
IOP PUBLISHING CLASSICAL AND QUANTUM GRAVITY

Class. Quantum Grav. 24 (2007) 5103–5121 doi:10.1088/0264-9381/24/20/012

Thermal diagnostic of the optical window on board
LISA Pathfinder

M Nofrarias1, A F Garcı́a Marı́n2, A Lobo1,3, G Heinzel2,
J Ramos-Castro4, J Sanjuán1 and K Danzmann2

1 Institut d’Estudis Espacials de Catalunya (IEEC), Edifici Nexus, Gran Capità 2-4,
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Abstract
Vacuum conditions inside the LTP gravitational reference sensor must be under
10−5 Pa, a rather demanding requirement. The optical window (OW) is an
interface which seals the vacuum enclosure and, at the same time, lets the laser
beam go through for interferometric metrology with the test masses. The OW
is a plane-parallel plate clamped in a titanium flange, and is considerably
sensitive to thermal and stress fluctuations. It is critical for the required
precision measurements, hence its temperature will be carefully monitored
in flight. This paper reports on the results of a series of OW characterization
laboratory runs, intended to study its response to selected thermal signals, as
well as their fit to numerical models, and the meaning of the latter. We find
that a single-pole ARMA transfer function provides a consistent approximation
to the OW response to thermal excitations, and derive a relationship with the
physical processes taking place in the OW. We also show how the system noise
reduction can be accomplished by means of that transfer function.

PACS numbers: 04.80.Nn, 95.55.Ym, 04.30.Nk, 07.87.+v, 07.60.Ly, 42.60.Mi

(Some figures in this article are in colour only in the electronic version)

1. Introduction

LISA Pathfinder (LPF) is an ESA mission, with NASA contributions, whose main objective is
to put to test critical parts of the Laser Interferometer Space Antenna (LISA), the first space-
borne gravitational wave (GW) observatory [1]. The science module on board LPF is the
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LISA Technology Package (LTP) [2]. The unprecedented sensitivity of the LTP has prompted
the conceptual enhancement of LPF’s science objectives as regards the purity of geodesic, or
free-fall motion of test masses in the interplanetary gravitational field [3, 5].

Free fall control is achieved by gravitational reference sensors (GRS) [6]. These are
a set of capacitive sensors which can determine to high precision (nanometres), the 3D
position and orientation of cubic test masses relative to their non-contacting enclosure, which
is rigidly linked to the spacecraft structure. Detected off-centre deviations trigger action by
a set of micro-thrusters which move the spacecraft such that the mass returns to its centred
position. The combination of the GRS, the thrusters and the control system (the drag-free and
attitude control system (DFACS)) is called the drag-free subsystem. The latter is intended to
accurately nullify the effects of any non-gravitational forces acting on the spacecraft. This
makes it possible to detect differential gravitational accelerations between the two test masses,
whether by precision interferometry [7] or by the drag-free system itself.

This is fundamental for LISA, since gravitational waves (GWs) show up as tides, i.e.,
time-varying differential gravitational accelerations. The precision of the measurement done
with the LTP is required to be [8]

S
1/2
�a (ω) � 3 × 10−14

[
1 +

(
ω/2π

3 mHz

)2
]

m s−2 Hz−1/2, 1 mHz � ω

2π
� 30 mHz. (1)

We shall refer to the above frequency band as the LTP measuring bandwidth (MBW) in
the following. Equation (1) is ten times less demanding than what is needed for LISA [9], both
in magnitude and in frequency band, yet it is between two and three orders of magnitude better
than has been achieved or required so far for space missions [3]. It has relevant consequences
for future missions, which need high performance drag free, hence the relevance of LPF
beyond its natural objectives as a LISA precursor.

In order to meet the above requirements, the residual pressure inside the GRS must be
under 10−5 Pa, a condition which is classified as very high vacuum by the American Vacuum
Society. This implies that the interior has to be tightly sealed within a vacuum enclosure (VE),
and non-mechanical getter pumps installed to ensure a suitably rarefied environment around
the test masses. Perhaps a more obvious option would have been to communicate the VE
directly with the external interplanetary vacuum, which is much better than 10−5 Pa. Recent
studies [4] by the Project Engineering Team have shown that there are serious difficulties with
such an option. For example, venting out of residual gas has time scales exceeding the very
LPF mission lifetime, cleanliness control inside the VE is tighter with the OW, etc.

The general layout is shown in figure 1. As regards the issues we address in this paper,
attention is drawn to the optical window (OW), which is the interface between the test masses
and the Optical Bench: laser beams must bounce off the test masses to monitor their positions
by precision interferometry, hence a transparent window is necessary for the light to make it
to the interior of the VE.

The OW is a plane-parallel plate and is therefore a potential source of noise: random
variations of its optical properties may result in corresponding optical path fluctuations,
which distort the laser light phase, hence the optical metrology readout. Great care must
be taken when manufacturing this critical component of the LTP and, once manufactured,
characterization of its behaviour duly performed.

The most important agent responsible for OW fluctuations is temperature fluctuations.
These cause various degrees of mechanical stresses across the rim, as well as temperature
dependent index of refraction changes. The former are very difficult to model with quantitative
accuracy, mostly due to lack of precise control of mounting interface behaviour, but the former
can be much better studied in a stress free environment. This paper is concerned with the
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Figure 1. Layout of the LTP core assembly, as of 13 October 2006. The test masses are Au–Pt
alloy cubes inside either vacuum enclosure.

experimental characterization on ground of prototype OWs, and with the phenomenological
modelling of their response to thermal excitations. This is justified if the noise fluctuations
are smaller than the applied stimuli and if the system behaves linearly.

The philosophy of the approach is the one typical of the diagnostics subsystem, as
described in [10]. This is: apply controlled temperature signals of high signal-to-noise ratio
to the titanium flange where the OW is held (see below), and measure the temperature of
the former. Measure also the induced phase shifts in a laser beam that travels through the
OW, then try to establish the transfer function between both magnitudes, i.e., temperature and
phase shifts. The transfer function thus obtained is also assumed to be valid in the situation
when only noise is present in the flange. The latter extrapolation hypothesis is the clue to the
determination of the phase noise contributed by the temperature fluctuation noise in the OW,
on the basis of temperature measurements.

The success of the proposed empirical approach depends on our ability to find a transfer
function which depends on a (preferably reduced) number of parameters, which does not
change significantly across different conditions and runs of the experiment. As we shall now
show, we have found that a single-pole ARMA5 process describes rather satisfactorily the
relationship we look for. The precise meaning of this concept will be discussed in detail in
the following sections, and the results applied to evaluate the temperature fluctuation noise in
a dedicated experiment.

The paper is organized as follows. In section 2 we describe the experiment layout,
including hardware and data acquisition details. Section 3 is devoted to the data processing,
analysis, two modes of model fitting—a direct linear regression and a single-pole ARMA
model—and numerical results. In section 4, we examine in detail the ARMA(2,1) fit, and
derive important implications for the understanding of the physical processes happening
in the OW. Section 5 addresses how the previous analysis can be applied to quantify the

5 Acronym for auto regressive moving average, roughly the discrete time series equivalent of a linear differential
equation (see a standard textbook, e.g., [14]).
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Figure 2. The OW (left), with the plane-parallel plate inside the titanium flange, heaters on the
lateral surface of the latter (pale brown foils) and two pairs of NTC temperature sensors (black
beads with wires). On the right, mounting of the OW on rails for measurements. Note heaters
are covered with aluminium foils: this is to prevent undesired heating of other components by the
heaters’ emission of thermal radiation.

contribution of temperature fluctuation noise to the total phasemeter noise, based on another
set of experimental results, and section 6 develops an interesting exercise whereby a continuous
time model is suggested as the origin of the discrete time ARMA fit. Finally, conclusions and
bibliographic references close the article.

2. Experiment description

The current baseline of LISA Pathfinder and LISA includes vacuum tanks containing the test
masses which act as end mirrors for the interferometer. The presence of such tanks, or
vacuum enclosures (VE), forces the inclusion of a transmissive element interfacing between
the interior of the VE and the optical bench outside. This optical element is the optical window
(OW). In this section, we describe the laboratory hardware and conditions of several runs of
measurements conducted in AEI Hannover Laboratory facilities to characterize the thermal
behaviour of the OW.

In the experiment two different prototype OWs were tested. Both were manufactured
following the same baseline as the one to be applied in the final LTP flight model. The main
element of the window is a very low thermal expansion coefficient glass chosen in order to
minimize the variation of the optical pathlength with respect to the temperature. The figure
of merit—quantified by equation (21)—is 0.59 × 10−6 K−1 for our particular choice, the
OHARA S-PHM52 (n = 1.606, dn/dT = −5.54 × 10−6 K−1). This parameter can reach
values as high as 5.31 × 10−6 K−1 for BK7 or 8.32 × 10−6 K−1 for fused silica. The glass
of 30 mm diameter and 6 mm length was clamped between two titanium flanges, fastened by
means of titanium bolts and sealed by two helicoflex rings6 to prevent gas leakage in space
conditions.

The OW is expected to induce thermal-related noise in the metrology subsystem. In
order to quantify its contribution to the total noise budget a set of thermal diagnostics items
were attached to the optical window prototypes. They are shown in figure 2, left panel: two
Kapton heaters Minco HK5303 attached to the titanium flange lateral surface, and four glass
encapsulated thermistors Betatherm G10K4D853 attached in pairs to the titanium flange and
on the athermal glass surface, for precision temperature measurements. These diagnostics
items were all glued to their attachment points with pressure sensitive adhesive (PSA) tape
3M-966 of similar characteristics to the one to be used in flight. The temperature sensors on

6 These are softer metallic rings, e.g. aluminium or silver.
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Figure 3. Schematic of the interferometric measurement concept.

the glass will actually not fly with the LTP. They will however provide relevant information
to implement real mission data analysis procedures and methods, for which only the titanium
temperature data will be available.

During the experiment, the window was leaning vertically on a PVC two-rail structure
(see figure 2, right panel), which impeded any high conductivity thermal contact with the rest
of the hardware. Although not directly affecting the thermo-optical interaction studied here,
the OW will be part of the VE in the real LTP, thus a higher thermal conductance is to be
expected, and therefore a faster suppression of thermal gradients is foreseen during mission
operations.

The complete setup (i.e., the glass plus its mounting structure and the just-mentioned
diagnostics items) was inserted as a transmissive element in a dedicated optical bench, as seen
in figure 3. The heaters were covered with aluminium foil to reduce thermal radiation effects
(figure 2, right). For the same reason, the window was introduced in a copper box leaving
only a narrow opening for the laser beam to go through. As seen in the schematic of figure 3,
the beam traverses the OW only once. This will not be the case in the real LTP, where the
laser will go twice through each window, instead, but the one passage configuration used here
simplifies the OW thermal characterization without information losses. All the experiments
were performed under low-pressure conditions at a P � 10−3 Pa vacuum level.

The optical window was subjected to various heat pulses comprising a wide range of
duration and powers in order to identify suitable parameters for the thermal test to be performed
in-flight. The data here reported gather 25 experiment runs on two different prototypes,
applying heat pulses from 100 mW to 2 W ranging from 10 s to 100 s of application time. All
experiments were performed at room temperature, which falls within the expected range of
working temperatures of the LTP experiment during operations, required to be between 10 ◦C
and 30 ◦C. Figure 4 shows a typical response data plot, with indication of the temperature
sensor readings and the interferometrically registered phase shifts corresponding to a specific
heat signal input (see the figure caption for the details).

Two different data acquisition systems were used in the experiment: the interferometric
data were acquired via the LTP phasemeter prototype [7], whereas the thermal diagnostics data
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Figure 4. Phase (black curve) and various temperature sensors’ responses (coloured curves) to a
2 W heat pulse applied for 100 s. Legend indications correspond to the thermometers shown in
figure 2.

were acquired using the LTP front end electronics (FEE) prototype [11, 12]. Both acquisition
systems have previously successfully passed tests of compliance with mission noise budgets.

3. Fitting the data to models

The main purpose of this section is to give an account of the measured interferometer output
data in terms of the also measured temperature data. While in this experiment both are
of course ultimately caused by the heaters’ signal, our interest focuses on the temperature
versus phase relationship, as this is the one we need to quantify the magnitude of temperature
fluctuations noise during science operations in flight [10].

To serve this purpose, we adopt model-fitting techniques. Two approaches will be
proposed, and discussed in the ensuing section: a direct linear regression fit of the
interferometric data to the temperature read-out coming from sensors on the titanium flange
and those on the OW glass itself, and an ARMA model using only temperature readout from
the titanium temperature sensors. The latter is of particular interest, since it is not foreseen
that temperature sensors will be attached to the glass surface in the real LTP.

3.1. Data conditioning

Before we attempt to fit the data to a useful model, some data pre-processing is required.
The temperature and phase acquisition data systems reside on different hardware and

software, and deliver the respective time series data for analysis at sample rates which are
different as well: temperature data are sampled at fs,T = 0.65 Hz, whereas phase data are
sampled at fs,φ = 32.4 Hz, instead. Downsampling and resampling thus needs to be applied to
the latter in order to make meaningful sense of data fitting algorithms. To avoid aliasing effects
at downsampling phase, suitable low-pass filters are applied. This is however not enough to
have matched sampling times in both time series, so an additional interpolation algorithm is
used for properly matched resampling.

In addition, each data segment is de-trended prior to model fitting. The removed trend is
evaluated from the first 500 s previous to the heat input signal beginning. This way we get rid
of environmental drifts and spurious trending effects.
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Figure 5. Example of fit results for two different models.

3.2. Direct linear regression

A typical phasemeter response when heat pulses are applied to the OW is shown in figure 4.
An essentially instantaneous phase response is observed in coincidence with thermometers’
excitations, which suggests phase behaviour can be described as a direct, or single-time
relationship between the various temperature readings and associated phase shifts. If we
additionally make the hypothesis that such a relationship is linear7, then the model is given by

φ(t) = p1TTi(t) + p2TGlass(t), (2)

where TTi(t) is the temperature read by the thermometer on the titanium flange closest to the
activated heater, and TGlass(t) that of a thermometer on the OW glass. The parameters p1 and
p2 are to be estimated by a least-squares algorithm, which requires the square error

ε2 =
N∑

n=1

{φ[n] − p1TTi[n] − p2TGlass[n]}2 (3)

to be the smallest possible for the given data streams. Here, φ[n] is the nth sample of the
measured phase, and TTi[n] and TGlass[n] the corresponding temperature samples. Thus, for
example,

φ[n] ≡ φ(n�t), TTi[n] ≡ TTi(n�t), (4)

etc, where the sampling time �t has been set to �t ≡ 1/fs,Temp, as discussed in section 3.1.
Finally, N is the number of analysed samples of each read-out.

The conditions of minimum square error are of course given by the two equations

∂ε2

∂p1
= ∂ε2

∂p2
= 0 (5)

which, once solved, give least-squares estimates p̂1 and p̂2 of the parameters p1 and p2,
respectively. An example of this procedure is shown in figure 5. We report on the results of
this analysis in section 3.4.

7 This is, in fact, quite accurate, on account of the rather small temperature and phase variation ranges detected in
the experiment.
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3.3. ARMA model fit

Although the linear regression method performs quite acceptably well, there is a clear
motivation to find a model able to fit the data independently of the glass temperature readings,
since the latter will not be available in flight.

In this section, we take a different approach to fit phase data to titanium only temperature
readings. We shall now assume that the relationship between these magnitudes can be
expressed by a dynamical equation. More specifically, we make the hypothesis that the
phase is the output of a linear ARMA process8, whose input is the temperature of the titanium,
as recorded by the thermometer next to the activated heater. We express this by the formula [15]

φ[n] = G(q, θ)TTi[n], (6)

where G(q, θ) is a rational expression of the type

G(q, θ) = α0 + α1 q−1 + · · · + αr q−r

1 + β1 q−1 + · · · βs q−s
(7)

with q representing the shift operator:

qx[n] = x[n + 1], q−1x[n] = x[n − 1] (8)

for any discrete series x[n]. Finally, θ is an abbreviation for the vector of r + s + 1 ARMA
parameters α0, . . . , αr , β1, . . . , βs .

System identification in this approach is again based on a least-squares criterion, for
which a suitably defined square error needs to be defined. Following [15], this is the so-called
prediction error:

ε2(θ) =
N∑

n=1

{φ[n] − G(q, θ)TTi[n]}2. (9)

The estimates θ̂ of the parameters θ are those which cause ε2(θ) to be minimum.
Algorithms to find them are more robust if the additional hypothesis holds that the residuals
{φ[n] − G(q, θ)TTi[n]}, where φ[n] and TTi[n] are the actually recorded data, are a white noise
sequence [15]. Reassuringly, this is quite accurately true for our data. An example result of
the fit is shown in figure 5, blue curve (this figure is in colour only in the electronic version).

3.4. Numerical results

As stated in section 2, up to 25 rounds of measurements were carried through during the
experiment. This is a considerable number which enables us to check the consistency of the
fitting models just described. The methodology we have adopted is the following: for each
run, we de-trend the data and then fit them to both the direct linear regression (DLR) and the
ARMA models. Parameter estimates are then filed for further analysis, as we now describe.
An observation on the ARMA fit is however in order before we proceed.

Indeed, in the ARMA fit we also need to make a choice of order of the process, i.e.,
we need to set the number of αs and βs in equation (7). It turns out that an ARMA(2,1),
i.e., two αs and one β, is an excellent approach, in the sense that differences between model
predictions and actual phase data are kept small to a rather satisfactory level. Finer tuning can
be accomplished adding more αs and/or βs, but only at the expense of excessive parameter
estimates’ dispersion across different runs. This is highly undesirable and hence we confine
our model to the ARMA(2,1).

8 We feel again justified in assuming a linear relationship by the small variation intervals of the magnitudes involved.
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Table 1. Mean values and rms variances of parameter estimates.

DLR ARMA(2, 1)

p1 = (−38 ± 4) × 10−3 rad K−1 α0 = (39.6 ± 3) × 10−3 rad K−1

p2 = (65 ± 20) × 10−3 rad K−1 α1 = (−39.5 ± 3) × 10−3 rad K−1

β1 = −0.996 ± 0.001

Table 1 summarizes the results of the analysis, and figure 6 shows the binned distribution
of the parameter estimates across the 25 runs. An outstanding characteristic of the fit is that the
two MA coefficients very accurately verify the numerical relationship α1 = −α0. The model
thus relates the output phase data to the time derivative of the titanium temperature—we come
back to this in section 4.

There are a few important aspects of these results which are worth stressing:

• α1 � −α0, although the difference between their values is much less than their variances.
• Well within tolerance, −α1 = α0 = p1.
• β1 is strongly peaked at a nominal value, with only 0.1% relative tolerance.
• p2 is much more disperse, with almost 30% variability.

4. The ARMA(2, 1) transfer function

In view of the above remarks, it is expedient to rewrite the ARMA(2, 1) model in terms of the
following parameters:

α ≡ −α1, δ ≡ α0 + α1, β ≡ β1. (10)

Hence,

G(z, α, β, δ) = α
1 − z−1

1 + βz−1
+

δ

1 + βz−1
(11)

is the z-transform of the process transfer function—we have replaced the shift operator q by
the complex variable z [14]. It is also expedient to emphasize the structure of this formula as
follows:

G(z, α, β, δ) = αGHP(z, β) + δGLP(z, β) (12)

with

GHP(z, β) ≡ 1 − z−1

1 + βz−1
, GLP(z, β) ≡ 1

1 + βz−1
. (13)

We now find discrete Fourier transforms (DFT) by the substitution

z = exp(iω � t) (14)

where �t is the sampling time of the time series data. The following obtains:

|G̃HP(ω, β)|2 = 4 sin2(ω�t/2)

1 + 2β cos(ω�t) + β2
(15)

|G̃LP(ω, β)|2 = 1

1 + 2β cos(ω�t) + β2
(16)

|G̃(ω, α, β, δ)|2 = δ2 + 4α(α + δ) sin2(ω�t/2)

1 + 2β cos(ω�t) + β2
. (17)
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We thus see that the transfer function G is the sum of a high-pass term, GHP, and a
low-pass term, GLP. The effect of the latter is naturally dominant at low frequencies, while
the high-pass term dominates at high frequencies. The concepts of low and high frequencies
can be made precise by means of some intermediate frequency fb where the gains of GHP and
GLP are equal. This is easily calculated:

fb �
∣∣∣∣ δ

α

∣∣∣∣ 1

2π�t
(18)

and has a numerical value of fb � 0.2 mHz, which means the high-pass effect dominates
throughout the LTP bandwidth. We may not however neglect the relevance of the low pass at
lower frequencies, as it contributes extremely valuable information for LISA.

A Bode diagram representation for the transfer functions is shown in figure 7. The
filter modulus is characterized by a plateau of |G̃| ∼ 40 × 10−3 rad K−1 across the entire
LTP measuring bandwidth. Temperature fluctuations at frequencies below this bandwidth are
also suppressed but following different behaviour, related to the low-frequency response of
the optical window. The figure also shows the phase behaviour of the filter, and indicates
increasing delays for high-frequency perturbations.

The DC gain of the filter is

|G̃(ω = 0, α, β, δ)| = δ

1 + β
. (19)

If the estimated parameters are substituted into this expression then the following is
obtained:

|G̃(ω = 0, α, β, δ)| = (25 ± 4) × 10−3 rad K−1. (20)
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Figure 6. Histograms of the estimated parameters for the two fitting models described in the text.
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We now try to produce some insight into the physical meaning of the just discussed
analysis facts.

4.1. Physics of the ARMA process

Two different kinds of thermal effects have been identified as sources of changes in the optical
path length of a light beam traversing a plane-parallel piece of glass:

(i) Temperature-dependent changes of the refractive index
(ii) Mechanical stress induced changes of the refractive index

We briefly describe below how these effects can be approximately evaluated.

4.1.1. Temperature-dependent changes of the refractive index. The first effect, which is
found under stress-free conditions, is quantified by the formula [16]

dφ

dT

∣∣∣∣
free

= 2π
L

λ

[
dn

dT
+ (n − 1)αE

]
, (21)

where φ is the phase shift suffered by a beam of light traversing a glass slab of thickness L
and (nominal) index of refraction n; λ is the wavelength of the used light, and αE is the linear
thermal expansion factor of the glass, αE = L−1dL/dT .

The dφ/dT |free effect is most prominent at very low frequencies and DC. The reason is
that it happens even if the temperature of the glass is homogeneous, and without mechanical
stresses. It has been measured on naked glass samples in the laboratory, free of any pressure
or tension, with the result that it is 25 mrad K−1 [17], a figure very well matching the one
given by equation (20). One, however, needs to consider that the latter was obtained from
data of a real window, i.e., including metal flange. This consequently means that the stress
contribution dφ/dσ must be comparatively small at very low frequencies.

The same result is endorsed by further independent evidence. If data-sheet properties of
the OHARA S-PHM52 glass used in the experiment are used to calculate the thermal-related
path-length variations in the optical window glass due to changes in the refractive index, the
result is that dφ/dT |free is ∼21 mrad K−1, again in good agreement with equation (20).
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4.1.2. Mechanical stress induced changes of the refractive index. This second effect is
relevant to our experiment because the glass, clamped by titanium flanges to the ISH structure,
is under stress due to differing thermal expansion coefficients in glass and metal. Mechanical
stress also induces pathlength changes which are difficult to model. From the datasheet, the
only parameter provided by the manufacturer which can be used to quantify these interactions
is the photoelastic coefficient, β. However, it must be noted that β does not describe the
change in the refractive index due to stress, dn/dσ , but the appearance of birefringence due to
stress, i.e., the change of the velocity of light along different axes of the material. Although
not directly related, both parameters range in the same order of magnitude [16], and we shall
thus use the photoelastic coefficient here for our order of magnitude estimate, described in the
following.

Under this simplifying assumption, the photoelastic coefficient can be related to a
pathlength variation by

�sstress = β σd, (22)

where β = 10−5 nm cm−1 Pa−1, d is the glass thickness (d = 0.6 cm for the optical window)
and σ is the applied stress, having dimensions of pressure.

In this case, the stress on the glass is due to differential thermal dilatation of the titanium
flange and the OW glass itself. The situation is illustrated graphically in figure 8. Because
the coefficient of thermal expansion of the glass is larger than that of the titanium flange
embracing it, the latter expands less when submitted to the same temperature rise, and
hence the glass is compressed radially along the rim. The opposite happens if the temperature
decreases, i.e., the glass is in this case stretched outwards by the radial pull of the titanium. The
contraction/expansion forces acting on glass and titanium reach an equilibrium state which
determines the radii of the contracted/expanded pieces of titanium and glass. The equilibrium
position thus happens when

[δρT + δρσ ]Ti = [δρT − δρσ ]Glass, (23)

where δρT and δρσ refer to changes in radius caused by temperature changes and by stresses,
respectively. The above formula holds even if temperature changes in titanium and glass are
unequal. On the other hand, we are not considering in our description possible effects coming
from the helicoflex ring between the titanium and the glass. As stated above, we are here
trying to get an order of magnitude of the effect based on a simplified mechanical model, and
interface effects are thus not included.
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The contributions appearing in equation (23) are given by [18]

δρT = ρα�T and δρσ = pρ2

E
, (24)

where ρ is the radius of the interface between the titanium and the glass,  stands for the width
of the body, E is the Young’s modulus, α is the thermal expansion coefficient and p is the
lateral pressure. Combining equations (23) and (24), and following the notation of figure 8,
we find the lateral pressure on the glass:

p = αTi�TTi − αGlass�TGlass

(r/h)E−1
Ti + E−1

Glass

. (25)

The strain on the glass lateral surface is given by σGlass = prd/(rd) = p, where d is the
thickness of the window glass (see [18]). Hence,

σGlass = αTi�TTi − αGlass�TGlass

E−1
Ti + (h/r)E−1

Glass

. (26)

We can consider two different regimes here: the low-frequency (LF) regime and the
high-frequency (HF) regime. The first corresponds to long duration heat pulses applied on the
titanium flange, actually long enough that the temperatures of the glass and the titanium are
equal to each other, or �TTi = �TGlass ≡ �T . In this case,

σGlass = αTi − αGlass

E−1
Ti + (h/r)E−1

Glass

�T, low frequency. (27)

On the other hand, if short heat pulses are applied on the titanium then the glass does not
have time to respond, and in this we can assume �TGlass = 0 and �TTi ≡ �T . Thus,

σGlass = αTi

E−1
Ti + (h/r)E−1

Glass

�T, high frequency (28)

We can use the above formulae in combination with (22) to obtain

dφ

dT

∣∣∣∣
Stress

=


β

2πd

λlaser

αTi − αGlass

E−1
Ti + (h/r)E−1

Glass

, low frequency

β
2πd

λlaser

αTi

E−1
Ti + (h/r)E−1

Glass

, high frequency.

(29)

It is recalled that �φ = 2π�s/λlaser, where λlaser is the laser wavelength. We put numbers
here:

β = 10−3 × 10−9 Pa−1

d = 6 × 10−3 m

λlaser = 1.064 × 10−6 m

αTi = 8.6 × 10−6 K−1

ETi = 11.6 × 1010 N m−2

h = 0.02 m

αGlass = 10 × 10−6 K−1

EGlass = 7.15 × 1010 N m−2

r = 0.015 m

to obtain

dφ

dT

∣∣∣∣
Stress

=
{

2.5 × 10−3 rad K−1, low frequency

15 × 10−3 rad K−1, high frequency.
(30)
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Table 2. dφ/dT , units in mrad K−1.

ARMA Analytic

LF range 25 ± 4 23.5
HF range 40 36
Nude glass – 21

4.1.3. Discussion of the results. The total thermal effect is the sum of the above two effects,
i.e., optical pathlength changes induced by pure thermal expansion and by mechanical stress.
The former gives a value of 21×10−3 rad K−1 throughout the frequency band, as extracted from
datasheet values (see section 4.1.1). We can thus summarize the results as shown in table 2.

The agreement between the results produced by our simplified model and the ARMA fit
is quite good. Even though the model is not fully comprehensive of all the physical effects
happening in the OW, it can be considered rather satisfactory from a purely empirical point
of view, hence very useful for practical purposes. Work is currently in progress for a more
thorough approach, and we shall report on new results in due course.

We conclude from this discussion that the low-pass component of the transfer function
is almost exclusively related to the dφ/dT |free effect, while the stress effects only show up
significantly in the higher frequency band. This makes sense, as stresses applied along the
glass rim quickly propagate inwards throughout the glass piece.

Although the LTP spectrum is only above 1 mHz, an analysis at frequencies below this,
down to 10−4 Hz and even further, must be considered of high interest, as the latter frequency
band will be important for LISA. The experimental data reported in this paper can be improved
to access the lower LISA band, since they typically consist in 1 h long runs. This is a strong
suggestion for the LTP experiment plan.

5. Noise projection

One of the main scientific objectives of the diagnostics system in the LTP is to measure
identified environmental disturbances [8], and to provide the data and analysis tools to estimate
the contribution of those disturbances to the overall mission noise budget, equation (1). In
practice this means the LTP data and diagnostics subsystem (DDS) must be able to provide
suitable transfer functions to convert measured disturbance noise into test mass acceleration
noise. This section is devoted to describing this procedure in the case of temperature fluctuation
noise in the OW, and to show how it works in an on-ground laboratory experiment—to be
extrapolated to a space-borne one.

We will use the results derived in the previous analysis to obtain an estimation for the
thermal contribution to the interferometer performance. We shall naturally limit ourselves
to the ARMA model, since it is the one making sense for real mission purposes, as already
discussed.

The basic idea is that the OW transfer function, as determined from high SNR system
response, also applies when there is only (weaker) noise in the window [10]. For this we shall
use the one in equation (11), i.e.,

G(z, α, β, δ) = α
1 − z−1

1 + βz−1
+

δ

1 + βz−1
. (31)

We now show which procedures must be applied to address the problem of finding the
contribution of temperature fluctuations noise in the OW to the total OW noise. To this end we
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Figure 9. Temperature fluctuations spectrum (left) measured during the performance experiment
compared to the LTP temperature requirement and the lower limit set by the front-end electronics
sensitivity limit. Phase fluctuations (blue curve, right panel—in the electronic version only) during
the same run are compared to the optical window thermal contribution (magenta curve, right
panel—in the electronic version only), as derived with the ARMA transfer functions given by
equations (32) and (17). The 1σ confidence region is also included for the latter.

consider data of temperature and phase noise generated in a different experiment, and apply
to it the methodology just sketched.

The laboratory setup and the experimental details can be found in [19]. In this experiment,
the optical window is not a part of a testing optical bench (OB), but is glued in a lateral side
of the LTP OB engineering model, instead. This way, a double beam pass across the window
is forced: the laser light travels from the optical bench through the OW to a dummy mirror,
faking a test mass; there, it is reflected, sent back again across the OW and out to the OB. Such
a setup proved to be compliant with the interferometer noise budget, showing that the inclusion
of the OW does not degrade the interferometer performance. Two temperature sensors in the
titanium flange and one in the glass were left in place to measure temperature values during
long-term runs.

No thermal disturbances were deliberately introduced, so the thermometers only read
environmental temperature fluctuations. We use equation (17) to convert the temperature
fluctuations spectral density, S

1/2
T (ω), into a phasemeter spectral density, S

1/2
φ,T (ω). Thus,

S
1/2
φ,T (ω) = 2|G̃(ω, α, β, δ)|S1/2

T (ω), (32)

where the numerical factor 2 is required to account for the double passage of the laser beam
through the window in this case. We assume both passages are completely correlated, given the
extremely small time scale of their occurrence compared to thermal reaction times. Spectral
densities are therefore linearly added.

Results obtained in a typical run with that setup are plotted in figure 9 using a MATLAB
package being developed ex professo for the LTP data analysis [20]. The left panel shows
temperature fluctuations measured in the titanium flange. As can be seen, these reach the front
end electronics (FEE) floor noise in the higher frequency region of the measuring bandwidth,
while keeping slightly above the LTP maximum temperature fluctuations requirements limit
in the lower frequencies, around 1 mHz [21]. This is, in fact, a worst-case condition, since the
temperature power spectrum decreases as frequency increases, and thus if the LTP temperature
requirement is reached at a lower frequency range then the rest of the spectrum will naturally
follow a descending curve like the one shown in figure 9.
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The phasemeter fluctuations spectrum is however below the required noise level, as we
can see in the blue curve of the right panel (in colour in the electronic version only). The
temperature fluctuations spectral data in the left panel are then submitted to the algorithm,
equation (32), and the result is the magenta curve displayed in the right panel (in colour in the
electronic version only).

The low coupling to thermal disturbances implied by G̃(ω, α, β, δ) causes the thermal
contribution to only represent 5% of the phasemeter noise at 1 mHz, and about 0.5% of the
LTP goal. We thus feel reassured that there is still considerable margin here.

6. Continuous time models

On account of the empirical results reported in section 3, and of the remarkable accuracy
with which both DLR and ARMA models fit the experimental data —notwithstanding their
completely different nature—we now try to shed some light on the kind of processes which
take place in the system.

For this, we attempt to picture the ARMA(2,1) model relating the phase readout of
the interferometer φ[n] and the temperature at the titanium flange TTi[n] as the digital
implementation of some analogue physical process. The starting point is of course the
digital algorithm, equation (7), which in this case is given by

G(q, α, β, δ) = α
1 − q−1

1 + βq−1
+

δ

1 + βq−1
, (33)

where q is the shift operator of equation (8). The recursive form of the process thus defined is
therefore

φ[n] + βφ[n − 1] = α{TTi[n] − TTi[n − 1]} + δTTi[n] (34)

and can be regarded as the digital implementation of a first-order continuous time filter,
governed by a first-order differential equation:

φ̇(t) + τ−1φ(t) = AṪTi(t) + BTTi(t),

(
· ≡ d

dt

)
, (35)

where τ is the characteristic time constant of the analogue filter, and A and B are scale
factors, respectively, weighing the contributions of the temperature’s time variation rate and
the temperature itself to the phase-shift effect. We have assumed the TTi(t) dependence in the
rhs of (35) in line with the fit result expressed by the rhs of (34).

If the time constant τ is much larger than the sampling time �t implicit in equation (34)
then we can approximate time derivatives by

φ̇(t) � φ(t) − φ(t − �t)

�t
(36)

and, mutatis mutandi, the same for TTi(t). Taking t = n�t for the timing of the nth sample,
and using the natural notation φ[n] ≡ φ(n�t), equation (35) is approximated by

φ[n] −
(

1 +
�t

τ

)−1

φ[n − 1] = A

(
1 +

�t

τ

)−1

{TTi[n] − TTi[n − 1]}

+ B�t

(
1 +

�t

τ

)−1

TTi[n]. (37)

This can be readily compared to equation (34) to obtain

β = −
(

1 +
�t

τ

)−1

, α = A

(
1 +

�t

τ

)−1

, δ = B�t

(
1 +

�t

τ

)−1

. (38)
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β is seen to have a value very close to −1 (table 1), or β = −(1 − η) with η < 10−2

comfortably in all cases. Hence τ � �t/η, i.e., τ � �t , which a posteriori justifies the
approximation leading to equation (37).

The formal solution to equation (35) can be easily written. After initial transients die out,
the phase is given by

φ(t) = ATTi(t) + (B − A)τ−1
∫ t

0
e−(t−t ′)/τ TTi(t

′) dt ′ (39)

The meaning of this filter equation is better understood if we recast it in the frequency
domain:

φ̃(ω) =
[
A

iωτ

1 + iωτ
+ B

τ

1 + iωτ

]
T̃Ti(ω). (40)

This equation shows again that the analogue process is also the superposition of two
contributions: a high-pass filter proportional to A and a low-pass contribution proportional
to B. The first arises in equation (34) due to the titanium temperature derivative, while the
second appears related to the term proportional to the titanium absolute temperature. This
split dependence of the OW response to temperature pulses points to two different physical
thermal processes affecting the glass, as already discussed in section 4.1.

We can now make use of equations (38) to identify the coefficients A and B in terms of
the fit parameter values of table 1. Taking �t/τ � 1, we find that A � α, and B � δ/�t .
In addition, we can take advantage of the relationship α � p1 between the auto-regressive
and the DLR model parameters to obtain an expression relating both models. Accordingly,
equation (39) can be rewritten as

φ(t) � p1TTi(t) + (δ/�t − p1) τ−1
∫ t

0
e−(t−t ′)/τ TTi(t

′) dt ′. (41)

If we go back to the DLR fit formula, equation (2), the following expression ensues:

TGlass(t) � −p1

p2
τ−1

∫ t

0
e−(t−t ′)/τ TTi(t

′) dt ′, (42)

after the term δ/�t has been safely neglected in front of p1. We thus see that temperatures in
the titanium flange and in the OW glass are related by a low pass with a time constant, τ , of a
few hundred seconds—note that p1 and p2 have different signs, table 1.

It must be recalled that this relationship emerges out of the good quality of the fits by
both DLR and ARMA(2,1) models, and is key to understanding why only the titanium gauge
is required to make a good prediction of the OW response to temperature variations, as will
be required in flight. The physical reason for the observed relationship between temperatures
is to be sought in the properties of the interface between the titanium and the glass in the OW.

7. Conclusions

While the optical window is a crucial element in the LTP optical metrology system, it thankfully
appears that it is quite stable to temperature fluctuation noise—so far as the latter is compliant
with mission environmental requirements. The present paper contains a rather thorough
analysis of such behaviour, based on experimental data gathered through different runs of
on-ground laboratory measurements.

Our main purpose was to prepare for thermal diagnostics analysis tools in flight, and to
gain as much understanding of the underlying physical processes as possible. This means we
need to know how noisy data retrieved by thermometers can be converted into phasemeter
fluctuations, thereby quantifying the contribution of temperature random variations to the
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total mission noise budget—which is the ultimate objective of LPF in preparation for LISA.
Our most relevant finding is the discovery that temperature readings in the titanium flange
embracing the OW plane-parallel plate relate to phase values through an ARMA(2,1) transfer
function. Although this is the result of numerical analysis, hence lends itself to parameter
estimation variances, it appears to be considerably robust.

The analysis has shown that the ARMA(2,1) process naturally splits up as the sum of a
high-pass and a low-pass process, each of them with significantly different relative weights
which result in the high-pass dominating above ∼1 mHz, while the low pass takes over in the
lower LISA frequency band, i.e., at 0.1 mHz and below. A major achievement of the analysis
has been the identification of the physical processes responsible for this behaviour: mechanical
stresses—induced by differential thermal expansion of metal and glass—are associated with
the high-pass term, while dφ/dT |free effects account for the low pass.

We consider the analysis presented here as rather complete in some of its essential traits.
But there are still open issues which call for further study. For example, heater generation
of test signals must be monitored by temperature sensors close to the activated heaters—due
to lag effects in remoter spots—for the procedures described herein to be fully operative.
This raises some caveats regarding full applicability of the noise projection algorithms, as
the sources of heat dominating a given temperature reading may not be clear in LTP science
operation mode.

A more global tool for full LTP thermal diagnostics, which takes into account the specific
features of each individual part of the system, must be assembled. Research on this is currently
underway which will be reported in due course.
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