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Abstract
Automatic annotation of gesture strokes is important for many gesture and sign language researchers. The unpredictable diversity of
human gestures and video recording conditions require that we adopt a more adaptive case-by-case annotation model. In this paper,
we present a work-in progress annotation model that allows a user to a) track hands/face b) extract features c) distinguish strokes
from non-strokes. The hands/face tracking is done with color matching algorithms and is initialized by the user. The initialization
process is supported with immediate visual feedback. Sliders are also provided to support a user-friendly adjustment of skin color

ranges.

After successful initialization, features related to positions, orientations and speeds of tracked hands/face are extracted

using unique identifiable features (corners) from a window of frames and are used for training a learning algorithm. Our prelim-
inary results for stroke detection under non-ideal video conditions are promising and show the potential applicability of our methodology.
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1.

Many gesture and sign language researchers manually an-
notate recorded videos to systematically study patterns that
are relevant to their hypotheses. The set of patterns and the
set of annotations that go along with the patterns vary con-
tinuously and unpredictably in accordance with researchers
needs. This fact makes any attempt at developing non-
adaptive or non-learning general-purpose automatic anno-
tation methods less effective. The trend in the literature has
been to develop models that are designed to be trained once
by developers and used thereafter by average users. This
approach has three main disadvantages. First, it is impossi-
ble to know beforehand all the patterns that could be of in-
terest to all researchers. Second, it is practically impossible
to find enough training examples for all patterns. Third, it
is currently impossible to learn a model that is robust across
all video quality recording variations.

To overcome the three problems, this paper proposes a
case-by-case user-controlled annotation model. The main
philosophy for this kind of model is that a model designed
to give the best average performance in a variety of sce-
narios is usually less accurate for a particular scene than
a model tailored to the characteristics of that scene. This
approach is also grounded in the No Free Lunch theorems,
which establish that for any algorithm, any elevated perfor-
mance over one class of problems is offset by performance
over another class(Wolpert and Macready, 1997).

We apply this approach to the problem of gesture stroke de-
tection. To be more precise, we develop a stroke detection
model that takes intuitive input from the user for a given
video and we apply standard algorithms optimized to the
characteristics of the video.

Introduction

2. Gesture stroke

Gesture stroke is the most important message-carrying
phase of the series of body movements that constitute a
gesture (or the phrases in a gesture). The body movements
usually include hand and face movements. The relevant
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questions for automatic stroke recognition are a) what is a
gesture? b) where does a gesture start and end? ¢) what are
the phases in the gesture? d) which one is the stroke?
Figure [T| shows the different phases in a gesture unit. The
figure shows that a gesture unit consists of one or more ges-
ture phrases and each gesture phrase consists of phases that
are called preparation, pre-stroke hold, stroke, post-stroke
hold and retraction. Except for strokes, which are mostly
obligatory, the rest of the phases in a gesture phrase are op-
tional.

For the purpose of this paper, any hand/face movement is
classified into two classes: strokes and non-strokes. The
non-stroke gesture phases include the preparation, the hold,
the retraction and any other body movements excluding the
strokes. As strokes are mostly the only meaningful phases
in a gesture, it is important to distinguish them from other
types of movements (here called non-strokes). It is impor-
tant to notice that we are not identifying the meanings of
the strokes. We are only trying to locate their presence.

3. Methodology

Our approach to determining gesture strokes involves four
steps: a) detect face and hands for every person b) track
them c) extract features d) distinguish strokes from non-
strokes. Each step is solved by different algorithms. De-
tection of faces and hands is carried out by two features:
corners and colors. The two features have been selected
because they are usually stable from frame to frame for a
given video.

Corners are shown to be good features for tracking(Shi and
Tomasi, 1993). A given point in a homogenous image can-
not be identified whether or not it has moved in the subse-
quent frame. Similarly, a given point along an edge cannot
be identified whether or not it has moved along that edge.
However, the motion of a corner can conveniently be com-
puted and identified. A corner has the property that it is
different from its surrounding points. This makes it identi-
fiable and a good feature for tracking.
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Figure 1: Gesture Phases
(Kendon, 1980; Kendon, 1972)

For a given application, not all corners in a video are
equally important. For gesture analysis, the interesting
corners are the ones resulting from the body movements,
mainly from head and hand movements. In order to filter
out the corners irrelevant to body movements, we mask out
corners that do not have the skin color of human beings.
The user selects a representative skin color region from the
first frame of the video and can adjust the skin color ranges
until the skin color regions are clearly separated from other
regions.

The selected part of the video is converted from the RGB
color space to HSV. A histogram of the H (Hue) channel
with specified SV (Saturation and Value) ranges is used as
a model of the skin color. The SV range values should not
be the same for all videos. Changing their values for partic-
ular video recording conditions contributes to a more accu-
rate model of the skin color. In our system, the SV adjust-
ment is done using sliders and immediate visual feedback
of the adjustment is shown, allowing the user to experiment
before deciding on the most accurate adjustment.

The skin color model is used to calculate the probabilities
of frame pixels of being skin color. A region of pixels with
probabilities more than 0.3 is used for finding corners be-
longing to the hands and the head. Pixels with probabilities
less than 0.3 are considered non-skin.

Given corner features from the regions of the skin in the
video, the tracking is done with the pyramidal implementa-
tion of the Lucas Kanade algorithms(Bouguet, 1999; Brad-
ski and Kaehler, 2008)). This algorithm tries to find the dis-
placement that minimizes the difference of the given inter-
est point from two frames in a sequence. The Lucas Kanade
algorithm works based on three assumptions: /) brightness
constancy - a point in a given image does not change in
appearance as it moves from frame to frame 2) temporal
persistence - the motion of a surface patch changes slowly
in time 3) spatial coherence - neighboring points in an im-
age belong to the same surface, have similar motion, and
project to nearby points on the image plane. The tracking
of the selected features is done within a window of speci-
fied size. There is a trade-off with the choice of the window
size. A small window size cannot capture large motions.
A large window violates the spatial coherence assumption.
The trade-off problem is solved by applying Lucas-Kanade
algorithm over a pyramid of images(Bouguet, 1999). A
pyramid of images is a collection of down-sampled im-
ages(Adelson et al., 1984) and in our case, it is used to
detect larger motions.

With the corners, the skin color model and the Lukas-
Kanade algorithm, we have a set of corners in every frame.
At this stage, which corners belong to which body parts
(i.e. left hand, right hand and head for every person) in the
video is unknown. Assuming there is one person gesturing,
the corners can have from one to three clusters correspond-
ing to left hand, right hand, head and their different possible
combinations (joining).

Values extracted from the number of corners, clusters and
their dynamics across frames (context) are fed into a su-
pervised learning algorithm with class labels 1 for frames
inside a stroke and O for frames outside a stroke. The ma-
chine learning algorithm is designed to predict whether or
not a given frame is inside a stroke.

4. Experiment data

To test the detection of strokes, we used a stroke and non-
stroke annotated video data of about 3.6 minutes long. It
has one young lady speaking and gesturing in a natural
environment. The lady is facing the camera most of the
time. Figure [3]shows a screen shot of the video and table 1
gives information of the resolution, frame rate and other
elements of the the video. The video has 60 strokes each
ranging from 6 to 32 frames in duration with mean 15 and
standard deviation 6. This video has been taken from the
MPI archive http://corpusl.mpi.nl/ds/imdi_
browser/l

Feature | Value
Length in minutes | 3.6
Video resolution | 320x240
Frame rate(per second) | 24
Total frames | 5441
Stroke frames | 988
Non-stroke frames | 4453

Table 1: Video header information.

5. Feature extraction

The experiment data consists of X values of different fea-
tures and y labels. For every frame of the video, there is a
feature vector and a corresponding label. The label is bi-
nary. If the frame is part of a stroke phase, it is labeled as
1 and O otherwise. The feature vectors are extracted from
a given frame and its neighbors(three preceding and three
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following frames). Every frame has information related to
11 predefined positions, four orientations and velocity. The
predefined positions are discretized regions in front of and
to the sides of the gesturer. This gesture space classifica-
tion is inspired by McNeill (McNeill, 1992) and is shown
in figure 2] The four orientations represent the four quad-
rants of the Cartesian plane with origin represented by the
initial positions of the corners being tracked.
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Figure 2: Typical gesture space of an adult speaker
(McNeill, 1992)

6. Classifification

To test the effect of the features in stroke detection, we im-
plemented a regularized logistic regression classifier. Lo-
gistic regression is a discriminative linear classifier. It
works by finding parameter values that minimize the cost
function given in equation [T} In this equation, m is the
number of examples in the training set, z; is a feature vec-
tor and y; is a 0—1 label for example . A is a regularization
parameter and n is the number of features. hg(x;), shown
in equation 2] is a sigmoid function that gives continuous
values between 0 and 1 (i.e. probability). For classification,
we have the freedom of choosing the threshold below/above
which we decide to classify a given feature into one of the
two classes. This freedom allows us to manage the trade-off
between precision and recall as we wish. In our case, we set
the threshold to 0.5. Using the gradient of the cost function
and an optimization algorithm (fminunc), we find weights
(parameter values) that minimize the cost function for the
training data. We then use these weights for prediction.
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7. Results

The accuracy of the system for face and hands detection
based on initializations of regions of skin color on one
frame in the video and applied to the subsequent frames in
the same video depends on how distinct the skin color is as
compared to the background and the clothes of the person.
There is no ground truth data to give quantitative evaluation
of the skin color detection algorithm. The qualitative evalu-
ation is that the detection of skin color works good enough
given that a) the user selects skin-region correctly and that
b) they make correct adjustments using the sliders and the
visual feedback.

The sliders on the system provide a mechanism to change
the values of the ranges that specify the selected color re-
gion (in this case, skin color) and immediate feedback of
the given action shows how good that action is. In our test
video, this approach proved effective enough in identify-
ing the skin color regions. However, if there are objects
in the video where the color of the object is similar to the
skin color, then the detection result includes also the object.
This is not desirable and affects the detection process in a
negative way. For example, in our test video, the color of
the chair where the gesturer is sitting on is very similar to
the skin color of the gesturer and is identified as skin color.
Figure ] shows a screen shot of the detected skin-region.
The figure clearly shows that the system identified the chair
as part of the skin color region. In the case where the cam-
era is almost fixed, which is the case in our test video, the
effect of the chair on the detection of corners belonging to
the skin region(face and hands) can be ignored as the chair
has few moving corners of its own.

Figure 3: A screen shot of a video with corners. The cor-
ners are colored differently depending on their location in
the gesture space. The rectangle in black is the region se-
lected by the user as a model for the skin color.

The results associated with the classification of frames into
part of a ’stroke’ and part of 'non-stroke’ are shown in
figure 5] The horizontal axis of the graph represents the
amount of data used for training and test. For example, 0.3
means 30% of the data is used for training and the remain-
ing 70% for testing. The vertical axis represents perfor-
mance levels ranging from 0 to 1 for accuracy, precision,
recall and F1 measures. The average accuracy obtained
is 88.06% and is measured as percentage of correct pre-

233



Stroke Detection Performance

—@— Accuracy
= B = Precision
09 +@ ' Recall
F1
O  F1random classifier
0.8
07 A
’
’
06— ’
8 R
g o- s ‘
EO.Sf oo "_— ----a_ ,/
3 ~a” S ]
o o N B, .
0.4+ ~ Lo ’
S ,07,,
‘‘‘‘‘ S 4 a....
. Qe g So . i - |
03+ '/ﬂ,. N \\‘I
,,,,,, o
02—
o
o o o
0.1 °
§ o °
o o
0 1 1 1 1 1 1 1 1 1 |
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Partition of data

Figure 5: The graph shows accuracy, precision, recall and F1 results as the data for training and testing is partitioned. The
bigger the partition number, the more data for training(the less data for testing) and vice versa.

Figure 4: A screen shot of a video showing detected skin re-
gions. Very white regions correspond to high probabilities
for skin regions. The chair is also part of the skin-region as
it has almost the same color as the gesturer. See figure 3]

dictions. The accuracy measure does not give a complete
picture of the results because of the imbalances between
the number of ’part-of-a-stroke’ frames and ’part-of-a-non-
stroke’ frames. Frames belonging to strokes are only 988
out of 5441 (18.16%), which guarantees a baseline accu-
racy of 81.84%. The useful measures are precision, re-
call and their combined measure (F1). The average pre-
cision, recall and F1 measures are 47.24% 34.41%, 38.71%
respectively. These measures show that the stroke detec-
tion performance is poor for practical and general purposes.
However, the measures are much better than random stroke
detection. The performance for a random classifier is con-
sistently below the performance of our classifier as shown
in figure 5] The average F1 measure for a random classi-
fier is about 11.15% whereas for our logistic classifier it is
38.71%.

Evaluation for accuracy of frame boundaries for strokes and
non-strokes should and cannot be as clear-cut as we pre-
sented it above. One or two frame misses are not bad given
that even humans do not accurately mark the correct bound-
ary anyway. However, we did not consider that observation
in our evaluation results.

8. Conclusion

In this paper, we have put more emphasis on a more adap-
tive case-by-case annotation model based on the idea that
with a little more input from users and facilitated by more
user-friendly interfaces, annotation models can be more
adaptive, more accurate and more robust.

We have tested our approach for the problem of hands/face
tracking and automatic stroke detection. We have noticed
that building a skin color model offline for all human skin
colors will not only make the model more complex but also
less accurate when applied on any particular video. How-
ever, models built online for a given video initialized by
input from the user achieve higher performance at no more
cost than the initialization.

We have also shown that unique features (i.e. corners) and
their dynamics across frames can be indicative of the pres-
ence of strokes. In our future research, we will continue
to to improve the stroke detection performance using more
features and learning algorithms. If the problem of stroke
detection is solved, the next stage would be to classify them
according to their meanings.
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