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Abstract

We prove that the validity of the recently proposed dressed, asymptotic Bethe ansatz for
the planar AdS/CFT system is indeed limited at weak coupling by operator wrapping
effects. This is done by comparing the Bethe ansatz predictions for the four-loop anoma-
lous dimension of finite-spin twist-two operators to BFKL constraints from high-energy
scattering amplitudes in N = 4 gauge theory. We find disagreement, which means that
the ansatz breaks down for length-two operators at four-loop order. Our method supplies
precision tools for multiple all-loop tests of the veracity of any yet-to-be constructed set of
exact spectral equations.
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1 Introduction and Verdict

Two-dimensional integrable structures appeared for the first time in four-dimensional gauge
field theories in the context of high-energy scattering in QCD. In a certain leading logarith-
mic approximation the scattering amplitudes of colorless particles are well described by the
exchange of two effective particles, termed reggeized gluons. A compound of two of these
particles is frequently called the pomeron. In the planar limit, the associated dynamics is
governed by an integrable Hamiltonian1 [1]. Shortly after, this Hamiltonian was identified
as the direct sum of two commuting non-compact spin-zero Heisenberg magnets [2]. The
length of this spin chain equals the number of reggeized gluons considered. Therefore the
leading dynamics of the pomeron is described by a very short spin chain with two sites.

Some years later integrable spin chains also resurfaced in the analysis of planar one-loop
anomalous dimensions of composite local “twist” operators in QCD [3, 4]. The integrable
structures appearing, respectively, in the context of reggeization and of anomalous dimen-
sions are frequently confused even though the considered physical phenomena are quite
different. However, when focusing on a more symmetric relative of QCD, the N = 4 gauge
theory, deep and surprising connections indeed link the respective integrable structures [3].
In the N = 4 case, the above “confusion” therefore actually expresses a profound insight.

The next step towards unravelling the exactly solvable structure of planar N = 4
gauge theory came through the discovery that not only the sector of quasi-partonic twist
operators, but in fact the complete set of local composite operators is described at one-loop
by an integrable psu(2, 2|4) non-compact supermagnet [5]. Its spectrum is hence described
by a nested Bethe ansatz. Much evidence was found that integrability is not destroyed by
radiative corrections, and that the Bethe ansatz extends to higher loops [6, 7, 8]. This led
to a set of higher loop Bethe equations [9], which were accurate to three-loop order, but
nevertheless still incomplete at four loops and beyond, in two distinct ways.

• Firstly, the Bethe ansatz [9] contained an unknown dressing factor which was initially
introduced in order to reconcile the integrable structures of gauge and string theory
[10], linked through AdS/CFT, in certain long-operator limits [11]. The understand-
ing of its necessity and structure was subsequently refined in a series of important
papers [12]. Its existence was finally indirectly proven through an impressive field-
theoretic four-loop calculation [13], following a testing procedure proposed in [14].
Its precise form was written down in [15] contemporaneously with [13], and agrees
quantitatively with the field theory computation to a very high precision [16]. A
self-consistent derivation of the dressing phase from first principles is still lacking.
Very recently, however, it was demonstrated that the proper convolution structure of
the phase arises from a nested Bethe ansatz [17]. See also the comments in [18].

• Secondly, the Bethe ansatz [9] does not necessarily incorporate wrapping effects, as it
is by construction [7] asymptotic. The point is that the all-loop dilatation operator

1It was shown in [1] that the Hamiltonian is a member of a set of mutually commuting charges generated
by a monodromy matrix satisfying the Yang-Baxter equation. This Padua University preprint had been
submitted to Physics Letters B and was rejected by the referee.
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of the gauge theory is long-range, i.e. the interactions link at ℓ loop orders ℓ + 1
neighboring sites on a lattice spanned by the partons. The definition of an S-matrix
requires an asymptotic region (see [7] for a discussion). If the interaction range
exceeds the size of the system the asymptotic region shrinks to zero and the Bethe
ansatz might well break down. One can show [9] that in N = 4 this cannot happen
up to three-loop order. A wrapping-induced breakdown might however occur at four-
loop order for the shortest possible operators. Investigating this issue is the main
purpose of this paper.

The shortest possible local composite operators in the N = 4 theory are the so-called
twist-two operators. For a simple representative of these one starts from the protected
half-BPS states TrZ2 and inserts M covariant derivatives D:

Tr
(

Z DM Z
)

+ . . . . (1.1)

In the spin chain picture this is a non-compact sl(2) spin = −1
2

length-two Heisenberg
magnet with M magnonic excitations. The dots indicate the mixing of all states where the
covariant derivatives may act on any of the two fields. For each even M there is precisely
one non-BPS state whose total scaling dimension is

∆ = 2 + M + γ(g) , with γ(g) =
∞
∑

ℓ=1

γ2ℓ g2ℓ , (1.2)

where γ(g) is the anomalous part of the dimension depending on the coupling constant

g2 =
λ

16 π2
, (1.3)

and λ = N g2
YM

is the ’t Hooft coupling constant. States with odd M do not exist in
the sl(2) sector. The anomalous part γ(g) of the dimension may be reliably computed to
three-loop order O(g6) by the asymptotic Bethe ansatz [7], see (2.1),(2.4) of chapter 2.
The result agrees at two-loop order with the one obtained from an explicit field-theory
calculation [19], and at three-loop order with a solid conjecture [20] extracted by the
principle of maximum transcendentality [21] from a rigorous field theory calculation in
QCD [22]. Closely related interesting properties of perturbative anomalous dimensions,
following from certain generalized relations of Gribov and Lipatov, and of Drell, Levy and
Yan, are discussed in [23].

In N = 4 theory the ℓ-th loop anomalous dimension γ2ℓ(M) is expressed through
a combination of harmonic sums of constant degree 2 ℓ + 1. These are defined in (2.5)
below. The relationship to the Balitsky-Fadin-Kuraev-Lipatov (BFKL) approach [24] for
describing high energy scattering amplitudes in gauge theory appears upon analytically
continuing the function γ(g, M), and therefore the γ2ℓ(M), to general, complex values of
M . In particular, one expects singularities at all negative integer values of M . The first in
this series of singular points corresponds to the above mentioned pomeron at

M = −1 + ω , (1.4)
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where ω should be considered small. Notice that in BFKL physics one more commonly
uses the variable j instead of M . These are related through M = j−2. Roughly speaking,
in view of (1.1) we could say that the BFKL pomeron of N = 4 gauge theory is described
by the non-local gauge-invariant operator

pomeron = Tr
(

Z D−1+ω Z
)

. (1.5)

The BFKL equation relates γ(g) and g in the vicinity of the point M = −1. To leading
(LO) one-loop order it reads

ω

−4 g2
= Ψ

(

−
γ

2

)

+ Ψ
(

1 +
γ

2

)

− 2 Ψ (1) , (1.6)

where Ψ(x) = d
dx

log Γ(x) is the logarithmic derivative of Euler’s Gamma function. By
expanding the Ψ-functions in infinite series it may be rewritten as

ω

−4 g2
=

2

γ
− 2

∞
∑

k=1

(γ

2

)2k

ζ(2k + 1). (1.7)

We are now ready to point out the crucial importance of the BFKL equation as a
testing device for any, past or future, conjecture on the exact higher-loop spectrum of
anomalous dimensions in the N = 4 model. The point is that even though (1.6) is only
the one-loop approximation to the true, currently unknown relationship between the spin
label M = −1 + ω and the anomalous dimension γ, upon inversion of the power series
(1.7) we get an all-loop prediction of the leading singular behavior of γ as a function of the
deviation from the singularity at M = −1 as ω → 0.

This inversion is easily performed to arbitrary orders of perturbation theory. To
e.g. four-loop order one finds for the analytically continued anomalous dimension

γ = 2

(

−4 g2

ω

)

− 0

(

−4 g2

ω

)2

+ 0

(

−4 g2

ω

)3

− 4 ζ(3)

(

−4 g2

ω

)4

± . . . . (1.8)

This may now be compared to the result as obtained from the dressed asymptotic Bethe
ansatz (ABA). In chapter 2 below we present its prediction for the four-loop dimension
at arbitrary positive integer spin M , see table 1. After analytic continuation to negative
values of the spin M , and expanding in ω around the pole at M = −1, see (1.4), we find

γABA = 2

(

−4 g2

ω

)

− 0

(

−4 g2

ω

)2

+ 0

(

−4 g2

ω

)3

− 2
(−4 g2)4

ω7
± . . . , (1.9)

where we have also restated the known results at less than four loops. One observes
maximal violation of the BFKL prediction (1.8): The leading singularity in ω should be a
pole of fourth order. Instead, we find a seventh order pole, which is the maximum order the
analytic continuation of an harmonic sum of transcendentality degree seven can yield. This
means that γABA cannot be the correct anomalous dimension of finite spin M twist-two
operators in N = 4 gauge theory. We have thus established that the long-range asymptotic
Bethe ansatz breaks down at four-loop order.
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2 Four-Loop Twist-Two from Bethe Ansatz

Let us now prove our claim. The twist J = 2 operators (1.1) of interest to us sit in the
sl(2) sector of the full psu(2, 2|4) magnet. The long-range asymptotic Bethe equations for
twist-J operators read in this sector [9, 15]

(

x+
k

x−
k

)J

=

M
∏

j=1
j 6=k

x−
k − x+

j

x+
k − x−

j

1 − g2/x+
k x−

j

1 − g2/x−
k x+

j

exp (2 i θ(uk, uj)) ,

M
∏

k=1

x+
k

x−
k

= 1 . (2.1)

These are M equations for k = 1, . . . , M Bethe roots uk, with

x±
k = x(u±

k ) , u± = u ± i
2
, x(u) =

u

2

(

1 +

√

1 − 4
g2

u2

)

, (2.2)

and where the dressing phase θ is a rather intricate function conjectured in [15]. Here we
will only need it to leading four-loop order, where it reads

θ(uk, uj) = 4 ζ(3) g6
(

q2(uk) q3(uj) − q3(uk) q2(uj)
)

+ O(g8) , (2.3)

and where the qr(u) are the eigenvalues of the conserved magnon charges, see [9] for details
on this formalism. Once the M Bethe roots are determined from (2.1) for the state of
interest, its asymptotic all-loop anomalous dimension is given by

γABA(g) = 2 g2
M
∑

k=1

(

i

x+
k

−
i

x−
k

)

. (2.4)

The equations (2.1) can be solved recursively order by order in g at arbitrary values of M
and J once the one-loop solution for a given state is known.

It was checked in [7] up to relatively high values of spin, that this Bethe ansatz repro-
duces correctly the two- and three-loop anomalous dimensions of the twist J = 2 operators,
which are known in terms of nested harmonic sums as obtained in [19, 20]. However un-
fortunate, no analytical derivation is known at the time of writing. It would be extremely
interesting to develop tools for solving this problem. Therefore, a priori it is even less clear
how to extract the four-loop prediction from the above Bethe equations.

This technical problem can nevertheless be surmounted. Assuming the maximum tran-
scendentality principle [21] at four-loop order one may derive the corresponding expression
for the anomalous dimension by making an appropriate ansatz with unknown coefficients
multiplying the nested harmonic sums, and subsequently fixing these constants. The latter
is done by fitting to the exact anomalous dimensions for a sufficiently large list of specific
values of M as calculated from the Bethe ansatz.

Luckily, at one-loop the exact solution of the Baxter equation is known [14] and is
given by a Hahn polynomial. Knowing the one-loop roots one can then expand equation
(2.1) in the coupling constant g order by order in perturbation theory. The equations for
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4S
−7 + 6S7 + 2 (S−3,1,3 + S−3,2,2 + S−3,3,1 + S−2,4,1) + 3 (−S−2,5

+ S−2,3,−2) + 4 (S−2,1,4 − S−2,−2,−2,1 − S−2,1,2,−2 − S−2,2,1,−2 − S1,−2,1,3

−S1,−2,2,2 − S1,−2,3,1) + 5 (−S−3,4 + S−2,−2,−3) + 6 (−S5,−2

+ S1,−2,4 − S−2,−2,1,−2 − S1,−2,−2,−2) + 7 (−S−2,−5 + S−3,−2,−2

+ S−2,−3,−2 + S−2,−2,3) + 8 (S−4,1,2 + S−4,2,1 − S−5,−2 − S−4,3

−S−2,1,−2,−2 + S1,−2,1,1,−2) + 9 S3,−2,−2 − 10 S1,−2,2,−2 + 11 S−3,2,−2

+ 12 (−S−6,1 + S−2,2,−3 + S1,4,−2 +S4,−2,1 +S4,1,−2 −S−3,1,1,−2 −S−2,2,−2,1

−S1,1,2,3 −S1,1,3,−2 −S1,1,3,2 −S1,2,1,3 − S1,2,2,−2 − S1,2,2,2 − S1,2,3,1 − S1,3,1,−2

−S1,3,1,2 − S1,3,2,1 − S2,−2,1,2 − S2,−2,2,1 − S2,1,1,3 − S2,1,2,−2 − S2,1,2,2

−S2,1,3,1 − S2,2,1,−2 − S2,2,1,2 − S2,2,2,1 − S2,3,1,1 − S3,1,1,−2 − S3,1,1,2 − S3,1,2,1

−S3,2,1,1) + 13 S2,−2,3 − 14 S2,−2,1,−2 + 15 (S2,3,−2 + S3,2,−2)

+ 16 (S−4,1,−2 + S−2,1,−4 −S−2,−2,1,2 −S−2,−2,2,1 −S−2,1,−2,2 −S−2,1,1,−3

−S1,−3,1,2 −S1,−3,2,1 −S1,−2,−2,2 − S2,−2,−2,1 + S−2,1,1,−2,1 + S1,1,−2,1,−2

+ S1,1,−2,1,2 + S1,1,−2,2,1) − 17 S−5,2 + 18 (−S4,−3 − S6,1 + S1,−3,3)

+ 20 (−S1,−6 − S1,6 − S4,3 + S−5,1,1 + S−4,−2,1 + S−3,−2,2 + S−2,−4,1

+ S−2,−3,2 + S1,3,3 + S3,1,3 + S3,3,1 − S1,1,−2,3 − S1,2,−2,−2 − S2,1,−2,−2)

− 21 S3,4 + 22 (S1,−2,−4 + S2,2,3 + S2,3,2 + S3,−2,2 + S3,2,2) + 23 (−S−3,−4

−S5,2 + S2,−2,−3) + 24 (−S−4,−3 + S1,−4,−2 − S1,−3,1,−2 − S1,1,1,4 − S1,1,4,1

−S1,3,−2,1 − S1,4,1,1 − S3,−2,1,1 − S3,1,−2,1 − S4,1,1,1 + S−2,−2,1,1,1 + S−2,1,−2,1,1

+ S1,−2,−2,1,1 + S1,−2,1,−2,1 + S1,1,−2,−2,1 + S1,1,1,−2,−2 + S1,1,2,−2,1 + S1,2,1,−2,1

+ S2,1,1,−2,1) + 25 S2,−3,−2 + 26 (−S2,5 + S1,4,2 + S2,4,1 + S4,1,2 + S4,2,1)

+ 28 (S1,2,4 + S2,1,4 − S−3,1,−2,1 − S−2,1,−3,1 − S1,−2,1,−3) + 30 S−3,1,−3

+ 32 (S1,5,1 + S5,1,1 − S−3,−2,1,1 − S−2,−3,1,1 − S1,−3,−2,1 − S1,−2,−3,1

−S2,2,−2,1 + S1,2,−2,1,1 + S2,1,−2,1,1 − S1,1,1,−2,1,1) + 36 (S1,1,5 + S1,3,−3

+ S3,1,−3 − S1,1,−3,−2 −S1,1,−2,−3 −S1,1,2,−3 −S1,2,−2,2 −S1,2,1,−3 −S2,1,−2,2

−S2,1,1,−3) +38 S−3,−3,1 + 40 (−S1,−4,1,1 − S2,−3,1,1 + S1,1,1,−2,2)

− 41 S3,−4 + 42 (−S2,−5 + S1,−4,2 + S1,−3,−3) + 44 (S1,−5,1 + S2,−3,2 + S3,−3,1)

+ 46 S2,2,−3 + 48 S1,1,−3,1,1 + 60 (S1,1,−5 − S1,1,−3,2) + 62 S2,−4,1 + 64 S1,1,1,−3,1

+ 68 (S1,2,−4 + S2,1,−4 − S1,2,−3,1 − S2,1,−3,1) − 72 S1,1,1,−4 − 80 S1,1,−4,1

− ζ(3)S1(S3 − S
−3 + 2S

−2,1).

Table 1: The result for the four-loop asymptotic dimension
γABA
8

(M)

256
. The harmonic sums

are functions of M and are defined in (2.5). The basis is canonical, except for the terms
stemming from the dressing factor in the last line.
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the quantum corrections to the one-loop roots are of course linear, and thus numerically
solvable with high precision.

Under the further assumption that no negative first index can appear in the harmonic
sums (see [21] and discussion therein) there are, in principle, 238 terms which may poten-
tially contribute to the four-loop dimension. One thus needs to solve the Bethe equations
for 238 different values of spin M . In order to find the exact coefficients in front of the
harmonic sums, which fortunately are integers, it is crucial to determine at each value of
M the anomalous dimension as a numerically exact rational number. One is thus forced
to calculate with a very high numerical precision, i.e. one needs typically more than 1000
digits at four loop order. It is possible to reduce the number of the terms in the ansatz by
going to a non-canonical basis of harmonic sums [25]. In the end one needs to determine
around 170 values of M from the Bethe equations. An important trick is to also use the
information for odd values of M , even though these are unphysical. After much effort
the expression given in table 1 was found. There we use the following definition of the
harmonic sums [25]

Sa(M) =

M
∑

j=1

(sgn(a))j

ja
, Sa1,...,an

(M) =

M
∑

j=1

(sgn(a1))
j

ja1

Sa2,...,an
(j) . (2.5)

The degree of an harmonic sum is defined to be |a1|+ . . . |an|. Notice that the total degree
of each term in table 1 is seven in accordance with the maximal transcendentality principle.
The expressions for the finite M one-, two- and three-loop results are not reprinted here,
they may be found in [20]. We have highlighted the terms in the last line, containing the
number ζ(3) induced by the dressing factor (2.3). Using [26], we have also rewritten the
result in an interesting non-canonical basis, see table 2 in appendix A.

We should stress that our method, which might appear to be only approximately valid
at first sight, actually leads to the exact perturbative solution of the Bethe equations.
The reason is that a proper set of harmonic sums spans a linearly independent basis in
a finite dimensional vector space [25]. A wrong ansatz produces incredibly complicated
coefficients multiplying the harmonic sums, and breaks down immediately when compared
with a further value of M which was not yet matched.

We are now ready to analytically continue the expression in table 1 to the vicinity of
the pomeron pole at M = −1 + ω. An explanation for how this is done may be found in
[27]. It is based on a method suggested in [28], see also [29].

Harmonic sums of degree seven may lead to poles no higher than seventh order in ω.
In fact, it is known that none of the sums in table 1 can produce such a high-order pole
except for the two sums S7 and S−7, which we have highlighted at the beginning of the
table. Their residues at 1/ω7 are of opposite sign. Thus, one immediately sees that the
sum of the two residues does not cancel. The precise statement was already quoted in
(1.9). This proves our claim.
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3 NLO BFKL and Double-Logarithm Constraints

The asymptotic Bethe ansatz fails the BFKL constraint at four loops already to leading
order in the expansion around the pomeron resonance singularity at M = −1 through
the failure to cancel the erroneous seventh-order pole in ω, cf (1.9). The proper leading
behavior (1.8) should definitely be quantitatively reproduced by any future proposal for
exact spectral equations of AdS/CFT.

In fact, there are further known constraints from N = 4 high energy scattering ampli-
tudes. Here we will state what is known, in order to provide precise tools for testing the
validity of any future proposal for the exact spectrum. These highly non-trivial constraints
fall into two classes: Next-to-leading order (NLO) corrections to the BFKL equation (1.6),
and the so-called double-log predictions. Let us begin by discussing the former.

3.1 Two-Loop BFKL

We discussed in chapter 1 that the one-loop BFKL equation (1.6) leads to all-loop results
for the leading singularities of the analytically continued anomalous dimensions of twist-
two operators at the special value M = −1. Likewise, the two-loop correction to the
BFKL equation leads to constraints on the next-to-leading corrections to the position of
the pomeron singularity near M = −1 [30]. Luckily this two-loop correction to the BFKL
equation was worked out in the case of the N = 4 supersymmetric gauge theory [31, 21].

The two-loop corrected BFKL equation, cf (1.6), for the twist-two case can be written
in the dimensional reduction scheme as

ω

−4 g2
= χ(γ) − g2 δ(γ) , (3.1)

where

χ(γ) = Ψ
(

−
γ

2

)

+ Ψ
(

1 +
γ

2

)

− 2 Ψ (1) , (3.2)

δ(γ)= 4 χ ′′(γ) + 6 ζ(3) + 2 ζ(2) χ(γ) + 4 χ(γ) χ ′(γ)

−
π3

sin πγ

2

− 4 Φ
(

−
γ

2

)

− 4 Φ
(

1 +
γ

2

)

. (3.3)

The function Φ(γ) is given by

Φ(γ) =
∞
∑

k=0

(−1)k

(k + γ)2

[

Ψ (k + γ + 1) − Ψ(1)

]

. (3.4)

This allows us, upon power series inversion, to compute the correction to the leading poles
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to arbitrary orders in g. In particular, the four-loop result (1.8) is extended to

γ =(2 + 0 ω)
(

−4 g2

ω

)

− (0 + 0 ω)
(

−4 g2

ω

)2

+ (0 + ζ(3) ω)

(

−4 g2

ω

)3

(3.5)

−

(

4 ζ(3) +
5

4
ζ(4) ω

) (

−4 g2

ω

)4

± . . . .

3.2 Double Logarithms

The double-logarithmic asymptotics of the scattering amplitudes was investigated in QED
and QCD in the papers [32] and [33] (see also [34]). It corresponds to summing the leading
terms ∼ (α ln2 s)n in all orders of perturbation theory. In combination with a Mellin
transformation, the double-logarithmic asymptotics allows to predict the singular part of
anomalous dimensions near the point M = −2. According to the hypothesis formulated in
the articles [31, 21], one can calculate the anomalous dimension γ near other non-physical
points M = j − 2 = −r (r = 2, 3, ...) from the eigenvalue of the BFKL kernel

ω

−4 g2
= Ψ

(

−
γ

2

)

+ Ψ
(

1 +
γ

2
+ |n|

)

− 2 Ψ (1) (3.6)

by pushing the total conformal spin |n| to negative integer values |n| = −r+1, r = 2, 3, . . . ,
rapidly enough at ω = M + r → 0:

|n| + r − 1 = C1(r) ω2 + O(ω3) . (3.7)

Physically this corresponds to the double-logarithmic contributions ∼ (αln2s)n s−r+2 in the
Regge limit s → ∞. For even r due to next-to-leading corrections the argument of the
second Ψ-function in (3.6) is effectively shifted [31, 21]

1 +
γ

2
+ |n| → 1 +

γ

2
+ |n| + ω , (3.8)

and we derive the following equation for γ

γ (2 ω + γ) = −16g2 . (3.9)

The solution of this equation is

γ =−ω + ω

√

1 −
16g2

ω2

= 2
(−4 g2)

ω
− 2

(−4 g2)2

ω3
+ 4

(−4 g2)3

ω5
− 10

(−4 g2)4

ω7
− . . . . (3.10)

Interestingly, our result in table 1 agrees at negative even integer values of the spin with the

−10 (−4 g2)4

ω7 term of this expansion. This presumably means that the asymptotic expression
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is quite “close” to the true result, even though it clashes with the singularity at M = −1.
We shall attempt to improve it by brute force in the next chapter.

For odd values of M in accordance with [33] one can obtain the more complicated set
of equations

γ̃ (2 ω + γ̃)=−16 g2 − 16
g2

ω
γ̃8 ,

γ̃8(2 ω + γ̃8)=−8 g2 + 4 g2 d

d ω
γ̃8 , (3.11)

where γ̃8 is the anomalous dimension for an auxiliary operator with octet color quantum
numbers. The solution of these equations coincides with the Born result

γ̃8 = −4
g2

ω
, γ̃ = −8

g2

ω
, (3.12)

corresponding to the fact that at r = 2k − 1 the leading terms ∼ g2

ω
(g/ω)2n are absent.

One can generalize the double-logarithmic equation (3.9) for even r = 2, 4, ... to include
the corrections reproducing the three leading poles up to third order in perturbation theory

γ (2 ω+γ) = −16 g2
(

1 − S1 ω − (S2 + ζ2) ω2
)

−64 g4(S2+ζ2−S2
1 )+(S2+S−2)O(g6) , (3.13)

where Si = Si(r − 1). The third order term O(g6) has the form

O(g6) = a1 g2 γ2 + a2 g4γ8/ω , (3.14)

where a1,2 are some parameters. Choosing these parameters in an appropriate way, we can
obtain from the solution of the above equation the correct residues of γ for the strongest
poles at even negative M up to three loops. This predicts the corresponding residues to
fourth order

γ = 2

∞
∑

r=1

cr(ω)
(

−4 g2
)r

, (3.15)

where

c1(ω)=
1

ω
− S1 − ω(ζ2 + S2) + ... ,

c2(ω)=−
1

ω3
+

2 S1

ω2
+

ζ2 + S2

ω
+ ... ,

c3(ω)=
2

ω5
−

6 S1

ω4
+

−4 (ζ2 + S2) + 4 S2
1 + (S2 + S−2)

ω3
+ ... ,

c4(ω)=−
5

ω7
+

20 S1

ω6
+

14 (ζ2 + S2) − 24 S2
1 − 4 (S2 + S−2)

ω5
+ ... . (3.16)

Note, that for odd negative values of M the generalized set of equations (3.11) containing
the next-to-leading corrections has more parameters. One can fix some of them from the
known singularities of the anomalous dimensions at M + r = ω → 0 (r = 1, 3, ...)

γ = −8g2

(

1

ω
− S1 − ω(ζ2 + S2)

)

− 32 g4 S2

ω
− 128 g6

(

2S1

ω4
+

2S2 + S−2 − 2S2
1

ω3

)

, (3.17)

but it is difficult to predict the residues of the corresponding poles in the fourth order.

9



4 Ad Hoc Improvement of Four-Loop Twist-Two

Here we attempt to experimentally improve the erroneous four-loop result of table 1 as
obtained by the dressed asymptotic Bethe ansatz such that all BFKL and double-logarithm
constraints of section 3 are satisfied. Obviously this has to be done in a way which does not
ruin the correct features of the expression in table 1. In particular, the improvement should
not modify the large spin limit nor violate the transcendentality principle. A seemingly
natural way to ensure this is to replace the explicit ζ(3) stemming from the dressing factor
by an appropriate linear combination of ζ(3) and finite harmonic sums of degree three.
We found that there is indeed an attractive choice, namely replacing in the last line of the
expression in table 1 ζ(3) by

ζ(3) →
47

24
ζ(3) −

1

4
S−3 +

3

4
S−2 S1 +

3

8
S1 S2 +

3

8
S3 +

1

6
S−2,1 −

17

24
S2,1 . (4.1)

This alteration clearly preserves transcendentality, and it is easy to check that the large spin
limit is not modified. In addition, the catastrophic behavior in (1.9) is now replaced by the
correct one in (1.8). Furthermore, the constraints from (3.5) and (3.16) are also satisfied2.
In principle there are however other possible modifications which also fit all known data.
We therefore stop short of calling the expression of table 1 with the replacement (4.1) a
“conjecture”.

It is nevertheless interesting to work out the four-loop anomalous dimension of the
operator of lowest twist M = 2, i.e. the Konishi field, by using the formula in table 1 with
the replacement (4.1). One finds

γ = 12 g2 − 48 g4 + 336 g6 −

(

5307

2
+ 564 ζ(3)

)

g8 + . . . . (4.2)

These numbers should be compared to the ones at the end of chapter 5 of [15]. Once again,
(4.2) is a result based on some reasonable but presumably not unique assumptions and we
do not dare calling it a conjecture.

5 Four-Loop Twist-Three from Bethe Ansatz

In this article we are mostly focusing on twist-two operators. These are ideally suited for
an analysis of the wrapping problem. Furthermore, their precise relationship to the BFKL
equation is well established. Lastly, their spectrum may be exactly found at one-loop order.
This yields a firm platform for higher orders of perturbation theory. However, all this does
of course not mean that operators of higher twist are not interesting. Here we will report
on a novel exact twist-three one-loop solution in the N = 4 model. This allows to find exact
higher-loop anomalous dimensions in terms of nested harmonic sums, in close analogy with
the twist-two case. Unfortunately we were so far unable to test the analytic continuation

2 In the case of negative odd M the situation is unclear.
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of these expressions with the BFKL and double-logarithm methods of chapter 3. We still
feel that our result should allow for some non-trivial tests in the future.

Twist-three operators are operators of the form

Tr (Ds1Z Ds2 Z Ds3 Z ) + . . . . (5.1)

with s1 + s2 + s3 = M . Since the wrapping effects in sl(2) start at O(g2L+4) the four-loop
anomalous dimension of twist-three operators should correctly follow from the asymptotic
Bethe ansatz (2.1) with J = 3. In this chapter we will proceed with the derivation of
the four-loop anomalous dimension of the ground state of twist-three operators at even
values of M . It will be shown that the anomalous dimension up to four-loop order can be
again given in terms of harmonic sums, similarly to the twist-two case. After analytical
continuation it will turn out, however, that the anomalous dimension does not have a pole
at M = −1 and thus cannot be checked with the BFKL equation. The validity of this
result as derived from the Bethe ansatz is therefore still an open question.

At one-loop the Baxter function for the twist-three operators satisfies

(u +
i

2
)3Q(u + i) + (u −

i

2
)3Q(u − i) = t(u)Q(u) , (5.2)

with the transfer matrix given by

t(u) = 2u3 + q2u + q3 . (5.3)

Using the expansion

Q(u) =

M
∏

n=1

(u − ui) = uM + c1u
M−1 + c2u

M−2 + c3u
M−3 + ... , (5.4)

one can read off the corresponding charges

q2 = −(M2 + 2M +
3

2
) , q3 = c1(2M + 1) . (5.5)

For the unpaired states c1 = −
∑M

j=1 uj = 0 and q3 = 0. One can then solve (5.2) exactly
for even values of M

Q(u) = 4F3

(

−
M

2
,
M

2
+ 1,

1

2
+ iu,

1

2
− iu, ; 1, 1, 1; 1

)

. (5.6)

Thus the Baxter function Q(u) is given by a Wilson polynomial. Wilson polynomials for
twist-three operators were also found in the QCD context, see [35]. It is straightforward
to derive the corresponding one-loop anomalous dimension

γABA

2 (M)

2
= 4 S1(

M

2
) . (5.7)
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There exists one more solution of (5.2) for q0 = 0 which is, however, non-polynomial. This
proves that all unpaired states for even M have energy given by (5.7). We suspect that
this is the lowest state, but we do not know any proof.

Similarly to the twist-two case one can derive from the Bethe ansatz a closed formula
for the corresponding two, three and four-loop anomalous dimensions by assuming the
transcendentality principle and making an appropriate ansatz. We found the following
expressions, where all harmonic sums have M

2
as an argument

γABA

4 (M)

4
= −2S3 − 4S1S2 , (5.8)

γABA

6 (M)

8
= 2S2S3 + S5 + 4S3,2 + 4S4,1 − 8S3,1,1 + S1

(

4S2
2 + 2S4 + 8S3,1

)

, (5.9)

γABA

8 (M)

16
= S3

1

(

40

3
S4 −

32

3
S3,1

)

+ S2
1

(

20S5 − 40S3,2 − 56S4,1 + 64S3,1,1

)

+S1

(

7S6 + 8S2,4 − 24S3,3 − 56S4,2 − 40S5,1 − 24S2,2,2 − 16S2,3,1

+88S3,1,2 + 88S3,2,1 + 120S4,1,1 − 192S3,1,1,1 − 8ζ(3)S3

)

−
56

3
S3S4

−
107

6
S7 + 3S2,5 +

41

3
S3,4 +

1

3
S4,3 − 17S5,2 −

20

3
S6,1 − 4S2,2,3

−8S2,3,2 − 4S2,4,1 +
104

3
S3,1,3 + 52S3,2,2 +

88

3
S3,3,1 + 60S4,1,2

+60S4,2,1 + 40S5,1,1 + 8S2,3,1,1 − 120S3,1,1,2 − 120S3,1,2,1

−120S3,2,1,1 − 128S4,1,1,1 + 256S3,1,1,1,1. (5.10)

It is also instructive to display γ8 in the canonical basis of harmonic sums

γABA

8 (M)

16
=

1

2
S7 + 7S1,6 − 5S6,1 − 5S3,4 − 29S4,3 − 32S1,2,4 − 32S2,1,4 + 32S1,4,2

+4S2,4,1 + 36S4,1,2 + 36S4,2,1 − 24S1,4,1,1 − 24S4,1,1,1 + 15S2,5 − 21S5,2

+24S5,1,1 + 24S3,3,1 + 24S3,1,3 + 24S1,3,3 + 44S3,2,2 + 40S2,3,2 + 20S2,2,3

−24S1,3,1,2 + 16S1,2,3,1 − 24S1,3,2,1 − 24S3,1,1,2 + 16S2,1,3,1 − 24S3,1,2,1

−24S2,3,1,1 − 24S3,2,1,1 − 24S1,2,2,2 − 24S2,1,2,2 − 24S2,2,1,2 − 24S2,2,2,1

−40S1,1,5 + 80S1,1,1,4 + 32S1,1,4,1 − 16S1,1,3,2 − 64S1,1,1,3,1

−8ζ(3)(S1,3 + S3,1 − S4). (5.11)

The term multiplied by ζ(3) is due to the dressing factor. Curiously, only positive indices
in the harmonic sums appear. Because the argument of the harmonics sums in (5.7)-
(5.10) is M

2
, there is no pole at M = −1 and thus these states are not captured by the

BFKL equation. It would be very interesting to see whether one can predict their analytic
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structure at M ≤ −2 from the double-log constraints. We would like to stress again the
fact that equations (5.7)-(5.10), even when the asymptotic character of the Bethe equations
(2.1) is taken into account, should give correct anomalous dimensions. Below we present
the two highest terms in the analytical continuation to M = 2 (ω − 1)

γABA

2

2
=−

4

ω
+ 4ζ(2)ω + . . . ,

γABA

4

4
= −

2

ω3
+

4

ω
ζ(2) + . . . ,

γABA

6

8
=−

1

ω5
+

6

ω3
ζ(2) + . . . ,

γABA

8

16
= −

1

2ω7
+

5

ω5
ζ(2) . . . .

(5.12)

Note that the leading singularity is the same for all points M = 2 (ω − (k + 1)) and
k = 0, 1, . . .. The corresponding expansion of the total anomalous dimension up to four-
loop order reads

γABA =−8
g2

ω

[

1 − ζ(2)ω2 + t
(

1 − 2 ζ(2)ω2
)

+ t2
(

1 − 6 ζ(2)ω2
)

+ t3
(

1 − 10 ζ(2)ω2
)

+ . . .

]

+ . . . , (5.13)

where

t =
g2

ω2
. (5.14)

One can speculate on an all-loop generalization of (5.13). A plausible form might be

γABA = −8
g2

ω

(

1

1 − t
− ζ(2)

1 + 3 t2

(1 − t)2
ω2 + . . .

)

+ . . . . (5.15)

It is interesting to note that the double-logarithmic behavior of these states is different
from the twist-two ones (3.10).

6 Outlook

Our result in table 1 with the ensuing (1.9) proves unequivocally that the spectral equations
of [9, 15] for AdS/CFT are still incomplete as the BFKL prediction (1.8) is not reproduced
at four-loop order O(g8).

Our weak-coupling study is complementary to indications that at strong coupling, i.e. on
the string side of the AdS/CFT correspondence, the asymptotic Bethe ansatz [9, 15] is
also incomplete when one considers finite size effect of the string worldsheet. For one, it
was argued that for a specific spinning string solution carrying both angular momentum
w.r.t. AdS5 and S5 as well as winding numbers, and whose classical [36] and one-loop [37]
energy is known, the ansatz does not reproduce exponentially small terms in the size of the
system [38]. A second indication comes from a study of the finite size effects [39] on the
dispersion law of classical giant magnons [40]. Again, terms which fall off exponentially
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with the volume are seen which cannot easily be accounted for by the dressed asymptotic
spectral equations.

We have shown that linking the integrable structures found in the context of high
energy scattering amplitudes in N = 4 theory and the ones appearing in the spectral
problem leads to very strong constraints. It was pointed out in [20] and [41] that pomeron
physics and anomalous dimensions are very naturally connected through the AdS/CFT
correspondence. However, no attention had so far been payed to the fact that integrability
will presumably allow to truly explore these connections in a quantitative and analytic
fashion. We feel that we have made a first step in this direction.

Interestingly, the breakdown we observe is completely insensitive to the structure of
the dressing factor, which also appears at four-loop order [15], in contradistinction to what
one might have hoped for. Recall that this dressing phase leads to the four-loop agreement
between the Bethe ansatz and the result of a gluon scattering amplitude in N = 4 theory
[13, 16, 15]. This is not contradictory. The gluon amplitude tests the anomalous dimension
in the large spin limit M → ∞, where it was argued that the all-loop result leads to a
universal scaling function [14] (see also [42]), i.e. one which is reached by large M scaling of
the lowest state at fixed length=twist. We may therefore choose the twist large enough to
avoid leaving the asymptotic regime. Turning this around, we might say that the wrapping
terms should be subleading in the large spin limit. This is reassuring, in particular since by
now it appears that the scaling function matches well [43] the known string theory results
[44]. Furthermore, the analytic structure of the dressing phase fits well a semi-classical
analysis [45].

In this article it is proven that wrapping effects are not properly taken into account
by the existing asymptotic Bethe ansatz. We note that this was of course never claimed
otherwise by any of the current authors, and is actually quite expected from the way
this Bethe ansatz was initially constructed [7]. The mechanism for the breakdown of
the asymptotic approximation should be similar to the one discussed from a field theory
standpoint in [46], and from a lattice model point of view in [47].
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A Asymptotic Four-Loop Anomalous Dimension of

Twist-Two Operators in a Non-Canonical Basis

− 8 S−3 (4 S−4 + S2
−2 + 2 S−2 S2 + 2 S2

2 + 3 S4 + 2 S−2,2 + 8 S−2,1,1)

− 16 S−2,1 (4 S−4 + S2
−2 − 2 S−2 S2 − 2 S2

2 − 5 S4 + 6 S−2,2 + 8 S−2,1,1)

−
8

3
S3 (36 S−4 + 9 S2

−2 + 18 S−2 S2 + 6 S2
2 + 9 S4 − 56 S−3,1 − 50 S−2,2

+ 88 S−2,1,1) − 16 S2 (3 S−5 + S5 − 6 (S−4,1 + S−3,2 + S−2,3 − 2 S−3,1,1

− 2 S−2,1,2 − 2 S−2,2,1 + 4 S−2,1,1,1)) − 32 S−2 (4 S−5 + 2 S5 − S−4,1

− S−2,3 + S4,1 − 2 S−2,−2,1) −
32

3
S3

1 (18 S−4 − 3 S2
−2 + 3 S4 − 16 S−3,1

− 10 S−2,2 + 8 S−2,1,1) − 32 S2
1 (S−2 (5 S−3 + 3 S3 + 2 S−2,1)

+ 3 S2 (3 S−3 + S3 − 2 S−2,1) + 15 S−5 + 5 S5 − 2 (10 S−4,1 + S−3,−2

+ 10 S−3,2 +7 S−2,3 −S4,1 −14 S−3,1,1 +2 S−2,−2,1 −10 S−2,1,2 −10 S−2,2,1

+12 S−2,1,1,1)) − 16 S1 (S3 (12 S−3 − 12 S−2,1) + S−2 (8 S−4 + 6 S2
2 + 9 S4

− 12 S−3,1 − 2 S−2,2) + 2S2 (8 S−4 + 2 S2
−2 + 3 S4 − 12 S−3,1 − 10 S−2,2

+ 16 S−2,1,1) + 26 S−6 − 3 S2
−3 + S3

−2 + 2 S3
2 +2 S2

3 +3 S6 −44 S−5,1

−46 S−4,2 −46 S−3,3 −4 S2
−2,1 −38 S−2,4 +4 S4,2 −8 S5,1 + 80 S−4,1,1

+ 8 S−3,−2,1 + 8 S−3,1,−2 + 84 S−3,1,2 + 84 S−3,2,1 − 8 S−2,−2,2 + 68 S−2,1,3

+ 72 S−2,2,2 +68 S−2,3,1 −8 S4,1,1 −144 S−3,1,1,1 +16 S−2,−2,1,1 −120 S−2,1,1,2

−120 S−2,1,2,1 − 120 S−2,2,1,1 +192 S−2,1,1,1,1) − 16 (8 S−7 +9 S7 −16 S−6,1

−6 S−5,−2 −16 S−5,2 −S−4,−3 − 17 S−4,3 −15 S−3,4 −18 S−2,5 −5 S4,3

+4 S5,2 +6 S6,1 +32 S−5,1,1 −6 S−4,−2,1 +36 S−4,1,2 + 36 S−4,2,1

− 4 S−3,−3,1 − 2 S−3,−2,−2 − 4 S−3,−2,2 + 36 S−3,1,3 + 40 S−3,2,2 + 36 S−3,3,1

+ 2 S−2,−4,1 − 8 S−2,−3,2 + 10 S−2,−2,3 + 34 S−2,1,4 + 36 S−2,2,3 + 36 S−2,3,2

+ 32 S−2,4,1 − 4 S4,1,2 − 4 S4,2,1 − 72 S−4,1,1,1 − 80 S−3,1,1,2 − 80 S−3,1,2,1

− 80 S−3,2,1,1 + 24 S−2,−3,1,1 + 4 S−2,−2,−2,1 + 8 S−2,−2,1,2 + 8 S−2,−2,2,1

− 8 S−2,1,1,−3 − 72 S−2,1,1,3 − 80 S−2,1,2,2 − 72 S−2,1,3,1 − 8 S−2,2,−2,1

− 80 S−2,2,1,2 − 80 S−2,2,2,1 − 72 S−2,3,1,1 + 24 S4,1,1,1 + 160 S−3,1,1,1,1

− 48 S−2,−2,1,1,1 − 16 S−2,1,−2,1,1 + 160 S−2,1,1,1,2 + 160 S−2,1,1,2,1

+ 160 S−2,1,2,1,1 + 160 S−2,2,1,1,1 − 320 S−2,1,1,1,1,1)

− 16 ζ(3)S1(S3 − S
−3 + 2S

−2,1)

Table 2: The four-loop asymptotic dimension
γABA
8

(M)

16
of table 1 in a non-canonical basis.

This isolates the S1, i.e all terms divergent as M → ∞.

15



References

[1] L. N. Lipatov, “High-energy asymptotics of multicolor QCD and exactly solvable lattice
models,” (unpublished), arXiv:hep-th/9311037.

[2] L. N. Lipatov, “Asymptotic behavior of multicolor QCD at high energies in connection
with exactly solvable spin models,” JETP Lett. 59 (1994) 596 [Pisma Zh. Eksp. Teor.
Fiz. 59 (1994) 571]. • L. D. Faddeev and G. P. Korchemsky, “High-energy QCD as a
completely integrable model,” Phys. Lett. B 342 (1995) 311, arXiv:hep-th/9404173.

[3] L. N. Lipatov, ”Evolution equations in QCD”, in “Perspectives in Hadronic Physics,”
Proceedings of the Conference, ICTP, Trieste, Italy, 12-16 May 1997, eds. S. Boffi,
C. Ciofi Degli Atti and M. Giannini, World Scientific (Singapore, 1998).

[4] V. M. Braun, S. E. Derkachov and A. N. Manashov, “Integrability of three-particle evo-
lution equations in QCD,” Phys. Rev. Lett. 81 (1998) 2020, arXiv:hep-ph/9805225. •
V. M. Braun, S. E. Derkachov, G. P. Korchemsky and A. N. Manashov, “Baryon distri-
bution amplitudes in QCD,” Nucl. Phys. B 553 (1999) 355, arXiv:hep-ph/9902375.
• A. V. Belitsky, “Fine structure of spectrum of twist-three operators in QCD,” Phys.
Lett. B 453 (1999) 59, arXiv:hep-ph/9902361. • A. V. Belitsky, “Renormalization
of twist-three operators and integrable lattice models,” Nucl. Phys. B 574 (2000) 407,
arXiv:hep-ph/9907420.

[5] J. A. Minahan and K. Zarembo, “The Bethe ansatz for N = 4 super Yang-Mills”,
JHEP 0303 (2003) 013, arXiv:hep-th/0212208. • N. Beisert and M. Staudacher,
“The N = 4 SYM integrable super spin chain”, Nucl. Phys. B 670, 439 (2003),
arXiv:hep-th/0307042.

[6] N. Beisert, C. Kristjansen and M. Staudacher, “The dilatation operator of N = 4
super Yang-Mills theory,” Nucl. Phys. B 664 (2003) 131, arXiv:hep-th/0303060. •
N. Beisert, “The su(2|3) dynamic spin chain,” Nucl. Phys. B 682 (2004) 487,
arXiv:hep-th/0310252. • D. Serban and M. Staudacher, “Planar N = 4 gauge theory
and the Inozemtsev long range spin chain”, JHEP 0406, 001 (2004),
arXiv:hep-th/0401057. • N. Beisert, V. Dippel and M. Staudacher, “A novel long
range spin chain and planar N = 4 super Yang-Mills”, JHEP 0407, 075 (2004),
arXiv:hep-th/0405001.

[7] M. Staudacher, “The factorized S-matrix of CFT/AdS”, JHEP 0505, 054 (2005),
arXiv:hep-th/0412188.

[8] N. Beisert, “The su(2|2) dynamic S-matrix,” arXiv:hep-th/0511082.

[9] N. Beisert and M. Staudacher, “Long-range psu(2, 2|4) Bethe ansätze for gauge theory
and strings”, Nucl. Phys. B 727 (2005) 1, arXiv:hep-th/0504190.

16



[10] I. Bena, J. Polchinski and R. Roiban, “Hidden symmetries of the AdS5 × S5 super-
string,” Phys. Rev. D 69 (2004) 046002, arXiv:hep-th/0305116. • V. A. Kazakov,
A. Marshakov, J. A. Minahan and K. Zarembo, “Classical / quantum integrability in
AdS/CFT,” JHEP 0405 (2004) 024, arXiv:hep-th/0402207.

[11] G. Arutyunov, S. Frolov and M. Staudacher, “Bethe ansatz for quantum strings,”
JHEP 0410 (2004) 016, arXiv:hep-th/0406256.

[12] R. A. Janik, “The AdS5 × S5 superstring worldsheet S-matrix and crossing symme-
try”, Phys. Rev. D 73 (2006) 086006, arXiv:hep-th/0603038. • R. Hernandez and
E. Lopez, “Quantum corrections to the string Bethe ansatz,” JHEP 0607 (2006) 004,
arXiv:hep-th/0603204. • G. Arutyunov and S. Frolov, “On AdS5x × S5 string S-
matrix,” Phys. Lett. B 639 (2006) 378, arXiv:hep-th/0604043. • N. Beisert, R. Her-
nandez and E. Lopez, “A crossing-symmetric phase for AdS5 × S5 strings,” JHEP
0611 (2006) 070, arXiv:hep-th/0609044.

[13] Z. Bern, M. Czakon, L. J. Dixon, D. A. Kosower and V. A. Smirnov, “The four-
loop planar amplitude and cusp anomalous dimension in maximally supersymmetric
Yang-Mills theory”, arXiv:hep-th/0610248.

[14] B. Eden and M. Staudacher, “Integrability and transcendentality,” J. Stat. Mech. 0611
(2006) P014, arXiv:hep-th/0603157.

[15] N. Beisert, B. Eden and M. Staudacher, “Transcendentality and crossing,” J. Stat.
Mech. 0701 (2007) P021, arXiv:hep-th/0610251.

[16] F. Cachazo, M. Spradlin and A. Volovich, “Four-loop cusp anomalous dimension from
obstructions”, arXiv:hep-th/0612309.

[17] A. Rej, M. Staudacher and S. Zieme, “Nesting and dressing,” arXiv:hep-th/0702151.

[18] N. Gromov and P. Vieira, “Constructing the AdS/CFT dressing factor,”
arXiv:hep-th/0703266.

[19] A. V. Kotikov, L. N. Lipatov and V. N. Velizhanin, “Anomalous dimensions
of Wilson operators in N = 4 SYM theory,” Phys. Lett. B 557 (2003) 114,
arXiv:hep-ph/0301021.

[20] A. V. Kotikov, L. N. Lipatov, A. I. Onishchenko and V. N. Velizhanin, “Three-
loop universal anomalous dimension of the Wilson operators in N = 4 SUSY Yang-
Mills model,” Phys. Lett. B 595 (2004) 521 [Erratum-ibid. B 632 (2006) 754],
arXiv:hep-th/0404092.

[21] A. V. Kotikov and L. N. Lipatov, “DGLAP and BFKL equations in the N = 4 super-
symmetric gauge theory,” Nucl. Phys. B 661 (2003) 19 [Erratum-ibid. B 685 (2004)
405], arXiv:hep-ph/0208220.

17



[22] S. Moch, J. A. M. Vermaseren and A. Vogt, “The three-loop splitting functions in
QCD: The non-singlet case,” Nucl. Phys. B 688 (2004) 101, arXiv:hep-ph/0403192.

[23] Yu. L. Dokshitzer, G. Marchesini and G. P. Salam, “Revisiting parton evolution and the
large-x limit,” Phys. Lett. B 634 (2006) 504, arXiv:hep-ph/0511302. • Yu. L. Dok-
shitzer and G. Marchesini, “N = 4 SUSY Yang-Mills: Three loops made simple(r),”
Phys. Lett. B 646 (2007) 189, arXiv:hep-th/0612248. • B. Basso and G. P. Ko-
rchemsky, “Anomalous dimensions of high-spin operators beyond the leading order,”
arXiv:hep-th/0612247.

[24] L. N. Lipatov, “Reggeization of the vector meson and the vacuum singularity in non-
abelian gauge theories,” Sov. J. Nucl. Phys. 23 (1976) 338 [Yad. Fiz. 23 (1976) 642].
• E. A. Kuraev, L. N. Lipatov and V. S. Fadin, “The Pomeranchuk singularity in
nonabelian gauge theories,” Sov. Phys. JETP 45 (1977) 199 [Zh. Eksp. Teor. Fiz.
72 (1977) 377]. • I. I. Balitsky and L. N. Lipatov, “The Pomeranchuk singularity in
Quantum Chromodynamics,” Sov. J. Nucl. Phys. 28 (1978) 822 [Yad. Fiz. 28 (1978)
1597].

[25] J. A. M. Vermaseren, “Harmonic sums, Mellin transforms and integrals,” Int. J. Mod.
Phys. A 14 (1999) 2037, arXiv:hep-ph/9806280.
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