.4 Recommendations

POS tagging experiments for Amharic have been so far based on supervised

stochastic methods using annotated data and have not used a morphological

analyzer primarily because there was not any until recently. Now since a mor-

phological analyzer is available (Gasser, 2009a), it will be interesting to see how

the morphological analyzer can be integrated in such tagging methods. It will

also be interesting to explore a rule-based tagger based on the same or a similar

morphological analyzer.

Vowel patterns and consonants in Semitic words have special syntax and seman-

tics values. Their significance in improving the quality and performance of basic

tasks and applications such as POS tagging, parsing and machine translation

should be explored for Semitic languages and maybe for other languages too.

In addition to exploring other techniques in POS tagging for Amharic. It is also

important to develop the linguistic resources. In fact, there will not be major

advances in Amharic POS tagging using stochastic methods unless the existing

corpus is cleaned further or a new one developed.

In development of new linguistic resources, it is necessary to follow standards with

two main objectives: first, minimization of errors and inconsistencies similar to

the ones observed in WIC; second, maximization of flexibility and adaptability of

the resources for applications and other processing tasks including parsing, which

should be the next research topic after significant improvements in POS tagging.

1See table 2.1 in chapter 2 for the state-of-the-art results in POS tagging for English

84

Bibliography

Adafre, S. F. (2005), Part of speech tagging for amharic using conditional random

fields, in ‘Semitic ’05: Proceedings of the ACL Workshop on Computational

Approaches to Semitic Languages’, Association for Computational Linguistics,

Morristown, NJ, USA, pp. 47–54.

Adler, M. (2001), Hidden markov model for hebrew part-of-speech tagging (in

hebrew), Master’s thesis, Ben Gurion University, Israel.

Aires, R., Alúısio, S., Kuhn, D., Marcio, L. and Oliveira Jr, O. (2000), ‘Combining

multiple classifiers to improve part of speech tagging: A case study for brazilian

portuguese’, Núcleo 3, 1.

Aklilu, A. (1987), Amharic-English Dictionary, Kuraz Publishing Agency.

Argaw, A. A. and Asker, L. (2005), Web mining for an amharic - english bilingual

corpus, in ‘WEBIST’, pp. 239–246.

Bahl, L. R. and Mercer, R. L. (1976), Part of speech assignment by a statisti-

cal decision algorithm, in ‘In Proceedings’ IEEE International Symposium on

Information Theory’, pp. 88–89.

Bar-Haim, R., Sima’an, K. and Winter, Y. (2005), Choosing an optimal archi-

tecture for segmentation and pos-tagging of modern hebrew, in ‘Semitic ’05:

Proceedings of the ACL Workshop on Computational Approaches to Semitic

Languages’, Association for Computational Linguistics, Morristown, NJ, USA,

pp. 39–46.

Bar-haim, R., Sima’an, K. and Winter, Y. (2008), ‘Part-of-speech tagging of

modern hebrew text’, Nat. Lang. Eng. 14(2), 223–251.

Baum, L. (1972), ‘An inequality and associated maximization technique in sta-

tistical estimation for probabilistic functions of markov processes’, Inequalities

3(1), 1–8.

85

Beesley, K. (1998), Arabic morphology using only finite-state operations, in ‘Pro-

ceedings of the Workshop on Computational Approaches to Semitic languages’,

Association for Computational Linguistics, pp. 50–57.

Birocheau (2003), Etiquetage morphologique et contribution la dsambigusation

automatique des ambiguts morphologiques sur un lexique anglais, PhD thesis,

Thse de doctorat sous la dir. de Sylviane Cardey, Centre Tesnire, Universit de

Franche-Comt, Besanon.

Boser, B., Guyon, I. and Vapnik, V. (1992), A training algorithm for optimal mar-

gin classifiers, in ‘Proceedings of the fifth annual workshop on Computational

learning theory’, ACM, pp. 144–152.

Brants, T. (2000), ‘Tnt - a statistical part-of-speech tagger’.

Brill, E. (1992), ‘A simple rule-based part of speech tagger’.

Brill, E. (1995), ‘Transformation-based error-driven learning and natural language

processing: A case study in part-of-speech tagging’, Computational Linguistics

21, 543–565.

Brill, E. and Wu, J. (1998), Classifier combination for improved lexical dis-

ambiguation, in ‘ANNUAL MEETING-ASSOCIATION FOR COMPUTA-

TIONAL LINGUISTICS’, Vol. 36, Association for Computational Linguistics,

pp. 191–195.

Buckwalter, T. (2002), Buckwalter Arabic Morphological Analyzer Version 1.0,

Linguistic Data Consortium, Philadelphia.

URL: http://www.ldc.upenn.edu/Catalog/CatalogEntry.jsp?catalogId=LDC2002L49

Cardey, S. and Greenfield, P. (2003), Disambiguating and tagging using systemic

grammar, in ‘Proceedings of the 8th International Symposium on Social Com-

munication’, pp. 559–564.

Carmel, D. and Maarek, Y. S. (1999), Morphological disambiguation for hebrew

search systems, in ‘In Proceeding of NGITS-99’, Springer, pp. 312–326.

Chang, C.-C. and Lin, C.-J. (2001), LIBSVM: a library for support vector ma-

chines. Software available at http://www.csie.ntu.edu.tw/ cjlin/libsvm.

Chen, S. and Goodman, J. (1999), ‘An empirical study of smoothing techniques

for language modeling’, Computer Speech and Language 13(4), 359–394.

Church, K. and Gale, W. (1991), ‘A comparison of the enhanced good-turing and

deleted estimation methods for estimating probabilities of english bigrams’,

Computer Speech & Language 5(1), 19–54.

86

Church, K. W. (1988), A stochastic parts program and noun phrase parser for un-

restricted text, in ‘In Proceedings of the Second Conference on Applied Natural

Language Processing’, pp. 136–143.

CIA (2010), ‘The world fact book - ethiopia’, [Accessed in May 2010].

URL: https://www.cia.gov/library/publications/the-world-

factbook/geos/et.html

Cortes, C. and Vapnik, V. (1995), ‘Support-vector networks’, Machine learning

20(3), 273–297.

Daelemans, W., Van Den Bosch, A., Zavrel, J., Veenstra, J., Buchholz, S. and

Busser, B. (1998), ‘Rapid development of nlp modules with memory-based

learning’, Proceedings of ELSNET in Wonderland pp. 105–113.

Daelemans, W., Zavrel, J., Berck, P. and Gillis, S. (1996), Mbt: A memory-based

part of speech tagger generator, in ‘Proceedings of the Fourth Workshop on

Very Large Corpora’, pp. 14–27.

De Pauw, G., de Schryver, G. and Wagacha, P. (2006), Data-driven part-of-speech

tagging of kiswahili, in ‘Text, Speech and Dialogue’, Springer, pp. 197–204.

Demeke, G. and Getachew, M. (2006), ‘Manual annotation of amharic news

items with part-of-speech tags and its challenges’, Ethiopian Languages Re-

search Center Working Papers 2, 1–16.

Derose, S. J. (1988), ‘Grammatical category disambiguation by statistical opti-

mization’, Computational Linguistics 14, 31–39.

Diab, M., Hacioglu, K. and Jurafsky, D. (2004), Automatic tagging of arabic

text: from raw text to base phrase chunks, in ‘In 5th Meeting of the North

American Chapter of the Association for Computational Linguistics/Human

Language Technologies Conference (HLT-NAACL04’, pp. 149–152.

Dietterich, T. (1998), ‘Approximate statistical tests for comparing supervised

classification learning algorithms’, Neural computation 10(7), 1895–1923.

Firdyiwek, Y. and Yaqob, D. (1997), ‘The system for ethiopic representation in

ascii’, URL: citeseer. ist. psu. edu/56365. html .

Francis, W. (1980), ‘A tagged corpus–problems and prospects’, Studies in English

linguistics for Randolph Quirk pp. 192–209.

Gambäck, B., Olsson, F., Argaw, A. A. and Asker, L. (2009), Methods for amharic

part-of-speech tagging, in ‘AfLaT ’09: Proceedings of the First Workshop on

87

Language Technologies for African Languages’, Association for Computational

Linguistics, Morristown, NJ, USA, pp. 104–111.

Garside, R. (1987), ‘The claws word-tagging system’, The computational analysis

of English: a corpus-based approach pp. 30–41.

Garside, R. and Smith, N. (1997), ‘A hybrid grammatical tagger: Claws4’, Corpus

annotation: Linguistic information from computer text corpora pp. 102–121.

Gasser, M. (2009a), HornMorpho 1.0: morphological analysis and generation of

Amharic verbs and nouns and Tigrinya verbs.

Gasser, M. (2009b), Semitic morphological analysis and generation using finite

state transducers with feature structures, in ‘EACL ’09: Proceedings of the

12th Conference of the European Chapter of the Association for Computational

Linguistics’, Association for Computational Linguistics, Morristown, NJ, USA,

pp. 309–317.

Getachew, M. (2001), Automatic part of speech tagging for amharic: An experi-

ment using stochastic hidden markov (hmm) approach, Master’s thesis, Addis

Ababa University.

Giménez, J. and Marquez, L. (2004), Svmtool: A general pos tagger generator

based on support vector machines, in ‘Proceedings of the 4th International

Conference on Language Resources and Evaluation’, Citeseer, pp. 43–46.

Good, I. (1953), ‘The population frequencies of species and the estimation of

population parameters’, Biometrika 40(3-4), 237.

Greene, B. and Rubin, G. (1971), ‘Automatic grammatical tagging of english’,

Providence, RI: Department of Linguistics, Brown University .

Habash, N. (2005), ‘Arabic morphological representations for machine transla-

tion’, Arabic Computational Morphology pp. 263–285.

Habash, N. and Rambow, O. (2005), Arabic tokenization, part-of-speech tagging

and morphological disambiguation in one fell swoop, in ‘Proceedings of the 43rd

Annual Meeting on Association for Computational Linguistics’, Association for

Computational Linguistics, p. 580.

Hajič, J. (2000), Morphological tagging: Data vs. dictionaries, in ‘Proceedings of

the 1st North American chapter of the Association for Computational Linguis-

tics conference’, Morgan Kaufmann Publishers Inc., pp. 94–101.

88

Halteren, H., Zavrel, J. and Daelemans, W. (2001), ‘Improving accuracy in word

class tagging through the combination of machine learning systems’, Compu-

tational linguistics 27(2), 199–229.

Johnson, W. (1932), ‘I.–probability: The deductive and inductive problems’,

Mind 41(164), 409.

Jurafsky, D., Martin, J. and Kehler, A. (2000), Speech and language processing:

An introduction to natural language processing, computational linguistics, and

speech recognition, MIT Press.

Katz, S. (1987), ‘Estimation of probabilities from sparse data for the language

model component of a speech recognizer’, IEEE Transactions on Acoustics,

Speech and Signal Processing 35(3), 400–401.

Khoja, S. (2001), Apt: Arabic part-of-speech tagger, in ‘Proceedings of the Stu-

dent Workshop at NAACL-2001’, Citeseer.

Kudo, T. (2007), ‘Crf++: Yet another crf toolkit’. Software available at

http://crfpp. sourceforge.net.

Lafferty, J. (2001), Conditional random fields: Probabilistic models for segment-

ing and labeling sequence data, Morgan Kaufmann, pp. 282–289.

Leech, G., Garside, R. and Bryant, M. (1994), ‘Claws4: The tagging of the british

national corpus’.

Levinger, M. (1992), Morphological disambiguation (in hebrew), Master’s thesis,

Computer Science Department, Technion, Haifa, Israel.

Levinger, M., Ornan, U. and Itai, A. (1995), ‘Morphological disambiguation in

hebrew using a priori probabilities’, Computational Linguistics 21, 383–404.

Lidstone, G. (1920), ‘Note on the general case of the bayes-laplace formula for

inductive or a posteriori probabilities’, Transactions of the Faculty of Actuaries

8(182-192), 80.

Loftsson, H. (2006), ‘Tagging icelandic text: An experiment with integrations and

combinations of taggers’, Language Resources and Evaluation 40(2), 175–181.

Loper, E. and Bird, S. (2002), ‘Nltk: The natural language toolkit’, CoRR

cs.CL/0205028.

MA, A., Braverman, E. and LI, R. (1964), ‘Theoretical foundations of the poten-

tial function method in pattern recognition learning’, Automation and remote

control 25, 821–837.

89

Mansour, S. (2008), Combining character and morpheme based models for part-

of-speech tagging of semitic languages., Master’s thesis, Technion, Haifa, Israel.

Marcus, M. P., Marcinkiewicz, M. A. and Santorini, B. (1993), ‘Building a large

annotated corpus of english: the penn treebank’, Comput. Linguist. 19(2), 313–

330.

Marshall, I. (1983), ‘Choice of grammatical word-class without global syntactic

analysis: tagging words in the lob corpus’, Computers and the Humanities

17(3), 139–150.

McCallum, A. (2002), ‘Mallet: A machine learning for language toolkit’.

Morgadinho (2004), Analyse pour un systme d’tiquetage morphologique et de

dsambigusation morphosyntaxique:Labelgram espanol, PhD thesis, Thse de

doctorat sous la dir. de Sylviane Cardey, Centre Tesnire, Universit de Franche-

Comt, Besanon.

Palmer, M. S. and Finin, T. (1990), ‘Workshop on the evaluation of natural

language processing systems’, Computational Linguistics 16, 175–181.

Rabiner, L. R. (1989), A tutorial on hidden markov models and selected applica-

tions in speech recognition, in ‘Proceedings of the IEEE’, pp. 257–286.

Ratnaparkhi, A. (1996), ‘A maximum entropy model for part-of-speech tagging’.

Segal, E. (2000), Hebrew morphological analyzer for hebrew undotted texts.,

Master’s thesis, Computer Science Department, Technion, Haifa, Israel.

Shacham, D. (2007), Morphological disambiguation of Hebrew, PhD thesis, Cite-

seer.

Shen, L., Satta, G. and Joshi, A. (2007), Guided learning for bidirectional se-

quence classification, in ‘ANNUAL MEETING-ASSOCIATION FOR COM-

PUTATIONAL LINGUISTICS’, Vol. 45, p. 760.

Simaan, K., Itai, A., Winter, Y., Altman, A. and Nativ, N. (2001), ‘Building a

tree-bank of modern hebrew text’, Traitement Automatique des Langues 42(2).

Sjöbergh, J. (2003), Combining pos-taggers for improved accuracy on swedish

text, in ‘Proceedings of NoDaLiDa 2003’, Citeseer.

Spoustová, D., Hajič, J., Votrubec, J., Krbec, P. and Květoň, P. (2007), The best

of two worlds: Cooperation of statistical and rule-based taggers for czech, in

‘Proceedings of the Workshop on Balto-Slavonic Natural Language Processing:

Information Extraction and Enabling Technologies’, Association for Computa-

tional Linguistics, pp. 67–74.

90

Stolcke, A. (2002), Srilm-an extensible language modeling toolkit, in ‘Seventh

International Conference on Spoken Language Processing’, Vol. 3, Citeseer,

pp. 901–904.

Stolz, W. S., Tannenbaum, P. H. and Carstensen, T. V. (1965), ‘A stochastic

approach to the grammatical coding of english’, Communications of the ACM

pp. 399–405.

Tachbelie, M. and Menzel, W. (2009), ‘Amharic part-of-speech tagger for factored

language modeling’.

Toutanova, K., Klein, D., Manning, C. and Singer, Y. (2003), Feature-rich part-

of-speech tagging with a cyclic dependency network, in ‘Proceedings of the

2003 Conference of the North American Chapter of the Association for Com-

putational Linguistics on Human Language Technology-Volume 1’, Association

for Computational Linguistics, pp. 173–180.

Tsuruoka, Y. (2005), Bidirectional inference with the easiest-first strategy for

tagging sequence data, in ‘Proceedings of the conference on Human Language

Technology and Empirical Methods in Natural Language Processing’, Associ-

ation for Computational Linguistics Morristown, NJ, USA, pp. 467–474.

Tsuruoka, Y., Tateishi, Y., Kim, J., Ohta, T., McNaught, J., Ananiadou, S. and

Tsujii, J. (2005), ‘Developing a robust part-of-speech tagger for biomedical

text’, Advances in Informatics pp. 382–392.

Viterbi, A. (1967), ‘Error bounds for convolutional codes and an asymptoti-

cally optimum decoding algorithm’, IEEE transactions on Information Theory

13(2), 260–269.

Voutilainen, A. (1995), A syntax-based part-of-speech analyser, in ‘Proceedings

of the seventh conference on European chapter of the Association for Compu-

tational Linguistics’, Morgan Kaufmann Publishers Inc., San Francisco, CA,

USA, pp. 157–164.

Wikipedia (2010), ‘Amharic’, [Accessed in June].

URL: http://en.wikipedia.org/wiki/Amharic

Ymam, B. (2007), Amharic Grammar (In Amharic), ISBN 978-99944-999-8-4,

second edition edn, Eleni Press, Addis Ababa.

Zavrel, J. and Daelemans, W. (1999), Recent advances in memory-based part-of-

speech tagging, in ‘VI Simposio Internacional de Comunicacion Social’, Cite-

seer, pp. 590–597.

91

