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Long-baseline laser-interferometer gravitational-wave detectors are operating at a factor of ∼ 10
(in amplitude) above the standard quantum limit (SQL) within a broad frequency band (in the sense
that ∆f ∼ f). Such a low classical noise budget has already allowed the creation of a controlled
2.7 kg macroscopic oscillator with an effective eigenfrequency of 150 Hz and an occupation number of
∼ 200. This result, along with the prospect for further improvements, heralds the new possibility of
experimentally probing macroscopic quantum mechanics (MQM) — quantum mechanical behavior
of objects in the realm of everyday experience — using gravitational-wave detectors. In this paper,
we provide the mathematical foundation for the first step of a MQM experiment: the preparation of
a macroscopic test mass into a nearly minimum-Heisenberg-limited Gaussian quantum state, which
is possible if the interferometer’s classical noise beats the SQL in a broad frequency band. Our
formalism, based on Wiener filtering, allows a straightforward conversion from the classical noise
budget of a laser interferometer, in terms of noise spectra, into the strategy for quantum state
preparation, and the quality of the prepared state. Using this formalism, we consider how Gaussian
entanglement can be built among two macroscopic test masses, and the performance of the planned
Advanced LIGO interferometers in quantum-state preparation.

PACS numbers: 42.50.Xa, 42.50.Lc, 03.65.Ta, 03.67.Mn, 04.80.Nn, 95.55.Ym

I. INTRODUCTION

An international array of first-generation long-baseline
laser interferometric gravitational-wave (GW) detectors
(LIGO [1], VIRGO [2], GEO [3] and TAMA [4]) are
reaching their design sensitivities. These Michelson in-
terferometers have been built to measure GW-driven rel-
ative length changes (within a detection band from 10Hz
to 10 kHz) between the mirror-endowed test masses which
are hung as pendulums with an eigenfrequency far below
the detection band. Resonant cavities are used to en-
hance the sensitivity by increasing the circulating optical
power and the signal storage time. In Michelson inter-
ferometers usually the total differential mode of motion
between the arm cavity mirrors, in the following always
represented by the position operator

x̂ = (x̂ITME
− x̂ETME

) − (x̂ITMN
− x̂ETMN

) , (1)

(for the nomenclature see Fig. 1) is measured via a ho-
modyne detection of the modulation fields (also called
side-band fields) leaking out at the dark port of the in-
terferometer. Current GW interferometers are already
quantum limited at high frequencies by the shot noise.
Next generation interferometers, such as the planned Ad-
vanced LIGO detector [5] (cf. Fig. 1), are expected to be
quantum noise limited at nearly all frequencies in the
detection band. Advanced LIGO will therefore operate
at its free mass standard quantum limit (SQL) [6, 7, 8]
at which the back-action noise is comparable to the shot
noise level. The position-referred spectral density of the

SQL at the sideband frequency Ω is given by

SSQL(Ω) ≡ 2 ~

m Ω2
. (2)

The SQL is the minimum noise spectrum achievable by
a linear quantum measurement of the position with un-
correlated sensing and back-action noise. Here m is the
reduced mass of all arm cavity mirrors, or 1/4 of the
individual mirror mass.

Improvement of sensitivities to GWs beyond Advanced
LIGO will require to surpass the SQL significantly in a
broad frequency band. Various conceptual strategies ex-
ist for building interferometers with broadband sub-SQL
quantum noise [9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
20, 21, 22, 23, 24], while there is also much effort devoted
to lowering classical noise below the SQL. For exam-
ple, (i) the CLIO interferometer is currently being cooled
down to a few tens of Kelvin, and has a theoretical ther-
mal noise budget below the SQL [25], (ii) non-spherical
mirrors are being developed that support non-Gaussian
modes which average better over mirror surfaces and are
thus less susceptible to thermal noise [26, 27, 28], (iii)
coating structures are also being optimized for coating
thermal noise [29, 30].

This paper, however, is devoted not to the improve-
ment of the detector’s sensitivity to GWs, but to the
study of quantum mechanical behavior of its test masses.
Recently, it has been reported by the LIGO Scientific
Collaboration in Ref. [31] that a certain (controlled)
mode of the mirror’s differential motion in the LIGO
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FIG. 1: Schematic plot of the planned Advanced LIGO [5]
interferometer: a power- and signal-recycled Michelson inter-
ferometer with cavities in the arms and a homodyne detection
scheme at the dark port.

detector located in Hanford was experimentally cooled
down to 1.4 µK, with an effective occupation number of
around 200. Furthermore, there is a number of other
experiments considering different smaller-scale mechan-
ical structures [32, 33, 34, 35, 36, 37]. The goal of
such cold damping [38] experiments is to reach the os-
cillator’s ground state. As a real pure quantum state is
approached, the semiclassical model as used in the above
references will certainly break down and the quantum
noise effects in the measurement process have to be in-
cluded.

One aim of this paper is at providing a mathemat-
ical foundation guiding future experimental efforts of
quantum-state preparation — one that is straightforward
to apply to experimental situations. Note that our gen-
eral formulation applies not only to gravitational-wave
detectors but to the whole bunch of experiments related
to quantum state preparation. Quantum mechanically,
we consider a problem in which an object is being con-
tinuously measured by the optical field, while it is si-
multaneously subject to noisy forces. For such problems,
the stochastic master equation (SME) [39] is a readily
available tool to simulate quantum-state preparation in
quantum mechanical systems; a Riccati equation associ-
ated with the SME provides the remaining uncertainty
of the object, when all measurement data are taken into
account. Formally, this approach only treats Marko-
vian systems (since only Markovian systems allow us to
project the optical field being measured and trace off the
noise fields at every infinitesimal time step, resulting in
a closed-form evolution of the test-mass density opera-
tor), while non-Markovianity is prevalent in experiments

such as in GW detectors: virtually none of the noise
sources are white, and we have the added complexity
that the cavity mode often couples strongly with the test
masses, i.e. it cannot be adiabatically eliminated [39], and
must be evolved together with the test masses. Since we
only consider linear systems with Gaussian noise, and
we only care about the test masses’ state after the ini-
tial transient has died down, the SME and the Riccati
equation, which also characterizes the exact way of the
transient decays, are not entirely necessary. Instead, we
have found that a Wiener filtering approach, in which
the measurement data is filtered with the optimal causal
Wiener filter to obtain instantaneous optimal estimates
for position and momentum of the test masses [40], suf-
fices, and is most straightforwardly connected with ex-
perimental calibration of the system. An example of the
power of the Wiener filtering approach has already been
demonstrated in Ref. [41], where an optimal controller
that yields a steady quantum state with minimum un-
certainty (or von Neumann entropy) has been derived for
a general linear (Markovian as well as non-Markovian)
quantum measurement process.

A direct application of the Wiener filtering approach is
to explore how quantum a macroscopic test mass can be
prepared in a certain environment, which is the second
aim of this paper. We measure the purity of the quantum
state of an individual test mass (or a single mechanical
degree of freedom) through the Heisenberg uncertainty
product or the following quantity

U ≡ 2

~

√

Vxx Vpp − V 2
xp , (3)

which is unity for a pure state. This quantity can also be
converted into an effective occupation number. Here Vxx,
Vpp and Vxp are the second-order moments of position
and momentum of the Gaussian state. We will show that
a low classical noise budget which is completely below the
SQL for a broad frequency band allows the quantity U
to become close to unity. In particular for simple sys-
tems with a total classical noise spectrum Scl(Ω) which
is dominated by a white sensing noise and a white force,
we have obtained the simple relation

U ≈ 1 + min
Ω

{

Scl(Ω)

SSQL(Ω)

}

. (4)

But we will also explore how a realistic noise budget for
the planned Advanced LIGO detector — as well as an ex-
tension of Advanced LIGO with plausible improvement
— can best be taken advantage of through an optimized
optical configuration that minimizes U . When two inde-
pendent mechanical degrees of freedom are considered,
the formalism, which we present in this paper, has al-
ready been applied to show that the production of quan-
tum entanglement between the macroscopic end mirrors
is possible for sub-SQL laser interferometers [40].

An experiment testing MQM should be divided into
different stages which are separated in time: a prepa-
ration stage, where the test mass will be continuously
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observed; an optional free-evolution stage; and a veri-
fication stage. One will need to collect statistics from
a huge number of identical trials as it is required from
quantum mechanics. This present paper is the first one
of a paper-series: this one deals with the preparation of
macroscopic conditional quantum states; while a second
paper [42] will study the verification of such macroscopic
quantum states.

This paper is organized as follows: in Sec. II we will
briefly review the theoretical basics of Wiener filtering.
In Sec. III we will study analytically the conditional vari-
ances of the simplified model using only Markovian dy-
namics. We will introduce a flexible homodyne detection
angle and input squeezing. In Sec. IV we will extend the
analysis done in Ref. [40] about macroscopic entangle-
ment. In Sec. V we will study test-masses in a cavity
with finite bandwidth and we will treat more realistic,
non-Markovian noise sources. These preliminary studies
result in an investigation of quantum-state preparation in
Advanced LIGO in Sec. VI. Finally, in Sec.VII we will
summarize our main conclusions.

II. WIENER FILTERING

For systems under continuous measurement, the con-
ventional approach is to describe the joint system-
measurement-data evolution using a stochastic master
equation (SME) [33, 39, 43, 44], which is a set of stochas-
tic differential equations that simulates the joint evolu-
tion of the system’s conditional density matrix ρ̂cond and
measurement data y(t). As the simplest example, for a
harmonic oscillator with position x̂ being measured con-
tinuously by a Markovian measurement device (one that
has uncorrelated measurement noise at different times
and constant measurement strength), the SME reads,

dρ̂cond = − i

~
[H, ρ̂cond] dt − α2

4~2

[

x̂,
[

x̂, ρ̂cond
]]

dt

+
α√
2~

({

x̂, ρ̂cond
}

− 2 〈x̂〉 ρ̂cond
)

dW , (5)

dŷ =
α

~
〈x̂〉 dt + dW/

√
2 , (6)

with a coupling constant α. Here the conditional quan-
tum state [45] is defined as the projection of the joint
system-device quantum state to the sub-space in which
the readout observable ŷ has definite values of ŷ(t′) =
y(t′) ∀ 0 < t′ < t. The Wiener increment dW describes a
stochastic process that simultaneously drives the condi-
tional quantum state and the measurement data, where
both are stochastic processes. Different realizations of
dW correspond to different possible scenarios that could
take place in reality.

In practice, it is not enough to only describe the
stochastic process, we need to be able to obtain the con-
ditional quantum state at any given time t, based on the
system’s initial quantum state ρ̂cond(0) and measurement
results {y(t′), 0 < t′ < t}. This corresponds to a filtering

problem in classical stochastic calculus. The probability
distribution of any state variable x̂ is simply the condi-
tional probability

P [x̂(t) | {y(t′), 0 < t′ < t}] , (7)

while the conditional expectation of x̂ can be written as
a functional over {y(t′), 0 < t′ < t},

xcond(t) = E[x̂(t) | {y(t′), 0 < t′ < t}] . (8)

For linear systems with Gaussian states only expecta-
tions of quantities linear and quadratic in the variables
are needed. The former can be obtained through a linear
filter over ŷ, while the latter can be obtained by solving a
time-domain Riccati equation. If the measurement pro-
cess has started for sufficiently long time — much longer
than the time constant of transients — then the filters
over ŷ as well as the second-order moments are station-
ary. They can be obtained through the theory of Wiener
filtering [46]. This will be the situation that we will con-
sider in this paper.

Although the most general theory of quantum filtering
is quite distinct from classical filtering [47], we will sim-
plify the situation through two steps, and return to an
essentially classical filtering problem. First, let us con-
struct a model of the quantum measurement process. Let
ŷ(t) be the Heisenberg operator of the measurement out-
put (e.g., a particular quadrature of the out-going optical
field) and ŝ(t) any system observable. Then the principle
of simultaneous measurability, i.e. the observable ŷ(t′) at
different times can be measured individually to arbitrary
accuracy without imposing any fundamental limits, and
the principle of causality, i.e. measurement observable at
present does not respond to future forces to be exerted
onto the system, will dictate that [48]

0 = [ŷ(t), ŷ(t′)] ∀t, t′ , (9)

0 = [ô(t), ŷ(t′)] ∀t > t′ . (10)

Note here that ô could be any any state variable such as
momentum and position, or even the density operator of
the system being measured. This means that any filtering
of the operator ŷ(t′) for 0 < t′ < t can be considered as a
classical process, i.e. treated with classical linear control
theory, as long as the state of the system at t, or ρ̂(t) is
considered. Here we write formally that

ρ̂cond
{y(t′), 0<t′<t}

=
P[ŷ(t′)=y(t′), t′<t] ρ̂ P[ŷ(t′)=y(t′), t′<t]

tr
[

P[ŷ(t′)=y(t′), t′<t] ρ̂ P[ŷ(t′)=y(t′), t′<t]

] , (11)

where P projects onto the subspace on which the mea-
surement operator takes the measured value. Henceforth
the dependence of ρ̂cond on {y(t′), t′ < t} will not be
written explicitly, as it is done in most of the literature.

Second, we restrict ourselves to stable linear systems
with Gaussian states and to later times when the initial
states are no longer important. In this case only first-
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and second-order moments in linear observables need to
be considered. We also assume all linear observables to
have zero unconditional expectation values. Suppose we
have observables x̂l with l = 1, 2, . . . n, and proceed as in
classical Wiener filtering. The key is to decompose the
operator x̂l into

x̂l(t) =

∫ t

−∞

dt′ Kl(t − t′)ŷ(t′) + R̂l(t) (12)

with

〈R̂l(t) ŷ(t′)〉 = tr
[

ρ̂ R̂l(t) ŷ(t′)
]

= 0 . (13)

If this can indeed be done, it can then be shown that

xcond
l (t) = tr

[

ρ̂condx̂l(t)
]

=

∫ t

−∞

dt′ Kl(t− t′) y(t′) (14)

and

V cond
lm ≡ 〈x̂l(t)x̂m(t)〉cond

sym − 〈xl(t)〉cond〈xm(t)〉cond

= 〈R̂l(t)R̂m(t)〉sym . (15)

In this way, the conditional expectations of the linear
variables are given as linear functionals of past measure-
ment data {y(t′), t′ < t}, and the conditional variances
as steady state constants. Please see Appendix A for a
more rigorous justification.

We will now try to obtain Kl and V cond
lm in terms of un-

conditional correlation functions, or cross spectra among
system observables x̂l and the output ŷ. Eq. (13) leads
to the Wiener-Hopf equation

Cxly(t − t′′) −
∫ t

−∞

dt′ Kl(t − t′)Cyy(t′ − t′′) = 0

∀t′′ ≤ t .
(16)

Here

Cab(t − t′) ≡ 〈â(t) b̂(t′)〉sym

= tr

[

ρ̂
â(t)b̂(t′) + b̂(t′)â(t)

2

]

(17)

stands for the symmetrized time-domain two-point cor-
relation function between two arbitrary Heisenberg oper-

ators â(t) and b̂(t).
If we suppose that Kl(t) = 0 for t < 0, i.e. we make

sure that the filter is a causal function, we can rewrite
Eq. (16) as

Cxly(t) −
∫ ∞

−∞

dt′ Kl(t
′)Cyy(t − t′) = 0 ∀t ≥ 0 . (18)

In Fourier domain the condition in Eq. (18) is satisfied if
the function

L(Ω) = Sxly(Ω) − Kl(Ω)Syy(Ω) (19)

is analytic in the lower-half complex plane while the
Fourier transform of the filter function Kl(Ω) is analytic
in the upper-half complex plane. Furthermore, L(Ω) has
to vanish at infinity, because Eq. (18) must also be valid
at t = 0. These conditions uniquely define Kl(Ω). We
have denoted with Sab(Ω) the single-sided (cross-) spec-

tral density among the operators â and b̂, related to the
two-point correlation as

Cab(t) =
1

2

∫ +∞

−∞

dΩ

2π
Sab(Ω) e−iΩt . (20)

The Wiener-Hopf method provides the solution for Kl(Ω)
as

Kl(Ω) =
1

s+
y (Ω)

[

Sxly(Ω)

s−y (Ω)

]

+

, (21)

where we have split Syy(Ω) = s+
y (Ω) s−y (Ω) in such a way

that s+
y (s−y ) and its inverse are analytic functions in the

upper-half (lower-half) complex plane. Because Syy(Ω)
is in general a rational function of Ω2 with real coeffi-
cients, we expect that s+

y (Ω) = [s−y (Ω∗)]∗. In addition,
[F (Ω) . . .]+ stands for taking the component of a func-
tion whose inverse Fourier transform has support only
in positive times. Operationally, this could be obtained
either by decomposing F (Ω) into

F (Ω) =
∑

k

αk

Ω − Ωk
(22)

and only keeping terms whose Ωk has negative imaginary
parts, or by inverse Fourier transforming F (Ω) into the
time domain, eliminate the positive-time component, and
then Fourier transform back. [Note that both approaches
will become ambiguous when F (Ω) does not approach
zero when Ω → +∞.] Inserting Eq. (21) into Eqs. (12)
and (15), we obtain

V cond
lm =

∫ ∞

0

dΩ

2π

(

Sxlxm
−
[

Sxly

s−y

]

+

[

Sxmy

s−y

]∗

+

)

. (23)

A more transparent understanding of the filtering
problem can be obtained when we formally define the
causally whitened output as

ẑ(Ω) ≡ 1

s+
y (Ω)

ŷ(Ω) . (24)

Because 1/s+
y is analytic in the upper-half complex plane,

ẑ can be written as an integral over the history of ŷ. The
random process ẑ has a white spectrum. Moreover, we
can write

Kl(Ω) ŷ(Ω) = [Sxlz(Ω)]+ ẑ(Ω) . (25)

In other words,

〈xl(t)〉cond =

∫ t

−∞

dt′ Cxlz(t − t′)z(t′) (26)
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and

V cond
lm = Vlm −

∫ 0

−∞

dt′ Cxlz(−t′)Cxmz(−t′) . (27)

Clearly, Eqs. (26) and (27) are simply continuous ver-
sions of linear regression over a set of independent ran-
dom variables.

In this paper with tools of Wiener filtering, we no
longer need to write down SMEs. In fact, for realis-
tic systems with multiple colored noise sources and non-
Markovian dynamics, SMEs can only be obtained by in-
creasing the dimension of the problem, which will defi-
nitely become cumbersome.

III. MEASUREMENT CONFIGURATIONS

WITH MARKOVIAN NOISE

A. General discussion

Let us start our discussion generally with an ab-
stract continuous linear Markovian measurement process,
which monitors the center of mass position of a simple
harmonic oscillator. The Heisenberg equations of motion
in the frequency domain can be written as

ŷ = Ẑ + x̂ , (28)

x̂ = Rxx(Ω) F̂ , (29)

where the two noise operators Ẑ and F̂ both have a white
spectrum. In the time domain, Ẑ and F̂ are white noise,
with two-time correlation functions proportional to delta
function. Such statistical characteristics make the mea-
surement process a Markovian one. Thus, we assume
that Ẑ and F̂ have the single-sided (cross-) spectral den-
sities SZZ ≥ 0, SFF ≥ 0 and SZF ∈ R, which satisfy the
Heisenberg relation of the measurement process [7]

SZZ SFF − S2
ZF = µ~

2 , µ ≥ 1 (30)

which arises from the requirement that the Heisenberg
operators of the out-going field at different times must
commute, and guarantees that the level of back action is
just enough to enforce the Heisenberg uncertainty rela-
tion of the test mass [7]. In the case of Gaussian noise
only, we have µ = 1 if and only if the measurement pro-
cess is purely quantum.

The linear response function of a damped harmonic
oscillator is given by

Rxx(Ω) = − 1

m (Ω2 + i γm Ω − ω2
m)

, (31)

with the eigenfrequency ωm, the damping rate γm ≪ ωm

and the mass m. Then we can easily assemble the single-

sided spectral densities of the measurement process as

Syy(Ω) = m2|Rxx(Ω)|2
(

Ω4 − Ω2(2q1 − γ2
m) + q2

2

)

SZZ ,

(32)

Sxy(Ω) = −m|Rxx(Ω)|2
(

Ω2 − iγmΩ − ω2
m − SFF

SZF

)

SZF ,

(33)

Sxx(Ω) = |Rxx(Ω)|2SFF , (34)

where we have defined the coefficients

q1 ≡ ω2
m +

SZF

m SZZ
, (35)

q2 ≡
√

ω4
m + 2 ω2

m

SZF

m SZZ
+

SFF

m2SZZ
. (36)

Both, q1,2, have the dimension of frequency squared,
while q2 is always positive. We also note that |q1| ≤ q2.

From Eq. (32) we can recover a quantum limit of the
measurement process: if we have SZF = 0, the spectral
density of the measurement noise satisfies

Syy(Ω) ≥ 2
√

SZZ SFF |Rxx(Ω)| ≥ 2
√

µ ~ |Rxx(Ω)|
=

√
µ SSQL(Ω) . (37)

For a free mass we can then recover Eq. (2) from Eq. (37).
Note that for the free mass the first inequality sign in
Eq. (37) becomes an equality sign at Ω = Ωq, where the
measurement frequency is defined by

Ω2
q ≡

√

SFF

m2 SZZ
. (38)

Therefore, the measurement frequency Ωq is the fre-
quency at which the noise spectral density of a Marko-
vian quantum measurement process (with SFZ = 0) ap-
proaches most its free mass SQL.

Now it is straightforward to derive the conditional vari-
ances assuming p̂ = −i m Ω x̂ and using the Wiener fil-
tering method, i.e. Eq. (23). For this it has actually been
crucial to first spectral factorize Syy(Ω). In the perfect
oscillator limit with γm → 0 the conditional covariance
matrix can be put into the following form

V =
√

µ D











√

2q2

q1 + q2

√

q2 − q1

q2 + q1
√

q2 − q1

q2 + q1

√

2q2

q1 + q2











D
T , (39)

where we have defined

D =













√

~

2m
√

q2
0

0

√

~m
√

q2

2













. (40)
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Eq. (39) gives us the most general covariance matrix of
the conditional Gaussian state of a lossless harmonic os-
cillator under any linear Markovian position measure-
ment. In the covariance matrix V, the matrix D sets
the scale of the quantum fluctuations to be comparable
to those of the vacuum state of a harmonic oscillator with
eigenfrequency

√
q2. Depending on the ratio q1/q2, which

always lies between −1 and +1, the noise ellipse of the
vacuum state is deformed into one where position and
momentum are correlated (unless if q1/q2 ≈ 1) while the
area is conserved. This corresponds to a unitary trans-
formation among Gaussian states. Then µ finally en-
larges the noise ellipse with a uniform factor, converting
the pure state into a mixed state (unless if µ = 1). We
have found that the conditional variances completely co-
incide with those obtained from SMEs. With Eq. (39) we
can for instance easily reproduce Eqs. (2.8a)–(2.8c) from
Ref. [44].

A Gaussian state is pure if and only if its uncertainty
product is Heisenberg-limited. Therefore, it makes sense
to quantify the purity of the conditional state by its un-
certainty product, here given by

detV = VxxVpp − V 2
xp = µ

~
2

4
, (41)

which is identical to the purity of the measurement pro-
cess. This simply shows that in the Markovian case, any
measurement will produce a pure conditional state of a
lossless harmonic oscillator if and only if it is a quantum
measurement. Moreover, the uncertainty product is even
independent of the system’s mechanical properties such
as the oscillator’s mass and eigenfrequency. Note that in
the Appendix B we have introduced how the uncertainty
product is related to an effective occupation number Neff .
It turns out, when using Eq. (B3), that here the effec-
tive eigenfrequency for the effective occupation number
is given by ωeff =

√
q2.

The covariance matrix in Eq. (39) becomes obviously
diagonal and the correlation between x̂ and p̂ in the con-
ditional state vanishes if and only if q1 = q2. But this
is strictly forbidden due to the Heisenberg uncertainty
principle. However, in a certain limit they can become
very close [41]. With a higher difference in q1 and q2 the
correlation in x̂ and p̂ increases — and in turn also the
uncertainty product.

In order to obtain the conditional state, as given in
Eq. (39), the measurement data has to be filtered in real
time using the Wiener filter functions for position and
momentum which are given in the frequency domain by

Kx(Ω) =
√

2 i
√

q2 − q1
Ω − Ω3

(Ω − Ω1) (Ω − Ω2)
, (42)

Kp(Ω) = i m
(

q2 − ω2
m

) Ω + ω2
m/Ω3

(Ω − Ω1) (Ω − Ω2)
, (43)

where Ω1,2 = (±√
q2 + q1 − i

√
q2 − q1)/

√
2 and Ω3 =

i/
√

2 (ω2
m − q2)/

√
q2 − q1. Note that the poles of the

Wiener filter Ω1,2 are actually equal to the zeros of the
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of a Markovian measurement process observing a free mass:
the quantum noise spectral density at different values of the
measurement frequency Ωq as well as the spectral densities
corresponding to a classical force noise (gray line) and a sens-
ing noise (gray line) are marked in the plot. The gray shad-
owed region marks the classical noise SQL beating which we
have chosen to have Ωx/ΩF = 5.

measurement’s output spectrum Syy(Ω), which in turn
correspond to the frequencies of maximal sensitivity and
are therefore easy to find.

Let us now have a closer look on the noise model we
will use throughout this section. We will only consider
quantum measurement processes and categorize the noise
into two groups: (i) the one which is a result of the mea-
surement process itself will be denoted by quantum noise;
and (ii) the additional noise will be called classical noise
which does not directly arise from the measurement pro-
cess, usually has no correlation in Ẑ and F̂ does not have
to satisfy Eq. (30). Then the two noise sources combine
as SFF = Sq

FF + Scl
FF and SZZ = Sq

ZZ + Scl
ZZ .

The quantum noise is dominated at high frequencies
by shot noise which is covered by Sq

ZZ and at low fre-
quencies by back-action noise which is covered by Sq

FF .
The latter one is represented by the radiation-pressure
noise in the case of a measurement with light. If both
are uncorrelated, i.e. Sq

ZF = 0, they result in the SQL.
Then the quantum noise spectral density is limited from
below by the free-mass SQL as shown in Eq. (37) and also
in Fig. 2. The quantum noise touches the free-mass SQL
at the frequency Ω = Ωq.

The other noise source can also be divided into two
parts: a classical force noise Scl

FF is added to SFF which
acts directly on the center of mass of the measured ob-
ject, and is in real interferometric experiments due to
for instance seismic noise or thermal noise in the suspen-
sion of the mirrors. The classical sensing noise Scl

ZZ is
only a pseudo motion of the measured object and may
be due to the following reasons: (i) on the one hand due
to thermal fluctuations of the mirror’s shape as for ex-
ample mirror internal thermal noise which makes only
the mirror surface move with respect to its center of
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mass; or (ii) on the other hand be due to optical losses;
or (iii) due to photo-detection inefficiency. Therefore,
our sensing noise is somehow generalized from what is
conventionally understood when using the term “sensing
noise”. Note that for detecting gravitational waves, only
the total noise matters, yet for studying quantum-state
preparation, it is important to make distinctions between
sensing and force noise, and between quantum and clas-
sical noise. Throughout this section we will assume both
classical noise sources to have a white spectrum. Then
they can be characterized by the frequencies, ΩF for the
force noise and Ωx for the sensing noise, at which their
noise spectral density intersects with the free-mass SQL
(cf. Fig. 2). These classical noise frequencies are defined
by the following relations

Scl
FF = 2 ~ m Ω2

F , (44)

Scl
ZZ =

2 ~

m Ω2
x

. (45)

Note that the classical force noise together with the clas-
sical sensing noise can open a window in which both
are below the free-mass SQL as indicated by the gray-
shadowed region in Fig. 2. The total classical noise is
then even completely below the SQL in a certain fre-
quency band, if and only if the classical noise sources
satisfy

Scl
FF Scl

ZZ < ~
2 ⇔ Ωx/ΩF > 2 , (46)

which turns into a constraint for the classical noise fre-
quency ratio. If Eq. (46) holds, the classical noise is equal
to a minimum of (2 ΩF /Ωx) times the free-mass SQL at
the frequency Ω = Ωcl ≡

√
ΩF Ωx which reads

min
Ω

{

Scl(Ω)

SSQL(Ω)

}

=
Scl(Ωcl)

SSQL(Ωcl)
=

2 ΩF

Ωx
. (47)

Since here the classical noise has the largest separation
to the SQL, we can understand the factor (2 ΩF /Ωx) as
the classical-noise-SQL-beating factor.

B. Very low finesse cavity and free mass scenario

with vacuum input

Let us consider the simple situation of a laser beam
incident on a suspended mirror, where the output field
is monitored by a perfect balanced homodyne detection
at a frequency-independent angle ζ. This corresponds
to a mirror in a cavity with infinitely large bandwidth
(or at least much larger than Ωq, as we shall quantify in
Sec. VA), in which case the dynamics of the cavity mode
can be ignored or adiabatically eliminated. Note that the
following analysis is also valid for the dark port fields en-
tering and leaving an equal-arm Michelson interferometer
with movable end mirrors and the differential motion be-
tween these mirrors — but then the mirror mass m in the
following discussion has to be substituted by the effective

mass m/2. Then the quantum measurement process can
be described by the following spectral densities [40]

SZZ =
~

2

α2
tan2 ζ +

~
2

α2
+

2 ~

m Ω2
x

, (48)

SFF = α2 + 2 m ~ Ω2
F , (49)

SZF = ~ tan ζ , (50)

where the coupling constant is defined by

α =

√

8 P ω0 ~

c2
. (51)

Here P is the circulating laser power and ω0 the laser
angular frequency.

In the free-mass limit, i.e. with ωm → 0, the condi-
tional variances simplify to

Vxx =
~√

2mΩq

√

1 + tan2 ζ + 2ξ2
x ×

(

√

(1 + 2ξ2
F )(1 + tan2 ζ + 2ξ2

x) − tan ζ

)
1

2

, (52)

Vpp =
~mΩq√

2

√

1 + 2ξ2
F ×

(

√

(1 + 2ξ2
F )(1 + tan2 ζ + 2ξ2

x) − tan ζ

)
1

2

, (53)

Vxp =
~

2

(

√

(1 + 2ξ2
F )(1 + tan2 ζ + 2ξ2

x) − tan ζ

)

,

(54)

while the purity of the state is given by

detV =
~

2

4

((

1 + 2ξ2
F

) (

1 + 2ξ2
x

)

+ 2ξ2
F tan2 ζ

)

≥ ~
2

4
(1 + 2 ξF ξx)

2
. (55)

Here we have defined the two ratios, ξF ≡ ΩF /Ωq and

ξx ≡ Ωq/Ωx with Ωq = α/
√

~ m. Then we can recover
Eq. (4) and with the Appendix B we obtain

Neff =
Scl(Ωcl)

2 SSQL(Ωcl)
. (56)

In the quantum-noise limit with ξF = ξx = 0 the con-
ditional state is pure for any measurement frequency Ωq

and homodyne detection angle ζ. This defines the con-
ditional ground state of a free mass

Vxx =
~√

2m Ωq

, (57)

Vpp =
~ m Ωq√

2
, (58)

Vxp =
~

2
. (59)
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Here the Wiener filter functions for position and momen-
tum become equal to simple decaying cosine functions at
the measurement frequency and read

Kx(t) =
√

2Ωq e
−

Ωq t
√

2 cos

(

Ωq t√
2

)

, (60)

Kp(t) =
√

2m Ω2
q e

−
Ωq t
√

2 cos

(

Ωq t√
2

+
π

4

)

. (61)

Then it becomes apparent that the inverse of the mea-
surement frequency Ωq (at which the total noise ap-
proaches SQL the most) is also the time scale at which
information regarding test-mass position and momentum
have to be extracted from the output data.

It is clear from Eq. (55) that one should measure the
phase quadrature, i.e. ζ = 0, in order to minimize the
uncertainty product. That means that in order to obtain
a small uncertainty product, it is not required to remove
the quantum back-action noise from the output, as one
would benefit from when trying to detect gravitational
waves [9] — to the contrary, for that purpose it would be
even destructive to do so. This is understandable, since
here the aim is to learn as much as possible about the
mirror motion, and the effect of quantum back action is
an important content of the mirror motion. For example,
suppose we chose to measure a back-action-evading ob-
servable using an oscillator with negligible classical noise.
In this case, we would have an output channel that has a
minimal power spectrum, and is hence ideal for measur-
ing any classical force that acts onto the mirror. Fluc-
tuation in the mirror motion and the momentum driven
by back action, on the other hand, would almost diverge
around the resonant frequency. The output field, con-
taining absolutely no information about the back action,
would not be able to remove this fluctuation via condi-
tioning. This would then result in a conditional state
equal to the unconditional state with very large vari-
ances.

We learn from Eqs. (52)–(54) that the effect of the clas-
sical force noise in the conditional variances is suppressed
with a higher measurement frequency (random force has
less time to act and accumulate) while the classical sens-
ing noise is suppressed with a lower measurement fre-
quency (random sensing noise has longer time to average
out). Moreover, in the absence of any classical sensing
noise the test-mass state becomes pure with an infinitely
strong measurement (in which Ωq approaches +∞): all
classical forces acting on the test mass can be neglected
in presence of the strong back-action force and the test
mass reaches the conditional ground state at the infinite
measurement frequency. Vice versa, in the theoretical
absence of classical force noise, the test-mass state be-
comes pure in the limit of an infinitely weak measurement
(in which Ωq approaches 0): if the test-mass motion is
only driven by the measurement’s back action but this
motion is then unfortunately hidden in the measurement
output because it is covered by the classical sensing noise,
the best idea would be not to measure the test mass at

all. If both classical noise sources are present, the un-
certainty product is minimized further with an optimal
power which accomplishes a balancing between classical
force and sensing noise, i.e. with ξF = ξx. This pro-
duces an equal sign in the second line of Eq. (55) and
is true for a measurement frequency of Ωq = Ωcl. This
simply means that the quantum noise should touch the
free-mass SQL at the frequency where the classical noise
has the maximal separation to that limit (cf. Fig. 2).
The expression of the minimal uncertainty product and
the one of the minimal effective occupation number are
then functions of the classical-noise-SQL-beating factor.

For a mechanical object there is not a fundamental
definition of which state is vacuum, since it is possible to
vary the potential well it lies in. Nevertheless, states with
non-zero correlation among displacement and momentum
can always be regarded as squeezed, and we can often
discuss whether one state is more position squeezed (mo-
mentum anti-squeezed) or more position anti-squeezed
(momentum squeezed) compared to another. We have
illustrated the squeezing situation, by plotting noise el-
lipses obtained with various homodyne detections (see
upper panel of Fig. 3). As the homodyne detection angle
ζ vary from optimal value 0 to −π/2, the semimajor axis
of the noise ellipse, i.e. the anti-squeezed quadrature, be-
comes rotated into the direction of the position. At the
same time the ellipse becomes more stretched, i.e. the
squeezed quadrature is more squeezed, while the anti-
squeezed quadrature is more anti-squeezed. As ζ vary
from 0 to π/2, the semimajor axis of the noise ellipse
also rotates into the direction of the position but the el-
lipse becomes rather bulged. Furthermore, we show how
the noise ellipse changes, as the measurement frequency
is not chosen to be equal to the geometrical mean of the
two classical noise frequencies, i.e. Ωq 6= Ωcl. For phase
quadrature detection as in the lower panel of Fig. 3, a
slow measurement, i.e. with a low measurement fre-
quency Ωq < Ωcl, generates a position anti-squeezed (and
momentum squeezed) conditional state; while a fast mea-
surement with Ωq > Ωcl generates a position squeezed
(and momentum anti-squeezed) conditional state. In ad-
dition, the deviation from the optimal measurement fre-
quency, i.e. Ωq 6= Ωcl, always produces a less pure states.

C. Very low finesse cavity and free mass scenario

with squeezed vacuum input

Up to now we have only treated in-going coherent vac-
uum states but one could also think about squeezed vac-
uum states coupling to the mirror [9]. This corresponds
to inserting squeezed states into an interferometer’s dark
port. By doing so the quantum limited sensitivity of an
interferometer can be enhanced [49]. The free-mass con-
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FIG. 3: Test-mass squeezing normalized with respect to the
conditional ground state of a free mass for optimal measure-
ment frequency Ωq = Ωcl ≡

√
ΩF Ωx and different homodyne

detection angles (upper panel) and for different measurement
frequencies at phase quadrature detection (lower panel) in-
cluding in both cases a certain classical noise budget: we have
chosen Ωx/ΩF = 5.

ditional state is given by

Vxx =
~√

2mΩq

√

λ2
− + 2ξ2

x ×
(

√

(λ2
+ + 2ξ2

F )(λ2
− + 2ξ2

x) − sin 2ϕop sinh 2rop

)
1

2

,

(62)

Vpp =
~mΩq√

2

√

λ2
+ + 2ξ2

F ×
(

√

(λ2
+ + 2ξ2

F )(λ2
− + 2ξ2

x) − sin 2ϕop sinh 2rop

)
1

2

,

(63)

Vxp =
~

2

(

√

(λ2
+ + 2ξ2

F )(λ2
− + 2ξ2

x) − sin 2ϕop sinh 2rop

)

.

(64)

Here we have defined λ2
± = cosh 2rop ±cos 2ϕop sinh 2rop,

where (20/ ln 10) rop > 0 gives the optical squeezing
strength in dB at a squeezing angle of ϕop. Then the
purity of the conditional state can be inferred from

detV =
~

2

4

(

(λ2
+ + 2ξ2

F )(λ2
− + 2ξ2

x) − sin2 2ϕop sinh2 2rop

)

≥ ~
2

4

(

1 + 4 ξ2
F ξ2

x + 2 (ξ2
F + ξ2

x) cosh 2rop

− 2 |ξ2
F − ξ2

x| sinh 2rop

)

≥ ~
2

4
(1 + 2 ξF ξx)2 .

(65)

The equality of the first inequality sign in Eq. (65) is
achieved at ϕop = 0 for ξ2

F > ξ2
x and at ϕop = π/2 for

ξ2
F < ξ2

x, i.e. by squeezing either the phase or the ampli-
tude quadrature, respectively. Note that in Eq. (65) for
any Ωq, the same minimum as in Eq. (55) is reached if
rop = arctanh(|ξ2

F − ξ2
x|/(ξ2

F + ξ2
x))/2 — even when hav-

ing ξF 6= ξx. Therefore, even with input squeezing, the
conditional state cannot become more pure than with
coherent input, but the demands on the required mea-
surement frequency — and with this the constraints on
the optical power, which is needed in order to obtain a
certain uncertainty product, can be relaxed. In real ex-
periments the optical power is of course always limited
and squeezed input becomes an very important tool.

It has turned out that the conditional variances are
in principle even analytically equivalent in the follow-
ing two cases: (i) input-squeezing at a flexible but
frequency-independent angle or (ii) flexible amount of
available optical power and a flexible but frequency-
independent homodyne detection angle. This can eas-
ily be seen by replacing the homodyne detection an-
gle tan ζ → sin 2ϕop sinh 2rop and the measurement fre-
quency Ωq → λ+Ωq in Eqs. (52)–(54). Then we simply
end up with Eqs. (62)–(64). Here we can directly see that
using input squeezing allows to change the parameters
within Ωq such as the optical power, the laser frequency
and the mirror mass but by modifying the input squeez-
ing parameter λ+ we can at the same time maintain the
measurement frequency.

Even though a homodyne detection different from the
phase quadrature and input squeezing do both not help
with increasing the purity of the conditional state they
increase the squeezing of the conditional test-mass state.
Furthermore, with a certain homodyne detection angle
or with a certain input squeezing it is possible to mini-
mize the position and momentum correlation in the con-
ditional state.

IV. MACROSCOPIC ENTANGLEMENT

The concept of entangled states is one of the most
important phenomenons when entering the quantum
regime. In Sec. VA we will see that the entanglement
between the cavity mode and the mirror motion is in fact
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responsible for a degeneration of the purity of the mirror’s
quantum state. In this section we will explain how we can
prepare quantum entanglement in position and momen-
tum between the centers of mass of the two end mirrors in
the north x̂n and the east x̂e arm of a simple, but power-
recycled Michelson interferometer using the conditional
states as derived in the previous section. The end mirrors
are suspended as pendulums but with a very low eigen-
frequency. Therefore, such an experiment would be in
direct analogy to the Einstein-Podolsky-Rosen gedanken
experiment [50]. Here we will basically extend the dis-
cussion carried out in Ref. [40].

Recall that the common (x̂e + x̂n) and the differential
(x̂e − x̂n) mode of motion between the two end mirrors
are independent and can each be sensed by a homodyne
detection at the bright and the dark port, respectively,
as suggested in Ref. [40]. As already mentioned before,
if using the reduced mass of the mirrors, the conditional
variances as derived in Sec. III hold for the differential
mode observed at the dark port of the interferometer.
But in order to describe the common mode they have
to be slightly modified since the power-recycling cavity
— here with high bandwidth and therefore an adiabat-
ically eliminated cavity mode — with transmissivity τ
enhances the measurement strength αc = 2/τ α > α and
is therefore different to the one associated with the dif-
ferential mode αd = α. Furthermore, the common mode
will suffer additionally to the classical force noise and
the classical sensing noise — note that we suppose that
these two classical noise sources are equally distributed
into common and differential mode — from laser noise,
since the in-going modulation fields at the bright port are
usually not in vacuum states. We have to make the fol-
lowing additional replacements in Eqs. (52)–(54) in order
to obtain the conditional variances of the common mode:
(1 + 2ξ2

F ) → (Sa1a1
+ 2ξ2

F ) and (1 + tan2 ζ + 2ξ2
x) →

(Sa2a2
+ Sa1a1

tan2 ζ + 2ξ2
x) as well as replacing the de-

tached (− tan ζ) in each variance by (−Sa1a1
tan ζ). Here

Sa1a1
, Sa2a2

≥ 1 are the (frequency independent) spec-
tra of the technical laser noise in amplitude and phase,
respectively.

Then we can assemble the conditional state of
the entire system: the combined covariance among
(xe, pe, xn, pn) simply reads

Vtotal =











Vee Ven

Vne Vnn











(66)

with

Vnn = Vee =











(V c
xx + V d

xx)/4 (V c
xp + V d

xp)/2

(V c
xp + V d

xp)/2 V c
pp + V d

pp











,

Ven = Vne =











(V c
xx − V d

xx)/4 (V c
xp − V d

xp)/2

(V c
xp − V d

xp)/2 V c
pp − V d

pp











.

This combined covariance matrix is very similar to the co-
variance matrix for the amplitude and the phase quadra-
ture of two output light beams which have been created
by overlapping two continuous Gaussian light beams on
a beam splitter. Note that overlapping two light beams
which are differently squeezed in amplitude and phase
quadrature on a beam splitter is a very common way of
how continuous variable entanglement is created in op-
tics [51, 52]. In the mirror case the common and the
differential mode are mathematically overlapped to give
the motion of each individual end mirror.

In the following we will use the logarithmic negativity,
which was introduced for an arbitrary bipartite system in
Ref. [53], as a quantitative measure of the entanglement.
For our state it reads

EN = max[0,− log2 2σ−/~], (67)

where we have σ− =
√

(Σ −
√

Σ2 − 4 detV )/2 and Σ =

detVnn+detVee−2 detVne = V c
xxV d

pp +V c
ppV

d
xx−2V c

xpV
d
xp.

The higher the value of EN the stronger the entangle-
ment.

Recall that there exists a frequency band with sub-
SQL classical noise if Ωx/ΩF > 2. However, the ex-
istence of entanglement sets a slightly higher threshold
value for this frequency ratio depending on the strength
of laser noise as it is shown in Ref. [40]. We know from
Sec. III that the uncertainty product of each individual
mode — common and differential — is minimal for a
phase quadrature detection ζc,d = 0 but it has turned
out that this is not the optimal choice for the prepara-
tion of entanglement. If the homodyne detection angle
approaches −π/2, each mode can become more squeezed
depending on the measurement frequency.

The entanglement between the two mirrors — created
by overlapping two modes — increases with the squeezing
of the individual modes and with the angle separating the
squeezed quadrature of the two modes. Then it is obvi-
ous that one should not observe common and differential
mode via phase quadrature detection, but that there is
a certain value, for each the common and the differential
mode, of Ωc,d

α and −π/2 < ζc,d < 0 which is optimal for
the entanglement and maximizes the logarithmic negativ-
ity (cf. the solid line in Fig. 4). These optimal parameters
depend of course on the classical noise, but are usually
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FIG. 4: Logarithmic negativity versus Ωx/ΩF maximized
with respect to Ωc

q and Ωd
q using phase quadrature detection

(dashed red line) as well as additionally maximized with re-
spect to ζc and ζd (solid purple line). In both cases no laser
noise is assumed, i.e. with Sa1a1

= Sa2a2
= 1. At some po-

sitions optimal parameter values for Ωc
q , Ωd

q , ζc and ζd are
given in the plot.

characterized by a high measurement frequency and a
detection close to −π/2 for both modes. That means
that the states are totally driven by radiation pressure
which is in turn monitored by reading out close to the
amplitude quadrature.

Furthermore, we have found that the laser noise —
entering at the bright port and in a totally balanced in-
terferometer only affecting the common mode — can the-
oretically be almost suppressed with the optimally high
measurement frequency and the optimal homodyne de-
tection angle. Therefore, the resulting maximal entangle-
ment — represented by the solid line in Fig. 4 — is inde-
pendent of the laser noise. But the parameters — such as
optical power and the fine-tuning of the homodyne detec-
tion angle, which are required in order to reach the max-
imal entanglement, are different for different strength of
laser noise and are far away from any realistic situation
(cf. the dots in Fig. 4).

V. INTERFEROMETERS WITH

NON-MARKOVIAN NOISE

A. Cavity with finite bandwidth

In realistic experimental situations, the noise sources
are usually not Markovian. In this section we want to
generally study quantum state preparation in the back-
ground of non-Markovian noise sources. We start with
allowing the quantum noise spectral density to become
frequency dependent.

If we consider a cavity of length L with a finite half
cavity bandwidth γ and a movable end mirror, the quan-
tum noise is indeed non-Markovian and the Heisenberg

equations of motion in frequency domain modify to

ŷ = sin ζ
γ + iΩ

γ − iΩ
â1 + cos ζ ×

[

γ + iΩ

γ − iΩ
â2 +

√

2cγ/L

γ − iΩ

α

~
(x̂(Ω) + ξ̂x)

]

,(68)

x̂ = − 1

m(Ω2 + iγmΩ − ω2
m)

[

√

2cγ/L

γ − iΩ
α â1 + ξ̂F

]

,(69)

where we have approximated exponential functions by
rational functions of Ω. Now the measurement frequency
becomes

Ωcav
q =

√

2 c

m ~ L γ
α , (70)

which corresponds to the frequency where the quan-
tum noise spectral density of the associated adiabatically
eliminated system touches the SQL. If the phase quadra-
ture of the outgoing light (ζ = 0) is detected, the eight
zeros of its spectral density Syy are given by ±a1 ± ib1

and ±a2 ± ib2 with (for simplicity for a free mass, i.e.
γm = ωm = 0):

a1,2 =
1

2

√

√

r2 ∓
√

2r ± r√
2
− 1 , (71)

b1,2 =
1

2

√

√

r2 ∓
√

2r ∓ r√
2

+ 1 , (72)

where r =

√

√

(

2Ωcav
q /γ

)4
+ 1 + 1. The zeros are

required for the spectral decomposition introduced in
Sec. II. After straightforward algebraic manipulations,
one arrives at the following conditional second-order mo-
ments:

Vxx =
~γ

6m(Ωcav
q )2

(c3
1+3c2

1+3c1+c3) , (73)

Vpp =
~mγ3

120(Ωcav
q )2

(3c5
1+15c4

1+20c3
1+60c3+60c5) , (74)

Vxp =
~γ2

16(Ωcav
q )2

c2
1(c1+2)2 , (75)

where the coefficients are given by

cn =
2

n
ℑ [(a1 + ib1)

n + (a2 + ib2)
n − in] . (76)

The conditional variances given in Eqs. (73)-(75), al-
though slightly complicated, are still analytic; we can
still draw some important conclusions from these second-
order moments. By expanding the quantity U from
Eq. (3) in terms of Ωcav

q /γ, we obtain

U = 1+
1

2
√

2

Ωcav
q

γ
+O

(

(Ωcav
q /γ)2

)

, (77)



12

0.01 0.1 1.0
Wq

cav�Γ
0.0

0.5

1.0

1.5

2.0
2 ���

��
Ñ

"###
#######
#######
#######
###

V
xx

V
pp

-
V

xp2

0.0

0.5

1.0

1.5

2.0

Lo
ga

rit
hm

ic
N

eg
at

iv
ity

FIG. 5: Test-mass uncertainty product U (solid line) com-
pared to the entanglement between test mass and cavity
mode (dashed line) both versus the dimensionless ratio Ωcav

q /γ
through which both quantities are totally described. No clas-
sical noise is present. Free mass limit is used, i.e. γm = ωm =
0, and the phase quadrature ζ = 0 is detected. Entanglement
is quantified by the logarithmic negativity.

which reveals that, even in the quantum noise limited
case, the conditional state of the test mass cannot be
pure as long as Ωcav

q /γ > 0. This is in contrast to the
Markovian limit (γ → ∞) discussed in Sec. III, where
the conditional state is always pure in the absence of
classical noise [cf. Eq. (55)]. Fig. 5 shows the purity of
the test mass versus the dimensionless ratio Ωcav

q /γ.
In the case of a finite cavity bandwidth, the light is

stored inside the cavity for some time. The information
carried by the light concerning the test masss state can-
not leave the cavity instantaneously and hence is not ac-
cessible for the conditioning process. Consequently, the
intra-cavity mode needs to be taken into account for a
complete characterization of the system. The residual
second-order moments required for completing the corre-
sponding (4 × 4) conditional covariance matrix can be
obtained in the same way as Eqs. (73)-(75). It turns
out that the composite system is indeed a pure one even
though each individual system resides in a mixed state.
This is a clear evidence of entanglement between the con-
ditional states of the test mass and the cavity mode.
We have also plotted the logarithmic negativity in Fig. 5.
The test-mass state’s purity decreases and test-mass-light
entanglement increases with smaller bandwidth and with
higher measurement frequency Ωcav

q . Note that the un-
certainty product as well as the logarithmic negativity
do not diverge. But Fig. 5 indicates that, as long as
Ωcav

q ≪ γ, we can neglect this effect and adiabatically
eliminate the cavity mode as performed for the power-
recycling cavity in Sec. IV.

Fig. 6 further shows, that the purity increases with
higher mechanical eigenfrequency ωm, depending on the
measurement frequency. Let us consult the following
hand-waving argument: with increasing ωm the mechan-
ical oscillator and the optical oscillator, which would res-
onate at modulation-frequency zero, become more sepa-
rated in the frequency space and therefore their entangle-
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FIG. 6: Contour plot of the normalized test-mass uncertainty
product given by U = 2/~

p

VxxVpp − V 2
xp versus Ωcav

q /γ and
ωm/γ for quantum noise only. Again phase quadrature (ζ =
0) is detected.

ment decreases. And with decreasing entanglement the
test-mass state becomes more pure. But the regime with
such high mechanical resonance frequencies is usually not
available in actual GW detectors.

When including the two classical noise sources from
our simple model the conditional state becomes more
and more mixed with an increasing classical noise level
as shown in Fig. 7. Note that this is of course not an
effect of entanglement, the classical noise rather destroys
the quantum entanglement between the test mass and
the cavity mode. The purity also depends on the ra-
tio between the measurement frequency and the optical
bandwidth. Recall that the classical force noise increases
with higher ΩF while the classical sensing noise increases
with lower Ωx. If we only take sensing noise into ac-
count we know for sure that the motion of the test mass
is solely driven by quantum back-action noise. A high
sensing noise level randomizes the measurement record
and hence the delimitated accessibility of the intra-cavity
field due to the finite bandwidth is insignificant. Conse-
quently all curves roughly coincide for Ωcav

q & Ωx in the
upper panel of Fig. 7.

Note that in the planned Advanced LIGO detector [5],
the measurement frequency Ωcav

q is planned to roughly
coincide with the half cavity bandwidth at γ/(2π) ∼
100Hz — corresponding to the solid lines in Fig. 7. Fur-
thermore, we expect the suspension thermal noise to have
a ΩF /(2π) ∼ 30 − 40Hz — that would be less than
Ωcav

q /2 — but the coating thermal noise may provide
a Ωx that only coincide with ΩF or is just marginally
higher. We can infer form Fig. 7 that the quantum state
of the interferometer’s differential mode is mainly con-
strained by classical sensing noise which entails a lower
bound of U & 5 and gives an effective occupation number
of Neff & 2. For a more detailed discussion see Sec. VI.
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FIG. 7: Test-mass uncertainty product U versus classical
sensing noise and without force noise (upper panel) as well
as versus classical force noise without classical sensing noise
(lower panel), both for different examples of ratios between
measurement frequency and bandwidth. Free mass limit is
used, i.e. ωm = 0, as well as phase quadrature detection
ζ = 0.

B. Detuned cavity

A cavity which is detuned by ∆ from the carrier’s fre-
quency makes the power inside the cavity also dependent
on the motion of the test-mass mirrors. This creates an
optical spring [54] or an optical anti-spring both shift-
ing the (free) mechanical and the (free) optical resonance
frequency in the complex plane. In future GW detectors
such as Advanced LIGO [5], the optical spring effect will
be used to up-shift the real part of the mechanical res-
onance frequency into the detection band. Recall that
the optical spring as well as the optical anti-spring usu-
ally introduces instability to the system which has to be
cured with an appropriate linear feedback control [48].
But it is straightforward to show that the conditional co-
variance matrix does not change under any ideal, linear
feedback control.

The Heisenberg equations of motion for such a system
can be found in many previous works, see e.g. Eqs. (39)–
(41) of Ref. [56]. Unfortunately, analytic expressions
for the conditional covariance matrix are cumbersome,
and we only report numerical results. We also restrict
ourselves to quantum noise, and reading out the phase
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FIG. 8: Contour plot of the normalized test-mass uncertainty
product given by U = 2/~

p

VxxVpp − V 2
xp versus the ratio

between detuning ∆ and bandwidth and Ωcav
q /γ for quantum

noise only. Free mass limit is used, i.e. ωm = 0, as well as
phase quadrature detection ζ = 0.

quadrature, i.e. ζ = 0 (cf. Eq. (3.2) of Ref. [48]). Note
that the measurement frequency Ωcav

q is defined in the
same way as for the tuned finite bandwidth configura-
tion (cf. Eq. (70)).

Fig. 8 shows that detuning a cavity from the carrier
frequency properly, can increase the purity which comes
from the fact that the quantum entanglement between
test mass and cavity mode is decreased. In the regime
of a blue detuned cavity (∆ > 0) — producing an opti-
cal spring — and for Ωcav

q < γ, Fig. 8 simply agrees with
Fig. 6. Here at fixed measurement frequency Ωcav

q < γ
a higher detuning ∆ gives a less shifted mechanical res-
onance, so-called optomechanical resonance, and at the
same time it corresponds to a higher optical resonance.
Therefore, again the two oscillators are more separated
in the frequency space and their entanglement decreases.
Interestingly, for higher Ωcav

q the test-mass state could lo-
cally appear more pure in the red detuned cavity regime,
i.e. at a certain ∆ < 0, which produces an optical anti-
spring. Note that the uncertainty product diverges for
an infinitely red detuned cavity (∆ → −∞). For these
facts we unfortunately have not found any intuitive ex-
planation. This will be a subject of further investigation.

C. Non-Markovian classical noise

In the following we consider a more realistic example
configuration involving multiple colored classical noise
sources. The classical noise contributions are highly non-
Markovian and they tend to rise fast in the low frequency
regime, which is ignored by a simple Markovian noise
model. First we restrict ourselves to an idealized noise
budget of an advanced interferometric gravitational wave
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FIG. 9: Upper panel : seismic noise pre-estimated by the
simulation tool Bench [55] (red) and a fit by rational func-
tion (gray). Lower panel : straw man (colored) classical noise
budget of an advanced interferometric gravitational wave de-
tector: Seismic (violet), suspension thermal (blue, follows

∼ 1/f5/2) and internal thermal (green, follows ∼ 1/f1/2)
noise spectra are shown as well as the total noise (black) —
including Markovian quantum noise with phase quadrature
readout. For the thermal noise sources we employed a Padé
approximation that generated the 1/f spectra between 0.1 Hz
and 2 kHz.

detector, shown in the lower panel of Fig. 9. Here only the
dominating force and sensing noise sources are consid-
ered. Additionally we assume that the gravity gradient
noise can be suppressed completely through monitoring
the ground’s motion. Especially seismic noise dominates
the entire spectrum below 10 Hz. In order to apply the
numerical Wiener filter procedure (cf. Sec. II), all clas-
sical noise spectra need to be approximated by rational
functions of Ω2. This is illustrated by Fig. 9 (upper panel)
where the seismic noise spectral density, pre-estimated
by the simulation tool Bench [55], is approximated ac-
cordingly. The seismic noise spectrum is constant below
0.25 Hz, then it drops as ∼ 1/f6 between 0.25 Hz and
2 Hz and finally it drops as ∼ 1/f10 above 2 Hz. The
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FIG. 10: Uncertainty product of the conditional state versus
sensing noise cut-off frequency for three different sensing noise
levels. Force noise contributions are the same as in Fig. 9.
The second-order moments formally diverge when downshift-
ing the cut-off frequency.

suspension thermal noise constitutes a second force noise
contribution which drops as ∼ 1/f5/2 above the pendu-
lum eigenfrequency (at 1 Hz) and it intersects the SQL at
20 Hz. Such a frequency dependance presumes structural
damping. Above 3 Hz the internal thermal noise follows
∼ 1/f1/2 and it intersects the SQL at 500 Hz. We have
employed the Padé expansion in order to simulate the
behavior of the spectral densities.

It should be emphasized that the conditional second-
order moments can diverge, if the sensing noise rises to-
wards low frequencies, and therefore a cut-off frequency
must be chosen carefully. This issue is illustrated by
Figs. 10 where the cut-off frequency of the sensing noise
is varied, while the classical force noise contributions are
held fixed. This divergence can be explained as follows:
for a free mass, the effect of radiation pressure noise di-
verges towards low frequencies. Hence the boundedness
of the conditional variances depends crucially on the the
motion of the test mass at low frequencies. Furthermore
the mirror thermal noise with S(f) ∼ 1/f formally leads
to a logarithmic divergence. In the case of a real exper-
imental set-up the mirrors are suspended as pendulums
and the mirror thermal noise should also exhibit a low-
frequency cut-off — but more importantly the low fre-
quency noise will be canceled out in a subsequent verifica-
tion stage, as it will be shown in a forthcoming paper [42].
Such a cancelation arises from the fact that for the mirror
thermal noise with frequencies lower than the inverse of
the sum of the preparation-stage and verification-stage
measurement time scales, their contribution to errors in
the preparation and verification measurements are the
same, and therefore cancels out, when the two sets of
data are compared with each other. This argument jus-
tifies an increase of the cut-off frequency to a level of
around 3 Hz.



15

VI. ADVANCED LIGO CONFIGURATIONS

In this section we will investigate the performance of
the planned Advanced LIGO detector [5], a second gener-
ation gravitational-wave observatory, towards the prepa-
ration of test-mass quantum states. It is planned that
this large-scale laser interferometer (cf. Fig. 1) — 4km
long arm cavities consisting of 40 kg mirrors — starts its
operation in 2014. It will be nearly quantum noise lim-
ited in most of its frequency band (10 Hz to 10 kHz), and
will operate near or at its SQL. Our previous investiga-
tions in Sec. III and V have suggested that such a SQL-
sensitivity allows to prepare nearly Heisenberg-limited
quantum states of macroscopic test masses. Note that
we will consider the differential mode of the interferome-
ter’s four movable arm-cavity mirrors which is equivalent
to a single movable mirror in a single detuned cavity [56]
— with one quarter the mass of each individual mirror,
i.e. 10 kg.

The classical noise budget of the Advanced LIGO
detector has been estimated by the simulation tool
Bench [55]. We choose the same type of spectra as for
the example configuration in Sec. VC, i.e. with iden-
tical power laws and cut-offs in frequency, and adjust
the parameters such that the predicted Advanced LIGO
classical noise budget is well approximated. In contrast
to Sec. VC, Advanced LIGO comprises finite bandwidth
cavities, which gives rise to a non-Markovian quantum
noise. Moreover, the detuned signal-recycling technique
introduces even the optical spring into the dynamics of
the mirrors just as in the case of a detuned cavity (cf.
Sec. V A). As an example, the quantum noise of the Ad-
vanced LIGO broadband configuration, which is optimal
for the detection of neuron star binary inspirals, is plot-
ted in the upper panel of Fig. 11.

We have carried out a full parameter search over the
space of signal-recycling parameters in order to optimize
the configuration with respect to the uncertainty product
of the conditional state. We have fixed the characteris-
tic frequency ιc (as defined in Eq. (20) of Ref. [56]) of
the system, which is basically determined by the fixed
circulating optical power of 800kW which in turn de-
termines the measurement frequency. Furthermore, we
have only considered a homodyne detection at the Ad-
vanced LIGO broadband configuration quadrature, i.e.
ζ = 0.7 π. The result of this optimization is shown in the
lower panel of Fig. 11 which depicts the effective occu-
pation number Neff — as introduced in the Appendix B
— versus the effective detuning λ and the effective band-
width ǫ — these two quantities are defined in Eq. (18) of
Ref. [56]. It clearly shows that the purity of the condi-
tional state benefits from a restoring optical spring, i.e.
a positive detuning facilitates the preparation of macro-
scopic quantum states as it was shown before. Note that
increasing the effective bandwidth ǫ always gives rise to
an additional improvement, which has also been clarified
before. The Advanced LIGO broadband configuration
with λ = 2π 290 Hz and ǫ = 2π 120 Hz is marked with a
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FIG. 11: Upper panel : spectral densities of main noise sources
present in the Advanced LIGO detector: seismic, suspension
thermal and internal thermal noise (gray lines) as well as two
examples of the quantum noise (magenta and purple lines).
Pre-estimated classical non-Markovian noise budget is fitted
by rational functions with characteristic spectra as in Fig. 9.
Lower panel : effective occupation number Neff of conditional
state (of the differential mirror mode) versus effective detun-
ing λ and effective bandwidth ǫ. The dots mark the Advanced
LIGO broadband configuration state (magenta) and lowest
occupation number state (purple) when ζ = 0.7 π.

dot in the lower panel of Fig. 11 and gives Neff ≈ 2.2 while
the other dot marks the purest state at λ = 2π 500 Hz
and ǫ = 2π 400 Hz which gives Neff ≈ 1.9. An additional
optimization of the homodyne detection angle decreases
this number only marginal.

Aside from the currently estimated classical noise bud-
get, a more optimistic scenario [57] has been investigated,
in which the seismic and suspension thermal noise are re-
duced by a factor of ten, while the coating thermal noise
is lowered by a factor of three (in amplitude). Here the
cut-off frequencies remain the same. A rough optimiza-
tion has revealed that the minimal achievable effective oc-
cupation number drops down to Neff ≈ 0.38 (cf. Fig. 12)
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The dot marks the lowest occupation number state.

for phase quadrature detection. Further major improve-
ments regarding the classical noise level in the Advanced
LIGO detector — especially the laser noise — will even
allow to entangle the cavity mirrors in the north with
those in the east arm.

VII. CONCLUSION

This paper has been devoted in great detail to a survey
of the first principles in the preparation of macroscopic
Gaussian quantum state of non-massless objects. We
have motivated and introduced the Wiener filter method
in this context — as an advantage over the stochastic
master equations — and have given a simple analytical
expression for the covariance matrix of a system under
any continuous linear Markovian measurement process.

We have shown that in absence of any additional noise,
the conditional state is totally determined by the mea-
surement noise. Moreover, the purity of the conditional
state is even equal to the purity of the underlying mea-
surement process (cf. Eq. (41)). This provides an impor-
tant insight into the understanding of conditional states
which was probably not communicated before.

In Markovian measurements with non-correlated shot
and radiation-pressure noise, we have shown that the ef-
fective occupation number of the conditional state is con-
nected to the factor the device beats the SQL, i.e. to the
bandwidth within which the classical noise is below the
SQL (cf. Eq. (47) and Eq. (56)). For Scl < SSQL around
the frequency Ωcl, at which the two classical noise spec-
tra intersect, we find Neff < 1/2. We have shown that
neither a balanced homodyne detection of a non-phase
quadrature nor input-squeezing would help to get a more
pure state — but they can significantly steer the shape
of the conditional state, e.g. the test-mass squeezing.

Furthermore, we have motivated that a simple power-
recycled Michelson interferometer is the ideal device to
prepare macroscopic entanglement [40]. We have shown
that the existence of entanglement in position and mo-
mentum between the two end mirrors is closely related
to the factor at which the classical noise beats the SQL:
a quantum measurement with a flexible but frequency-
independent homodyne detection angle and no restriction
to the optical power as an example, theoretically requires
the classical noise to be at least a factor of 1.5 below the
free-mass SQL at a certain sideband frequency.

Moreover, we studied mirror quantum-state prepara-
tion in non-Markovian quantum-measurement systems.
In the first instance we have considered the conditional
quantum state of a test mass inside a finite-bandwidth
system. It has been demonstrated that even a quantum
noise limited configuration does not allow the prepara-
tion of a minimum Heisenberg uncertainty state — due
to quantum entanglement between the test mass and the
cavity mode, which has a non-zero lifetime.

It has been pointed out that the purity of a conditional
quantum state of macroscopic test masses can benefit
from introducing an optical spring. This has been verified
numerically for the quantum noise limited regime.

Furthermore we have optimized the effective occupa-
tion number of the differential mode of the planned Ad-
vanced LIGO gravitational-wave detector in the presence
of pre-estimated realistic decoherence processes. It has
been confirmed that already a moderately reduced clas-
sical noise budget, such as for an improved Advanced
LIGO detector, allows us to prepare a nearly pure quan-
tum state of the mechanical mode under consideration.

Finally, we have explored the effective occupation num-
ber achievable by Advanced LIGO, on the differential
mode of its four macroscopic test masses. It has been
shown that an occupation number of ≈ 2.2 is readily
reachable by the baseline design, a moderate shift in op-
tical parameters can achieve ≈ 1.9, while a moderate en-
hancement in classical noise budget could achieve ≈ 0.38.
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Third-generation gravitational-wave detectors, or pro-
totype interferometers specifically designed for testing
macroscopic quantum mechanics would be able to sur-
pass this moderate enhancement of Advanced LIGO, and
reach deep into the quantum regime.
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APPENDIX A: QUANTUM WIENER FILTER

Here we directly evaluate the conditional generating
functional involving the observables x̂l(t),

J ≡ tr
[

ρ̂cond ei
P

l
αlx̂l(t)

]

= tr
[

ρ̂ P[ŷ(t′)=y(t) | t′<t] ei
P

l
αlx̂l(t)

]

, (A1)

with

− i
∂

∂αl
|αl=0 J = xcond

l (t) (A2)

(−i)2
∂2

∂αl ∂αm
|αl=αm=0 J = V cond

lm . (A3)

If we then write the projection operator as a path inte-
gral,

P[ŷ(t′)=y(t) | t′<t] ∝
∫

D[k]ei
R

t

−∞ dt′k(t′)[ŷ(t′)−y(t′)] , (A4)

we have

J ∝
∫

D[k]tr
[

ρ̂ ei
P

l
αlx̂l(t)+i

R

t

−∞ dt′k(t′)[ŷ(t′)−y(t′)]
]

.

(A5)
For a Gaussian state ρ̂ and any linear observable x̂ = x̂†,
if tr[ρ̂ x̂] = 0, then we always have

tr
[

ρ̂ eix̂
]

= e−〈x̂2〉/2 . (A6)

Using this property, we obtain

J ∝
∫

D[k]e
−

D

[
P

l
αlx̂l(t)+

R

t

−∞ dt′k(t′)ŷ(t′)]2
E

/2
e−i

R

t

−∞ dt′k(t′)y(t′) (A7)

Suppose Eqs. (12) and (13) hold, i.e.,

x̂l(t) = R̂l(t) +

∫ t

−∞

dt′Kl(t − t′)ŷ(t′) , 〈R̂l(t)ŷ(t′)〉 = 0 , ∀t′ < t , (A8)

then

〈[

∑

l

αlx̂l(t) +

∫ t

−∞

dt′k(t′)ŷ(t′)

]2〉

=
∑

lm

αlαm〈R̂l(t)R̂m(t)〉 +

∫ t

−∞

∫ t

−∞

dt′dt′′k̃(t′)k̃(t′′)〈ŷ(t′)ŷ(t′′)〉 ,

where we have defined

k̃(t′) = k(t′) +
∑

l

αlKl(t − t′) . (A9)
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Using k̃(t) as the new integration variable, J can be re-written as

J ∝ exp

[

−1

2

∑

lm

αlαm〈R̂l(t)R̂m(t)〉
]

exp

[

i

∫ t

−∞

dt′
∑

l

αlKl(t − t′)y(t′)

]

, (A10)

which justifies Eqs. (14) and (15).

APPENDIX B: EFFECTIVE OCCUPATION

NUMBER

The uncertainty product of Gaussian states is a true
measure of the purity and therefore a reasonable measure
of the quantum-ness of the state. Trying to reconstruct,
as commonly done, the number of quanta, the so-called
occupation number, may not always be the most funda-
mental figure of merit: squeezed states, for example, can
have high occupation numbers, yet they should be consid-
ered probably more quantum than vacuum states. More-
over, the definition of an occupation number requires a
well-defined, real-valued eigenfrequency, which does not
always naturally exist.

The uncertainty product can be converted back into
an effective occupation number by using the relation

2Neff =
2

~

√

Vxx Vpp − V 2
xp − 1 . (B1)

If a state has no correlation in position and momentum
this effective occupation number should be interpreted
as follows: suppose that the variances in position and
momentum are given and produced by a perfect harmonic
oscillator in a quadratic potential having an arbitrary
but real-valued eigenfrequency ωeff . Then the effective
occupation number is obtained by minimizing the total

energy divided by the energy of each quanta with respect
to that eigenfrequency ωeff . This strategy reads

Neff = min
ωeff

{

1

~ ωeff

(

Vpp

2 m
+

m ω2
eff Vxx

2

)

− 1

2

}

, (B2)

where the minimum is achieved at

ωeff =

√

Vpp

m2 Vxx
. (B3)

Thus, the effective occupation number is the minimal
occupation number one could obtain when assuming to
have a harmonic oscillator with no correlation in position
and momentum and an effective eigenfrequency as given
in Eq. (B3).

For a state with correlation in position and momen-
tum, the effective occupation number still gives the min-
imal occupation but with respect to two other orthogo-
nal quadratures which are not position and momentum.
Moreover, the effective occupation number is an interest-
ing quantity because it in fact determines the von Neu-
mann entropy of a state [58] as given by

S = (Neff + 1) log(Neff + 1) −Neff logNeff . (B4)
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