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We present a new formulation of the Einstein equations basedconformal and traceless decomposition of
the covariant form of the Z4 system. This formulation conelithe advantages of a conformal decomposition,
such as the one used in the BSSNOK formulation (i.e. wetetebyperbolic gauges, no need for excision,
robustness to imperfect boundary conditions) with the athges of a constraint-damped formulation, such as
the generalized harmonic one (i.e. exponential decay o$tcaint violations when these are produced). We
validate the new set of equations through standard testbyaedolving binary black hole systems. Overall, the
new conformal formulation leads to a better behavior of threstraint equations and a rapid suppression of the
violations when they occur. The changes necessary to ingriethe new conformal formulation in standard
BSSNOK codes are very small as are the additional compuotdtamsts.

PACS numbers: 04.25.D-, 04.25.dg

I. INTRODUCTION There are several differences between these two formu-
lations, each having its own advantages and disadvantages.

Numerical relativity has seen, over the last few years, aOne of the main advantages of BSSNOK is that, being based

truly remarkable development. Starting from the first simu-2" & conformal decomposition, it can separate potential sin
lations showing that black-hole binaries could be evohd f 9UIar terms in the conformal factor. In addition, it can

a few orbits[153], or that black holes could be produced fromcount on well-tested and robust gauge conditions, sucheas th

unstable stellar configurations using simple gauges artg wit §|ngular|ty—av0|d|ng slicing conditions of the + log fam-

out excision|[4], new results have been obtained steadgya A ily [E].' Similarly, t_he spatia_l gauges can rt_—zly on the hy-
result, itis n(lP\?v]possible to simulate binary black holﬂasiﬁ}g perbolic Gamma-driver condition for the shift vector [[20]

binary neutron star$|[6] accurately for dozens of orbitsifr (or_some recent variants for unequal-mass b'”"@?@l‘zﬂ
the weak-field inspiral, down to the final black-hole ringaow which removes to a large extent, the gauge dynamics near the
(see alsol[7,18] for recent reviews on binary black holes angompact objects. When c_:omblned_, these two gauge _ch0|ces
neutron stars, respectively). In addition, the progresstin e"m'”_ate_ the need to excise aregion of th_e computation do-
merical relativity has also been accompanied by a comparab an |n§|de the apparent horizon, greatly simplifying tie n
progress of analytical approximation techniques, whickeha mer_|cal mfra_structure. Finally, the use of the momentum-co
been shown to be able to reproduce the numerical results raint equations (bl.Jt not O.f the energy c_onstral_nt) in the e
very high precision both for binary black holds [9] 10] and ution of the dynamical variables, which is crucial for ensu

for binary neutron stars$ [11]. Finally, numerical simutats Ing strong hyperbolicity, prqwdgs BSSNOK with a certain
have now investigated scenarios never considered befdre an orgiveness’, so that the violation of the constraints sloe

that could lead to a new and deeper understanding of the aBot grow rapidly_, even when boundary condit_ions Wh.iCh are
trophysics of compact objects [12] 13] constraint-violating are used near the strong-field region

There are several reasons behind this rapid progress, and!n contrast, the GH formulation uses a generalized har-
the use of more accurate numerical techniques and the avalPonic gauge which cannot deal with the physical singularity
ability of larger computational facilities are certainlpnang ~ INside the apparenthorizon. As a result, at least for theesu
the most important ones. None of these, however, would bgonsidered so far (see aIsJ_El[@l 25]), itrequires the usg-of e
useful without the use of formulations of the Einstein equa-<iSion and thus of numerical techniques that are devised for
tions that are well-suited for numerical evolutions. Mdghe ~ nandling a special region of the computational domain [26].
present three-dimensional (3D) numerical-relativityesiin- Toits gdvantage, hoyve\_/er, the GH formulation Iea}ds to afset o
plement either one of the two formulations discussed belowgduations whose principal parts are wave equations and thus
The first and most popular one is the conformal and traceles¥ith very well-known mathematical properties. In addition
reformulation of the3 + 1 ADM equations([14], which is also the use of Qam_plng.terms allows for the dynamical control of
known as the BSSNOK (or BSSN) formulatidn [15-17]. The _the constraint violations and thus for a powerfql way of redu
second formulation is instead based on the use of a fully 409 them when necessary. Of course, a solution with smaller
form of the Einstein equations in coordinates that resembl§onstraint violations will intrinsically be a more accieato-
the harmonic ones and is therefore known as the Generalize#jition to the Einstein equations.

Harmonic formulation (GH) [18]. Clearly, it would be useful to employ a formulation of the
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Einstein equations that combines the best of both worlds andy means of a Palatini-type variational principle![31]. The
thus that has the robustness and gauge conditions of the BS®ctorZ,, measures the deviation from the Einstein field equa-
NOK formulation but, at the same time, has well-definedtions. The algebraic constrain, = 0 amount therefore to
mathematical properties and the possibility of dynamjcall the fulfilling of the standard energy-momentum constraints
controlling the constraint violations as the GH formulatio In order to control these constraints, the original systess w
As we will show, these properties are met by a new conformasupplemented with damping terms such that the true Einstein
and covariant formulation of the Z4 system with constraint-solutions (i.e. the ones satisfying the constraints) becam
violation damping. This is obtained by starting from theyful ~ attractor of the enlarged set of solutions of the Z4 systeih [3
covariant Z4 formulation[[27] and by performing a confor- The Z4 damped formalism can be written in covariant form as
mal decomposition which includedl the nonprincipal terms

coming from the covariant form of the equations. In addition Ry + VuZy+VuZy+ k1lngZy +n,2,

damping terms are included for controlling the constraints _ o] _1

. .. . ) . (1+ HQ)QHV”G’Z ] 87T(T,uu QQ,U.VT) , (2

in the spirit of the GH formulation. We will refer to this
new formulation as the conformal and covariant Z4 SyStem\'/vheren is the unit normal to the time slicing, the stress-
i.e. CCZ4, and present tests of its behavior by considerin " w

; . . . i i = wv

evolutions in vacuum of gauge waves in 1D and isolated an%nergy_ tensor ar@lits trace, i.6T" = gy, T**. The (constant)_ .
) . coefficientss; are free parameters related to the characteristic

binary black holes in 3D.

It should be remarked that this is not the first time thattime.Of the exponential damping of constraint_violations:-A .
a conformal decomposition of the Z4 system has been pms_uml_n_g energy-momentum tensor conservation, the Bianchi
posed and indeed a very interesting attempt has been made'?jnentltles lead to the constraint-propagation system
Ref. [28], where it was named Z4c. Although the tests pre-

sented in Ref.[[28] were performed in spherical symmetryY " Vo Zu+ R Z° = =51V [0y Zy 410 Zy+ K2gpune 2°] -
they already highlighted the potential of a conformal formu ) . 3)
lation of the Z4 system, especially in the presence of mattelt has been shown in Ref. [32] that all the constraint-relate
(see also[[29, 30]). Unfortunately, we were not able to obimodes are damped when

tain equally good results when evolving the formulation of

Ref. [28] in vacuum and in 3D; at the same time, we did not k1 >0 Ko > —1. 4)

find that our CCZ4 formulation is more sensitive to boundary
problems than the BSSNOK one (this was a point raised in The Z4 formulation can be rewritten as a Cauchy problem

Ref. [28]). . ) POLI
The structure of the paper is as follows. In Jek. II, we de-on performing thes -+ 1 decomposition of the spacetime, in

rive the full set of the CCZ4 equations starting from the co-WhICh the line element reads

variant form of the Z4 system. In Sdc.]lll we introduce the ) 9 o . , , .

details of the numerical infrastructure and present a niamer ~ ds~ = —a”dt” +i; (da* + f'dt) (da’ + p7dt),  (5)

cal comparison between the CCZ4 and the BSSNOK systems

for a gauge-wave test and for binary black-hole simulationswherea is the lapse function’ is the shift vector and;; the

Finally, the conclusions are summarized in $e¢. IV. intrinsic metric of the constant-time slices. The Einstja-
tions within this decomposition lead to the well-known ADM
system [[14], which is usually cast as a system of evolution

I[I. THE CONFORMAL COVARIANT Z4 SYSTEM equations for the extrinsic curvatufg; and the three-metric

75, Plus four elliptic equations for the energy (or Hamilto-

The Z4 formulation was introduced as a covariant extenhian) and the momentum constraints, involving space deriva
sion of the Einstein equatioris [27], where the originapéiti ~ tives of the dynamical fields;; and K;;. In the Z4 for-
constraints are converted into algebraic conditions foew n mulation, the energy-momentum constraints become evolu-
four-vectorZ,,. This formulation can be derived from the co- tion equations forZ,, modifying the principal part of the

variant Lagrangian ADM system and converting it from weakly to strongly hy-
perbolic [33]. The3 + 1 decomposition of the Z4 formulation
L=g"[Ruw+2V,2,], (1) including the damping terms reads
|
(O — Lp)vij = —2a K, (6)

(815 — ﬁ[j) Kij = —VZ‘OZJ' + « |:le + VZZJ + VJZZ — 2Kzl Klj + (K — 2@) Kij — Hl(l + K/Q) @’7ij|

—8ma [Silj_%(S_T)’Yij} ) (7)



A Q

(0 — Lg)O== |R+2V;Z7 + (K -20)K — K7 K;; —2

—2kK1(2+ Kk2) O — 1677 |, (8)

|2

(6,5 - ‘CB) Zz-:a[Vj(Kij—6in)+6i®—2Kiij—®%—mZi—SWSi], (9)
o
[

whereL; is the Lie derivative along the shiftvectér@ isthe  we express the metrig;; in terms of a conformal metric

projection of the Z4 four-vector along the normal direction 7,; = ¢2+;; with unit determinantpy = (det(v;;))~ /¢,

0 = n,Z" = aZ°, and the following definitions apply for while the extrinsic curvatur&’;; is decomposed into its trace

matter-related quantitieS = n#nl,T‘“’, S; = TLUTI{, Sij = K = Kij'yij and in its trace-free components

Ti;.

JEquations [(6)£]9) must be complemented with suitable - 5 1

gauge conditions that determine the system of coordinates Aij = ¢” (Kij — gK%’J’)' (10)

used during the evolution. Of all the possible options, the

most interesting ones are those which preserve the hyperbarhis allows us to write the three-dimensional Ricci tensor a

icity of the full evolution system, such as thet log family — R;; = R;; + Rfj, thus splitting it into a part containing con-

and the Gamma-driver shift condition. formal terms and another one containing space derivatives o
As a first step towards deriving the CCz4 formulation, the conformal metric

. 1. L P I o
Ry = =53 %0 + 30T + P Tpn + 5 (208, Tpkm + Tha ] (12)
_ 1 - - e, =
R} = e [sb (Vz-ngb + vijvlvlqs) - 2%-]-vl¢vl¢} : (12)
|
where The conformal and covariant Z4 formulation (CCZ4) is thus
L e e ha given by the following system of evolution equations
I =35 =399 0k - (13)
|
s = 90 A 95, 9. 85 — 25 0, BF 4 8505
6t’71] - 2aAij + 2’71@(16]) B 3'71_]6]9 B + B ak'%_] s (14)
atleij = ¢2 [-V.Via+a(Rij +ViZ; +V;Z; — SFSij)]TF + aflij (K —20)
I - 2 - -
—204141'1/12- + 244,05 BF — gAijak BF + BroR Ay (15)
1 1
O = gagk — §¢6k6k +Broo, (16)
WK = —V'Via+a(R+2V,Z'+ K* = 20K) + /0;K — 3aky (1 + k2) © + 4ma (S — 37) | 17)
20 = %a (R + 2V, 21 — A AV + §K2 - 2®K> — Z'0;00+ 0,0 — ary (24 K2) O — 8maT, (18)

gai-faj@ + 274 (af)k@ — ©dka — gaKZk> — 244 9;a

T = 20 (fé-kA-f’“ - 3Ai-7ai—j -

1. 2., - . 2 . . )
+550,0,8° + gwkakalﬁl + grlakﬁk —T*9LB" + 2k <§wzja,€ﬁk - :yﬂkzjam)

+850, 1 — 206159 Z; — 161057 S; (19)
oo = —2a (K —20) + gFoa, (20)
OB = fB + B s, (21)
oB' = oI — *9,I" + %0, B' — nB", (22)
where we have defined Note that the choice made with the definitibnl(23) is equiva-

=T +277Z;. (23)
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lent, in the ADM context, to adding the momentum constraintThese are not dynamical fields at the continuum level, where
to the right-hand-side of the evolution equationl®f In the  the consistency constraints

context of the Z4 formulation, this just amounts to replgcin
the vectorZ; by the quantitied™ in the set of basic fields to

be evolved. B _ hold by construction. But at the discrete level, these ase ju
The gauge condition§ (R0J=(22) correspond respectively tgyo more constraints, which can be dealt with in many differ-
the standard ' + log” slicing condition and to the original entways. For instance:

form of the gamma-driver shift condition, where a generic )
gauge parametef was introduced [20]. Note that in the Z4 e Constrained approach We could enforce[(25) at ev-

det ’%j =1 s tr Aij = 0, (25)

formulation there is an additional propagation speed agd th ery integration step, by removing the trace df;
standard BSSNOK choice ¢f = 3/4 can then lead to weak and rescalingy;; as it is usually done in BSSNOK
hyperbolicity when the lapseis close to 1. This is why safer codes([34]. The remaining dynamical modes have then
choices, such ag = 1, have been proposed in Ref. [28]. In the same characteristic structure of the original Z4 sys-
this paper we us¢ = 3/4 to be as close as possible to a tem. This is the safest choice, and we will use it in the

standard BSSNOK formulation, but we also consider howthe ~ tests presented in this paper.
system of equations reacts when switching te: 1.

We also note that experimentation with black-hole space-
times and the emergence of unstable behaviors, has indaced u
to introduce an extra parametes, affecting some quadratic

Relaxed approach We could instead relaXx_(25), en-
forcing it just on the initial/boundary data. In this way
the two extra dynamical modes propagate along nor-
mal lines, as their evolution equations [i.e. the trace of

terms in the evolution Eq(19) fdi". As discussed before, Eqgs. [I%){{k)] are trivial. Note that in this case the
this equation corresponds to the evolutionf so this is trace of the first term in the evolution EqC_{14) must
not just a gauge choice, but rather an essential ingredfent o be removed explicitly to avoid any spurious numerical

the Z4 system. Indeed, the covariance inherent to the confor modes by evolving:
mal decomposition of the Z4 system is broken unless we take

k3 = 1. For some of the tests presented in this paper we re- 05 — —90( A — 1_ q Ak
tain a fully covariant formulation (i.e. with; = 1). However, i = @\ M T g AR
this is not possible for black-hole spacetimes, where neali 2
couplings with the damping terms, which are important for +294:0y) B* — §'~Yijak B* + B*OHi;-
reducing the violations in the constraints, lead to nunaric _ ) N
instabilities. As a result, for black-hole spacetimes weeha Moreover, in tests like the robust stability or the gauge
resorted to a noncovariant and conformal formulation of the ~ Waves, it may be necessary to keep also under control
Z4 system (i.e. withss = 1/2) (see discussion in Sec_111B the trace ofd;;. This can be achieved by adgllng, for
for details). instance, a damping term proportionalyg trA;; to

A number of remarks are important at this point. First, al- the evolution Eq.[(T5).

though the structure of the CCZ4 formulation is very simi-
lar to the BSSNOK one, there is an important difference in
the evolution of the trace-free variahlg;. In the BSSNOK H = R— K, KV +K?, (26)
formulation, in fact, the Hamiltonian constraint is assdme il m m

to be satisfiedexactlyand thus used to eliminate the Ricci M; = 7 (05 = 0BG = T Ko+ T3 Komt) - (27)
scalar from the right-hand-side of the evolution equation f |n the results presented below we compute the constraint vi-
AijJ]E]- Inthe CCZ4 system, on the other hand, the evolutiorp|ations for both the BSSNOK and CCZ4 systems using the
of A;; follows directly from (the trace-free part of) the orig- ADM quantities computed from the evolution variables cerre
inal ADM evolution equation for the extrinsic curvatukg;,  sponding to the two systems, allowing for the correspondenc
plus the extra terms itZ; and®. Second, the equivalent of (24).

the trace of the extrinsic curvature in BSSNOK formulations

is given by

Finally, the ADM constraints are given by

I11. NUMERICAL RESULTS
BSSNOK

=K-20, (24)

In this section we validate the robustness and accuracy of
again because the Hamiltonian constraint is assumed to réhe CCZ4 evolution system and compare it against the BSS-
move the Ricci scalar from the evolution equations in theNOK system in two different cases: the gauge-waves test and
BSSNOK approach. In the CCZ4 system, we rather use (thblack-hole spacetimes. In addition, we have performed sev-
trace part of) the ADM evolution equation fdt;;, modulo  eral evolutions with the robust-stability test to ensur the
someZ; and© terms. system is stable to linear perturbations, recovering the ex

A closer look at the resulting CCZ4 system shows that itpected results (sele [35] for a discussion of this test).
is not fully equivalent to the Z4 system, modulo a rearrange- The numerical setup used in the simulations presented
ment of the dynamical fields. There are two extra fields whichhere is the same one discussed in [36] and more re-
were not present in the Z4 system, namély 7;; andtr A;;. cently applied to theLl ama code described in Refl_[37].



The latter makes use of higher-order finite-difference algo
rithms satisfying the summation-by-parts rule (up to 8th or
der in space) and a multiblock structure for the outer com-

i}

\\\\\H‘ \’\\\\\H T TTTT

putational domain. More specifically, we use a central cu- 0.1 E 7ad
bical Cartesian patch containing multiple levels of adapti = /
mesh refinement with higher-resolution boxes. The Carte- 0.01 g Z4u /
sian grid is surrounded by additional patches with the B '

grid points arranged in a spherical-type geometry, with-con 0.001

_s
stant angular resolution to best match the resolution requi =
ments of radially outgoing waves. This allows us to move 0.0001
the outer boundary to a radius where it is causally discon-

nected from the binary at a tiny fraction of the computationa 10-5 -~
cost which would be necessary to achieve the same resolu-
tion with a purely Cartesian code. The time evolution is 10-8

T \HHH‘ T HH\H‘ T \HHH‘ T TTTTTT
A

based on the method-of-lines with a 4th order Runge-Kutta
algorithm. Our general computational infrastructure isedah " ‘ L i L
on theCact us framework and we are using packages such 10 10 100 1000
as TwoPunct ur es [38], AHFi nder Di rect [3S] and of L [cr]

Sunmat i onByPar t s [40], which are freely available and
part of the Einstein Toolkit. In addition, our evolutions kea
use of the mesh-refinement driv@ar pet [41], which imple-
ments higher-resolution boxes with multiple levels of adlegp
mesh refinement.

—_

FIG. 1: L-infinity norm of the Hamiltonian constraint in thewgge-
wave test, when performed with a CCZ4 formulation with damgpi
terms (black solid line), with a CCz4 formulation withoutrdg-
ing terms (blue dotted line), or with the BSSNOK formulatigad
A. GaugeWaves dashed line). _Clearly, the Z4u and the _BSSNOK fo_rmulgtiams a
) unstable (cf. Fig. 5 of Ref[ [42]) and a similar behavior ti# en-
countered also in black-hole spacetimes (cf. Figlire 4).

A classical test for different formulations of the Einstein
equations is offered by the “gauge-waveé”|[35], in which
a fictitious one-dimensional pulse propagating along:the
direction can be simulated by performing a conformal transy, = 0, and one in which the constraints anadamped
formation of the Minkowski metric in the two-dimensional j.e.x; = 0 = k. We will refer to these two cases as to “Z4d”
sector spanned by tfie, ) coordinates, namely using the line and “z4u”, respectively (Note that in these tests the shisgit
element to zero and hence we do not need to specify a value:for
which we take to be one).

The infinity-norm of the Hamiltonian constraint relative to
simulations at the highest resolution is displayed in Elg. 1
for the damped CCZ4 formulation (black solid line), for the
undamped CCZzZ4 formulation (blue dashed line), and for the
BSSNOK formulation (red dotted line). Clearly, the BSSNOK
and the CCZz4 formulation without damping terms fail before

e 50 crossing times (BSSNOK afte® crossing times and Z4u
h(z,t =0)=1— A sin (T) ; (29)  after 56 crossing times) as indicated by the an exponential
increase in the violation of the energy constraint. Howgver
with an amplituded < 1. Although this testis apparently triv-  With the addition of the damping terms, the CCZ4 formula-
ial as it does not involve the solution of the Einstein ecuragi  tion is able to accurately evolve this solution for more than
in a very nonlinear regime, it nevertheless representsia serl000 crossing times, while preserving the profile of the pulse.
ous benchmark even for formulations as robust as BSSNON?UI’theI’mOI’e, we have verified that the evolved solution con-

ds?® = h(x,t) (—dt* + dz?) + dy* + dz*. (28)

The solution of the pulse at any time is just given by the
advection of the initial profile of the gauge wave, which can
be set to be smooth and periodic by choosing a sine-likalniti
data of the typd [35]

which indeed does not passlit [42]. verges to the expected spatial-discretization order €ither
Following [42], we choose an amplitude of = 0.1 in  4th or 8th order), with only a very small phase error when
a domain of. = 1 with three uniform resolutions,/L =  Uusing the 8th order scheme.

{1/50,1/100,1/200} and periodic boundary conditions. No-  Overall, this test shows that the dynamical control of the
tice that the metric form[{28) corresponds to an harmonienergy constraint via the damping termis crucial to attain
slicing condition with zero shift, so we have to change oura stable evolution, even in such a simple type of spacetimes.
preferred coordinate choice (i.e. ther log slicing with the ~ We also note that this test is more demanding for conformal
Gamma-driver) to perform this test. Furthermore, différen formulations, where there is more than one component of the
implementations of the CCzZ4 formulation: one in which metric which is nontrivial. This is confirmed by comparing
the constraints ardampedwith coefficientsk; = 1/L and  our results with those in Ref. [43], where the standard 74 for



outer boundary ho/M | Nang Rin/M Rouwt/M Niey. Tiev/M (1 = ¢z4a/98) (1 = dpzau/PB) (1 = dpz4a/Pz4u)
multiblock, caus. discon0.80 | 33 40.00 2192.80 (12,6,3,1.5,0.6) 0.0445 0.0465 0.00230
multiblock, caus. discomn0.60 43 39.60 2192.40 (12,6,3,1.5,0.6) 0.0315 0.0335 0.00175
multiblock, caus. discom0.48 53 39.84 2192.16 (12,6,3,1.5,0.6) 0.0245 0.0255 0.00135
(12,6,3,1.5,0.6) — — —

multiblock, caus. con. | 0.60 43 39.60 350.40
Cartesian, caus. con. |1.20 0 — 199.20

(12,6,3,1.5,0.6) - - -
(110,12,6,3,1.5,0.6) - - -

6
6
multiblock, caus. discon0.40 65 40.00 2192.40 ©6
6
7

TABLE I: Properties of the black-hole binaries simulatecheTirst column indicates the type of outer boundary and wérethusally con-
nected. ho is the grid spacing on the coarsest Cartesian grid, whiclgislein all cases to the radial grid spacing in the angulachsst.
Nang is the number of cells in the angular directions in the angpddches R, and R...+ are the inner and outer radii of the angular patches.
Niev. is the number of refinement levels (including the coarsesthe Cartesian grid, arlriey indicates the size of the cubical refinement
boxes centered on each black hole. The unit of the spacetasseM is chosen such that each black hole has mMass/ in both the single
and binary black cases. Finally, the last three columnsatothe relative difference in thé = m = 2 gravitational-wave phase between
evolutions carried out with either the BSSNOK formulatign |, the CCZ4 formulation with damping termgAs4), or the CCZ4 formulation
without damping terms¢(z..,)-

mulation, i.e. not implementing a conformal decomposition damped (i.e. with<s = 1, k1 # 0), or undamped (i.e. with
was able to pass this test without the need of damping terms;; = 1, k1 = 0), have been found to lead tmstableevolu-
The GH formulation also passes this test. tions, although on rather different timescales and withialde
degree of accuracy (see discussion below).
The initial data of the binary black-hole evolutions is
B. Black-Hole Spacetimes obtained from a circular-orbit condition at the third post-
Newtonian order [44] and corresponds to an equal-mass non-
Before considering black-hole binaries, we have tested exspinning binary with an initial coordinate separation/of=
tensively our new CCZ4 formulation in the evolution of siagl 8 M. The binary performs abowt5 orbits before merging
nonspinning black holes. This has allowed us to determin@nd settles to an isolated spinning black hole after360 M.
how different choices for the damping coefficiertsandx, To carry out a meaningful comparison, the binary is evolved
influence the solution and, in particular, the violation offtb ~ with the BSSNOK and the CCZ4 formulations keeping the
the ADM and theZ,, constraints. In this way we have con- same choice for the gauges, namely the log slicing con-
cluded that most of the dynamics in the evolution of the condition and the Gamma-driver shift condition with= 3/4,
straint equations comes from the first damping coefficiemt, s = 2/M, and the same grid setup. For the latter, in par-
thatx, = 0 represents a sensible choice and is the one that wiécular, we have considered three different choices ainted a
will consider hereafter. On the other hand, increasingeslu determining the influence of the outer boundaries on the-qual
of k1 produce lower violations of the constraints and a valugty of the solution. This is a point discussed in Refs] [28, 29
of k; =~ 0.1/M seems optimal in this sense. Higher values, inwhere it was argued that the Z4c formulation is more sergsitiv
fact, lead only to marginal improvements of the solutiort, bu than the BSSNOK one to incorrect (or constraint-violating)
also tend to increase the stiffness of the damping terms. boundary conditions. As a result, we consider three differe
An important and unexpected result obtained when impleclasses of simulations depending on the treatment of thex out
menting the CCZ4 formulation in black-hole spacetimes isboundary: (i) multiblock padding and spherical outer bound
that subtle and nonlinear couplings can occur, leading to unary which is causally disconnected (i.e. -at 2200 M for
stable evolutions also for those choices of the coefficidnats ~ a simulation lasting~ 800 A/); (i) multiblock padding and
are perfectly stable in other spacetimes. While, in fact, wespherical outer boundary which is causally connected €ite.
have carried out stable evolutions of the robust-stabitigt — ~ 350 M); (iii) Cartesian outer boundary which is causally
with the covariant and damped CCZ4 formulation (i.e. withconnected (i.e. at 200 M). For case (i), we reduce the or-
k3 = 1 andk, # 0), we were not able to obtain stable evo- der of the finite-difference operator at the outer boundaty b
lutions of black-hole spacetimes witty = 1, although the because it is causally disconnected, the initial conditiare
growth time of the instability does change with the values ofpreserved there. For case (ii), instead, we impose reftgctin
x1 (see discussion around F[g. 4). Clearly, nontrivial cou-boundary conditions so as to “stress” the solution with data
plings seem to appear between these coefficients, which d&om the outer boundary which is constraint-violating and i
pend on the degree of nonlinearity and which deserve furthgected mostly at the time of the reflection. Finally, in case
investigation to be properly understood. (iii) we have applied ordinary, outgoing Sommerfeld bound-
On the whole, and as we will detail below, we have ary conditions to all variables, again triggering violaitsoin
found thataccurateandstableevolutions of binary black-hole  the constraint equations.
spacetimes can be obtained with the damped noncovariant Z4 All the properties of the grid structure and the treatment of
systems (i.e. withkg = 1/2, k1 = 0.1/M). On the other the outer boundary are summarized in Tdble |, whiayes
hand, covariant and conformal Z4 formulations that areseith the grid spacing on the coarsest Cartesian grid, which ialequ
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FIG. 2: Real part of thé = m = 2 mode of the gravitational wave- FIG. 3: Differences in the phase evolutions at the high, oredind
form ¥, for an equal-mass nonspinning black-hole binary. Differ- low resolutions, respectively (these are indicated as HR, &nd
ent lines refer to evolutions with the noncovariant forntiola with LR). The top panel refers to the BSSNOK formulation, while bot-
and without damping terms, i.e. witky = 1/2 andx; = 0.1/M, tom one the the noncovariant damped CCZ4 formulation (Z#kg.
k2 = 0 (Z4d), orks = 1/2 andk1 = k2 = 0 (Z4u). The two evo-  differences between the low and medium resolutions aresasied
lutions are indicated, respectively, as Z4d and with a biatid line  with the appropriate convergence coefficients (marke@B&g¢ and
or as Z4u and with a blue dotted line; the BSSNOK formulatien i CF8, see text) to highlight the convergence order of the sahytdi
shown with a red dashed line. Shown in the inset is a magriditat the data refers to simulations with a multiblock padding eadisally
of the merger. disconnected outer boundary. Note that at these resofutieCCZ4
formulation has larger phase errors, but due its higher egance
factor, these errors are expected to decay at a faster ratefohn
BSSNOK.

in all cases to the radial grid spacing in the angular patches
Nang is the number of cells in the angular directions in the an-
gular patches, whil&;,, and R, are the inner and outer radii j o \ith k3 =1/2 andk; = 0.1/M, ko = 0 (Z4d, black

of the angular patches, respectively. In the case of a Carteyjiq line), or to the noncovariant formulation without dam
sian outer boundary;, represents the distance to the OUtering terms, i.e. withxs = 1/2 andk, = Ky = 0 (Z4u, blue

boundary along coordinate lines. Finallyic,. is the number  yotted line). Also shown as a reference is a simulation with
of refinement levels (including the coarsest) on the Catesi ihe BSSNOK formulation (red dashed line) using the same
grid, while 2 7, indicates the size of the cubical refinement , ;merical setup. The simulations refer to the highest tesol
boxes centered on each black hole. tion (i.e.hy/M = 0.48) and the grid having the multiblock
As final remark before discussing the results, we note thapadding and an outer boundaryfs,, = 2192.16 M.

all the rest being the same, at any given resolution the CCZ4 The first obvious thing to note is that all simulations lead
system has a smaller violation of the constraints than tH&-BS to a stable merger and ringdown at all the resolutions censid
NOK one. At the same time, however, because the violationgred. Furthermore, while a small phase difference is ptesen
of both the energy and momentum constraints are part of thgetween the Z4 and the BSSNOK runs, this difference is very
evolution equations in the CCZ4 system, the latter is morgmall andA¢ < 0.02 rad over the whole simulation. As a

strongly affected than BSSNOK one, for which only the vio- comparison, the phase difference between the Z4 and the Z4u
lations of the momentum constraint are included in the evosimulations isA¢ < 0.002 rad (see Tablg | for the relative

lution system. As a result, the CCZ4 formulation requires amaximum differences).
comparatively higher minimum-resolution treshold in arte Although the phase differences between the waveforms ob-
enter a convergentregime. tained with the two formulations is relatively small, it als

A first comparison of the behavior of the different formula- decreases with the resolution, thus indicating that both fo
tions is offered in Fid. 12, where we show the- m = 2 mode  mulations would yield the same phase evolution in the con-
of the gravitational waveforn¥’, as extracted on a sphere of tinuum limit. The rate of convergence, however, is différen
coordinate radius = 100 M (see [37] for details on the ex- when considering either the BSSNOK or the CCZ4 formula-
traction procedure). Different lines refer to simulatiams  tion. This is shown in Fig:]3, where we report the residuals
ing either the noncovariant formulation with damping terms in the phase evolutions at the high, medium and low resolu-



tions, respectively (these are indicated as “HR”, “MR” and
“LR"). The differences between the low and medium resolu-
tions are also scaled to highlight the convergence orddreoft 591

| 74d: k,=1/2, k,=0.1/M, £=3/4

solution. More specifically, the HR, MR and LR refer to simu- b Zddig=l e =0.1/M, 1=5/4 E
lations with the coarsest resolutionsiaf/M = 0.6,0.48,0.4 c Z4u: k,=1/2, k=0, 1=3/4 1
(cf. Table[]). The convergence coefficients corresponding t P —— 24U k=1, =0, f=] |
these resolutions and used for rescaling @Fel = 3.0898, 107 - BSSNOK: f=3/4 E
for a convergence factor of.5 in the BSSNOK case, and  — ,_ ]
CF8 = 7.1906 for a convergence factor 8f5 in the Z4d case. = j‘\a\ { merser ]
Note however that, as mentioned above, the CCZ4 formula- LN &

) _ ! X 10-6
tion needs a higher resolution to enter the convergenceegi

while a triplet of resolutions withhy /M = 0.8,0.6,0.48
would be enough to show convergence at about 4th order for
the BSSNOK runs. 1077

Beside this minimum resolution threshold, the additional
computational expenses required by the CCZ4 formulations
are not significant. The difference with the BSSNOK sys- 10-8 L Ll Ll Ll Ll
tem consists in an additional evolution equation for théasca 0 200 400 600 800
variable®, which would amount to solving 25 evolution equa- t [M]
tions (instead of 24 as in BSSN), implying aroutfd higher
computational costs. However this is an over-estimaten as IFIG. 4: L2-norm of the Hamiltonian constraint for the nonaoant

reality the time spent in C_ompu_tlng the evolution equatlonsccz4 formulation with and without damping terms (black ddine
depends on the computational infrastructure. In our case, Lnq piue dotted line, respectively), for the covariant CE&nula-

is about half of the total time of a binary black-hole simu- tion with and without damping terms (light-blue dot-dastiee and
lation, while the other half is dedicated to mesh-refinementmagenta long-dashed line, respectively), and for the BISK®-
gravitational-wave extraction and other analysis rowine mulation (red dashed line). Also indicated are the diffexafues of

All'in all, we find that for the highest resolutions used the coefficient f in the shift Eq.[(21L), which however do not introduce
results of the BSSNOK runs converge at about 4th order (toﬁualitatively different behaviors. The data refers to trsgnaulations

- . aving a coarse resolution &f /M = 0.48 and outer boundary at
panel in Fig[B), while the Z4d runs converge at about 8th or- e
L . Rout = 2192.16 M.

der (bottom panel in Fif] 3); in both cases, the convergence o
der is lost in the very final stages of the merger. It is a presen
unclear why the two formulations yield, with the same com-
putational infrastructure, two different convergencesait is
possible that the constraint-damping properties of the £CZresolution ofhy/M = 0.48 and outer boundary placed at
formulation are able to suppress the small violations cgmin R..t = 2192.16 M, but similar behaviors have been seen also
from the reflections across refinement boundaries, that areat higher and lower resolutions.

major source of error and one of the largest obstacles ft'nnatta Note that as the initial data settles and the evolution pro-
clean convergence. However, more efforts (and considerablee s the cCz4 formulation shows a violation of the Hamil-
computational costs) need to be invested to assess wheier tyonian constraint smaller than for the BSSNOK case (the L2-

is the correct explanation. norm being at least 1 order of magnitude smaller), hence
A useful way to appreciate the different behavior of theyielding a more accurate solution of the Einstein equations
two formulations is shown in Fid.l4, which reports the evo-However, after this initial stage, the evolutions with theZ2
lution of the L2-norm of the ADM energy (i.e. the violation formulation can be considerably different according to the
of the Hamiltonian constraint) for the covariant CCZ4 formu choice made for the parametersandx;. More specifically,
lation with and without damping (light-blue dot-dashecelin the covariant and damped system (ikg.= 1, k; # 0) ex-
and magenta long-dashed line, respectively), for the noncaibits a very rapid violation of the constraintat100 M and
variant CCZ4 formulation with and without damping (black inevitably leads to a code crash (light-blue dot-dashed lin
solid line and blue dotted line, respectively), and for tt%8  in Fig.[d). Other variants of the CCZ4 formulation, on the
NOK formulation (red dashed line). We also report the dif- other hand, show a different behavior. In particular, bdth o
ferent values of coefficient in the shift Eq.[(21L), which does the undamped CCZ4 formulations (i, = 1/2,1, k1 = 0)
change the growth rate of the unstable simulations, but doggad to a successful merger, which can be easily identifiable
not remove the instability in the case of the fully covariantas the peak at about 350 — 380 M, and which is due to
formulation”. The data refers to simulations having a coarsdarger local violations of the constraints as the mergeesak

1 We have performed simulations also with = 1,x1 = 0.1/M, f = 1, cases we have found an instability (although with differgrowth rates),
orks =1,k1 =0.1/M, f =3/4,andk3 = 1,k1 =0, f = 3/4;inall which we do not report to avoid overloading Hig. 4.



plac€. At the same time, however, both implementations
show a growth of the constraint violation (blue dotted line a
magenta long-dashed line). This growth can be rather slow in 04
the casef = 1, but it is likely to yield unstable evolutions EO
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on very long timescales. Finally, Figl 4 shows that a nonco- _& 0

variant and damped implementation of the CCZ4 formulation 5 B

(i.e. k3 = 1/2, k1 # 0; black solid line) leads not only to a jo 04 L

stable merger and subsequent evolution, but it also prewdde B

violation of the constraints which is at least 1 order of mag- oo8 g ey =
nitude smaller than the corresponding one obtained with the ~ "~ F "~ T 77 000 ms Bl
BSSNOK evolution (red dashed line). This is one the main os b BSSNOK 4
results of this paper and the ultimate justification for st EO B 1
gating this new formulation of the equations. f§ ok 1

e — T
0.04 — —
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—0.04 | E

We note that the behavior of the constraints described above <
for the CCZ4 formulation is indeed very similar to what al- 0 .04
ready experienced by many groups implementing the GH for-

480 500 520
mulatior?. In that case, in fact, the addition of the damp- —opog Lol il il by
ing terms was crucial to achieve stable black-hole evolu- 100 <00 300 400 500 600
tions [1,/26[ 45]. Altogether, the evolution shown in Fij.14 a t [M]

ready provides the needed evidence that the new CCZ4 formu-

lation, once suitable damping terms are added a“‘?' th_e bounng_ 5: Real part of thé = m = 2 mode of the gravitational wave-
ary conditions do not play arole, represents a consideii@ble  torm y, (black solid line) extracted at = 100 M for simulations
provement over the standard BSSNOK formulation. In whathaving a coarse resolutiol, /A = 0.60 and an outer boundary
follows we will show that this continues to be the case alsawhich is causally connected and Bt.: = 350.40 M. The top
when the outer boundaries are chosen to produce incorreptnel refers to a simulation using the noncovariant and eanp-

data, or when they are placed very close to the merging biplementation of the CCZ4 formulation (i.es = 1/2, k1 # 0),
nary. while the bottom one to a simulation using the BSSNOK formula

. . - tion; also shown are the corresponding waveforms obtaineenw
Figurel5 reports with black solid lines tiie= m = 2mode " _ 9199 40 A1 (red dashed lines).

of the gravitational waveforn¥, extracted at- = 100 M for
simulations having a coarse resolutibgy/M = 0.60 and an
outer boundary which is causally connected andat, =

350.40 M (cf. Tablell). The top panel, in particular, refers to

a simulation using the noncovariant and damped implemerr-erqf g_verylarge increaseatv 25_0Mwhen the waves from
tation of the CCZ4 formulation (i.e. Z4d, with; — 1,2, the initial gauge settling of the binary, propagating at eesp

k1 # 0), while the bottom one to a simulation using the f s ~ V2, reach the outer boundary &b, = 350.40 M

BSSNOK formulation. Also shown with red dashed lines areand lead to larger violations. Also note that this increase i
the corresponding waveforms obtained when the outer boun(ﬁhe constraint violation happeﬂs mUCh earlier than the snea
ary is causally disconnected andaf,,, = 2192.40 M. As sociates W't.h the merger (V.Vh'Ch Is &t~ 350 M)'. AS evl-
shown more clearly in the two insets, the CCZ4 formulationdent from FigL®, the CCZ4 is able to recover efficiently from
yields waveforms which are essentially identical and are un}ohIS VIOLa()tE)OJT/} ?hnd t_helz (tj_am_plng terrlnf ?Ct n SUCZ a Y\{ﬁ%;hat
affected by the constraint-violating outer boundariesisTh yt ~ 40 € vioiation IS completely removed, wi e
to be contrasted with the evolution performed with the Bsg-Hamiltonian constraint brought back to its minimum value.

NOK formulation and which shows strong signs of reflectionBY contrast, the evolution with the BSSNOK formulation
att ~ 510 M. never recovers from the boundary contamination, leading to

) o o ~an increasing violation responsible for the incorrect éra
The reason behind this different behavior is to be found inyiscussed in Fid]5. The CZz4 formulation experiences an-
the different way in which the two formulations handle the gther increase in the violation &t~ 750 M, when the gauge
constraint-violations coming from the outer boundarieian  \yaves coming from the binary reach again the outer bound-

best appreciated in Figl 6, where we show again the L2-normy, but once again the constraint damping terms act so as to
of the ADM energy for the noncovariant and damped imple-remove the violation.

mentation of the CCZ4 formulation (i.e. Z4d witly = 1/2,

k1 # 0) and for the BSSNOK formulation. Note that both suf- An additional and concluding evidence of the constraint-

damping properties of the CCz4 formulation is shown is
Fig. [4, where we report the evolution of the L2-norm of

the Hamiltonian constraint (top panel) and of the root-mean

) . . _ square of the momentum constraint (bottom panel) for the
Note that the time of merger is a gauge dependent quantitcamdhere- noncovariant and damped implementation of the CCZ4 for-
fore take place at slightly different times in different faulations. p p

3 We recall that GH formulation can can be seen as a reductidtheo?4 r_nulation (i.e. Z4d withks = 1/2, k1 # 0, black 50|_id
formalism [27]. lines), and for the BSSNOK formulation (red dashed lines).
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FIG. 6: L2-norm of the Hamiltonian constraint for the nonadant FIG. 7: L2-norm of the Hamiltonian constraint (top paneljlaf the

and damped implementation of the CCZ4 formulation (i.e. &4tk root-mean-square of the momentum constraint (bottom péorehe

ks = 1/2, k1 # 0), and for the BSSNOK formulation (red dashed noncovariant and damped implementation of the CCZ4 fortimuia

line). The data refers to the a simulations having a coarsauton (i.e. Z4d withks = 1/2, k1 # 0, black solid lines), and for the BSS-

of ho/M = 0.60 and outer boundary placed At = 350.40 M. NOK formulation (red dashed lines). The data refers to satiohs
having a coarse resolution &f /M = 1.20 and outer boundary at
Rout = 199.20 M.

The data refers to simulations performed with a plain Carte-
sian outer boundary which is very close to the binary and at
Rou: = 199.20 M (cf. Tablel). As in the previous figure, also time, it is able to control dynamically the violation of there
here it is possible to detect the increase of the constraint vstraint equations and to rapidly suppress them when they oc-
olations when gauge waves from the binary have reached thaur.
outer boundary at ~ 140 M. We have validated the robustness of the CCZ4 evolution
Also in this case, the damping terms in the equations resystem by performing a number of tests both in flat and in
move rapidly the violations, which decay exponentially to black-hole spacetimes. We have thus found that the CCZ4
their minimum values. Because the boundary is so close-irformulation without damping terms does not pass the stan-
this behavior of rapid increase and exponential decay takesard gauge-advection test, in analogy with the behavidnef t
place at least 3 times, both for the Hamiltonian and momenBSSNOK formulation. However, when the damping terms are
tum constraints. Any formulation of the Einstein equationsswitched on, the new CCZ4 formulation passes the test stably
having this type of behavior is obviously preferable ovee on and accurately.
in which the violations are trapped in the computational do- This ability of the formulation to control and damp vio-
main and are not allowed to be damped. lations in the constraint equations has been confirmed also
through the simulation of nonspinning black-hole binaries
which have been followed for about three orbits before merg-
IV. CONCLUSIONS ing to a rapidly rotating black hole. Through a series of sim-
ulations at different resolutions and with different treatnts
By starting from the Z4 formulatior [27] and by includ- of the outer boundary — handled either with multiblocks and
ing all the nonprincipal terms coming from the covariant form placed at a causally-disconnected distance, or with a §larte
of the equations, we have introduced the CCZ4 formulationbox and placed close to the binary — we have shownribat
i.e. the conformal and covariant formulation of the Z4 syste all of the implementations of the CCZ4 formulation lead to
and proposed it as a new and effective way to solve numeristable evolutions of binary black-hole spacetimes.
cally the Einstein equations in arbitrary spacetimes. Rather, we have found that the covariant form of the CCz4
The new set of equations combines the most important fegermulation, in conjunction with the use of damping terms,
tures of the commonly used formulations of the Einstein equaleads to exponentially growing modes that rapidly desthey t
tions employed in numerical-relativity calculations. larfic-  numerical solution. Fortunately, the use of a noncovafi@mnt
ular, it is able to make use of well-tested and robust gaugenulation and of damping terms leads not only to a stable evo-
conditions which remove the need of excision and, at the samlation, but it also provides a violation of the constraintsigh
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is at least 1 order of magnitude smaller than the correspgndi stable evolutions. In these cases, even small changes in the
one obtained with the BSSNOK evolution. A close compar-covariant character of the equations (e.g., by using= 0.9
ison with simulations performed with the BSSNOK formula- instead ofx3 = 1) allows one to use nonzero damping co-
tion using the same numerical setup, has also revealed thafficients and hence to obtain a smaller violation of the con-
the CCZz4 formulation can efficiently recover from large vio- straints. A systematic investigation of the space of patarae
lations of the constraints, with the damping terms rapiély r x; x ko x kg is difficult due to the large computational costs
moving constraint violations produced at the outer boupdar of these simulations, but is clearly needed for a deeperrunde
By contrast, evolutions with the BSSNOK formulation expe- standing of the behavior of the CCZ4 formulation. Much of
riencing similar violations never recover from the boundar our future work will be dedicated to elucidate this point.
contamination, leading to an increasing violation and inco
rect gravitational waves.

Because the changes necessary to implement the new con-
formal formulation in BSSNOK codes and the additional
computational costs are very small, we propose the new for-
mulation as a new standard for the numerical solution of the
Einstein equations in generic 3D spacetimes. We expect, in We thank lan Hinder and Barry Wardell for the analysis
fact, that a numerical solution of the Einstein equations ha tools used in this work, Jose-Luis Jaramillo for useful disc
ing smaller violations of the constraints will also yield @ama  sions on the conformal formalism, Carlos Lousto for com-
accurate modelling of the gravitational-wave emissiorthbo parison with his implementation of the CCZ4 formulation,
in vacuum and nonvacuum spacetimes. and Sebastiano Bernuzzi, David Hilditch and Milton Ruiz for

At the same time, however, much remains to be done taliscussions on their Z4c formulation. Partial support ceme
fully understand the role played by the damping coefficiants from the European Union FEDER funds, by the Spanish Min-
fully nonlinear regimes and in the covariant form of the CCZ4istry of Science and Education (projects FPA2010-16495 and
formulation. Our experience with binary black-hole space-CSD2007-00042), by the DFG Grant SFB/Transregio 7 and
times has revealed, in fact, that there are situations irchivhi by the NSF grant PHY-0803629. The computations were per-
the damping of the constraints interferes negatively with dormed at the AEI and on the Teragrid network (allocation
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