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The change of the effective dimension of spacetime with the probed scale is a universal phenomenon

shared by independent models of quantum gravity. Using tools of probability theory and multifractal

geometry, we show how dimensional flow is controlled by a multiscale fractional diffusion equation, and

physically interpreted as a composite stochastic process. The simplest example is a fractional telegraph

process, describing quantum spacetimes with a spectral dimension equal to 2 in the ultraviolet and

monotonically rising to 4 towards the infrared. The general profile of the spectral dimension of the

recently introduced multifractional spaces is constructed for the first time.
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The spectral properties of effective quantum geometries
show that the ultraviolet (UV) finiteness of independent

theories of quantum gravity is universally associated with a

lower spectral dimension of spacetime (typically, dS � 2)
at small scales, while dS � 4 in the infrared (IR). Instances
are causal dynamical triangulations (CDT) [1], asymptotic

safety (QEG) [2,3], spin foams [4,5], noncommutative
geometry [6], Hořava-Lifshitz gravity [7], and other ap-

proaches [8]. The change of dimension with the probed

scale is known as dimensional reduction or dimensional

flow [9]. Understanding its physical meaning is an impor-
tant piece of the puzzle of quantum gravity, since multi-

scale behavior is deeply related to the renormalization

properties of these theories. Differential geometry and
ordinary calculus, as employed in general relativity and

field theory, are inadequate to study this and other proper-

ties of quantum spacetimes, and stochastic processes and

multifractal geometry can offer powerful tools of analysis
and novel insight. While there is the tendency to label all

multiscale spaces as ‘‘fractal,’’ the accumulated knowledge

from these branches of mathematics permit to make
sharper statements about the geometric and physical prop-

erties of quantum-gravity models. This philosophy in-

spired the revisiting of a recent problem, the construction

of quantum field theories in fractal spacetimes, under a
fresh perspective focused on an effective continuum ge-

ometry [10], in particular via the formalism of multifrac-

tional spacetimes [11].
After a sketch of the classical situation, we will argue

that quantum geometry effectively modifies the diffusion
equation. A critical appraisal of the latter will allow us to
classify quantum geometries in terms of stochastic pro-
cesses on one hand, and to get a precise back-up to the
notion of ‘‘fractal spacetime’’ on the other hand. The aim is
to reexamine the spectral dimension starting from its foun-
dation and provide a general, model-independent and
analytic description of dimensional flow, confirmed by
quantum-gravity examples. This is possible thanks to the
presence of universal features in the flow [12].

For a diffusion process to be meaningful, the solution P
of the transport equation must be nonnegative at all points.
If P is normalized to 1, it is interpreted as the probability to
find the diffusing test particle at a given point. This proba-
bility distribution describes a stochastic process, i.e., a
sequence or collection of random variables. We shall use
the condition P � 0 as one of the guiding principles to
identify the random process associated with a given be-
havior of quantum geometry. Here we do not pay attention
to the techniques solving the diffusion equations; an ex-
panded discussion is in [12].
Classical spacetimes. In a smooth classical spacetime

with D topological dimensions, the diffusion equation is

ð@� �r2
xÞPðx; x0; �Þ ¼ 0: (1)

The parameter � � 0 acts as an abstract ‘‘time’’ variable
via the diffusion operator @�, an ordinary first-order de-
rivative. Writing� ¼ ‘2 �� in terms of a length scale ‘ and a
dimensionless parameter ��, Eq. (1) is recast in the form
ð@ �� � ‘2r2

xÞP ¼ 0. The spatial generator r2
x is the

Laplacian in the given metric background in Euclidean
signature. x0 is the initial point where diffusion starts. In
translation-invariant spacetimes, the heat kernel P depends
on the difference x� x0, but in fractional spaces with
nontrivial measure this is no longer true; therefore we
keep the notation Pðx; x0; �Þ separate from the often-
employed uðx; �Þ (fixing x0 ¼ 0). Equation (1) is not com-
pletely specified without the set of initial conditions at
� ¼ 0. The choice Pðx; x0; 0Þ ¼ �ðx� x0Þ describes diffu-
sion of a point particle starting at x ¼ x0. Extended shapes
of the probe are possible [8], but the pointwise one allows
us to explore the local structure of spacetime.
Ignoring curvature, the solution P must be nonnegative

for all x and x0, and normalized as
R
dDxPðx; x0; �Þ ¼ 1.

From the spatial trace of P, one gets the return probability
P ð�Þ :¼ ðR dDxÞ�1

R
dDxPðx; x; �Þ and the spectral

dimension

dS :¼ �2
d lnP ð�Þ
d ln�

: (2)
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When divergent, the volume prefactor in the definition of
P can be regularized. In the case of a translation-invariant
background, it cancels out with the position dependence in
the numerator and P ð�Þ ¼ uð0; �Þ.

The normalized solution of Eq. (1) is the Gaussian

heat kernel Pðx; x0; �Þ ¼ u1ðr; �Þ :¼ e�r2=ð4�Þ=ð4��ÞD=2,
where r2 :¼ P

D
�¼1 jx� � x0�j2. Clearly, P> 0. The return

probability and spectral dimension read P / ��D=2 and
dS ¼ D, respectively. There is no quantitative distinction
between spectral and topological dimension. They are also
equal to the Hausdorff dimension dH of spacetime, deter-
mining the scaling law of the volume of a D-ball of radius

R,V ðDÞ / RdH . Notice that, because ‘ is the only scale, it is
not possible to define a hierarchy of scales and the geome-
try (and dS) is scale independent.

The ordinary diffusion equation (1) is associated with a
Wiener process Bð�Þ, the standard Brownian motion. B is
continuous in � with probability 1, Bð0Þ ¼ x0, and the
increments of B are governed by the Gaussian distribution
u1, Bð�Þ � Bð�0Þ � u1ð0; �� �0Þ for �0 <�.

Quantum geometry with fixed dimension. Quantum ge-
ometry can emerge either by definition of a nonstandard
texture of spacetime [6–8,10,11] or from the quantization
of gravity [1,2], or for both reasons. Since the spectral
dimension dS becomes then anomalous, quantum geome-
try effectively modifies Eq. (1). Modifications affect either
the initial condition Pðx; x0; 0Þ (by a change of the defini-
tion of ‘‘point particle’’ on a quantum manifold [8] or of
the delta distribution as in multifractional spaces [11]), or
the operator @� as in QEG [3], or the Laplacian r2

x (via the
change in the differential structure and/or the presence of
one or more fundamental quantum scales ‘n, such as the
Planck scale or the label-dependent lengths of the simpli-
ces in a cellular complex), as in QEG [2,3], Hořava gravity
[7], multifractional theory [11], and CDT, spin foams and
simplicial gravity in general [1,4,5].

Dimensional flow is still inadequately understood and a
classification of the possible diffusion equations should
help to control the physics of the above-mentioned (as
well as other) models of quantum gravity. It is instructive
to specialize first to the case of fixed dimensionality (no
scale hierarchy). We concentrate on the continuum formu-
lation of fractional calculus, which guarantees anomalous
(in particular, fractal) geometric properties of spacetimes
[11,12] and anomalous correlations in diffusion problems
(e.g., [13]). Multifractional theory is a model of quantum
gravity in its own right (like Hořava gravity, it is a tradi-
tional perturbative field theory but built on an anomalous
spacetime), although it can serve as a framework to under-
stand other proposals [3,6]. We ignore curvature. The latter
modifies the spectral properties of spacetime even in a
classical setting, except in the UV limit � ! 0. Quantum
effects, however, often modify spacetime globally even in
the absence of curvature, which motivates the assumption
(see also [3,9]). We replace @2x with the operator

K �;� :¼ � 1ffiffiffiffiffiffiffiffiffiffiffiffi
v�ðxÞ

p
P

�ð1@2�� þ 1 �@2�� Þ
2 cosð��Þ

� ffiffiffiffiffiffiffiffiffiffiffiffi
v�ðxÞ

q
�
�
; (3)

where v�ðxÞ /
Q

�jx�j��1 is the measure weight of the

ambient space (the singularity in x� ¼ 0 is integrable and
does not pose particular problems for the classical and
quantum dynamics), 0<� � 1 and 0< � � m are
real parameters, and we make use of left and right
Liouville-Caputo fractional derivatives: for each
direction, ð1@2�fÞðxÞ /

R
x
�1 dx0ðx� x0Þm�1�2�@mx0fðx0Þ,ð1 �@�fÞðxÞ / ð�1Þm R1

x dx0ðx0 � xÞm�1�2�@mx0fðx0Þ. When

2� ¼ m is integer, 1@m ¼ ð�1Þm1 �@m ¼ @m. Definition
(3) is such that, in a suitable domain, the operator K�;�

is self-adjoint [11,12].
We classify the stochastic and geometric properties

associated with the diffusion equation

ð@� �K�;�ÞP ¼ 0; (4)

with initial condition Pj�¼0¼½v�ðxÞv�ðx0Þ��1=2�ðx�x0Þ.
One can show that dS ¼ D�=� [12].
(i) When � ¼ 1 ¼ �, we recover ordinary diffusion

and dS ¼ D. For � � 1, this is ordinary Brownian
motion but on a fractal spacetime with dS ¼ D�.

(ii) For 0< �< 1 and � ¼ 1, we have a superdiffusive
Lévy process with dS ¼ D=� >D ¼ dH. This
does not correspond to a fractal spacetime (dS �
dH for fractals). For 0<�, �< 1, one has a
Lévy process on an anomalous spacetime (fractal
if � � �).

(iii) When � > 1, the solution of (4) is no longer
nonnegative definite and the equation must be
modified. In fact, one can include a source term
Sðx; x0; �Þ, which does not alter the spectral dimen-
sion. Hence, overlooking the check that P � 0 for
the Ansatz (4) might result in the correct spectral
dimension but a wrong diffusion equation.

Processes associated with nonhomogeneous equations
may be non-Markovian (i.e., future states depend also on
past states) even if they are meaningful in a probabilistic
sense. An example is the quartic equation

ð@� �r4
xÞuðx; �Þ ¼ ð��Þ�1=2r2

xuðx; 0Þ; (5)

with source given by the initial condition. The solution gives
the same dS ¼ D=2 as the naive Eq. (4) with � ¼ 2, but the
presence of the source guarantees that u � 0. Equation (5)
governs an iterated Brownianmotion (IBM) [14]. Given two
independent Wiener processes B1;2, IBM is defined as

XIBMð�Þ :¼ B1½jB2ð�Þj�, where B2 acts as a clock to B1.
In general, there exists a deep connection between higher-
order diffusion equations with integer time, iterated stochas-
tic processes, and diffusion equations with fractional time

ð@�� �r2
xÞu ¼ 0, with 0<� � 1 and @�� the left Caputo

derivative (lower terminal �0 ¼ �1 replaced by �0 ¼ 0).
The solution u is positive definite [15]. The process
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described by this equation (fractional Brownian motion) is
subdiffusive and on average it takes longer (with respect to
Brownianmotion) for the particle to cover a certain distance.
Equation (5) can be regarded as the ‘‘iteration’’ of the frac-
tional equation with � ¼ 1=2, with the same solution u.

Extending the discussion to a nontrivial spacetime mea-
sure, the spectral dimension associated with the fractional

diffusion equation ð@�� �K�;�ÞP ¼ 0 is dS ¼ ð�=�ÞdH,
where dH ¼ D� [11,12]. A fractal configuration is ob-
tained whenever � � �.

Multiscale quantum spacetimes. We now make a con-
ceptual step of relevance for quantum gravity. In complex
systems, the adoption of a diffusion equation is motivated
by phenomenology. Given a set of experiments evidencing
some anomalous scaling laws, one proposes an ad-hoc
diffusion equation reproducing those scalings. The theory
is then further tested against experiments. Or else, one
defines the stochastic process underlying a certain physical
system, and from its probability distribution one infers the
correct diffusion equation. For instance, IBM provides a
stochastic description of diffusion of a particle trapped in a
crack [16], the latter being modeled by a random fractal set
whose pattern is the graph of a Brownian motion. In
quantum gravity, on the other hand, we do not have experi-
ments but fragmentary knowledge such as the existence
of anomalous scaling behaviors in the UV. This informa-
tion determines the differential order of the operators in the
diffusion equation, i.e., the number and values of the
plateaux in the dS profile, but it may be unable to fix the
diffusion equation univocally. In particular, the monotonic
slopes between the plateaux can vary from model to model
of the same physical system, but they may be not falsifiable
features; their nonuniqueness can be usually traced back to
details of the theory such as regularization schemes [3,12].
Also, dimensional flow may be insensitive of the presence
of source terms [Eq. (5) without source or with flipped
sign in front of r4 would still give the same dS], and we
must resort to positivity of the solution P to fix more
details of the diffusion equation. In turn, once we deter-
mine a reasonable diffusion equation with probabilistic
interpretation, we can also find the stochastic process
associated with that, thus physically characterizing quan-
tum geometry.

Without further input from the theory except the
UV and IR behaviors, we can reproduce the whole dimen-
sional flow by applying the techniques of multiscale
phenomena and multifractal geometry to the texture
of spacetime itself [12]. The generalization of the
diffusion equation (with solution P � 0) to a multiscale
process is realized by summing over all possible values of
�, �, �:X

n

ð�n@
�n
� � 	nK�n;�n

ÞPðx; x0; �Þ ¼ Sðx; x0; �Þ; (6)

where �n and 	n are dimensionful couplings which depend
on the characteristic scales of the system. Typically, there

is only a finite number N of terms in physical systems, so
the sum representation (6) is realistic. The number N � 1
of characteristic scales (hidden in � and 	) determines the
number N of plateaux (asymptotic regimes) in the profile
of dS. A multiscale phenomenon is always defined by the
relative size of the scales, not by an absolute hierarchy.
This means that we can choose any of the N scales ‘n to
represent the scale ‘ probed by a measurement. If we order
the scales of the system as ‘1 < ‘2 < . . .< ‘N , we can take
the largest as ‘ ¼ ‘N . Thus, there are N � 1 (not N) scales
with the physical meaning of characteristic lengths. The
spectral dimension is fixed when N ¼ 1; for N ¼ 2, it has
two asymptotic values dS � dS1;2 in the regimes ‘ � ‘1
and ‘ � ‘1, with a monotonic transient phase in between;
forN ¼ 3, there will be also an intermediate plateau where
dS � dS3; and so on.
The first example is an interaction of Gaussian

and anomalous dynamics which can describe certain tur-
bulent media [17]. The diffusion equation is ð@� � @2x �
	1K�;1Þu ¼ 0, uðx; 0Þ ¼ �ðxÞ, where 0< �< 1 and we

write the constant 	1 ¼ ‘�2ð1��Þ
1 in terms of a characteristic

length. As the analytic solution shows, the transport is of
Lévy type at large scales ‘¼k�1�‘1 (dS�1=�>1¼dH)
and normal at small scales ‘ � ‘1 (dS � 1). From the
perspective of quantum spacetimes, this model is multi-
scale but not multifractal. Profiles of dS overshooting
the Hausdorff and topological dimensions appear also in
lattice [5] and noncommutative geometries (last reference
in [6]), with some caveats [12].
A second example is a fractional diffusion equation with

two diffusion operators @
�1;2
� . To see its neat stochastic

interpretation, we recall some results on the so-called
telegraph processes [18]. A telegraph process is defined

as Vð�Þ ¼ Vð0Þð�1ÞN ð�Þ, where Vð�Þ is the velocity of a
particle at time� running on the real line, Vð0Þ is the initial
velocity which is 	c with equal probability, and N is the
cumulative number of events of a homogeneous Poisson
process with rate 
 > 0. The velocity of the particle flips
direction back and forth, hence the name ‘‘telegraph.’’ The
position of the particle at time � is the integrated telegraph

process Tð�Þ ¼ Vð0ÞRs
0 dsð�1ÞN ðsÞ. We consider a

composite process called Brownian-time telegraph process
or fractional telegraph process, XFTPð�Þ :¼ T½jBð�Þj�.
This motion is governed by the diffusion equation ð@� þ
2
@1=2� � c2@2xÞu ¼ 0. The solution of the fractional tele-
graph equation and its generalizations is nonnegative and
unique [18]. In the double limit 
, c ! þ1, 
=c2 !
const, the stochastic process reduces to an IBM.
Recasting these results in the language of multifractal
spacetimes and extending to D dimensions, we set
½�� ¼ 0, c ¼ ‘2
 as the characteristic scale, and ‘ ¼
‘
=ð2
Þ as the probed scale. In the limit ‘ � ‘
, diffusion
is Gaussian (Brownian process, dS �D). At small scales
‘ � ‘
, one reaches a regime where diffusion is fractional
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and given by an IBM (dS �D=2). In between, diffusion in
quantum spacetime obeys the law of a fractional telegraph
process.

The monotonic profile dSð‘Þ of this single-scale space-
time can be plotted from the analytic form of the return
probability [12]. The probability distribution for more
complicated multiscale spacetimes can be computed as
well, but here we show how all these profiles are easily
reproduced in the framework of multifractional geometry
(�n � 1) when � ¼ 1 ¼ � and S ¼ 0. We argue that the
coefficients 	n in (6) have the natural form 	N ¼ 1 and

	1ð‘Þ ¼ ð‘1=‘Þ2; 	nð‘Þ ¼ ½‘n=ð‘� ‘n�1Þ�2; (7)

where ‘ ¼ ‘N . First, we notice that the Laplacians all have
the same order 2, so the coefficients 	n all have the same
scaling dimension and, in particular, we can always make
them dimensionless. Write 	n as the ratio of some length
scales, 	n ¼ ðlA;n=lB;nÞq. Without loss of generality, one

can choose q ¼ 2 so that the spatial generator of the
diffusion equation can be rendered dimensionless, in the
form

P
nðlA;nÞ2K1;�n

. Now, the nth term dominates over

the others at scales ‘ � ‘n, while at scales smaller than
‘n�1 the ðn� 1Þth term takes the lead, so the smallest
possible scale ‘ at which the nth term dominates is
‘� ‘n�1. Thus, we set lA;n ¼ ‘n and lB;n ¼ ‘� ‘n�1. In

other words, the dimensional flow is always measured
starting from the lowest of two scales ‘n�1 to the next
‘n, and relatively to the latter, which sets a gauge for the
rods. Since ‘ ¼ ‘N is the probed scale, 	N � 1.

We can plot the spectral dimension for any given profile
�ð‘Þ. Upgrading on [11], we motivate a realistic profile
�ð‘Þ as an approximation of the sum in (6). Consider
first the N ¼ 2 case with �1 � 1 and �2 ¼ 1. In one
dimension, and by Eq. (3), ð@2x þ 	1KE

1;�1
ÞP ¼

fð1þ 	1ÞKE
1;�1ð‘Þ þ 	1ð1� �1Þ2=½4ð1þ 	1Þx2�gP, where

�1ð‘Þ :¼ ½1þ 	1ð‘Þ�1�=½1þ 	1ð‘Þ�. For both small and
large 	1 the kinetic term in this expression dominates
over the potential term, so the profile �1ð‘Þ defines an
effective fractional charge throughout the dimensional
flow. With N coefficients �n, �N ¼ 1, the effective charge
reads

�N�1ð‘Þ :¼ 1þP
N�1
n¼1 	nð‘Þ�n

1þP
N�1
n¼1 	nð‘Þ

: (8)

For two entries (N ¼ 2, �1 ¼ 2=D, �2 ¼ 1, one scale),
dimensional flow is such that dS �D in the IR and
dS �D�1 ¼ 2 in the UV, with no intermediate regime in
between. This is the type of flow considered in [10,11] and
is shown in Fig. 1 (dashed curve), in quantitative agree-
ment with the fractional-telegraph profile which is matched
by tuning the scale length [3]. A two-scale profile
dSð‘Þ ¼ 4�2ð‘Þ with �1 ¼ 1=2, �2 ¼ 1=3 and ‘2 ¼ 10‘1
is also plotted (solid curve). At ‘ ¼ 0, dS ¼ 2. At ‘� ‘1,
the spectral dimension acquires the minimum value
dS ¼ 4=3. At scales ‘ � ‘2, the diffusion process corre-
sponds to a recurrent random walk, where dS < 2. Well
above the larger critical scale, ‘ � ‘2, dS hits the IR value
�4. Notably, the profiles in Fig. 1 reproduce the dimen-
sional flow of asymptotically-safe quantum gravity in two
different realizations, without or with matter. This is con-
sistent both with the fact that the single-scale curve of
QEG does come from a fractional telegraph process equa-
tion and with a reinterpretation of the renormalization
group flow in terms of measurements in multifractional
geometry [3].
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