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We present a new formulation of the Einstein equations basedon a conformal and traceless decomposition of
the covariant form of the Z4 system. This formulation combines the advantages of a conformal decomposition,
such as the one used in the BSSNOK formulation (i.e. well-tested hyperbolic gauges, no need for excision,
robustness to imperfect boundary conditions) with the advantages of a constraint-damped formulation, such as
the generalized harmonic one (i.e. exponential decay of constraint violations when these are produced). We
validate the new set of equations through standard tests andby evolving binary black hole systems. Overall, the
new conformal formulation leads to a better behavior of the constraint equations and a rapid suppression of the
violations when they occur. The changes necessary to implement the new conformal formulation in standard
BSSNOK codes are very small as are the additional computational costs.

PACS numbers: 04.25.D-, 04.25.dg

I. INTRODUCTION

Numerical relativity has seen, over the last few years, a
truly remarkable development. Starting from the first simu-
lations showing that black-hole binaries could be evolved for
a few orbits [1–3], or that black holes could be produced from
unstable stellar configurations using simple gauges and with-
out excision [4], new results have been obtained steadily. As a
result, it is now possible to simulate binary black holes [5]and
binary neutron stars [6] accurately for dozens of orbits, from
the weak-field inspiral, down to the final black-hole ringdown
(see also [7, 8] for recent reviews on binary black holes and
neutron stars, respectively). In addition, the progress innu-
merical relativity has also been accompanied by a comparable
progress of analytical approximation techniques, which have
been shown to be able to reproduce the numerical results to
very high precision both for binary black holes [9, 10] and
for binary neutron stars [11]. Finally, numerical simulations
have now investigated scenarios never considered before and
that could lead to a new and deeper understanding of the as-
trophysics of compact objects [12, 13].

There are several reasons behind this rapid progress, and
the use of more accurate numerical techniques and the avail-
ability of larger computational facilities are certainly among
the most important ones. None of these, however, would be
useful without the use of formulations of the Einstein equa-
tions that are well-suited for numerical evolutions. Most of the
present three-dimensional (3D) numerical-relativity codes im-
plement either one of the two formulations discussed below.
The first and most popular one is the conformal and traceless
reformulation of the3+ 1 ADM equations [14], which is also
known as the BSSNOK (or BSSN) formulation [15–17]. The
second formulation is instead based on the use of a fully 4D
form of the Einstein equations in coordinates that resemble
the harmonic ones and is therefore known as the Generalized-
Harmonic formulation (GH) [18].

There are several differences between these two formu-
lations, each having its own advantages and disadvantages.
One of the main advantages of BSSNOK is that, being based
on a conformal decomposition, it can separate potential sin-
gular terms in the conformal factor. In addition, it can
count on well-tested and robust gauge conditions, such as the
singularity-avoiding slicing conditions of the1 + log fam-
ily [19]. Similarly, the spatial gauges can rely on the hy-
perbolic Gamma-driver condition for the shift vector [20]
(or some recent variants for unequal-mass binaries [21–23]),
which removes to a large extent, the gauge dynamics near the
compact objects. When combined, these two gauge choices
eliminate the need to excise a region of the computation do-
main inside the apparent horizon, greatly simplifying the nu-
merical infrastructure. Finally, the use of the momentum con-
straint equations (but not of the energy constraint) in the evo-
lution of the dynamical variables, which is crucial for ensur-
ing strong hyperbolicity, provides BSSNOK with a certain
“forgiveness”, so that the violation of the constraints does
not grow rapidly, even when boundary conditions which are
constraint-violating are used near the strong-field region.

In contrast, the GH formulation uses a generalized har-
monic gauge which cannot deal with the physical singularity
inside the apparent horizon. As a result, at least for the gauges
considered so far (see also [24, 25]), it requires the use of ex-
cision and thus of numerical techniques that are devised for
handling a special region of the computational domain [26].
To its advantage, however, the GH formulation leads to a set of
equations whose principal parts are wave equations and thus
with very well-known mathematical properties. In addition,
the use of damping terms allows for the dynamical control of
the constraint violations and thus for a powerful way of reduc-
ing them when necessary. Of course, a solution with smaller
constraint violations will intrinsically be a more accurate so-
lution to the Einstein equations.

Clearly, it would be useful to employ a formulation of the
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Einstein equations that combines the best of both worlds and
thus that has the robustness and gauge conditions of the BSS-
NOK formulation but, at the same time, has well-defined
mathematical properties and the possibility of dynamically
controlling the constraint violations as the GH formulation.
As we will show, these properties are met by a new conformal
and covariant formulation of the Z4 system with constraint-
violation damping. This is obtained by starting from the fully
covariant Z4 formulation [27] and by performing a confor-
mal decomposition which includesall the nonprincipal terms
coming from the covariant form of the equations. In addition,
damping terms are included for controlling the constraints
in the spirit of the GH formulation. We will refer to this
new formulation as the conformal and covariant Z4 system,
i.e. CCZ4, and present tests of its behavior by considering
evolutions in vacuum of gauge waves in 1D and isolated and
binary black holes in 3D.

It should be remarked that this is not the first time that
a conformal decomposition of the Z4 system has been pro-
posed and indeed a very interesting attempt has been made in
Ref. [28], where it was named Z4c. Although the tests pre-
sented in Ref. [28] were performed in spherical symmetry,
they already highlighted the potential of a conformal formu-
lation of the Z4 system, especially in the presence of matter
(see also [29, 30]). Unfortunately, we were not able to ob-
tain equally good results when evolving the formulation of
Ref. [28] in vacuum and in 3D; at the same time, we did not
find that our CCZ4 formulation is more sensitive to boundary
problems than the BSSNOK one (this was a point raised in
Ref. [28]).

The structure of the paper is as follows. In Sec. II, we de-
rive the full set of the CCZ4 equations starting from the co-
variant form of the Z4 system. In Sec. III we introduce the
details of the numerical infrastructure and present a numeri-
cal comparison between the CCZ4 and the BSSNOK systems
for a gauge-wave test and for binary black-hole simulations.
Finally, the conclusions are summarized in Sec. IV.

II. THE CONFORMAL COVARIANT Z4 SYSTEM

The Z4 formulation was introduced as a covariant exten-
sion of the Einstein equations [27], where the original elliptic
constraints are converted into algebraic conditions for a new
four-vectorZµ. This formulation can be derived from the co-
variant Lagrangian

L = gµν [Rµν + 2 ∇µZν ] , (1)

by means of a Palatini-type variational principle [31]. The
vectorZµ measures the deviation from the Einstein field equa-
tions. The algebraic constraintsZµ = 0 amount therefore to
the fulfilling of the standard energy-momentum constraints.
In order to control these constraints, the original system was
supplemented with damping terms such that the true Einstein
solutions (i.e. the ones satisfying the constraints) become an
attractor of the enlarged set of solutions of the Z4 system [32].
The Z4 damped formalism can be written in covariant form as

Rµν + ∇µZν +∇νZµ + κ1[nµZν + nνZµ

− (1 + κ2)gµνnσZ
σ] = 8π(Tµν − 1

2gµνT ) , (2)

wherenµ is the unit normal to the time slicing,Tµν the stress-
energy tensor andT its trace, i.e.T ≡ gµνT

µν. The (constant)
coefficientsκi are free parameters related to the characteristic
time of the exponential damping of constraint violations. As-
suming energy-momentum tensor conservation, the Bianchi
identities lead to the constraint-propagation system

∇ν∇νZµ+RµνZ
ν = −κ1∇ν [nµZν+nνZµ+κ2gµνnσZ

σ] .
(3)

It has been shown in Ref. [32] that all the constraint-related
modes are damped when

κ1 > 0 κ2 > −1 . (4)

The Z4 formulation can be rewritten as a Cauchy problem
by performing the3 + 1 decomposition of the spacetime, in
which the line element reads

ds2 = −α2dt2 + γij (dx
i + βidt) (dxj + βjdt) , (5)

whereα is the lapse function,βi is the shift vector andγij the
intrinsic metric of the constant-time slices. The Einsteinequa-
tions within this decomposition lead to the well-known ADM
system [14], which is usually cast as a system of evolution
equations for the extrinsic curvatureKij and the three-metric
γij , plus four elliptic equations for the energy (or Hamilto-
nian) and the momentum constraints, involving space deriva-
tives of the dynamical fieldsγij and Kij . In the Z4 for-
mulation, the energy-momentum constraints become evolu-
tion equations forZµ, modifying the principal part of the
ADM system and converting it from weakly to strongly hy-
perbolic [33]. The3+ 1 decomposition of the Z4 formulation
including the damping terms reads

(∂t − Lβ) γij = −2αKij , (6)

(∂t − Lβ) Kij = −∇iαj + α
[

Rij +∇iZj +∇jZi − 2Ki
l Klj + (K − 2Θ)Kij − κ1(1 + κ2)Θ γij

]

−8πα

[

Sij −
1

2
(S − τ) γij

]

, (7)
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(∂t − Lβ) Θ =
α

2

[

R+ 2∇jZ
j + (K − 2Θ)K −Kij Kij − 2

Zjαj

α
− 2 κ1(2 + κ2)Θ− 16π τ

]

, (8)

(∂t − Lβ) Zi = α [∇j (Ki
j − δi

jK) + ∂iΘ− 2Ki
j Zj −Θ

αi

α
− κ1Zi − 8π Si ] , (9)

whereLβ is the Lie derivative along the shift vector~β,Θ is the
projection of the Z4 four-vector along the normal direction,
Θ ≡ nµZ

µ = αZ0, and the following definitions apply for
matter-related quantitiesτ ≡ nµnνT

µν, Si ≡ nνT
ν
i , Sij ≡

Tij .
Equations (6)–(9) must be complemented with suitable

gauge conditions that determine the system of coordinates
used during the evolution. Of all the possible options, the
most interesting ones are those which preserve the hyperbol-
icity of the full evolution system, such as the1 + log family
and the Gamma-driver shift condition.

As a first step towards deriving the CCZ4 formulation,

we express the metricγij in terms of a conformal metric
γ̃ij = φ2γij with unit determinantφ = (det(γij))

−1/6,
while the extrinsic curvatureKij is decomposed into its trace
K ≡ Kijγ

ij and in its trace-free components

Ãij = φ2 (Kij −
1

3
Kγij) . (10)

This allows us to write the three-dimensional Ricci tensor as
Rij = R̃ij + R̃φ

ij , thus splitting it into a part containing con-
formal terms and another one containing space derivatives of
the conformal metric

R̃ij = −1

2
γ̃lm∂l∂mγ̃ij + γ̃k(i∂j)Γ̃

k + Γ̃kΓ̃(ij)k + γ̃lm
[

2Γ̃k
l(iΓ̃j)km + Γ̃k

imΓ̃kj l

]

, (11)

R̃φ
ij =

1

φ2

[

φ
(

∇̃i∇̃jφ+ γ̃ij∇̃l∇̃lφ
)

− 2γ̃ij∇̃lφ∇̃lφ
]

, (12)

where

Γ̃i ≡ γ̃jkΓ̃i
jk = γ̃ij γ̃kl∂lγ̃jk . (13)

The conformal and covariant Z4 formulation (CCZ4) is thus
given by the following system of evolution equations

∂tγ̃ij = −2αÃ
TF

ij + 2γ̃k(i∂j) β
k − 2

3
γ̃ij∂k βk + βk∂kγ̃ij , (14)

∂tÃij = φ2 [−∇i∇jα+ α (Rij +∇iZj +∇jZi − 8πSij)]
TF

+ αÃij (K − 2Θ)

−2αÃilÃ
l
j + 2Ãk(i∂j) β

k − 2

3
Ãij∂k βk + βk∂kÃij , (15)

∂tφ =
1

3
αφK − 1

3
φ∂kβ

k + βk∂kφ , (16)

∂tK = −∇i∇iα+ α
(

R+ 2∇iZ
i +K2 − 2ΘK

)

+ βj∂jK − 3ακ1 (1 + κ2)Θ + 4πα (S − 3τ) , (17)

∂tΘ =
1

2
α

(

R+ 2∇iZ
i − ÃijÃ

ij +
2

3
K2 − 2ΘK

)

− Zi∂iα+ βk∂kΘ− ακ1 (2 + κ2)Θ− 8πα τ , (18)

∂tΓ̂
i = 2α

(

Γ̃i
jkÃ

jk − 3Ãij ∂jφ

φ
− 2

3
γ̃ij∂jK

)

+ 2γ̃ki

(

α∂kΘ−Θ∂kα− 2

3
αKZk

)

− 2Ãij∂jα

+γ̃kl∂k∂lβ
i +

1

3
γ̃ik∂k∂lβ

l +
2

3
Γ̃i∂kβ

k − Γ̃k∂kβ
i + 2κ3

(

2

3
γ̃ijZj∂kβ

k − γ̃jkZj∂kβ
i

)

+βk∂kΓ̂
i − 2ακ1γ̃

ijZj − 16παγ̃ijSj , (19)

∂tα = −2α (K − 2Θ) + βk∂kα , (20)

∂tβ
i = fBi + βk∂kβ

i , (21)

∂tB
i = ∂tΓ̂

i − βk∂kΓ̂
i + βk∂kB

i − ηBi , (22)

where we have defined

Γ̂i ≡ Γ̃i + 2γ̃ijZj . (23)

Note that the choice made with the definition (23) is equiva-
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lent, in the ADM context, to adding the momentum constraint
to the right-hand-side of the evolution equation ofΓ̃i. In the
context of the Z4 formulation, this just amounts to replacing
the vectorZi by the quantitieŝΓi in the set of basic fields to
be evolved.

The gauge conditions (20)–(22) correspond respectively to
the standard “1 + log” slicing condition and to the original
form of the gamma-driver shift condition, where a generic
gauge parameterf was introduced [20]. Note that in the Z4
formulation there is an additional propagation speed and the
standard BSSNOK choice off = 3/4 can then lead to weak
hyperbolicity when the lapseα is close to 1. This is why safer
choices, such asf = 1, have been proposed in Ref. [28]. In
this paper we usef = 3/4 to be as close as possible to a
standard BSSNOK formulation, but we also consider how the
system of equations reacts when switching tof = 1.

We also note that experimentation with black-hole space-
times and the emergence of unstable behaviors, has induced us
to introduce an extra parameter,κ3, affecting some quadratic
terms in the evolution Eq. (19) for̂Γi. As discussed before,
this equation corresponds to the evolution ofZi, so this is
not just a gauge choice, but rather an essential ingredient of
the Z4 system. Indeed, the covariance inherent to the confor-
mal decomposition of the Z4 system is broken unless we take
κ3 = 1. For some of the tests presented in this paper we re-
tain a fully covariant formulation (i.e. withκ3 = 1). However,
this is not possible for black-hole spacetimes, where nonlinear
couplings with the damping terms, which are important for
reducing the violations in the constraints, lead to numerical
instabilities. As a result, for black-hole spacetimes we have
resorted to a noncovariant and conformal formulation of the
Z4 system (i.e. withκ3 = 1/2) (see discussion in Sec. III B
for details).

A number of remarks are important at this point. First, al-
though the structure of the CCZ4 formulation is very simi-
lar to the BSSNOK one, there is an important difference in
the evolution of the trace-free variablẽAij . In the BSSNOK
formulation, in fact, the Hamiltonian constraint is assumed
to be satisfiedexactlyand thus used to eliminate the Ricci
scalar from the right-hand-side of the evolution equation for
Ãij [20]. In the CCZ4 system, on the other hand, the evolution
of Ãij follows directly from (the trace-free part of) the orig-
inal ADM evolution equation for the extrinsic curvatureKij ,
plus the extra terms inZi andΘ. Second, the equivalent of
the trace of the extrinsic curvature in BSSNOK formulations
is given by

K
BSSNOK

= K − 2Θ , (24)

again because the Hamiltonian constraint is assumed to re-
move the Ricci scalar from the evolution equations in the
BSSNOK approach. In the CCZ4 system, we rather use (the
trace part of) the ADM evolution equation forKij , modulo
someZi andΘ terms.

A closer look at the resulting CCZ4 system shows that it
is not fully equivalent to the Z4 system, modulo a rearrange-
ment of the dynamical fields. There are two extra fields which
were not present in the Z4 system, namelydet γ̃ij andtr Ãij .

These are not dynamical fields at the continuum level, where
the consistency constraints

det γ̃ij = 1 , tr Ãij = 0 , (25)

hold by construction. But at the discrete level, these are just
two more constraints, which can be dealt with in many differ-
ent ways. For instance:

• Constrained approach. We could enforce (25) at ev-
ery integration step, by removing the trace ofÃij

and rescaling̃γij as it is usually done in BSSNOK
codes [34]. The remaining dynamical modes have then
the same characteristic structure of the original Z4 sys-
tem. This is the safest choice, and we will use it in the
tests presented in this paper.

• Relaxed approach. We could instead relax (25), en-
forcing it just on the initial/boundary data. In this way
the two extra dynamical modes propagate along nor-
mal lines, as their evolution equations [i.e. the trace of
Eqs. (14)-(15)] are trivial. Note that in this case the
trace of the first term in the evolution Eq. (14) must
be removed explicitly to avoid any spurious numerical
modes by evolving:

∂tγ̃ij = −2α

(

Ãij −
1

3
γ̃ijÃklγ̃

kl

)

+2γ̃k(i∂j) β
k − 2

3
γ̃ij∂k βk + βk∂kγ̃ij .

Moreover, in tests like the robust stability or the gauge
waves, it may be necessary to keep also under control
the trace ofÃij . This can be achieved by adding, for
instance, a damping term proportional toγ̃ij trÃij to
the evolution Eq. (15).

Finally, the ADM constraints are given by

H = R−KijK
ij +K2 , (26)

Mi = γjl(∂lKij − ∂iKjl − Γm
jlKmi + Γm

jiKml) . (27)

In the results presented below we compute the constraint vi-
olations for both the BSSNOK and CCZ4 systems using the
ADM quantities computed from the evolution variables corre-
sponding to the two systems, allowing for the correspondence
(24).

III. NUMERICAL RESULTS

In this section we validate the robustness and accuracy of
the CCZ4 evolution system and compare it against the BSS-
NOK system in two different cases: the gauge-waves test and
black-hole spacetimes. In addition, we have performed sev-
eral evolutions with the robust-stability test to ensure that the
system is stable to linear perturbations, recovering the ex-
pected results (see [35] for a discussion of this test).

The numerical setup used in the simulations presented
here is the same one discussed in Ref. [36] and more re-
cently applied to theLlama code described in Ref. [37].



5

The latter makes use of higher-order finite-difference algo-
rithms satisfying the summation-by-parts rule (up to 8th or-
der in space) and a multiblock structure for the outer com-
putational domain. More specifically, we use a central cu-
bical Cartesian patch containing multiple levels of adaptive
mesh refinement with higher-resolution boxes. The Carte-
sian grid is surrounded by6 additional patches with the
grid points arranged in a spherical-type geometry, with con-
stant angular resolution to best match the resolution require-
ments of radially outgoing waves. This allows us to move
the outer boundary to a radius where it is causally discon-
nected from the binary at a tiny fraction of the computational
cost which would be necessary to achieve the same resolu-
tion with a purely Cartesian code. The time evolution is
based on the method-of-lines with a 4th order Runge-Kutta
algorithm. Our general computational infrastructure is based
on theCactus framework and we are using packages such
asTwoPunctures [38], AHFinderDirect [39] and of
SummationByParts [40], which are freely available and
part of the Einstein Toolkit. In addition, our evolutions make
use of the mesh-refinement driverCarpet [41], which imple-
ments higher-resolution boxes with multiple levels of adaptive
mesh refinement.

A. Gauge Waves

A classical test for different formulations of the Einstein
equations is offered by the “gauge-wave” [35], in which
a fictitious one-dimensional pulse propagating along thex-
direction can be simulated by performing a conformal trans-
formation of the Minkowski metric in the two-dimensional
sector spanned by the(t, x) coordinates, namely using the line
element

ds2 = h(x, t) (−dt2 + dx2) + dy2 + dz2 . (28)

The solution of the pulse at any time is just given by the
advection of the initial profile of the gauge wave, which can
be set to be smooth and periodic by choosing a sine-like initial
data of the type [35]

h(x, t = 0) = 1−A sin

(

2πx

L

)

, (29)

with an amplitudeA < 1. Although this test is apparently triv-
ial as it does not involve the solution of the Einstein equations
in a very nonlinear regime, it nevertheless represents a seri-
ous benchmark even for formulations as robust as BSSNOK,
which indeed does not pass it [42].

Following [42], we choose an amplitude ofA = 0.1 in
a domain ofL = 1 with three uniform resolutionsh0/L =
{1/50, 1/100, 1/200}and periodic boundary conditions. No-
tice that the metric form (28) corresponds to an harmonic
slicing condition with zero shift, so we have to change our
preferred coordinate choice (i.e. the1 + log slicing with the
Gamma-driver) to perform this test. Furthermore, different
implementations of the CCZ4 formulation: one in which
the constraints aredampedwith coefficientsκ1 = 1/L and

FIG. 1: L-infinity norm of the Hamiltonian constraint in the gauge-
wave test, when performed with a CCZ4 formulation with damping
terms (black solid line), with a CCZ4 formulation without damp-
ing terms (blue dotted line), or with the BSSNOK formulation(red
dashed line). Clearly, the Z4u and the BSSNOK formulations are
unstable (cf. Fig. 5 of Ref. [42]) and a similar behavior willbe en-
countered also in black-hole spacetimes (cf. Figure 4).

κ2 = 0, and one in which the constraints areundamped,
i.e.κ1 = 0 = κ2. We will refer to these two cases as to “Z4d”
and “Z4u”, respectively (Note that in these tests the shift is set
to zero and hence we do not need to specify a value forκ3,
which we take to be one).

The infinity-norm of the Hamiltonian constraint relative to
simulations at the highest resolution is displayed in Fig. 1
for the damped CCZ4 formulation (black solid line), for the
undamped CCZ4 formulation (blue dashed line), and for the
BSSNOK formulation (red dotted line). Clearly, the BSSNOK
and the CCZ4 formulation without damping terms fail before
50 crossing times (BSSNOK after42 crossing times and Z4u
after 56 crossing times) as indicated by the an exponential
increase in the violation of the energy constraint. However,
with the addition of the damping terms, the CCZ4 formula-
tion is able to accurately evolve this solution for more than
1000 crossing times, while preserving the profile of the pulse.
Furthermore, we have verified that the evolved solution con-
verges to the expected spatial-discretization order (i.e.either
4th or 8th order), with only a very small phase error when
using the 8th order scheme.

Overall, this test shows that the dynamical control of the
energy constraint via the damping termκ1 is crucial to attain
a stable evolution, even in such a simple type of spacetimes.
We also note that this test is more demanding for conformal
formulations, where there is more than one component of the
metric which is nontrivial. This is confirmed by comparing
our results with those in Ref. [43], where the standard Z4 for-
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outer boundary h0/M Nang Rin/M Rout/M Nlev. rlev/M (1− φZ4d/φB) (1− φZ4u/φB) (1− φZ4d/φZ4u)

multiblock, caus. discon.0.80 33 40.00 2192.80 6 (12, 6, 3, 1.5, 0.6) 0.0445 0.0465 0.00230

multiblock, caus. discon.0.60 43 39.60 2192.40 6 (12, 6, 3, 1.5, 0.6) 0.0315 0.0335 0.00175

multiblock, caus. discon.0.48 53 39.84 2192.16 6 (12, 6, 3, 1.5, 0.6) 0.0245 0.0255 0.00135

multiblock, caus. discon.0.40 65 40.00 2192.40 6 (12, 6, 3, 1.5, 0.6) − − −

multiblock, caus. con. 0.60 43 39.60 350.40 6 (12, 6, 3, 1.5, 0.6) − − −

Cartesian, caus. con. 1.20 0 − 199.20 7 (110, 12, 6, 3, 1.5, 0.6) − − −

TABLE I: Properties of the black-hole binaries simulated. The first column indicates the type of outer boundary and whether causally con-
nected.h0 is the grid spacing on the coarsest Cartesian grid, which is equal in all cases to the radial grid spacing in the angular patches.
Nang is the number of cells in the angular directions in the angular patches.Rin andRout are the inner and outer radii of the angular patches.
Nlev. is the number of refinement levels (including the coarsest) on the Cartesian grid, and2 rlev indicates the size of the cubical refinement
boxes centered on each black hole. The unit of the spacetime massM is chosen such that each black hole has mass0.5M in both the single
and binary black cases. Finally, the last three columns contain the relative difference in theℓ = m = 2 gravitational-wave phase between
evolutions carried out with either the BSSNOK formulation (φB), the CCZ4 formulation with damping terms (φZ4d), or the CCZ4 formulation
without damping terms (φZ4u).

mulation, i.e. not implementing a conformal decomposition,
was able to pass this test without the need of damping terms.
The GH formulation also passes this test.

B. Black-Hole Spacetimes

Before considering black-hole binaries, we have tested ex-
tensively our new CCZ4 formulation in the evolution of single
nonspinning black holes. This has allowed us to determine
how different choices for the damping coefficientsκ1 andκ2

influence the solution and, in particular, the violation of both
the ADM and theZµ constraints. In this way we have con-
cluded that most of the dynamics in the evolution of the con-
straint equations comes from the first damping coefficient, so
thatκ2 = 0 represents a sensible choice and is the one that we
will consider hereafter. On the other hand, increasing values
of κ1 produce lower violations of the constraints and a value
of κ1 ≈ 0.1/M seems optimal in this sense. Higher values, in
fact, lead only to marginal improvements of the solution, but
also tend to increase the stiffness of the damping terms.

An important and unexpected result obtained when imple-
menting the CCZ4 formulation in black-hole spacetimes is
that subtle and nonlinear couplings can occur, leading to un-
stable evolutions also for those choices of the coefficientsthat
are perfectly stable in other spacetimes. While, in fact, we
have carried out stable evolutions of the robust-stabilitytest
with the covariant and damped CCZ4 formulation (i.e. with
κ3 = 1 andκ1 6= 0), we were not able to obtain stable evo-
lutions of black-hole spacetimes withκ3 = 1, although the
growth time of the instability does change with the values of
κ1 (see discussion around Fig. 4). Clearly, nontrivial cou-
plings seem to appear between these coefficients, which de-
pend on the degree of nonlinearity and which deserve further
investigation to be properly understood.

On the whole, and as we will detail below, we have
found thataccurateandstableevolutions of binary black-hole
spacetimes can be obtained with the damped noncovariant Z4
systems (i.e. withκ3 = 1/2, κ1 = 0.1/M ). On the other
hand, covariant and conformal Z4 formulations that are either

damped (i.e. withκ3 = 1, κ1 6= 0), or undamped (i.e. with
κ3 = 1, κ1 = 0), have been found to lead tounstableevolu-
tions, although on rather different timescales and with variable
degree of accuracy (see discussion below).

The initial data of the binary black-hole evolutions is
obtained from a circular-orbit condition at the third post-
Newtonian order [44] and corresponds to an equal-mass non-
spinning binary with an initial coordinate separation ofD =
8M . The binary performs about3.5 orbits before merging
and settles to an isolated spinning black hole aftert ≈ 360M .
To carry out a meaningful comparison, the binary is evolved
with the BSSNOK and the CCZ4 formulations keeping the
same choice for the gauges, namely the1 + log slicing con-
dition and the Gamma-driver shift condition withf = 3/4,
η = 2/M , and the same grid setup. For the latter, in par-
ticular, we have considered three different choices aimed at
determining the influence of the outer boundaries on the qual-
ity of the solution. This is a point discussed in Refs. [28, 29],
where it was argued that the Z4c formulation is more sensitive
than the BSSNOK one to incorrect (or constraint-violating)
boundary conditions. As a result, we consider three different
classes of simulations depending on the treatment of the outer
boundary: (i) multiblock padding and spherical outer bound-
ary which is causally disconnected (i.e. at∼ 2200M for
a simulation lasting∼ 800M ); (ii) multiblock padding and
spherical outer boundary which is causally connected (i.e.at
∼ 350M ); (iii) Cartesian outer boundary which is causally
connected (i.e. at∼ 200M ). For case (i), we reduce the or-
der of the finite-difference operator at the outer boundary but,
because it is causally disconnected, the initial conditions are
preserved there. For case (ii), instead, we impose reflecting
boundary conditions so as to “stress” the solution with data
from the outer boundary which is constraint-violating and in-
jected mostly at the time of the reflection. Finally, in case
(iii) we have applied ordinary, outgoing Sommerfeld bound-
ary conditions to all variables, again triggering violations in
the constraint equations.

All the properties of the grid structure and the treatment of
the outer boundary are summarized in Table I, whereh0 is
the grid spacing on the coarsest Cartesian grid, which is equal
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FIG. 2: Real part of theℓ = m = 2 mode of the gravitational wave-
form Ψ4 for an equal-mass nonspinning black-hole binary. Differ-
ent lines refer to evolutions with the noncovariant formulation with
and without damping terms, i.e. withκ3 = 1/2 andκ1 = 0.1/M ,
κ2 = 0 (Z4d), orκ3 = 1/2 andκ1 = κ2 = 0 (Z4u). The two evo-
lutions are indicated, respectively, as Z4d and with a blacksolid line
or as Z4u and with a blue dotted line; the BSSNOK formulation is
shown with a red dashed line. Shown in the inset is a magnification
of the merger.

in all cases to the radial grid spacing in the angular patches.
Nang is the number of cells in the angular directions in the an-
gular patches, whileRin andRout are the inner and outer radii
of the angular patches, respectively. In the case of a Carte-
sian outer boundary,Rout represents the distance to the outer
boundary along coordinate lines. Finally,Nlev. is the number
of refinement levels (including the coarsest) on the Cartesian
grid, while 2 rlev indicates the size of the cubical refinement
boxes centered on each black hole.

As final remark before discussing the results, we note that
all the rest being the same, at any given resolution the CCZ4
system has a smaller violation of the constraints than the BSS-
NOK one. At the same time, however, because the violations
of both the energy and momentum constraints are part of the
evolution equations in the CCZ4 system, the latter is more
strongly affected than BSSNOK one, for which only the vio-
lations of the momentum constraint are included in the evo-
lution system. As a result, the CCZ4 formulation requires a
comparatively higher minimum-resolution treshold in order to
enter a convergent regime.

A first comparison of the behavior of the different formula-
tions is offered in Fig. 2, where we show theℓ = m = 2 mode
of the gravitational waveformΨ4 as extracted on a sphere of
coordinate radiusr = 100M (see [37] for details on the ex-
traction procedure). Different lines refer to simulationsus-
ing either the noncovariant formulation with damping terms,

FIG. 3: Differences in the phase evolutions at the high, medium and
low resolutions, respectively (these are indicated as HR, MR and
LR). The top panel refers to the BSSNOK formulation, while the bot-
tom one the the noncovariant damped CCZ4 formulation (Z4d).The
differences between the low and medium resolutions are alsoscaled
with the appropriate convergence coefficients (marked asCF4 and
CF8, see text) to highlight the convergence order of the solution; all
the data refers to simulations with a multiblock padding andcausally
disconnected outer boundary. Note that at these resolutions the CCZ4
formulation has larger phase errors, but due its higher convergence
factor, these errors are expected to decay at a faster rate than for
BSSNOK.

i.e. with κ3 = 1/2 andκ1 = 0.1/M , κ2 = 0 (Z4d, black
solid line), or to the noncovariant formulation without damp-
ing terms, i.e. withκ3 = 1/2 andκ1 = κ2 = 0 (Z4u, blue
dotted line). Also shown as a reference is a simulation with
the BSSNOK formulation (red dashed line) using the same
numerical setup. The simulations refer to the highest resolu-
tion (i.e.h0/M = 0.48) and the grid having the multiblock
padding and an outer boundary atRout = 2192.16M .

The first obvious thing to note is that all simulations lead
to a stable merger and ringdown at all the resolutions consid-
ered. Furthermore, while a small phase difference is present
between the Z4 and the BSSNOK runs, this difference is very
small and∆φ . 0.02 rad over the whole simulation. As a
comparison, the phase difference between the Z4 and the Z4u
simulations is∆φ . 0.002 rad (see Table I for the relative
maximum differences).

Although the phase differences between the waveforms ob-
tained with the two formulations is relatively small, it also
decreases with the resolution, thus indicating that both for-
mulations would yield the same phase evolution in the con-
tinuum limit. The rate of convergence, however, is different
when considering either the BSSNOK or the CCZ4 formula-
tion. This is shown in Fig. 3, where we report the residuals
in the phase evolutions at the high, medium and low resolu-
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tions, respectively (these are indicated as “HR”, “MR” and
“LR”). The differences between the low and medium resolu-
tions are also scaled to highlight the convergence order of the
solution. More specifically, the HR, MR and LR refer to simu-
lations with the coarsest resolutions ofh0/M = 0.6, 0.48, 0.4
(cf. Table I). The convergence coefficients corresponding to
these resolutions and used for rescaling areCF4 = 3.0898,
for a convergence factor of4.5 in the BSSNOK case, and
CF8 = 7.1906 for a convergence factor of8.5 in the Z4d case.
Note however that, as mentioned above, the CCZ4 formula-
tion needs a higher resolution to enter the convergence regime,
while a triplet of resolutions withh0/M = 0.8, 0.6, 0.48
would be enough to show convergence at about 4th order for
the BSSNOK runs.

Beside this minimum resolution threshold, the additional
computational expenses required by the CCZ4 formulations
are not significant. The difference with the BSSNOK sys-
tem consists in an additional evolution equation for the scalar
variableΘ, which would amount to solving 25 evolution equa-
tions (instead of 24 as in BSSN), implying around4% higher
computational costs. However this is an over-estimate, as in
reality the time spent in computing the evolution equations
depends on the computational infrastructure. In our case, it
is about half of the total time of a binary black-hole simu-
lation, while the other half is dedicated to mesh-refinement,
gravitational-wave extraction and other analysis routines.

All in all, we find that for the highest resolutions used the
results of the BSSNOK runs converge at about 4th order (top
panel in Fig. 3), while the Z4d runs converge at about 8th or-
der (bottom panel in Fig. 3); in both cases, the convergence or-
der is lost in the very final stages of the merger. It is a present
unclear why the two formulations yield, with the same com-
putational infrastructure, two different convergence rates. It is
possible that the constraint-damping properties of the CCZ4
formulation are able to suppress the small violations coming
from the reflections across refinement boundaries, that are a
major source of error and one of the largest obstacles to attain
clean convergence. However, more efforts (and considerable
computational costs) need to be invested to assess whether this
is the correct explanation.

A useful way to appreciate the different behavior of the
two formulations is shown in Fig. 4, which reports the evo-
lution of the L2-norm of the ADM energy (i.e. the violation
of the Hamiltonian constraint) for the covariant CCZ4 formu-
lation with and without damping (light-blue dot-dashed line
and magenta long-dashed line, respectively), for the nonco-
variant CCZ4 formulation with and without damping (black
solid line and blue dotted line, respectively), and for the BSS-
NOK formulation (red dashed line). We also report the dif-
ferent values of coefficientf in the shift Eq. (21), which does
change the growth rate of the unstable simulations, but does
not remove the instability in the case of the fully covariant
formulation1. The data refers to simulations having a coarse

1 We have performed simulations also withκ3 = 1, κ1 = 0.1/M, f = 1,
or κ3 = 1, κ1 = 0.1/M, f = 3/4, andκ3 = 1, κ1 = 0, f = 3/4; in all

FIG. 4: L2-norm of the Hamiltonian constraint for the noncovariant
CCZ4 formulation with and without damping terms (black solid line
and blue dotted line, respectively), for the covariant CCZ4formula-
tion with and without damping terms (light-blue dot-dashedline and
magenta long-dashed line, respectively), and for the BSSNOK for-
mulation (red dashed line). Also indicated are the different values of
coefficientf in the shift Eq. (21), which however do not introduce
qualitatively different behaviors. The data refers to the asimulations
having a coarse resolution ofh0/M = 0.48 and outer boundary at
Rout = 2192.16M .

resolution ofh0/M = 0.48 and outer boundary placed at
Rout = 2192.16M , but similar behaviors have been seen also
at higher and lower resolutions.

Note that as the initial data settles and the evolution pro-
ceeds, the CCZ4 formulation shows a violation of the Hamil-
tonian constraint smaller than for the BSSNOK case (the L2-
norm being at least 1 order of magnitude smaller), hence
yielding a more accurate solution of the Einstein equations.
However, after this initial stage, the evolutions with the CCZ4
formulation can be considerably different according to the
choice made for the parametersκ3 andκ1. More specifically,
the covariant and damped system (i.e.κ3 = 1, κ1 6= 0) ex-
hibits a very rapid violation of the constraint at∼ 100M and
inevitably leads to a code crash (light-blue dot-dashed line
in Fig. 4). Other variants of the CCZ4 formulation, on the
other hand, show a different behavior. In particular, both of
the undamped CCZ4 formulations (i.e.κ3 = 1/2, 1, κ1 = 0)
lead to a successful merger, which can be easily identifiable
as the peak at about≃ 350 − 380M , and which is due to
larger local violations of the constraints as the merger takes

cases we have found an instability (although with differentgrowth rates),
which we do not report to avoid overloading Fig. 4.
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place2. At the same time, however, both implementations
show a growth of the constraint violation (blue dotted line and
magenta long-dashed line). This growth can be rather slow in
the casef = 1, but it is likely to yield unstable evolutions
on very long timescales. Finally, Fig. 4 shows that a nonco-
variant and damped implementation of the CCZ4 formulation
(i.e. κ3 = 1/2, κ1 6= 0; black solid line) leads not only to a
stable merger and subsequent evolution, but it also provides a
violation of the constraints which is at least 1 order of mag-
nitude smaller than the corresponding one obtained with the
BSSNOK evolution (red dashed line). This is one the main
results of this paper and the ultimate justification for investi-
gating this new formulation of the equations.

We note that the behavior of the constraints described above
for the CCZ4 formulation is indeed very similar to what al-
ready experienced by many groups implementing the GH for-
mulation3. In that case, in fact, the addition of the damp-
ing terms was crucial to achieve stable black-hole evolu-
tions [1, 26, 45]. Altogether, the evolution shown in Fig. 4 al-
ready provides the needed evidence that the new CCZ4 formu-
lation, once suitable damping terms are added and the bound-
ary conditions do not play a role, represents a considerableim-
provement over the standard BSSNOK formulation. In what
follows we will show that this continues to be the case also
when the outer boundaries are chosen to produce incorrect
data, or when they are placed very close to the merging bi-
nary.

Figure 5 reports with black solid lines theℓ = m = 2 mode
of the gravitational waveformΨ4 extracted atr = 100M for
simulations having a coarse resolutionh0/M = 0.60 and an
outer boundary which is causally connected and atRout =
350.40M (cf. Table I). The top panel, in particular, refers to
a simulation using the noncovariant and damped implemen-
tation of the CCZ4 formulation (i.e. Z4d, withκ3 = 1/2,
κ1 6= 0), while the bottom one to a simulation using the
BSSNOK formulation. Also shown with red dashed lines are
the corresponding waveforms obtained when the outer bound-
ary is causally disconnected and atRout = 2192.40M . As
shown more clearly in the two insets, the CCZ4 formulation
yields waveforms which are essentially identical and are un-
affected by the constraint-violating outer boundaries. This is
to be contrasted with the evolution performed with the BSS-
NOK formulation and which shows strong signs of reflection
at t ≃ 510M .

The reason behind this different behavior is to be found in
the different way in which the two formulations handle the
constraint-violations coming from the outer boundaries and is
best appreciated in Fig. 6, where we show again the L2-norm
of the ADM energy for the noncovariant and damped imple-
mentation of the CCZ4 formulation (i.e. Z4d withκ3 = 1/2,
κ1 6= 0) and for the BSSNOK formulation. Note that both suf-

2 Note that the time of merger is a gauge dependent quantity andcan there-
fore take place at slightly different times in different formulations.

3 We recall that GH formulation can can be seen as a reduction ofthe Z4
formalism [27].

FIG. 5: Real part of theℓ = m = 2 mode of the gravitational wave-
form Ψ4 (black solid line) extracted atr = 100M for simulations
having a coarse resolutionh0/M = 0.60 and an outer boundary
which is causally connected and atRout = 350.40M . The top
panel refers to a simulation using the noncovariant and damped im-
plementation of the CCZ4 formulation (i.e.κ3 = 1/2, κ1 6= 0),
while the bottom one to a simulation using the BSSNOK formula-
tion; also shown are the corresponding waveforms obtained when
Rout = 2192.40M (red dashed lines).

fer of a very large increase att ∼ 250M when the waves from
the initial gauge settling of the binary, propagating at a speed
of vg ∼

√
2, reach the outer boundary atRout = 350.40M

and lead to larger violations. Also note that this increase in
the constraint violation happens much earlier than the one as-
sociates with the merger (which is att ∼ 350M ). As evi-
dent from Fig. 6, the CCZ4 is able to recover efficiently from
this violation, and the damping terms act in such a way that
by t ∼ 400M the violation is completely removed, with the
Hamiltonian constraint brought back to its minimum value.
By contrast, the evolution with the BSSNOK formulation
never recovers from the boundary contamination, leading to
an increasing violation responsible for the incorrect behavior
discussed in Fig. 5. The CZZ4 formulation experiences an-
other increase in the violation att ∼ 750M , when the gauge
waves coming from the binary reach again the outer bound-
ary, but once again the constraint damping terms act so as to
remove the violation.

An additional and concluding evidence of the constraint-
damping properties of the CCZ4 formulation is shown is
Fig. 7, where we report the evolution of the L2-norm of
the Hamiltonian constraint (top panel) and of the root-mean-
square of the momentum constraint (bottom panel) for the
noncovariant and damped implementation of the CCZ4 for-
mulation (i.e. Z4d withκ3 = 1/2, κ1 6= 0, black solid
lines), and for the BSSNOK formulation (red dashed lines).
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FIG. 6: L2-norm of the Hamiltonian constraint for the noncovariant
and damped implementation of the CCZ4 formulation (i.e. Z4dwith
κ3 = 1/2, κ1 6= 0), and for the BSSNOK formulation (red dashed
line). The data refers to the a simulations having a coarse resolution
of h0/M = 0.60 and outer boundary placed atRout = 350.40M .

The data refers to simulations performed with a plain Carte-
sian outer boundary which is very close to the binary and at
Rout = 199.20M (cf. Table I). As in the previous figure, also
here it is possible to detect the increase of the constraint vi-
olations when gauge waves from the binary have reached the
outer boundary att ∼ 140M .

Also in this case, the damping terms in the equations re-
move rapidly the violations, which decay exponentially to
their minimum values. Because the boundary is so close-in,
this behavior of rapid increase and exponential decay takes
place at least 3 times, both for the Hamiltonian and momen-
tum constraints. Any formulation of the Einstein equations
having this type of behavior is obviously preferable over one
in which the violations are trapped in the computational do-
main and are not allowed to be damped.

IV. CONCLUSIONS

By starting from the Z4 formulation [27] and by includ-
ing all the nonprincipal terms coming from the covariant form
of the equations, we have introduced the CCZ4 formulation,
i.e. the conformal and covariant formulation of the Z4 system,
and proposed it as a new and effective way to solve numeri-
cally the Einstein equations in arbitrary spacetimes.

The new set of equations combines the most important fea-
tures of the commonly used formulations of the Einstein equa-
tions employed in numerical-relativity calculations. In partic-
ular, it is able to make use of well-tested and robust gauge
conditions which remove the need of excision and, at the same

FIG. 7: L2-norm of the Hamiltonian constraint (top panel) and of the
root-mean-square of the momentum constraint (bottom panel) for the
noncovariant and damped implementation of the CCZ4 formulation
(i.e. Z4d withκ3 = 1/2, κ1 6= 0, black solid lines), and for the BSS-
NOK formulation (red dashed lines). The data refers to simulations
having a coarse resolution ofh0/M = 1.20 and outer boundary at
Rout = 199.20M .

time, it is able to control dynamically the violation of the con-
straint equations and to rapidly suppress them when they oc-
cur.

We have validated the robustness of the CCZ4 evolution
system by performing a number of tests both in flat and in
black-hole spacetimes. We have thus found that the CCZ4
formulation without damping terms does not pass the stan-
dard gauge-advection test, in analogy with the behavior of the
BSSNOK formulation. However, when the damping terms are
switched on, the new CCZ4 formulation passes the test stably
and accurately.

This ability of the formulation to control and damp vio-
lations in the constraint equations has been confirmed also
through the simulation of nonspinning black-hole binaries,
which have been followed for about three orbits before merg-
ing to a rapidly rotating black hole. Through a series of sim-
ulations at different resolutions and with different treatments
of the outer boundary – handled either with multiblocks and
placed at a causally-disconnected distance, or with a Cartesian
box and placed close to the binary – we have shown thatnot
all of the implementations of the CCZ4 formulation lead to
stable evolutions of binary black-hole spacetimes.

Rather, we have found that the covariant form of the CCZ4
formulation, in conjunction with the use of damping terms,
leads to exponentially growing modes that rapidly destroy the
numerical solution. Fortunately, the use of a noncovariantfor-
mulation and of damping terms leads not only to a stable evo-
lution, but it also provides a violation of the constraints which
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is at least 1 order of magnitude smaller than the corresponding
one obtained with the BSSNOK evolution. A close compar-
ison with simulations performed with the BSSNOK formula-
tion using the same numerical setup, has also revealed that
the CCZ4 formulation can efficiently recover from large vio-
lations of the constraints, with the damping terms rapidly re-
moving constraint violations produced at the outer boundary.
By contrast, evolutions with the BSSNOK formulation expe-
riencing similar violations never recover from the boundary
contamination, leading to an increasing violation and incor-
rect gravitational waves.

Because the changes necessary to implement the new con-
formal formulation in BSSNOK codes and the additional
computational costs are very small, we propose the new for-
mulation as a new standard for the numerical solution of the
Einstein equations in generic 3D spacetimes. We expect, in
fact, that a numerical solution of the Einstein equations hav-
ing smaller violations of the constraints will also yield a more
accurate modelling of the gravitational-wave emission, both
in vacuum and nonvacuum spacetimes.

At the same time, however, much remains to be done to
fully understand the role played by the damping coefficientsin
fully nonlinear regimes and in the covariant form of the CCZ4
formulation. Our experience with binary black-hole space-
times has revealed, in fact, that there are situations in which
the damping of the constraints interferes negatively with a
fully covariant form of the CCZ4 formulation, leading to un-

stable evolutions. In these cases, even small changes in the
covariant character of the equations (e.g., by usingκ3 = 0.9
instead ofκ3 = 1) allows one to use nonzero damping co-
efficients and hence to obtain a smaller violation of the con-
straints. A systematic investigation of the space of parameters
κ1 × κ2 × κ3 is difficult due to the large computational costs
of these simulations, but is clearly needed for a deeper under-
standing of the behavior of the CCZ4 formulation. Much of
our future work will be dedicated to elucidate this point.
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064004 (2010).

[22] E. Schnetter, Class. Quant. Grav.27, 167001 (2010).
[23] D. Alic, L. Rezzolla, I. Hinder, and P. Mösta, Classical Quan-
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