
A CMD Core Model for CLARIN Web Services 

Menzo Windhouwer, Daan Broeder, Dieter van Uytvanck 
Max Planck Institute for Psycholinguistics 

Wundtlaan 1, 6525 XD Nijmegen, The Netherlands 
Menzo.Windhouwer@mpi.nl, Daan.Broeder@mpi.nl, Dieter.vanUytvanck@mpi.nl 

Abstract 

In the CLARIN infrastructure various national projects have started initiatives to allow users of the infrastructure to create chains or 
workflows of web services. The Component Metadata (CMD) core model for web services described in this paper tries to align the 
metadata descriptions of these various initiatives. This should allow chaining/workflow engines to find matching and invoke services. 
The paper describes the landscape of web services architectures and the state of the national initiatives. Based on this a CMD core 
model for CLARIN is proposed, which, within some limits, can be adapted to the specific needs of an initiative by the standard 
facilities of CMD. The paper closes with the current state and usage of the model and a look into the future. 

1. Introduction 
In the grand CLARIN1 (Váradi et al., 2008) vision “the 
user will have access to repositories of data with 
standardized descriptions, processing tools ready to 
operate on standardized data, and all of this will be 
available on the internet using a service oriented 
architecture” (CLARIN community, 2008). These 
processing tools can be dedicated desktop tools but also 
services hosted by various CLARIN (computing) centers 
and accessible over the web. 
In the preparatory phase CLARIN national projects 
contributed existing or new initiatives in the domain of 
web services. In Spain UPF provides various families of 
services, e.g., statistical and CQP web services (see §4.1). 
A major result of the German D-SPIN project has been the 
first version of WebLicht, a chaining engine for linguistic 
web services (see §4.2). The Dutch and Flemish TTNWW 
project aims at supporting web service workflows for both 
textual and multimedia resources (see §4.3). 
This means that there is not a single CLARIN web service 
chaining/workflow engine. However, in the CLARIN 
infrastructure, which aims at unification instead of 
fragmentation, it should at least be technically possible 
for all engines to find matching and invoke all known 
services within the infrastructure. 
One pillar of CLARIN is that all metadata on resources, 
including web services, are to be specified using the 
Component MetaData Infrastructure (CMDI). This 
framework is very flexible and should allow mixing 
common and engine specific metadata for web services. 
This paper describes the design and use of an extensible 
CMD model for common web service metadata. 
Sections 2 and 3 give an introduction of the major web 
service architectures and their impact on metadata 
descriptions, and the CMDI framework. The next section 
described how web services are described in various 
national CLARIN projects. On this basis the CMD core 
model for CLARIN Web Services and its possible usage 
will be fleshed out in section 5 and 6. The last section will 
deal with the current state and usage of the model. 

Acronyms can be looked up in §9 

2. Web service architectures 
In the history of the Internet several ways have been 
proposed to implement Service Oriented Architectures 
(SOAs) based on the basic protocol for the World Wide 
Web HTTP. According to (Richardson et al., 2007) three 
basic web service architectures can be identified. This 
classification is based on the differences in how the 
architectures handle two basic information items: 

1. Method information: how does the client convey 
its intentions to the server, i.e., why should the 
server do this instead of doing that? 

2. Scoping information: how does the client tell the 
server which part of the data set to operate on, 
i.e., why should the server operate on this data 
instead of that data? 

In the CLARIN landscape all three architectures can be 
encountered. 

2.1 RESTful resource-oriented architectures 
A web service architecture is considered RESTful if the 
method information goes into the verb that determines the 
nature of the HTTP request, e.g., PUT, GET, POST or 
DELETE, and resource oriented if the scoping 
information goes into the URI. Resource orientation 
means also that this URI does not actually refer to a 
service but to a resource, where resolving the URI results 
in a representation of that resource. These architectures 
are directly build upon the technical foundations that 
made the World Wide Web successful (Fielding, 2000). 
A well-known example of a RESTful resource-oriented 
architecture is Amazon’s Simple Storage Service 
(Amazon Web Services LLC, 2006). Also services that 
are exposed by the Atom Publishing protocol (Gregorio et 
al., 2007) are examples. 

2.2 RPC-style architectures 
In RPC (Remote Procedure Call) architectures envelopes 
full of data are sent and received from the services. Both 
the method and scoping information are kept inside the 
envelope. The XML-RPC protocol (Winer, 2003) is a 
prime example of such architecture. It ignores most 
features of HTTP, i.e., only one URI (the service 
endpoint) is used and one HTTP method (POST). 

41 

mailto:Menzo.Windhouwer@mpi.nl
mailto:Daan.Broeder@mpi.nl
mailto:Dieter.vanUytvanck@mpi.nl


Contrary to RESTful architectures this disables a lot of 
the basic infrastructure, e.g., caching of GET requests, 
which made the World Wide Web scalable and successful. 
The same can be said about most usages of SOAP (Simple 
Object Access Protocol) (W3C XML Protocol Working 
Group, 2007) on top of HTTP. In this case SOAP is the 
envelope format in which the method and scoping 
information is provided. 

2.3 REST-RPC hybrid architectures 
This group of service architectures have REST-like 
elements, e.g., they put the scoping information in the 
URI, but they do that as well for the method information, 
e.g., have a single endpoint with a query parameter that 
specifies the service to call. An example of a REST-RPC 
hybrid is the Flickr REST API (Flickr, 2012). 

2.4 Interface Description Language 
An Interface Description Language (IDL) is commonly 
used by RPC architectures to specify the services which 
are available at an endpoint. In the case of SOAP the IDL 
is the Web Service Definition Language (WSDL) 
(Christensen et al., 2001). The WSDL provides 
information on the input and output of the services. 
For RESTful resource-oriented architectures there has 
been an on-going debate if an IDL is needed. Patterns are 
proposed which enable the transition of one service, or 
resource representation, to another, e.g., Hypermedia as 
the Engine of Application State (HATEOAS) (Fielding, 
2000; Fielding, 2008) where a client basically follows the 
links between resources just like a browser a does with the 
links embedded in a HTML page. However, in current 
practice this style of web services is too free form to 
automatically determine how to call a service. So relying 
only on a text document to define the API is naïve and 
does not scale. For example, parameters can be passed on 
in many ways, e.g., embedded in the URI path, as query 
parameters or as part of a multipart POST request. The 
Web Application Description Language (WADL) 
(Hadley, 2009) has been submitted to W3C as a possible 
IDL to describe RESTful web services. But WADL did 
not make it into a W3C recommendation yet and from 
time to time competing IDLs are proposed, e.g., ReLL 
(Alarcón et al., 2010) and the RDF-based RESTdesc 
(Verborgh, 2012). Also version 2 of WSDL allows 
describing this RESTful web services. IDLs suitable for 
RESTful web services can in general also be used for 
REST-RPC architectures. 

3. The Component Metadata 
Infrastructure 

This section introduces CMDI, the metadata 
infrastructure that is to be used for all metadata describing 
resources in the CLARIN domain, including web 
services. The role of and link between descriptions of a 
web service in an IDL and in CMDI will be described later 
on in this paper. 
In the CLARIN infrastructure CMDI (Broeder et al., 
2011) has been developed to be able to better tailor a 
metadata schema to the needs of a (type of) resource. 
Previous attempts resulted in either too few metadata 
elements, e.g., Dublin Core, or in too many, e.g., IMDI. 
Both cases can result in poor metadata quality as users 

misuse elements when there are too few or give up when 
there are too many. 
CMDI is based on a registry of reusable components 
(CLARIN community, 2012). Users can combine suitable 
components into profiles. These profiles can be 
transformed into an XML Schema so actual instances of 
the profiles can be validated. When needed users can 
create new component and profiles, but they can also copy 
existing components and adapt them till they suit their 
specific needs. However, CLARIN will benefit if 
proliferation of components is kept to the minimum. 
Components, elements and values in CMD can be linked 
to concepts or data categories defined in an external 
registry. In CLARIN the preferred registry is the ISOcat 
(Max Planck Institute for Psycholinguistics, 2012) Data 
Category Registry (DCR), which is an implementation of 
(ISO 12620, 2009) and as the ISO TC 37 DCR dedicated 
to the linguistic domain. These links allow establishing 
semantic interoperability between components, elements 
or values in different CMD profiles. And even allows for 
differences in the use of terminology, cases or 
orthography. 

4. CLARIN web service chaining and 
workflow engines and registries 

As stated before various national CLARIN projects have 
started initiatives in the area of Web Services. In this 
section these initiatives are sketched with a focus on their 
support for metadata description of the services. 

4.1 Spain 
In Spain IULA at UPF provides access to various families 
of web services (see §4.2.6 in (Funk et al., 2010) and 
(CLARIN-CAT and -ES community, 2012)): 

• Format conversion services: provide different 
format conversion tools such as PDF, MS Word 
and HTML to plain text, character conversion 
tools, etc.; 

• Statistical services: provide statistical 
information on an uploaded corpus, e.g., the 
"Herdan" index of lexical richness or all the 
n-grams with its number of occurrences; 

• Annotation services: including morphosytactic, 
syntactic and dependency annotators; 

• Corpus management services: deploys a CWB as 
a web service and allows indexing and further 
exploitation of an annotated corpus. 

Access to the services is provided via SOAP, so the 
technical, also known as the syntactic, description is given 
in WSDL. Additional metadata and semantics are 
provided in a separate semantic description, inspired by 
the SoapLab2 semantic annotations and the myGrid 
ontology (Villegas et al., 2010). A CMDI profile2 has 
been created for these semantic descriptions. The 
following fragment3 is taken from the XSLT processor 
service description: 

2 See 
http://catalog.clarin.eu/ds/ComponentRegistry?item=clar 
in.eu:cr1:p_1295178776924 
3 Due to limited space the XML has been trimmed by 
abbreviating all end tags to </> and to leave out some 
content (indicated by ellipses ‘…’). 

42 

http://catalog.clarin.eu/ds/ComponentRegistry?item=clarin.eu:cr1:p_1295178776924
http://catalog.clarin.eu/ds/ComponentRegistry?item=clarin.eu:cr1:p_1295178776924


<serviceDescription> 

<serviceName>xsltprocService</> 

… 

<locationURL>…/soaplab2-axis/</> 

<interfaceWSDL>…xsltproc?wsdl</> 

… 

<operations> 

<serviceOperation> 

<operationName>runAndWaitFor</> 

<portName>xsltproc</> 

… 

<operationInputs> 

<MyGridParameter> 

<parameterName>stylesheet</> 

… 

<isConfigurationParameter>false</> 

<semanticType>stylesheet</> 

… 

<XMLSchemaURI>…xsltproc?xsd=1</> 

… 

<formats> 

<formatIdentifier>text/xml</> 

<formatIdentifier>UTF-8</> 

</></> 

… 

</></></> 

Figure 1: Fragment of an UPF service description 

This Spanish initiative is continued in the PANACEA 
project, a STREP project under EU-FP7 (Bel, 2010). The 
ELDA PANACEA web service registry (ELDA, 2012) 
provides the latest usage statistics. 

4.2 Germany 
The German D-SPIN project created the WebLicht 
chaining engine for web services (see §1 in (Ogrodniczuk 
et al., 2011)). Services in WebLicht are REST-based and 
in current practice a single TCF document is pushed 
through a pipeline of services, where each service adds a 
new layer to the TCF document. Around a hundred 
services, e.g., tokenizers and part-of-speech taggers, for 
various languages are accessible via WebLicht. 
For the syntactic description of services there is no usage 
of an IDL as the invocation recipe for a service accessible 
by WebLicht is well known by the chaining engine, i.e., 
POST the TCF document. The metadata description of 
services focuses mainly on specifying the required input 
layers and produced output layers. This description 
supports profile matching to build a chain. The following 
fragment illustrates this: 

<service> 

<name>TreeTagger 117 152</> 

<url>…/tree-tagger3.perl</> 

… 

<replacesinput>false</replacesinput> 

<input type="text/tcf+xml"> 

<feature name="lang"> 

<value name="de"/> 

<value name="it"/> 

<value name="en"/> 

</> 

<feature name="version"> 

<value name="0.3"/> 

</> 

<feature name="layer.tokens"/> 

</> 

<output type="text/tcf+xml"> 

<feature name="layer.postags"/> 

<feature name="layer.lemmas"/> 

<feature name="layer.postags.tagset"> 

<value refValue="it" refFeature="lang" 

name="stein"/> 

<value refValue="en" refFeature="lang" 

name="penntb"/> 

<value refValue="de" refFeature="lang" 

name="stts"/> 

</></></> 

Figure 2: Fragment of a WebLicht service description 

WebLicht (SfS Tübingen, 2012) can be used by the 
CLARIN community and development continues in the 
successor to D-SPIN the CLARIN-D project 
(CLARIN-D, 2012). 

4.3 The Netherlands and Flanders 

CLARIN-NL and CLARIN Flanders cooperate in the 
TTNWW project, which aims at providing access to 
national services as for example developed in the 
STEVIN project. Two modalities are being addressed: 
text and speech. In TTNWW no assumption is made with 
regard to the web service architecture, i.e., it should be 
possible to integrate services based on RESTful 
resource-oriented, RPC-style or REST-RPC hybrid 
architectures. 
Metadata descriptions are based on the data model 
described in (Kemps-Snijders, 2010). The following 
example shows a fragment, including a reference to the 
WSDL via a CMD resource proxy. 

<CMD> 

<Header>…</> 

<Resources> 

<ResourceProxyList> 

<ResourceProxy> 

<ResourceType>WSDL service</> 

<ResourceRef>…/LangId.asmx</> 

</ResourceProxy> 

</ResourceProxyList> 

</Resources> 

<Components> 

<Service> 

<Type>SOAP</> 

… 

<Name>LangIdWebService</> 

<URL>hdl:service</> 

<Operation> 

<Name>IdentifyLanguage</> 

<Action>…/IdentifyLanguage</> 

<Input> 

<Parameter> 

<Name>IdentifyLanguage.text</> 

43 



Figure 3: UML model for CLARIN web services 

<TechnicalMetadata> 

<MimeType>text/plain</> 

<CharacterEncoding>UTF-8</> 

</TechnicalMetadata> 

</> 

<Parameter> 

<Name>….modern_languages</> 

<DataCategory>…</> 

</Parameter> 

<Parameter> 

<Name>….rare_languages</> 

<DataCategory>…</> 

</Parameter> 

</> 

<Output> 

<Parameter> 

<Name>….Language</> 

<TechnicalMetadata 

parameterRef="IdentifyLanguage.text"> 

<MimeType>text/plain</> 

<CharacterEncoding>UTF-8</> 

<PLORK>WAF</PLORK> 

<ContentEncoding> 

<URL>hdl:testSchema</URL> 

<ResourceFormat>PlainTextResource</> 

</></></> 

<Parameter> 

<Name>….Confidence</> 

<DataCategory>…</> 

</></></></></></> 

Figure 4: Fragment of a TTNWW service description 

The TTNWW project is on-going and has, at time of 
writing, not been publically released. 

5. A CMD core model for web services 
As shown in the previous section the national CLARIN 
projects support diverse web service architectures 
including various mechanisms for describing web 
services on the semantic and syntactic levels. The CMD 
core model described in this section is an attempt to distil 
a common core out of these existing descriptions. 

5.1 An initial UML model 
Discussion on the core model were based on an UML 
model and after several iterations resulted in the class 
diagram shown in Figure 3. 
In a hierarchical perspective on the diagram, which 
matches the CMD approach, the Service class is taken as 
the root. A major design decision is that each Service 
should refer to a service description (see the Service-
DescriptionLocation attribute), e.g., a reference to a 
WSDL or WADL instance. Here the core model follows 
the Spanish approach. The CMD description mainly 
focuses on semantics and there is an additional syntactic 
description that provides more technical details. These 
technical details are needed as the CMD description might 
be powerful enough to do profile matching, i.e., determine 
if the output of one service can be used as input to another 
service, but it does not provide enough information to 
really invoke these services. This is the penalty for the 
freedom that REST-style web services allow developers. 
Take for example an WebLicht service: the WebLicht 
chaining engine knows its own recipe, i.e., it should 
POST the TCF document to the URI of a service, but 
another chaining or workflow engine would not know 
that. In the syntactical service description for REST-style 
web services this recipe is made explicit, so any engine 
can know how to invoke a service. 

The core model actually does not state which IDL should 
be used. For the time being WSDL (2) and WADL seem to 

44 



be the most appropriate candidates able to support all the 
web service architectures described in Section 2. 
The Service class does not contain any attribute to specify 
the URI of the service (endpoint) as this is considered 
technical information, which is provided in the syntactical 
service description. 
The syntactical service description is able to describe a 
collection of services. In an RPC architecture these are the 
operations provided by a single endpoint, and also a one 
WADL document can describe a collection of REST-style 
web services. A Service instance can thus refer to one or 
more operations. 
Each operation is an instance of the Operation class 
which contains the in- and output specifications. As it 
should be clear how to invoke this operation the name of 
the operation in the semantic description should be the 
same as the one used for it in the syntactical description. 
Input and output are sets of parameters. As illustrated in 
the case of the TCF document used by WebLicht, profile 
matching might actually need to look into the contents of 
the resource send around in the chain or workflow, i.e., it 
should be possible to state that a lemmatizer needs an 
input TCF document containing a token layer. Notice that 
the syntactical description does not need to specify about 
layers in the file, it only needs to specify how to ship the 
TCF document to the service. The UML model deals with 
this by allowing an in- or output parameter to be either a 
ParameterGroup or a Parameter, which are both 
subclasses of the abstract AbstractParameter class. In 
WebLicht the in- or output TCF document would 
correspond to a ParameterGroup and a layer to a 
Parameter in this group. Both Parameter and 
ParamaterGroup share a number of optional attributes 
that allow providing various levels of profile matching 
from technical to service specific semantics: 

1. MIMEType: the technical MIME type of a 
resource will also reveal its media type, e.g., 
text/plain; 

2. DataType: a value domain, in general taken from 
the well-known XML Schema data types (Biron 
et al., 2004), e.g., ID; 

3. DataCategory: a reference to a data category, in 
general taken from ISOcat, e.g., 
http://www.isocat.org/datcat/DC-2535 (/project 
id/); 

4. SemanticType: free form string to indicate 
service specific types, e.g., 
‘clam.project.adelheid’. 

A profile matching algorithm can use these various levels 
to prune away semantic mismatches from a list of 
syntactic matches, e.g., matching an Adelheid (Halteren, 
2009) project id with a service that accepts arbitrary plain 
text would be useless. 
The names of parameters or parameter groups, depending 
on which corresponds to an actual technical parameter, 
should correspond to names used for the same parameter 
in the syntactical description. 
The lowest level of the hierarchy contains the 
ParameterValue class which is used to capture descriptive 
information of value enumerations for parameters. 
This UML model covers major parts of the various 
semantic descriptions mentioned in Section 4. The CMD 
infrastructure will provide the means to add any 
repository specific information to this common part. 

5.2 CMD components for the core model 
To be useful in the CLARIN context the UML model has 
to be instantiated as a set of CMD components. However, 
CMD does not support any inheritance, i.e., one cannot 
create an AbstractParameter component and describe 
how Parameter and ParameterGroup components are 
related to it, so specific mapping rules between the two 
models, aimed at maintaining as much of the semantics as 
possible, have to be followed: 

1. Each non-abstract class becomes a component, 
e.g., Service and Operation but not 
AbstractParameter; 

2. Each attribute, both inherited and local, becomes 
an element, e.g., Name or Description, but 

3. attributes, both inherited and local, referring to 
non-abstract classes become components with a 
child component representing the referred 
non-abstract class, e.g., Operations; 

4. Attributes, both inherited and local, referring to 
abstract classes should become components with 
optional child components representing all the 
non-abstract classes lower in the inheritance 
hierarchy, e.g., Input and Output; 

5. Cardinality constraints are copied where 
possible, e.g., in the case of the attributes 
referring to abstract classes these will be lost, 
e.g., CMD cannot express that an Output 
instance should refer to at least one Parameter or 
ParameterGroup instance. 

Reusability considerations determine which components 
related to classes exist on their own in the registry, while 
others only exist within another component. 
ParameterValue, for example, is only used inside 
Parameter and is considered unlikely to be reused 
somewhere else. 
The CMD components resulting from this mapping UML 
model have been created in the Component Registry and 
combined into a profile4. Only in one case the rules 
described in this section were not followed: the 
ServiceDescriptionLocation attribute was not mapped to a 
CMD element but to a CMD component. The idea behind 
this has been to enable the use of a CMD resource proxy 
for the reference to the syntactic description. This 
promotes the approach taken in TTNWW as shown in 
Figure 4. 

<Resources> 

<ResourceProxyList> 

<ResourceProxy id="h1"> 

<ResourceType 

mimetype="application/vnd.sun.wadl+xml"> 

Resource 

</> 

<ResourceRef> …/tds-services.wadl</> 

</></> 

… 

</Resources> 

<Components> 

<ToolService> 

4 See 
http://catalog.clarin.eu/ds/ComponentRegistry?item=clar 
in.eu:cr1:p_1311927752335&space=public 

45 

http://www.isocat.org/datcat/DC-2535
http://catalog.clarin.eu/ds/ComponentRegistry?item=clarin.eu:cr1:p_1311927752335&space=public
http://catalog.clarin.eu/ds/ComponentRegistry?item=clarin.eu:cr1:p_1311927752335&space=public


<Service CoreVersion="1.0"> 

<Name> Typological Database System</> 

<ServiceDescriptionLocation ref="h1" /> 

<Operations> 

… 

</></></></></> 

Figure 5 ServiceDescriptionLocation uses a resource proxy 

6. Usage of the core model 
Now that the CMD core model for CLARIN Web 
Services is available the question arises: how can a web 
service repository adapt and use it? The core model 
profile should not be instantiated directly as it functions as 
a template for profiles specific to the various national 
initiatives. For CLARIN-NL an extension has been 
created where a TechnicalMetaData component (see also 
the TechnicalMetaData fragments in Figure 4) has been 
added to the ParameterGroup and Parameter 
components. This component contains elements to 
specify, for example, the character encoding, a reference 
to an XML schema or the location of an output parameter 
in a resource. In the following fragment the bold parts of 
the instance correspond to the core model. 

<Operation> 

<Name>query</> 

<Description>Query the data section of an IDDF 

document.</> 

<Input> 

<Parameter> 

<Name>file</> 

<DataType>string</> 

<SemanticType>iddf.file</> 

<TechnicalMetadata> 

<CharacterEncoding>UTF-8</> 

</></> 

<Parameter> 

<Name>query</> 

<MIMEType>text/xml</> 

<TechnicalMetadata> 

<CharacterEncoding>UTF-8</> 

<ContentEncoding> 

<URL>…/query.rng</> 

<ResourceFormat>IDDF Query XML</> 

</></></> 

… 

</> 

<Output> 

<ParameterGroup> 

<Name>query-result</> 

<MIMEType>text/xml</> 

<Parameters> 

<Parameter> 

<Name>notion</> 

<DataType>ID</> 

<SemanticType>iddf.notion</> 

<TechnicalMetadata> 

<CharacterEncoding>UTF-8</> 

<ContentEncoding> 

<RelativeLocation>//@iddf:notion</> 

</></></> 

… 

</></></></> 

Figure 6 Fragment of a CLARIN-NL service description 

The CLARIN-NL tool and services description profile 
was created by copying the components from the core 
model and adding the additional components and 
elements. This need to copy and edit existing components 
opens up the possibility to also delete 
components/elements which were mandatory in the core 
model. Additional components or elements can be freely 
added but changes to existing components or elements 
need to follow some rules, so instances are valid both in 
the core model and the extension: 

1. Cardinalities in the extension should be within 
the boundaries set by the core model, e.g., 
mandatory elements cannot become optional but 
optional elements like Description can become 
mandatory; 

2. Closed value domains cannot be extended, but 
open value domains like for SemanticType can 
be turned into closed ones; 

3. Data category references in the core model 
should not be touched as this could imply 
different semantics. 

By following these rules it should be possible to strip of 
all additional components and elements from an instance 
and still be left with a valid instance of the core model. 
Taking the example fragment in Figure 6 only the bold 
styled elements would be left. This validation process has 
been implemented and is available to developers at 
http://www.isocat.org/clarin/ws/cmd-core/. The target 
audience of the core model consists of developers of web 
service registries. Web service developers, which want to 
make their services available to one of the CLARIN 
chaining/workflow engines, should just use the core 
model compliant CMD profile of a CLARIN registry. 
The fragment in Figure 6 showed part of the semantic 
description of the TDS IDDF query web service 
(Dimitriadis, 2009). This fragment has its counterpart in 
the syntactic, or technical, WSDL description. 

<method name="POST" id="query"> 

<request> 

<representation 

mediaType="multipart/form-data"> 

<param name="service" type="xs:string" … 

fixed="query" style="query" 

required="true"/> 

<param name="file" type="xs:string" 

style="query" required="true"/> 

<param name="query" style="query" 

required="true"/> 

… 

</></> 

<response> 

<representation mediaType="text/xml"> 

<param name="notion" path="//@iddf:notion" 

repeating="true" style="plain"/> 

… 

</></></> 

Figure 7 Fragment of a CLARIN-NL WSDL 

The TDS IDDF web services use a RPC-REST hybrid 
architecture, where the method information is passed on 
in the URI as a query parameter. In Figure 7 this is the first 
input parameter named service with the fixed value 
‘query’, which is the name of the service to be executed 

46 

http://www.isocat.org/clarin/ws/cmd-core/


by the RPC endpoint. This parameter does not appear in 
Figure 6, which shows that this low-level implementation 
detail is hidden from the semantic description of the web 
service. Also notice that the names for the operation, i.e., 
‘query’, and the in- and output parameters, e.g., ‘file’ and 
‘notion’, are the same in the two descriptions, so one can 
connect the semantic and syntactic information levels. 

7. Future work and conclusions 
This paper described the development of a CMD core 
model for CLARIN web service descriptions. At the time 
of writing only the CLARIN-NL tool and service 
description profile is compliant with the core model and 
publically available in the public workspace of the 
Component Registry. A few Dutch web services have 
been described, but this profile is not yet in use by the 
TTNWW project. The German WebLicht project is 
adopting CMDI and the core model in version 2.0. 
It will only be a first step if the various registries use a 
CMD profile that is compliant with the core model. The 
next, and most important step to measure uptake, is when 
the various chaining/workflow engines are able to process 
both the semantic and syntactic web service descriptions 
and thus are able to invoke generic services not 
specifically tailored to their system. 
As the construction of the CLARIN infrastructure 
proceeds more complex use cases are being addressed, 
also in the area of web services. One of the trends is to 
incorporate asynchronous web services. In general these 
are not single services that do an (advanced) operation 
and return their result ‘immediately’, but instead various 
services need to be called in a specific sequence. A 
common pattern is to call a service to start the operation, 
then use another service to poll at regular intervals if the 
operation has finished, and if so to fetch the result by yet 
another service. In the Netherlands CLAM (Gompel, 
2011) is a popular REST-based framework that is based 
on this pattern. This is in fact a mini workflow and 
projects like TTNWW are implementing them as such and 
compose larger workflows out of multiple mini 
workflows. Users of the infrastructure then call these 
pre-composed workflows instead of single web services. 
It remains to be seen if this kind of workflows can be 
handled in the same way as web services and thus can use 
the core model, or if another model or adaptions to this 
model are needed. 
Alignment with or reuse of the core model by other 
(metadata) infrastructure initiatives could enable wider 
integration. The META-SHARE meta model is also based 
on components and ISOcat and contains a section on 
Tools and Services (see §8 in (Desipri et al., 2012)) and 
would thus be a prime candidate. 

8. Acknowledgements 
The CMD core model for CLARIN Web Services has 
profited from feedback from the members of the ISOcat 
CLARIN Web Services group, especially Marc 
Kemps-Snijders, Marta Villegas and Thomas Zastrow. 

9. Acronyms 
API 

CLARIN 

CMDI 

CWB 

DCR 

D-SPIN 

HATEOAS 

HTML 

HTTP 

ID 

IDDF 

IDL 

IMDI 

ISO 

IULA 

META 

MIME 

MS 

PANACEA 

PDF 

RDF 

REST 

RPC 

SOA 

SOAP 

STEVIN 

TC 

TCF 

TDS 

TTNWW 

UML 

UPF 

URI 

W3C 

WADL 

WSDL 

XML 

XSLT 

Application Programming Interface 

Common Language Resources and Technology 
Infrastructure 

Component Metadata Infrastructure 

Corpus Workbench 

Data Category Registry 

Deutsche Sprachressourcen-Infrastruktur 

Hypertext as the Engine of Application State 

Hypertext Markup Language 

Hypertext Transfer Protocol 

Identifier 

Integrated Data and Documentation Format 

Interface Description Language 

ISLE MetaData Initiative 

International Organization for Standardization 

Institut Universitari de Lingüística Aplicada 

Multilingual Europe Technology Alliance 

Multipurpose Internet Mail Extensions 

Microsoft 

Platform for Automatic, Normalized Annotation and 
Cost-Effective Acquisition 

Portable Document Format 

Resource Description Format 

Representational State Transfer 

Remote Procedure Call 

Service Oriented Architecture 

Simple Object Access Protocol 

Spraak- en Taaltechnologische Essentiële Voorzieningen 
In het Nederlands 

Technical Committee 

Text Corpus Format 

Typological Database System 

TST Tools voor het Nederlands als Webservices in een 
Workflow 

Unified Modeling Language 

Universitat Pompeu Fabra 

Uniform Resource Identifier 

World Wide Web Consortium 

Web Application Description Language 

Web Service Description Language 

Extensible Markup Language 

Extensible Stylesheet Language Transformations 

10. References 
Alarcón, R. and E. Wilde (2010). RESTler: Crawling 

RESTful Services. WWW 2010. Raleigh, North 
Carolina, USA, ACM. 

Amazon Web Services LLC. (2006). Amazon Simple 
Storage Service API Reference. Retrieved 16 
February 2012, from 
http://docs.amazonwebservices.com/AmazonS3 
/latest/API/APIRest.html. 

Bel, N. (2010). Platform for Automatic, Normalized 
Annotation and Cost-Effective Acquisition of 
Language Resources for Human Language 
Technologies: PANACEA. XXVI Congreso de 
la Sociedad Española para el Procesamiento del 
Lenguaje Natural (SEPLN-2010). Valencia, 
Spain. 

Biron, P. V. , K. Permanente and A. Malhotra. (2004). 

47 

http://docs.amazonwebservices.com/AmazonS3/latest/API/APIRest.html
http://docs.amazonwebservices.com/AmazonS3/latest/API/APIRest.html


XML Schema Part 2: Datatypes Second Edition. 
W3C recommendation Retrieved 16 February 
2012, from 
http://www.w3.org/TR/xmlschema-2/. 

Broeder, D., O. Schonefeld, T. Trippel, D. v. Uytvanck 
and A. Witt (2011). A pragmatic approach to 
XML interoperability – the Component 
Metadata Infrastructure (CMDI). Balisage: The 
Markup Conference 2011. Montréal, Canada. 

Christensen, E., F. Curbera, G. Meredith and S. 
Weerawarana. (2001). Web Services Description 
Language. Retrieved 16 February 2012, from 
http://www.w3.org/TR/wsdl. 

CLARIN-CAT and -ES community. (2012). 
Clarin-Cat-Lab and Clarin-Es-Lab Retrieved 27 
Feburary 2012, from http://clarin-cat-lab.org/ 
and http://clarin-es-lab.org/. 

CLARIN-D. (2012). CLARIN-D: a web and 
centres-based research infrastructure for the 
social sciences and humanities. Retrieved 16 
February 2012, from http://www.clarin-d.de/. 

CLARIN community. (2008). About CLARIN » Mission. 
Retrieved 16 February 2012, from 
http://www.clarin.eu/external/index.php?page=a 
bout-clarin&sub=0. 

CLARIN community. (2012). Clarin Component 
Browser. Retrieved 16 February 2012, from 
http://catalog.clarin.eu/ds/ComponentRegistry/. 

Desipri, E., M. Gavrilidou, P. Labropoulou, S. Piperidis, 
F. Frontini, M. Monachini, V. Arranz, V. Mapelli, 
G. Francopoulo and T. Declerck (2012). 
Documentation and User Manual of the 
META-SHARE Metadata Model P. Labropoulou 
and E. Desipri. 

Dimitriadis, A. (2009). TDS Curator - A web-services 
architecture to curate the Typological Database 
System. CLARIN Call I prohect Retrieved 17 
February 2012, from 
http://www.clarin.nl/node/70#TDS_Curator. 

ELDA. (2012). The PANACEA registry. Retrieved 28 
March 2012, from http://registry.elda.org/. 

Fielding, R. (2000). Architectural Styles and the Design 
of Network-based Software Architectures. 
Irvine, University of California. 

Fielding, R. T. (2008). REST APIs must be 
hypertext-driven. Retrieved 16 February 2012, 
from 
http://roy.gbiv.com/untangled/2008/rest-apis-mu 
st-be-hypertext-driven. 

Flickr. (2012). Flickr Services. Retrieved 16 February 
2012, from 
http://www.flickr.com/services/api/request.rest. 
html. 

Funk, A., N. Bel, S. Bel, M. Büchler, D. Cristea, F. 
Fritzinger, E. Hinrichs, Marie Hinrichs, R. Ion, 
M. Kemps-Snijders, Y. Panchenko, H. Schmid, 
P. Wittenburg, U. Quasthoff and T. Zastrow 
(2010). Requirements Specification Web 
Services and Workflow Systems. CLARIN 

deliverable. D2-R6b. 
Gompel, M. v. (2011). CLAM: Computational Linguistics 

Application Mediator. Retrieved 17 February 
2012, from http://ilk.uvt.nl/clam/. 

Gregorio, J. and B. d. hOra (2007). The Atom Publishing 
Protocol IETF - Network Working Group. RFC 
5023. 

Hadley, M. (2009). Web Application Description 
Language. W3C submission, W3C. 

Halteren, H. v. (2009). Adelheid - A Distributed 
Lemmatizer for Historical Dutch. CLARIN Call 
1 project Retrieved 17 February 2012, from 
http://www.clarin.nl/node/70#Adelheid. 

ISO 12620 (2009). Terminology and other language and 
content resources - Specification of data 
categories and management of a Data Category 
Registry for language resources, International 
Organization for Standardization. 

Kemps-Snijders, M. (2010). Web services and workflow 
creation. CLARIN deliverable. D2R-7b. 

Max Planck Institute for Psycholinguistics. (2012). 
ISOcat - Data Category Registry. Retrieved 16 
February 2012, from http://www.isocat.org/. 

Ogrodniczuk, M. and A. Przepiórkowski (2011). 
Integration of Language Resources into Web 
service infrastructure. CLARIN deliverable. 
D5R-3b. 

Richardson, L. and S. Ruby (2007). RESTful Web 
Services, O'Reilly. 

SfS Tübingen. (2012). WebLicht Web-based Linguistic 
Chaining Tool. Retrieved 28 March 2012, from 
https://weblicht.sfs.uni-tuebingen.de/. 

Váradi, T., S. Krauwer, P. Wittenburg, M. Wynne and K. 
Koskenniemi (2008). CLARIN: Common 
Language Resources and Technology 
Infrastructure. Sixth International Conference on 
Language Resources and Evaluation (LREC'08). 
N. Calzolari, K. Choukri, B. Maegaardet al. 
Marrakech, Morocco, European Language 
Resources Association (ELRA). 

Verborgh, R. (2012). RESTdesc – Semantic descriptions 
for RESTful Web APIs. Retrieved 16 February 
2012, from http://restdesc.org/. 

Villegas, M., N. Bel, S. Bel and V. Rodríguez (2010). A 
Case Study on Interoperability for Language 
Resources and Applications. The Seventh 
International Conference on Language 
Resources and Evaluation (LREC'10). N. 
Calzolari, K. Choukri, B. Maegaardet al. 
Valletta, Malta, European Language Resources 
Association (ELRA): 3512-3519. 

W3C XML Protocol Working Group. (2007). SOAP 
Specifications. W3C recommendation 
Retrieved 16 February 2012, from 
http://www.w3.org/TR/soap/. 

Winer, D. (2003). XML-RPC Specification. Retrieved 
16 February 2012, from 
http://xmlrpc.scripting.com/spec. 

48 

http://www.w3.org/TR/xmlschema-2/
http://www.w3.org/TR/wsdl
http://clarin-cat-lab.org/
http://clarin-es-lab.org/
http://www.clarin-d.de/
http://www.clarin.eu/external/index.php?page=about-clarin&sub=0
http://www.clarin.eu/external/index.php?page=about-clarin&sub=0
http://catalog.clarin.eu/ds/ComponentRegistry/
http://www.clarin.nl/node/70%23TDS_Curator
http://registry.elda.org/
http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven
http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven
http://www.flickr.com/services/api/request.rest.html
http://www.flickr.com/services/api/request.rest.html
http://ilk.uvt.nl/clam/
http://www.clarin.nl/node/70%23Adelheid
http://www.isocat.org/
https://weblicht.sfs.uni-tuebingen.de/
http://restdesc.org/
http://www.w3.org/TR/soap/
http://xmlrpc.scripting.com/spec

