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Intrinsically disordered proteins (IDPs) inhabit a conformational landscape that is too complex to be
described by classical structural biology, posing an entirely new set of questions concerning the molecular
understanding of functional biology. The characterization of the conformational properties of IDPs, and the
elucidation of the role they play in molecular function, is therefore one of the major challenges remaining for
modern structural biology. NMR is the technique of choice for studying this class of proteins, providing infor-
mation about structure, flexibility, and interactions at atomic resolution even in completely disordered states.
In particular, residual dipolar couplings (RDCs) have been shown to be uniquely sensitive and powerful tools
for characterizing local and long-range structural behavior in disordered proteins. In this review we describe
recent applications of RDCs to quantitatively describe the level of local structure and transient long-range
order in IDPs involved in viral replication, neurodegenerative disease, and cancer.
Introduction
Over the last decade it has become evident that a significant

fraction of proteins—over 40% of the human proteome—are

not folded in their functional form (Uversky, 2002; Tompa,

2002; Fink, 2005). These intrinsically disordered proteins (IDPs)

or regions (IDRs) have been shown to play key roles in a remark-

able range of cellular processes, including signaling, cell cycle

control, molecular recognition, transcription, and replication,

as well as in the development of numerous human pathologies

such as neurodegenerative disease and cancer, where this

figure rises to 80%. Bioinformatics studies have identified 238

mostly regulatory and signaling functions from SWISS-PROTein

that are likely associated with IDPs and IDRs as compared with

302 mostly enzymatic and transport functions associated with

structured proteins. In addition, the functional classes associ-

ated with IDPs have been proposed to span a wider range of

biological processes than the classes associated with structured

proteins (Xie et al., 2007). IDPs necessarily fall outside the realm

of classical structural biology due to their extreme structural

flexibility, and as such pose an entirely new set of questions

concerning the molecular understanding of functional biology.

The traditional structure-function relationship, applied to stable,

folded proteins, focuses on the precise determination of struc-

tural features in partner molecules, and underpins numerous

successful structural genomics and proteomics programs (Aloy

and Russell, 2004). A parallel and fundamentally different para-

digm exists, however, wherein one or both of the partner proteins
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are not folded in the free form (Dyson and Wright, 2002; Fuxreiter

et al. 2004). Many IDPs fold only upon binding, and the relation-

ship between intrinsic conformational propensity and the struc-

ture adopted by the protein in its bound form represents a novel

paradigm that adds an additional dimension to the characteriza-

tion of protein interactions and their relation to function (Aloy and

Russell, 2004; Dyson and Wright, 2002; Fuxreiter et al. 2004;

Vacic et al., 2007; Vucetic et al., 2005). IDPs might even remain

flexible in the bound form of the complex (Tompa and Fuxreiter,

2008). For these reasons, the development of novel methods

to characterize the conformational behavior of IDPs, and eventu-

ally to solve important biological and medical questions involv-

ing these proteins, is an essential and extremely active field of

research.

The determination of a single set of three-dimensional atomic

coordinates, even if feasible, would have little meaning for

a highly disordered protein. Rather the aim of a conformational

description of IDPs must be to identify rules that define the

conformational behavior of the chain in terms of probability, or

more often, in terms of an explicit ensemble description of inter-

converting structures. In this and many other respects, the study

of IDPs is closely related to the study of chemically or thermally

denatured proteins, although subtle differences have become

apparent concerning the physical behavior of denatured and

natively disordered proteins. The conformational space available

to IDPs is vast, and the mapping of this complex conformational

energy landscape necessarily relies on the exploitation of
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complementary experimental techniques reporting on both

short-range and long-range structural parameters. An additional

level of complication is introduced by the dynamic nature of

these conformational ensembles. The timescales that are

involved in the interconversion of the members of an ensemble

also need to be determined to develop a complete picture.

IDPs can be characterized using a range of complementary

spectroscopic techniques, including circular dichroism (Uver-

sky, 2002) and Raman (Syme et al., 2002; Maiti et al., 2004)

and infrared spectroscopy (Denning et al., 2002), that report on

local structural propensities averaged over the whole molecule.

Although these techniques can be instructive in detecting overall

tendencies, the disadvantage is that short stretches or low pop-

ulations of local structure can be difficult to detect. The presence

of long-range interactions between distant parts of the chain will

affect the overall dimensions of the protein, and can be probed

using techniques that are sensitive to the size of the chain, for

example size-exclusion chromatography, dynamic light, X-ray

or neutron scattering (Millett et al., 2002; Bernadó et al., 2007),

or fluorescence correlation spectroscopy (Jeganathan et al.,

2006; Schuler and Eaton, 2008). The identification of IDPs on

the basis of all available experimental techniques has allowed

for the development of powerful bioinformatics tools to predict

the level of disorder on the basis of primary sequence (Dunker

et al., 2008). These tools have recently been extended to encom-

pass the prediction of protein folding upon interaction (Fuxreiter

et al., 2004).

Nuclear magnetic resonance (NMR) spectroscopy reports on

both local and long-range conformational behavior at atomic

resolution on timescales varying over many orders of magnitude,

and as such is probably the most powerful biophysical tool for

studying IDPs (Dyson and Wright, 2004). The dynamic averaging

properties of NMR observables are well understood, rendering

their exploitation particularly appropriate for the development

of an ensemble description of the unfolded state. Importantly

the local motional properties of IDPs in solution allow for the

use of multidimensional NMR experiments that compensate for

the comparative spectral crowding experienced in the amide

region of the proton spectrum, allowing assignment of 1H, 15N,

and 13C resonances from throughout the protein. In this respect

the recent complete backbone resonance assignment of the

full-length tau protein (440 amino acids) represents an inspiring

demonstration of the power of NMR to study even the most

intimidating members of the IDP family (Mukrasch et al., 2009).

In this review we will describe recent advances in the study of

highly disordered proteins using NMR spectroscopy, in combi-

nation with other biophysical techniques such as small-angle

scattering, to develop explicit ensemble descriptions that can

be used to understand the conformational behavior of unfolded

proteins. In particular we will describe some recent applications

of the use of residual dipolar couplings (RDCs) to quantitatively

describe the level of local structure and transient long-range

order in both intrinsically disordered and chemically denatured

proteins.

NMR Spectroscopy of Intrinsically Disordered Proteins
Over the last 15 years, NMR spectroscopy has developed into

a key technique for studying highly flexible systems, and in doing

so has furnished a remarkable amount of important information
1170 Structure 17, September 9, 2009 ª2009 Elsevier Ltd All rights
on the unfolded state (Neri et al., 1992; Alexandrescu et al.,

1994; Shortle, 1996; Schwalbe et al., 1997). Even the simplest

measurement, such as chemical shift, depends on a popula-

tion-weighted average over rapidly exchanging local conforma-

tions sampled by all molecules in the ensemble, on timescales

up to the millisecond. Chemical shifts report essentially on the

local physico-chemical environment of the nucleus of interest

(Spera and Bax, 1991; Wishart et al., 1992), a characteristic

that has contributed significantly to the success of chemical-

shift-based structure determination approaches (Cavalli et al.,

2007; Shen et al., 2008). Not surprisingly then, average chemical

shifts measured from a broad conformational equilibrium can be

interpreted in terms of local conformational propensity of the

ensemble. Once an amino-acid-specific ‘‘random coil’’ shift,

normally calibrated from short unstructured peptides, has been

subtracted from the measured value, the so-called secondary

chemical shift clearly identifies the presence of transient struc-

ture in flexible chains (Wishart et al., 1995; Schwarzinger et al.,

2001; Wang and Jardetzky, 2002). For example, in the case of
aC spins, successive positive secondary shifts can be inter-

preted in terms of populations of a-helical segments. One poten-

tial problem associated with this kind of approach concerns

incorrect frequency referencing, which can result in systematic

errors on the secondary shifts. In order to address this problem,

the aC and bC chemical shifts (that shift in opposing directions for

a-helical segments) can be used simultaneously to estimate the

level of secondary structure in disordered proteins (Wang et al.,

2005; Marsh et al., 2006).

Three-bond scalar couplings that depend on backbone dihe-

dral angles (Serrano, 1995; Smith et al., 1996) also represent

a population-weighted average that can be interpreted in terms

of conformational propensity. Here again random coil values

have been measured in small peptides, and these can be

compared to experimental values to identify transient local

structure. In this case calibration depends on Karplus-type rela-

tionships that have been used to parameterize the analytical

dependence on dihedral angle. One potential source of error

concerns the influence of the rest of the chain, or at least near-

neighbors, on the conformational preferences of the amino

acid of interest. This so-called persistence length, beyond

which the remainder of the chain can be considered to exert

a negligible effect, concerns all approaches that are based on

the interpretation of experimental measurements made in intact

proteins in comparison to short peptides. The importance of

the persistence length depends to an extent on the measured

parameter and might vary over the protein, depending on local

primary sequence. In order to study the importance of such

affects, Schwalbe and coworkers recently used scalar coupling

measurements to detect differences between the conformational

sampling in short peptides in the context of a longer chain, and in

isolation (Graf et al., 2007). In theory, more detailed information

about local conformational sampling can be derived from inter-

proton nuclear Overhauser enhancements (nOe) (Macura and

Ernst, 1980). However, quantitative interpretation of nOe is

complicated by the strong sensitivity of the interaction on the

range of dynamic timescales commonly encountered in unfolded

proteins. It is therefore difficult to extract precise information

about the distance distribution function from these measure-

ments. Although intrinsically more complex in terms of the
reserved
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physical averaging processes, 15N spin relaxation has also been

shown to provide information that correlates with local order

(Klein-Seetharaman et al., 2002) provided it occurs on the micro-

second to millisecond time scale.

Long-range information is more commonly extracted from

dipolar relaxation between an unpaired electron, normally

present due to an artificially introduced nitroxide group, and the

observed spin (commonly termed paramagnetic relaxation

enhancement or PRE) (Gillespie and Shortle, 1997). These

measurements offer clear advantages over nOe measurements,

because they rely on stronger interactions (the ‘‘gyromagnetic

ratio of the electron spin is 660 times larger than that of the proton

and enters quadratically in all formulae describing relaxation),

and therefore provide longer-range information about distance

distribution functions, or information about weaker populated

transient contacts. The experimental data have either been inter-

preted in terms of average distance restraints between the

unpaired electron and the observed spin, and then incorporated

directly into a restrained molecular dynamics approach (Dedmon

et al., 2005; Bertoncini et al., 2005a), or more recently in terms

of probability distributions (Felitsky et al., 2008). Disadvantages

of this kind of restraint include the production of the necessary

number of cysteine-carrying mutants of the protein, and the

possible influence that the non-native moiety might have on

native long-range contacts. Nevertheless these measurements

are extremely powerful, because they provide unambiguous

evidence of the presence of fluctuating tertiary structure that

can be very difficult to identify by any other technique.

Residual dipolar couplings, measured between pairs of nuclei

in partially aligned proteins, are very sensitive probes of time and

ensemble-averaged conformational equilibria exchanging on

timescales up to the millisecond and can therefore be used

to characterize both the structure and dynamics of unfolded

proteins (Shortle and Ackerman, 2001; Louhivuori et al., 2003).

Over the last ten years remarkable progress has been made in

developing a clearer understanding of the nature of RDCs in

the unfolded state, either using analytical random chain descrip-

tions derived from polymer physics, or using explicit conforma-

tional ensemble descriptions of the protein. Below we will

describe some recent results that demonstrate the extraordinary

power of RDCs to describe the conformational behavior of intrin-

sically disordered proteins, and to correlate this to their function.

Residual Dipolar Couplings
Dipolar couplings between two spins i and j depend on the

geometry of the internuclear spin vector as follows (Emsley

and Lindon, 1975):

Dij = �
gigjZm0

4p2r3

�
ð3cos2qðtÞ � 1Þ

2

�
= DmaxhP2ðcosqðtÞÞi (1)

with

Dmax = �
gigjZm0

4p2r3
(2)

where q is the angle of the internuclear vector relative to the static

magnetic field. r is the internuclear distance, which is assumed

constant in the case of covalently bound nuclei, and in all cases

represents a vibrationally averaged distance. The angular paren-
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theses define an average over all conformations exchanging on

timescales faster than the millisecond. Dipolar couplings

between covalently bound spins can be intrinsically very strong

(around 11 kHz for an amide 15N-1HN spin pair), nevertheless if

all possible orientations q are sampled with equal probability,

as is the case in free solution, the value of the measured coupling

averages very efficiently to zero. Residual couplings can be rein-

troduced by dissolving the protein in a weakly aligning medium

such as lipid bicelles (Tjandra and Bax, 1997), filamentous

phages (Torbet and Maret, 1979; Hansen et al., 1998; Clore

et al., 1998), lyotropic ethylene glycol/alcohol phases (Rückert

and Otting, 2000), and polyacrylamide gels that have been

strained either laterally or longitudinally to produce anisotropic

cavities (Sass et al., 2000; Tycko et al., 2000). In most of these

cases, alignment results from a steric repulsion between the

protein and the medium, whereas in the case of bacteriophage

or charged forms of the other media, alignment results from a

combination of electrostatic and steric interactions. In the case

of electrostatic alignment the interpretation of RDCs in IDPs in

terms of local structure is more complicated, although possible

(Skora et al., 2006), making sterically aligning media the most

commonly used for IDPs (see below).

RDCs measured in folded proteins provide information con-

cerning the orientation of internuclear vectors connecting pairs

of spins relative to a common alignment tensor. This tensor

describes the net alignment of the protein relative to the

magnetic field in terms of a second rank order matrix. This trans-

formation assumes that the global alignment is not coupled to

local fluctuations, such that RDCs for different spin pairs can

be interpreted in terms of different orientations of the internuclear

vectors relative to a common molecular frame. Equation 1 can be

usefully recast to reflect this:

D = DmaxAzz

�
P2ðcoswÞ+ h=2sin2

wcos24
�

(3)

where Azz is the longitudinal component of the alignment tensor,

h is the rhombicity defined as h = (Axx - Ayy)/Azz, and {w,4} are

expressed as polar coordinates of the internuclear vector.

Measured RDCs can then be interpreted in terms of different

orientations of the internuclear vectors relative to the molecular

frame. The correlation of angular order from distant parts of

the molecule allows the determination of their average relative

orientation, a type of information that is difficult to extract from

isotropic solution state NMR. RDCs measured in globular folded

proteins are used for structure determination (Bax, 2003; Preste-

gard et al., 2004; Blackledge, 2005), for the study of long-range

order in extended molecules (Tjandra et al., 1997) and protein

complexes (Clore, 2000; Ortega-Roldan et al., 2009). RDCs

can also be very powerfully used for the characterization of local

dynamics in proteins (Meiler et al., 2001; Clore and Schwieters,

2004; Tolman, 2002; Briggman and Tolman, 2003; Bernadó

and Blackledge, 2004; Ulmer et al., 2004; Bouvignies et al.,

2006; Lakomek et al., 2008; Salmon et al., 2009).

Interpretation of Residual Dipolar Couplings
in Disordered Proteins
In the case of conformationally heterogeneous proteins such

as IDPs, the alignment of all conformations of the molecule
17, September 9, 2009 ª2009 Elsevier Ltd All rights reserved 1171
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contributing to the time and ensemble average can be expected

to vary significantly as a function of the shape and size of the indi-

vidual conformation. In this case the RDC must be described in

terms of the sum over the different time averages for all N mole-

cules in the ensemble:

D = Dmax

1

N

XN

k = 1

1

tmax

Ztmax

t = 0

P2ðcosqkðtÞÞdt (4)

Assuming that each copy of the protein samples the confor-

mational space of the ensemble (Meier et al., 2008), this can

be further simplified to:

D = Dmax

1

tmax

Ztmax

t = 0

P2ðcosqðtÞÞdt (5)

IDPs are highly flexible in solution, implying that the average in

Equations 4 and 5 is potentially very complex and might not

provide any useful information, or even that the dipolar coupling

could be unmeasurably small in a truly unfolded state. Neverthe-

less, RDCs were measured in chemically denatured proteins,

indicating that orientational sampling of internuclear vectors is

not isotropic in these proteins (Figure 1).
1DNH couplings were thus observed in partially aligned native

and D131D mutants of Staphylococcal nuclease in 8M urea

(Shortle and Ackerman, 2001), eglin C (Ohnishi et al., 2004),

protein GB1 (Ding et al., 2004), apo-myoglobin (Mohana-Borges

et al., 2004), and acyl-CoA binding protein (ACBP) (Fieber et al.,

2004) under diverse denaturing conditions. A general distribution

emerged in which the 1DNH couplings were found to have nega-

tive sign, with maximal values measured in the center of the

protein, tapering off via a so-called bell-shaped distribution to

zero at the extremities. Denatured proteins containing residual

secondary structure, as for example identified from chemical

shift measurements, showed deviations from the bell-shaped

distributions. Examples of changes in magnitude and sign of
1DNH measurements were found for amide bonds in acid-dena-

tured states of apo-myoglobin and ACBP and linked to raised

helical propensities in regions that form helices in the native

state. The observed change in sign was rationalized as follows:

The average orientation of the amide bond vector present in an

unfolded chain where the protein is preferentially aligned in

a direction parallel to the magnetic field, for example in an elon-

gated cavity, would be expected to be approximately orthogonal

to the field, and therefore negative. In a helical element the bond

vector would be aligned more or less parallel with the average

chain direction and therefore the field (Figure 2). The angular

averaging term P2(cosq) would be expected to change sign

between these two conditions.

Early work then used this apparent sensitivity to local structure

to follow protein unfolding, either in a b-hairpin structure in the

fibritin foldon domain, observing the diminution of the structure

of the experimental RDC profile with increasing temperature

(Meier et al., 2004), or a gradual decrease of RDCs with

increasing temperature or decreasing salt concentration in

a-helical ribonuclease S-peptide (Alexandrescu and Kammerer,

2003), or thermal unfolding of GB1 (Ding et al., 2004). RDCs were

also used to probe amino acid conformational specificity in short
1172 Structure 17, September 9, 2009 ª2009 Elsevier Ltd All rights
peptides (Dames et al., 2006), and were then more generally

applied to assess local and long-range structure in IDPs such

as Tau protein (Sibille et al., 2006; Mukrasch et al., 2007a,

2007b) and a-synuclein (Bertoncini et al., 2005a; Bernadó

et al., 2005b; Sung and Eliezer, 2007).

The key to a more quantitative understanding of the time and

ensemble average represented in Equation 5 was made by Annila

and coworkers (Louhivuori et al., 2003; Fredriksson et al., 2004)

who used polymer models to describe the unfolded protein as

a series of connected segments of equal length experiencing

restricted random walk. Integration of Equation 5 over available

orientations of each segment formalizes the idea that in the pres-

ence of an obstacle, orientational sampling is more restricted in

the center of the chain than at the termini, leading to non-vanish-

ing RDCs, even when the torsion angles along the polymer chain

can adopt random conformations. Segments in the center have

more neighbors, and are therefore less flexible than those at

the ends, rationalizing the experimentally observed bell-shaped

distribution. This model has recently been extended, revised,

and to an extent corrected, confirming the overall observations

(Obolensky et al., 2007).

Such polymer-based models elegantly describe many aspects

of the physical alignment of the unfolded polypeptide and present

a relatively simple conceptual framework for the qualitative

understanding of the experimental observations. However, the

description of a natural amino acid sequence as a homopolymer

is unrealistic and such analytical models cannot easily be

adapted to interpret data from complex heteropolymeric sys-

tems such as proteins. An expected, site-specific dependence

of RDCs was clearly predicted (Louhivuori et al., 2004) by

Figure 1. Experimental 1DNH Dipolar Couplings
Experimental 1DNH dipolar couplings (red) from the urea unfolded proteins (A)
apo-myoglobin and (B) Staphylococcal nuclease D131D mutant aligned in
radially squeezed polyacrylamide gel. RDCs were simulated using the
explicit-ensemble Flexible-Meccano approach and are shown in blue for
comparison. In each molecule all RDCs are multiplied by a common scaling
factor to best reproduce the data. Copyright 2005, National Academy of
Sciences, USA (Bernadó et al., 2005a).
reserved
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incorporation of glycine and proline residues into simulations of

random homopolymers, which resulted in prediction of RDC

profiles that increased or decreased due to the change in flexi-

bility of the specific amino acids. The observation of significant

site-to-site variation of experimental RDCs along an unfolded

peptide chain compared with the overall bell-shaped prediction

from the random flight models also underlined the need to intro-

duce amino acid-specific conformational behavior into any inter-

pretative model of RDCs measured in disordered proteins.

RDCs in Highly Flexible Systems: Explicit Ensemble
Models
Two very similar, more direct approaches to the interpretation of

RDCs from unfolded proteins have therefore been proposed,

and these rely on the development of explicit ensemble descrip-

tions of the unfolded state (Jha et al., 2005; Bernadó et al.,

2005a). Measured couplings are expressed in terms of a discrete

average over RDCs predicted for all sampled conformers on the

basis of the molecular shape, or on the basis of electrostatic

charge distribution in the case of electrostatic alignment.

D = Dmax

1

M

XM

k = 1

Ak;zz

�
P2ðcoswkÞ+ hk=2sin2

wkcos24k

�
(6)

RDCs are averaged over a sufficient number (M) of conformers

to fully represent the available conformational sampling. Although

thisnumber may beof the order ofmany thousands for anunfolded

strand of 50 amino acids in length, it has recently been demon-

strated that convergence of RDCs toward experimental data can

be achieved with smaller number of conformers if the protein is

divided into small, uncoupled segments (Marsh et al., 2008),

although this decoupling of distant regions in the chain might not

represent the true nature of the conformational space (vide infra).

These approaches explicitly account for the heteropolymeric

Figure 2. Figurative Representation of
Effective Angular Averaging Properties of
15N-1H Vectors
Figurative representation of effective angular aver-
aging properties of 15N-1H vectors in an unfolded
protein dissolved in weakly aligning medium with
the director along the magnetic field. Dipolar
couplings measured for 15N-1H vectors in more
extended conformations (q z90�), more com-
monly found in unfolded proteins, will have nega-
tive values (A), whereas those in helical or turn
conformations align more or less parallel with the
direction of the chain (q z0�) and will have larger
positive values (B).

nature of the peptide chain, and sampling

amino-acid-specific {f/c} propensities to

construct the conformational ensemble

(Jha et al., 2005; Bernadó et al., 2005a).

The study from Bernadó et al. sampled

conformations from an explicitly con-

structed coil library, comprising non-a-

helical and non-b sheet conformations

from 500 high-resolution crystal structures

(Lovell et al., 2003). Additional sampling

properties were included that account,

for example, for amino acids preceding prolines. Rudimentary

nonbonding considerations were accounted for between amino

acid side chains by removing structures when a steric clash

occurred between residue-specific spheres centered on the

b-carbon atoms of each amino acid (a-proton in the case of

glycines). Conformers were constructed by randomly sampling

the amino acid specific coil library, and RDCs were predicted for

each copy of the ensemble using shape-based alignment algo-

rithms (Zweckstetter and Bax, 2000; Almond and Axelsen, 2002)

and averaged over the entire ensemble.

This approach, termed Flexible-Meccano or FM, was initially

applied to a two-domain viral protein, protein X, from Sendai

virus phosphoprotein (Figure 3) comprising a disordered domain

and a folded domain. 1DNH and 2DC’NH RDCs predicted using

the FM approach are relatively well reproduced from throughout

the protein both in amplitude and distribution. Note that in this

particular system the RDCs from each copy of the protein, in

both folded and unfolded domains, depend on the relative align-

ment of the two domains, constituting a quantitative test of the

validity of the approach.

Using this approach it was possible to accurately reproduce

theexperimentallymeasured 1DNH couplings in theD131Dmutant

of staphylococcal nuclease (Shortle and Ackerman, 2001) simply

on the basis of local conformational propensities, without residual

tertiary fold as had initially been invoked. A number of further

examples were also shown, for example the prediction of 1DNH

RDCs measured in 8M urea unfolded apo-myoglobin (Mohana-

Borges et al., 2004), establishing the statistical coil approach as

a viable choice for predicting random coil RDCs that result

directly from the conformational properties of the primary

sequence and thereby constitute an unfolded ‘‘baseline.’’ The

absolute level of alignment is not accurately known in these simu-

lations, so that all RDCs are finally scaled by the appropriate

optimal scaling factor to reproduce the experimental data.
Structure 17, September 9, 2009 ª2009 Elsevier Ltd All rights reserved 1173
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Figure 3. Experimental 1DNH and 2DCNH

Dipolar Couplings from the Two-Domain
Protein, PX, from Sendai Virus
(A) 1DNH and 2DC’NH RDCs are reasonably repro-
duced from throughout the protein using the
explicit ensemble description Flexible-Meccano.
Experimental values are shown in red. Copyright
2005, National Academy of Sciences, USA (Ber-
nadó et al. 2005a).
(B) An ensemble representation of PX.
1174 Structure 17, September 9, 2009 ª2009 Elsevier Ltd All rights reserved
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The observation that the distribution of experimental RDCs

along the sequence is relatively well reproduced by explicit

molecular descriptions that sample amino-acid specific statis-

tical coil models is related to, and supported by, the observed

correlation between amino-acid side-chain bulkiness and the

amplitude of the 1DNH couplings (Cho et al., 2007).

RDCs Reveal Deviation from Random Coil Behavior
This statistical coil description of the unfolded state thus

provides a straightforward method for calculating RDC profiles

that would be expected if the protein behaved as a random

coil, devoid of any specific or persistent local or long-range

structure. Although the establishment of these approaches is

clearly essential, the next step, the development of techniques

whereby a departure from baseline values can then be inter-

preted in terms of specific local or long-range conformational

behavior, is equally important and clearly more challenging. In

particular, although the random coil sampling model can be

used to detect transient local order, the quantitative description

of conformational detail in these regions will require the develop-

ment of additional techniques.

In a recent study of K18, a 130-amino-acid construct of the

natively unfolded protein Tau that physiologically controls

microtubule dynamics and stability and represents a significant

fraction of the proteins found in tangles in Alzheimer’s disease

(Mandelkow and Mandelkow, 1998), 1DNH couplings were

measured from throughout the chain (Mukrasch et al., 2007a).

Local sign inversion of 1DNH RDCs was observed in four homol-

ogous repeat domains (R1–R4) containing the hexapeptide

segments identified as the interaction sites of Tau with microtu-

bules, as well as the sites involved in self-association, formation

of paired helical filaments and eventual aggregation. This

sign inversion was not reproduced by the statistical coil FM

approach (Figure 4), and, following the logic presented previ-

ously, can be qualitatively interpreted as the presence of local

helical or turn motifs. In this study the authors showed, via

extensive simulation, that the simple observation of a single
1DNH RDC sign inversion within the sequence can have ambig-

uous origin. For example, left-handed helix backbone dihedral

angle sampling of the neighboring amino acid can have a similar

influence on a measured RDC at the site of interest as for

example the presence of a right-handed helix at this site. In

this case accelerated molecular dynamics (AMD) simulation,

an approach that enhances access to rare conformational

transitions and thereby extends the effective temporal range

compared with standard MD simulation by many orders of

magnitude (Markwick et al., 2007), was employed to predict

the conformational behavior of pentadecapeptides centered

on these turn regions. This revealed strong tendencies to form

bI-turns for three repeats R1–R3. The results of this simulation

were apparently validated by replacing intrinsic statistical coil

backbone dihedral angles for the four amino acids involved in

each turn region with the backbone dihedral sampling resulting

from the AMD simulations (Figure 4). This model reproduced

experimental RDC values closely, suggesting that the local

bI-turn conformations and equally importantly their predicted

populations were in very good agreement with the experimental

RDC data. It is interesting to speculate on the importance of

these turn conformations in the oligomerization process that
Structure
precedes aggregation, and the absence of aggregation in the

healthy form of the protein, particularly in the light of the obser-

vation, by solid-state NMR, that one of these regions is in the

center of a long b sheet conformation in Alzheimer’s-like paired

helical filaments from the core domain of tau (Andronesi et al.,

2008). These analyses allowed a detailed description of the

conformational behavior of this protein form NMR data (Fig-

ure 4E). In this protein, no local ordering effects occurring on

microsecond to millisecond timescales were observed by relax-

ation dispersion type of measurements (Klein-Seetharaman

et al., 2002) and 15N relaxation in the area of the turns was also

inconspicuous.

Intriguingly, Flexible-Meccano also revealed the sensitivity of

RDCs to the presence of transient long-range contacts in disor-

dered proteins. This additional dependence should come as no

surprise, when we recall that in the case of folded proteins

RDCs report on orientations relative to a single alignment tensor,

and that many partially disordered proteins lie somewhere

between fully folded and completely random coil proteins, and

might therefore exhibit characteristics associated with both

extremes. Nevertheless the effect that transient long-range

contacts would have on RDC profiles from disordered proteins

remains difficult to predict in an intuitive way.

Experimental RDCs measured in a study of the IDP a-synu-

clein were not reproduced by a simple application of the

random-coil FM approach, with significant and systematic vari-

ations in the RDC profile observed at the N and C termini of

the protein (Figure 5) (Bernadó et al., 2005b). Although devia-

tions compared with random coil RDCs in these regions might

stem from local structure that is not predicted by the coil model,

the potential relevance of an alternative explanation was also

convincingly demonstrated. Ensembles were calculated that

contained transient long-range contacts between different

segments of the molecule. The 140-amino-acid molecule was

arbitrarily divided into seven 20-amino-acid segments and

RDCs were averaged for ensembles containing contacts of

less than 15 Å between any residues present in different pairs

of segments (Figure 5). A clear dependence was observed of

the predicted RDCs on the presence of long-range contacts,

even when weak and relatively nonspecific as in this case.

RDCs are reinforced in the vicinity of the broad regions experi-

encing contacts, and quenched in the intervening regions.

Importantly, although the RDCs are locally very different, the

backbone conformational sampling of the amino acids that

show increased RDCs compared to the completely unfolded

ensemble is essentially identical in the presence and absence

of the contacts. This dependence on transient contacts and

fluctuating tertiary structure has important consequences for

the recently proposed approaches that divide the unfolded

protein into short uncorrelated segments to improve the effi-

ciency of RDC prediction (Marsh et al., 2008), because such

long-range effects would necessarily be absent from this kind

of simulation.

The experimental RDCs were best reproduced in the presence

of a long-range contact between the N- and C-terminal regions

of a-synuclein (Figure 5). Interactions between the terminal

regions have been detected using PREs (Dedmon et al., 2005

also saw evidence of contacts between the so-called NAC

domain and the C-terminal) and have been shown to disappear
17, September 9, 2009 ª2009 Elsevier Ltd All rights reserved 1175
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Figure 5. Sensitivity of RDCs to the Presence of Transient Long-Range Structure in IDPs
Experimental 1DNH RDCs were measured in a-synuclein aligned in bacteriophage (reprinted with permission from the Journal of the American Chemical Society
[Bernadó et al. 2005b]). The RDC profile is reasonably well reproduced by FM except for the N- and C-terminal regions (A). The relevance of long-range inter-
actions between different parts of the protein was systematically tested by dividing the 140-amino-acid chain into seven 20-residue strands (1-20, 21-40,
etc.). The Flexible-Meccano procedure was repeated, and conformers were only accepted if a bC from one of the 20-residue domains was less than 15 Å
from a bC from the other specified domain (C). The best reproduction is found when a contact between the N- and C-terminal regions is present (B). The presence
of this contact is in agreement with paramagnetic relaxation enhancement measurements.
upon addition of denaturant, at high temperatures and upon

polyamine binding. These conditions favor aggregation of

a-synuclein in vitro, suggesting a role of the long-range interac-

tions in a-synuclein against misfolding and aggregation (Berton-

cini et al., 2005b). Importantly, in both the tau protein and in

a-synuclein, no strong ordering effects occurring on micro-

second to millisecond timescales were observed by relaxation

dispersion type of measurements (Klein-Seetharaman et al.,

2002). Thus, RDCs not only allow description of the conforma-

tional ensemble, but also suggest that interconversion between

the ensemble members occur on the nanosecond to micro-

second timescale.
Structure
Multiple RDCs for Accurate Characterization of Local
Conformational Propensities
Although 1DNH RDCs provide sensitive probes of local conforma-

tional propensity, as well as evidence of the relevance of statis-

tical coil models, their ambiguous interpretation in terms of local

structural propensities highlights the need for complementary

structural information. This can be provided in the form of addi-

tional RDCs between different pairs of nuclei on the protein

backbone. Indeed Meier et al. have shown that long-range order

can also be detected from RDCs by the measurement of
1HN-1HN RDCs in highly deuterated urea and acid denatured

ubiquitin. 1HN-1HN RDCs suggested the presence of significantly
Figure 4. Identification of Stable Turn Conformations in the Four Repeat Domain of Tau Protein (K18) from RDCs and AMD Simulation
1DNH RDCs measured in the 130 amino acid domain of Tau protein aligned in polyacrylamide gel (red). Experimental RDCs (blue) are reproduced reasonably well
throughout the protein using the statistical coil model Flexible-Meccano (A). Four regions show significant deviations from expected behavior, with inversion of
the sign of RDCs from highly homologous sequences in the protein. Backbone dihedral angle sampling from accelerated molecular dynamics simulation (D) of
pentadecapeptides centered on the regions of interest differs from the statistical coil sampling (C). When incorporated into the Flexible-Meccano sampling, to
replace the sampling from the coil database, the RDCs are better reproduced (B). (E) Ribbon diagram of K18 construct of Tau protein summarizing the confor-
mational sampling propensities as derived from NMR data. The four strands identified in this study as containing turn propensities (252-255, 283-286, 314-317,
345-348) are shown in red the three GGG motifs (271-273, 333-335, 365-367) in green and the regions identified as having propensity toward b sheet conforma-
tions (274-283, 306-313, and 336-345) in yellow. Reprinted with permission from the Journal of the American Chemical Society (Mukrasch et al., 2007a).
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Figure 6. Conformational Sampling in Urea Unfolded Proteins
1DNH, 1DCaHa and 1DCaC0,

1HN
i-

1Ha
i,

1HN
i-

1Ha
i-1 were measured in ubiquitin at pH 2 and 8M urea, and 1HN

i-
1HN

i+1 and 1HN
i-

1HN
i+2 measured under the same condi-

tions in perdeuterated ubiquitin and compared with expected couplings from the standard statistical coil database (black). All couplings are scaled using scaling
factors appropriate for the 1DNH coupling (left). The general disagreement between experimental and simulated RDCs appears to stem from the nature of the
statistical coil model, which, when modified to reflect enhanced sampling in the more extended regions of Ramachandran space (right), provides a better overall
reproduction of the RDCs. In this case RDCs between covalently bound spins are scaled using scaling factors appropriate for the 1DNH coupling, whereas all
1H-1H are scaled using the best scaling for 1HN

i-
1Ha

i-1 couplings. Four sample Ramachandran plots are shown to illustrate this enhanced sampling. Reprinted
with permission from the Journal of the American Chemical Society (Meier et al., 2007b).
populated (around 20%) native-like local structure in the

N-terminal b-hairpin (Meier et al., 2007a). In the same study of

ubiquitin, up to seven RDCs per peptide unit were measured,

including 1HN-1HN and 1HN-1Ha RDCs. The FM approach was

initially used to predict one-bond RDCs (1DNH, 1DCaHa, and
1DCaC0) from the unfolded chain. Although the profiles of the

experimental 1DNH and 1DCaHa RDCs were reasonably well

reproduced by simulation, a significantly different scaling factor

was required to reproduce the different RDC types. Further

simulation suggested that the standard statistical coil distribu-

tion of dihedral angles was inappropriate for the description of

RDCs from urea-unfolded proteins (Figure 6). Refinement of

the conformational sampling distribution invoking a generally

higher propensity for extended conformations {50� < c < 180�}

achieved simultaneous reproduction of the different types of

RDCs (1DNH, 1DCaHa, and 1DCaC0). This observation was verified

by a comparison of calculated and experimental interproton
1178 Structure 17, September 9, 2009 ª2009 Elsevier Ltd All rights
RDCs 1HN
i-

1Ha
i and 1HN

i-
1Ha

i-1, and interamide proton RDCs

measured using quantitative J-coupling approaches (Meier

et al., 2003) in perdeuterated ubiquitin (1HN
i-

1HN
i+1 and

1HN
i-

1HN
i+2). We note that an additional scaling was required

for all 1H-1H RDCs, possibly due to increased mobility not

accounted for in the statistical coil model.

It is therefore necessary to evoke an increased population of

more extended conformations in order to reproduce RDCs

measured in urea-denatured proteins than appears appropriate

for IDPs. This supports the proposition that urea denaturation

extends the unfolded amino acid chain, an observation that

would be in agreement with local binding of urea to the polypep-

tide chain, inducing restricted, and more extended sampling of

backbone dihedral angles (Meier et al., 2007b, although clearly

does not disprove the side-chain solvation model. The sugges-

tion that conformational sampling that is appropriate for urea-

denatured proteins is not adapted to the behavior of IDPs is
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further supported by the observation that the modified sampling

determined to be relevant for urea denatured ubiquitin strongly

violates RDCs measured in the protein PX, for which the stan-

dard database is found to be suitable (see above and compare

Figure 7 with Figure 3). Analysis of 3JHNHa scalar couplings

measured under the same conditions indicated that although

the c angle was more extended, the f dihedral angle appeared

to span both polyproline II and extended b-regions such

that neither dominated the additional sampling of extended

conformations.

Quantitative Analysis of Local Conformational
Propensities from RDCs: Application
to Sendai Virus NTAIL

A key aspect of the intricate relationship between structural

dynamics and biological function in IDPs is the observed

capacity of members of this family to undergo a disorder-to-

order transition on interaction with physiological partners, where

molecular recognition is accompanied by local folding into

a characteristic three-dimensional conformation (Vucetic et al.,

2005; Sickmeier et al., 2007; Tompa and Fuxreiter, 2008; Vacic

et al., 2007). These processes can exhibit high specificity but

low affinity, with rapid dispersal due to high kon and koff rates

and might be promiscuous, allowing binding to multiple partners

via conformational plasticity in the molecular recognition

element. Protein interactions that fall into this category are prev-

alent, but fall outside the range of classical structure-based

approaches. In order to develop an understanding of the phys-

ical basis of induced folding upon binding, an accurate descrip-

tion of the conformational behavior of the prerecognition, free

form of the protein is required.

The inherent flexibility of IDPs has hindered detailed atomic

resolution characterization of the prerecognition state.

Recently the dynamics of peptide folding upon interaction

have been studied using rotating frame relaxation, identifying

the formation of initial encounter complexes via weak, nonspe-

cific interactions that facilitate the formation of a partially

folded state upon binding (Sugase et al., 2007). Such observa-

tions support the previously proposed ‘‘fly-casting’’ mecha-

nism that provides a theoretical framework for speeding up

molecular recognition processes via the folding funnel (Shoe-

maker et al., 2000).

As we have seen, RDCs are sensitive probes of local confor-

mational sampling in the unfolded state, and as such can

contribute significantly to our understanding of the extent to

which regions of a protein that play a role in binding and function

are preconfigured prior to interaction. We have also seen that

existing methods for the interpretation of RDCs in terms of

local conformational propensities had thus far remained qualita-

tive. In a recent study a major step was taken toward the quan-

titative, and eventually insightful analysis of local structure from

RDCs. FM was used to study the structural properties of the

partially ordered molecular recognition element of the C-terminal

domain, NTAIL, of Sendai virus nucleoprotein (Jensen et al.,

2008). Replication and transcription of the viral RNA are initiated

by an interaction between NTAIL and the C-terminal three-helix

bundle domain, PX, of the phosphoprotein P (Blanchard et al.,

2004). The molecular recognition element was found, from

chemical shift and prediction based on primary sequence, to
Structure
present a nascent a-helix in free solution that further folds

upon interaction with PX via a negative patch on the surface of

PX (Houben et al., 2007).
1DHN, 1DCaC0,

2DHNC0, and 1DCaHa RDCs were measured from

NTAIL aligned in liquid crystalline ethylene glycol/alcohol phase.

Not unexpectedly, the helical region exhibits strongly positive
1DHN RDCs, confirming the presence of a helical motif, whereas

the disordered strands predominately have negative RDCs

(Figure 8). In order to interpret all experimental RDCs in terms

of quantitative conformational sampling, all possible combina-

tions and populations of continuous helical segments, from a

minimum of 4 amino acids to a maximum of 20, from throughout

the molecular recognition element segment were systematically

combined (Figure 8), including the possibility of an unfolded state

in equilibrium with the helices. In this case the effective RDC is

given by:

Dij;eff =
X

k = 1;n

pkD
k
ij +

 
1�

X
k = 1;n

pk

!
DU

ij : (7)

Here, pk represents the populations of the n helical

conformers, for which Dij
k are the individual predicted couplings

between nuclei i and j, and Dij
U are the couplings from the

Figure 7. Experimental 1DNH and 2DCNH Dipolar Couplings from the
Two-Domain Protein, PX, from Sendai Virus
1DNH and 2DC’NH RDCs were calculated using the modified statistical coil
model that was found to be most appropriate for urea-denatured proteins.
Compared with the analysis (Figure 3) using the standard database, the data
reproduction is significantly worse. In particular the RDCs are too large in
the unfolded domain compared with the folded domain. This result supports
the notion that conformational sampling in intrinsically unfolded and denatured
proteins is significantly different.
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Figure 8. Determination of the Conformational Equilibrium in the Molecular Recognition Element of NTAIL in Solution
Explicit structural ensembles were simulated using specific helical elements of all possible combinations and populations of continuous helical segments, from
a minimum of 4 amino acids to a maximum of 20 in the range 476-495. Ensemble equilibria comprising combinations of increasing numbers of conformers (n = 0,
1, 2, 3, 4) of the 153 helical conformations were compared to the experimental data. In each case the population of each member of the ensemble was optimized.
The four conformations are presented as: a single structure, representing the 25 ± 4% unfolded conformers, the shortest helical element, comprising six amino
acids 479-484, populated at a level of 36 ± 3%, 476-488 populated at 28 ± 1% and a longer stretch 478-492 populated to a level of 11 ± 1%. The molecular
recognition site arginines are shown in red. Twenty randomly selected conformers are shown for each of the helical segments to illustrate the directionality of
the adjacent chains projected from the helix caps. Reproduction of experimental data (red) is shown compared with simulation (blue) in the molecular recognition
element on the right. Each of the helices is found to be preceded by an amino acid capable of forming an N-capping interaction that can stabilize the formation of
helices in flexible peptides (shown in blue on the ribbon and primary sequence). Reprinted with permission from the Journal of the American Chemical Society
(Jensen et al., 2008).
unfolded state. These effective couplings are compared with

experimental data using the expression:

c2 =
X�

Dij;eff � Dij;exp

�2
=s2

ij (8)

where s represents the uncertainty on the experimental

coupling.

A minimum ensemble representation of the molecular recog-

nition element of NTAIL was obtained from all available RDCs, in

terms of interconverting conformational states using statistical

F-tests to test the significance in the improvement in data fitting

upon addition of a new population. The results clearly indicate

that rather than fraying randomly, the molecular recognition

sequence of NTAIL preferentially populates three specific helical

conformers. The two highest-populated conformers were found

to differ by one helical turn in length at both termini, both en-

closing the recognition site amino acids (Figure 8). Remarkably,

the three interconverting helical conformers were all found to

be stabilized by so-called N-capping interactions via hydrogen

bonds between the side chain of the N-capping amino acid

(normally aspartic acids or serine) and the backbone amide in

position two or three in the helical elements. The preferential

helices are stabilized by these motifs, suggesting that the

favored conformations are encoded in the primary sequence

of the molecular recognition element. This provides clear detail

of the molecular basis of nascent helix formation in partially

folded chains, with additional implications for understanding

the early steps of protein folding. Possibly equally importantly,

the direction in which the disordered strands adjacent to the

helix are projected is selectively controlled as a result of these

stabilizing interactions. A mechanism by which the partially

folded form of the protein could project the unfolded strands

in the most functionally useful direction to achieve efficient
1180 Structure 17, September 9, 2009 ª2009 Elsevier Ltd All rights
fly-casting interactions is thereby identified (Shoemaker et al.,

2000).

The origin of the periodicity of the 1DHN couplings within helical

elements (Figure 8), in addition to that exhibited in the 1DCaHa,

and to some extent 1DCaC0, and 2DHNC0 couplings, is not immedi-

ately obvious. If one assumes that the helix is not deformed, the

periodicity should only occur if the effective orientation of the

vectors on either side of the helix differs relative to the magnetic

field, resulting in an effective tilt of the main axis of the helical

element with respect to this axis. In disordered proteins, the

effective tilt of the helix relative to the alignment axis is deter-

mined by the directionality of the unfolded chains projected

from the helix termini. The amplitude and phase of the dipolar

wave have indeed been shown to depend in a predictable

and analytical way on helix length (Jensen and Blackledge,

2008), in theory obviating the need for construction of explicit

ensembles for all helical lengths (Figure 9). This dependence

has been formalized for use as an alternative to the computation-

ally onerous explicit ensemble construction, for the interpreta-

tion of RDCs measured in helical elements of partially folded

chains.

RDCs Provide the Key to a Description of
Conformational Sampling in the Disordered
Transactivation Domain of Human Tumour
Suppressor p53
RDCs offer the possibility for quantitative description of local

structural detail and as such provide powerful probes with which

to map the structural and dynamic properties of IDPs in solution.

It is however evident that a full understanding of the vast confor-

mational space available to these proteins requires experimental

data from as many complementary biophysical techniques

as possible in order to understand the nature of the unfolded

state. An example of the combination of dipolar couplings with
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Figure 9. Residual Dipolar Couplings
RDCs (right: 1DNH, left: 1DCaHa) simulated for a 100-amino-acid poly-alanine chain with helices at 26-41 (top) and 26-39 (bottom). The RDCs were averaged over
50K conformers created by the Flexible-Meccano protocol. The appearance of the RDCs within the helical elements is strongly correlated to the directionality of
the disordered chains projected from the helix caps. If the disordered chains are projected in the same direction (26-41), the dipolar oscillations are small because
the effective helix orientation is close to parallel to the field (U = 1.3�). If the chains are projected in opposing directions (26-39), large oscillations are observed due
to a large induced effective tilt of the helix (U = 18�). The amplitude and phase of the dipolar waves, therefore, depend in a predictable and analytical way on helix
length. Reprinted with permission from the Journal of the American Chemical Society (Jensen and Blackledge, 2008).
complementary biophysical techniques was illustrated in the

development of the first explicit ensemble description of the

human tumor suppressor p53 (Wells et al., 2008). This protein

plays a vital role in maintaining the integrity of the human

genome, controlling apoptosis, cell-cycle arrest, and DNA repair.

P53 exists as a homotetramer, with folded tetramerization and

core domains that are linked via and flanked by intrinsically

disordered domains at the N and C termini. The structure and

quaternary geometry of the folded domains of p53 have been

studied using NMR and crystallography, but no explicit model

of the unfolded domain has been obtained in the context of

the entire protein. Wells et al. have recently combined RDCs,

AMD, and small-angle scattering to study the intrinsically disor-

dered N-terminal transactivation domain of p53 in isolation, in

the full-length form of the protein bound to DNA and in the

unbound form.

This study clearly recognized differential flexibility in different

regions of the N-terminal disordered domain of p53 (Figure 10).

A proline-rich region, attached to the folded core domain,

exhibited enhanced stiffness relative to the transactivation

domain, thereby effectively projecting the MDM2 interaction

site away from the surface of the protein. MDM2 is an important

negative regulator of p53, and multiple RDCs measured from

throughout the N-terminal domain, revealed the presence of a

single helix turn at the MDM2 interaction site. Similar approaches

to those applied for the study of NTAIL quantified the population

of the helix to be approximately 30%, consistent with AMD

calculations, and supporting earlier suggestion of a nascent helix

that fully folds upon interaction with MDM2. Importantly this
Structure
structural motif is again preceded by an aspartic acid, as in

Sendai virus NTAIL and the beta turns present in Tau K18, again

suggesting that the nascent structure is prepared and stabilized

via N-capping interactions. Possibly more remarkably, the

dynamic properties of the disordered N-terminal domain allow

the measurement of RDCs from the entire disordered domain

in the presence of the full-length tetrameric protein, both in the

free and the DNA-complexed forms (a particle of molecular

mass of 240 kDa). The results indicated that local conformational

sampling of the N-terminal domain is remarkably similar in

both the full-length protein and in isolation, and were validated

in the isolated and intact forms against small-angle scattering

data.

Conclusions
RDCs offer remarkably sensitive and agile probes for the study

of local structural propensity in intrinsically disordered proteins.

As we have seen from the examples presented here from our

laboratory, the development of appropriate methods to interpret

measured couplings in terms of conformational behavior is

evolving very rapidly, as befits a nascent field of research. The

combination of appropriate ensemble descriptions has been

shown to allow the extraction of unique and important informa-

tion on the conformational propensities of IDPs. The future

success of the technique depends on the establishment of

robust approaches that can be used to unambiguously identify

structural properties of IDPs accurately and directly from exper-

imental data. These techniques are then destined to make

significant and original contributions to our understanding of
17, September 9, 2009 ª2009 Elsevier Ltd All rights reserved 1181
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Figure 10. Defining the Conformational Behavior of p53 N-Terminal
Intrinsically Unfolded Domain Using RDCs
(A) 1DNH RDCs from p53(1-93) compared with amino-acid-specific statistical
coil predictions from FM. All simulated values are scaled by the same prefactor
to best reproduce the experimental data.
(B) 1DNH RDCs from p53(1-93) compared with predicted values from amino-
acid-specific statistical coil predictions including the presence of a single-
turn helix at amino acids 22-24, populated at a level of 30% (red shading).
Helical values were centered on the conformations present in the X-ray crystal
structure of the a-helix formed when [1-93] binds to the ubiquitin ligase MDM2.
(C) Conformational sampling as in (B) with an increased level of polyproline II
sampling for each amino acid in the region [58-91]-(blue shading). All simulated
1182 Structure 17, September 9, 2009 ª2009 Elsevier Ltd All rights
the relationship between conformational preferences in the

disordered state, the timescale of their interconversions, and

their role in molecular function and malfunction, and to provide

fundamentally important tools for studying the dynamic struc-

tural biology that is characteristic of intrinsically disordered

proteins.
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Grzesiek, S. (2006). Residual dipolar couplings in short peptides reveal
systematic conformational preferences of individual amino acids. J. Am.
Chem. Soc. 128, 13508–13514.

Dedmon, M.M., Lindorff-Larsen, K., Christodoulou, J., Vendruscolo, M., and
Dobson, C.M. (2005). Mapping long-range interactions in alpha-synuclein
using spin-label NMR and ensemble molecular dynamics simulations. J. Am.
Chem. Soc. 127, 476–477.

Denning, D.P., Uversky, V., Patel, S.S., Fink, A.L., and Rexach, M. (2002). The
Saccharomyces cerevisiae nucleoporin Nup2p is a natively unfolded protein.
J. Biol. Chem. 277, 33447–33455.

Ding, K., Louis, J.M., and Gronenborn, A.M. (2004). Insights into conformation
and dynamics of protein GB1 during folding and unfolding by NMR. J. Mol.
Biol. 335, 1299–1307.

Dunker, A.K., Silman, I., Uversky, V.N., and Sussman, J. (2008). Function
and structure of inherently disordered proteins. Curr. Opin. Struct. Biol. 18,
756–764.

Dyson, H.J., and Wright, P.E. (2002). Coupling of folding and binding for
unstructured proteins. Curr. Opin. Struct. Biol. 12, 54–60.

Dyson, H.J., and Wright, P.E. (2004). Intrinsically unstructured proteins and
their functions. Chem. Rev. 104, 3607–3622.

Emsley, J.W., and Lindon, J.C. (1975). NMR Spectroscopy Using Liquid
Crystal Solvents (Oxford: Pergamon Press).

Felitsky, D.J., Lietzow, M.A., Dyson, H.J., and Wright, P.E. (2008). Modeling
transient collapsed states of an unfolded protein to provide insights into early
folding events. Proc. Natl. Acad. Sci. USA 105, 6278–6283.

Fieber, W., Kristjansdottir, S., and Poulsen, F.M. (2004). Short-range, long-
range and transition state interactions in the denatured state of ACBP from
residual dipolar couplings. J. Mol. Biol. 339, 1191–1199.

Fink, A.L. (2005). Natively unfolded proteins. Curr. Opin. Struct. Biol. 15, 35–41.

Fredriksson, K., Louhivuori, M., Permi, P., and Annila, A. (2004). On the inter-
pretation of residual dipolar couplings as reporters of molecular dynamics.
J. Am. Chem. Soc. 126, 12646–12650.

Fuxreiter, M., Simon, I., Friedrich, P., and Tompa, P. (2004). Preformed struc-
tural elements feature in partner recognition by intrinsically unstructured
proteins. J. Mol. Biol. 338, 1015–1026.
Structure
Gillespie, J.R., and Shortle, D. (1997). Characterization of long-range structure
in the denatured state of staphylococcal nuclease. I. Paramagnetic relaxation
enhancement by nitroxide spin labels. J. Mol. Biol. 268, 158–169.

Graf, J., Nguyen, P.H., Stock, G., and Schwalbe, H. (2007). Structure and
dynamics of the homologous series of alanine peptides: a joint molecular
dynamics/NMR study. J. Am. Chem. Soc. 129, 1179–1189.

Hansen, M.R., Mueller, L., and Pardi, A. (1998). Tunable alignment of macro-
molecules by filamentous phage yields dipolar coupling interactions. Nat.
Struct. Biol. 5, 1065–1074.

Houben, K., Marion, D., Tarbouriech, N., Ruigrok, R.W.H., and Blanchard, L.
(2007). Interaction of the C-terminal domains of sendai virus N and P proteins:
Comparison of polymerase-nucleocapsid interactions within the paramyxo-
virus family. J. Virol. 81, 6807–6816.

Jeganathan, S., von Bergen, M., Brutlach, H., Steinhoff, H.J., and Mandelkow,
E. (2006). Global hairpin folding of tau in solution. Biochemistry 45, 2283–2293.

Jensen, M.R., Houben, K., Lescop, E., Blanchard, L., Ruigrok, R.W.H., and
Blackledge, M. (2008). Quantitative conformational analysis of partially
folded proteins from residual dipolar couplings: application to the molecular
recognition element of Sendai virus nucleoprotein. J. Am. Chem. Soc. 130,
8055–8061.

Jensen, M.R., and Blackledge, M. (2008). On the origin of NMR dipolar waves
in transient helical elements of partially folded proteins. J. Am. Chem. Soc.
130, 11266–11267.

Jha, A.K., Colubri, A., Freed, K.F., and Sosnick, T.R. (2005). Statistical coil
model of the unfolded state: Resolving the reconciliation problem. Proc.
Natl. Acad. Sci. USA 102, 13099–13104.

Klein-Seetharaman, J., Oikawa, M., Grimshaw, S.B., Wirmer, J., Duchardt, E.,
Ueda, T., Imoto, T., Smith, L.J., Dobson, C.M., and Schwalbe, H. (2002). Long-
range interactions within a nonnative protein. Science 295, 1719–1722.

Lakomek, N.A., Walter, K.F., Farès, C., Lange, O.F., de Groot, B.L., Grubmül-
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Meier, S., Häussinger, D., Jensen, P., Rogowski, M., and Grzesiek, S. (2003).
High-accuracy residual 1HN-13C and 1HN-1HN dipolar couplings in perdeu-
terated proteins. J. Am. Chem. Soc. 125, 44–45.

Meier, S., Guthe, S., Kiefhaber, T., and Grzesiek, S. (2004). Foldon, the natural
trimerization domain of T4 fibritin, dissociates into a monomeric A-state
17, September 9, 2009 ª2009 Elsevier Ltd All rights reserved 1183



Structure

Review
form containing a stable beta-hairpin: Atomic details of trimer dissociation and
local beta-hairpin stability from residual dipolar couplings. J. Mol. Biol. 344,
1051–1069.

Meier, S., Strohmeier, M., Blackledge, M., and Grzesiek, S. (2007a). Direct
observation of dipolar couplings and hydrogen bonds across a b-hairpin in
8 M urea. J. Am. Chem. Soc. 129, 754–755.

Meier, S., Grzesiek, S., and Blackledge, M. (2007b). Mapping the conforma-
tional landscape of urea-denatured ubiquitin using residual dipolar couplings.
J. Am. Chem. Soc. 129, 9799–9807.

Meier, S., Blackledge, M., and Grzesiek, S. (2008). Conformational distribu-
tions of unfolded polypeptides from novel NMR techniques. J. Chem. Phys.
128, 052204.

Meiler, J., Prompers, J., Griesinger, C., and Brüschweiler, R. (2001). Model-
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Griesinger, C., Mandelkow, E., Zweckstetter, M., and Blackledge, M.
(2007a). Highly populated turn conformations in natively unfolded tau protein
identified from residual dipolar couplings and molecular simulation. J. Am.
Chem. Soc. 129, 5235–5243.

Mukrasch, M.D., von Bergen, M., Biernat, J., Fischer, D., Griesinger, C.,
Mandelkow, E., and Zweckstetter, M. (2007b). The ‘‘jaws’’ of the Tau-microtu-
bule interaction. J. Biol. Chem. 282, 12230–12239.

Mukrasch, M.D., Bibow, S., Korukottu, J., Jeganathan, S., Biernat, J.,
Griesinger, C., and Mandelkow, E. (2009). Structural polymorphism of
441-residue tau at single residue resolution. PLoS Biol. 7, 399–414.

Neri, D., Billeter, M., Wider, G., and Wuthrich, K. (1992). NMR determination of
residual structure in a urea-denatured protein, the 434 repressor. Science 257,
1559–1563.

Obolensky, O.I., Schlepckow, K., Schwalbe, H., and Solov’yov, A.V. (2007).
Theoretical framework for NMR residual dipolar couplings in unfolded
proteins. J. Biomol. NMR 39, 1–16.

Ohnishi, S., Lee, A.L., Edgell, M.H., and Shortle, D. (2004). Direct demonstra-
tion of structural similarity between native and denatured eglin C. Biochemistry
43, 4064–4070.

Ortega-Roldan, J.L., Jensen, M.R., Brutscher, B., Azuaga, A.I., Blackledge,
M., and van Nuland, N.A.J. (2009). Accurate characterization of weak macro-
molecular interactions by titration of NMR residual dipolar couplings: applica-
tion to the CD2AP SH3-C:Ubiquitin complex. Nucleic Acids Res. 37, e70.

Prestegard, J.H., Bougault, C.M., and Kishore, A.I. (2004). Residual dipolar
couplings in structure determination of biomolecules. Chem. Rev. 104,
3519–3540.

Rückert, M., and Otting, G. (2000). Alignment of biological macromolecules in
novel nonionic liquid crystalline media for NMR experiments. J. Am. Chem.
Soc. 122, 7793–7797.

Salmon, L., Bouvignies, G., Markwick, P., Lakomek, N., Showalter, S., Li,
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