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to turducken (turduckens, turduckening, turduckened, turduckened) [math.]: To stuff a black hole.

We analyze and apply an alternative to black hole excision based on smoothing the interior of
black holes with arbitrary – possibly constraint violating – initial data, and solving the vacuum
Einstein evolution equations everywhere. By deriving the constraint propagation system for our
hyperbolic formulation of the BSSN evolution system we rigorously prove that the constraints prop-
agate causally and so any constraint violations introduced inside the black holes cannot affect the
exterior spacetime. (This does not follow from the causal structure of the spacetime as is often
assumed.) We present numerical evolutions of Cook-Pfeiffer binary black hole initial configurations
showing that these techniques appear to work robustly for generic data. We also present numerical
evidence from spherically symmetric evolutions that for the gauge conditions used the same station-
ary end-state is approached irrespective of the choice of initial data and smoothing procedure.

PACS numbers: 04.20.-q,04.25.Dm,04.30.Db

I. INTRODUCTION

Currently, there are essentially two different ways of
dealing with singularities in the numerical evolution of
orbiting black holes. One technique is black hole excision
[1, 2], where the interior of each black hole is removed
from the computational domain by an inner boundary.
The other is the so called “moving punctures” technique
[3, 4], where the initial asymptotically flat regions inside
each black hole are represented by “puncture points”.
Long, multi-orbit binary black hole simulations have been
achieved over the last few years using both excision [5, 6]
and moving punctures (see [7] and references therein).

The puncture technique does not make use of the black
hole excision idea, at least not in the classical sense
of placing an inner boundary inside each black hole.
Instead, the fields that initially describe the puncture
points are allowed to evolve freely in the (topologically
trivial) computational domain and the subtleties of black
hole excision are replaced by the subtleties involved in
approximating the singularities in the equations at the
puncture points. The particular appeal of the “moving
punctures” technique compared to black hole excision is
that it appears to be simpler to achieve a stable dis-
cretization near the puncture points than at an excision
boundary; however, there appears to be an implicit limi-
tation of the method in that it is in principle tied to the
use of puncture data. Recently, light has been shed on
the geometric picture behind moving punctures [8, 9, 10].

In this paper we discuss a technique for evolving black
holes which shares the simplicity of moving punctures
but is not restricted to puncture-type initial data and

does not need any regularization of the equations near
special points. The method also relies on the intuitive
idea behind black hole excision that “no physical infor-
mation can escape from the interior of a black hole”, but
proceeds in a different way. In particular, it does not
require placing an inner boundary per black hole in or-
der to remove the interiors. The computational domain
in this technique is trivial (from a topological point of
view) and the discretization therefore remains simple.

The basic idea is the following: if no physical infor-
mation can leave the interior of the black hole, why not
just change the interior to one’s advantage? The spirit of
this idea is not new, and has been advocated for a long
time in several forms, most notably by Bona and collab-
orators [11, 12, 13] and by Misner [14]. In particular, in
[12], a “free black evolution” approach was advocated,
where the interior of each black hole is smoothed with
arbitrary data and the vacuum Einstein evolution equa-
tions are solved everywhere. In general the smoothing
process generates constraint violations. Thus, a key in-
gredient of this approach is to guarantee that the form of
the equations does not allow for constraint violations to
propagate to the outside. This is highly non-trivial. In
fact, it is well known that depending on the form of the
Einstein equations used, gauge and constraint modes can
propagate with arbitrary (including superluminal) speeds
and, in particular, constraint violations can leak from the
interior of black holes to the outside. Though we use a
different formulation of the equations (a version of BSSN
as opposed to the Z4 system [12]), this “free black hole
evolution” approach is exactly the one that we analyze
and apply in this paper. Even though in several aspects
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this is different from the “stuffed black hole proposal”
[11], we will refer to our particular implementation as
the relativistic turducken [15].

II. NO CONSTRAINT LEAKING IN THE

TURDUCKENING: AN ANALYTICAL PROOF

The exact version of the BSSN system we use is given
by Eqs. (3)–(7), (21)–(23) in [16] where we set the param-

eter m to one and the source terms S, Ŝij and Si to zero.
Furthermore, the lapse α and the shift βi are evolved

according to the 1 + log slicing condition ∂̂0α = −2αK
and the “hyperbolic Gamma driver” [17] like conditions

∂̂0β
i = 3Bi/4, ∂̂0B

i = ∂̂0Γ̃
i − Bi/2 , respectively, where

∂̂0 = ∂t − βj∂j . The term ∂̂0Γ̃
i in the last equation is set

equal to the right-hand side of the evolution equations for

the Γ̃i symbols. As noted in [16] the use of ∂̂0 (as opposed
to ∂t) in the above equations simplifies the analysis of the
hyperbolic structure of the equations. Later, it was also
found to be important in practice for long-term binary

evolutions [18]. In addition, using ∂̂0 for the lapse implies
that the slicing obtained is independent of the choice of
shift vector [8].

The well-posedness of the resulting Cauchy problem
was analyzed in [16]. A sufficient condition for well-
posedness is strong hyperbolicity of the evolution equa-
tions. (See [19, 20] for definitions that apply to second
order systems.) In our case, the equations are strongly
hyperbolic if and only if the lapse α and the conformal
factor φ are smooth functions satisfying α > 0, |φ| < ∞
and h := 2α − e4φ 6= 0. The last condition is typically
violated, at least on some two-surface. This is so because
in general, α → 1 and φ → 0 and therefore h → 1 as one
approaches the main asymptotically flat end, while near
black holes α is small and φ is large and positive (for the
coordinate conditions used here typically α ≈ 0.3 at the
horizon, and α → 0 and φ → ∞ at any punctures) so that
h < 0 near a horizon. Therefore, the function h must be
zero somewhere in between. On the other hand, if the re-
gions where h = 0 are, for example, sets of zero-measure
in the computational domain there is hope that the vio-
lation of the condition h 6= 0 still allows for a well posed
Cauchy problem. The numerical simulations in Sect. IV
below show no apparent sign of numerical instability.

The characteristic speeds (with respect to normal ob-
servers) for our evolution equations are the following

[16]: 0,±1,±µ1,±µ2,±µ3, where µ1 =
√

2/α, µ2 =√
3 e2φ/2α, µ3 = e2φ/α. It is possible to give a precise

meaning to the different characteristic fields and speeds
in the high-frequency limit [21, 22]. In that limit, fields
propagating with speeds µ1, µ2 and µ3 correspond to
gauge modes, while the fields corresponding to gravi-
tational radiation and constraint-violating modes have
speeds ±1 and 0, ±1 respectively. As we will see below,
the constraint propagation system possesses the charac-
teristic speeds 0 and ±1.

The BSSN system is subject to the Hamiltonian and
momentum constraints H = 0 and Mi = 0 plus three
extra constraints associated with the introduction of
the Γ̃i symbol as independent variables, namely Ci

Γ :=

Γ̃i + ∂j γ̃
ij = 0, where γ̃ij refers to the inverse of the con-

formal metric. In order to obtain a solution to Einstein’s
vacuum field equations, these constraints have to be sat-
isfied. We now show that it is sufficient to solve them
on an initial Cauchy surface in the region exterior to
the black holes. The constraint propagation system then
guarantees1 that these constraints hold at every time fu-
ture to the initial surface and at every point outside the
black hole regions, independent of any constraint viola-

tion in the interior of the black holes. We show this by
deriving the constraint propagation system and casting
it into first order symmetric hyperbolic form. Then the
causal propagation of the constraints can be shown via a
standard energy inequality provided all the characteristic
speeds (as measured by normal observers) of the system
are smaller than or equal to one in magnitude.

Using the Bianchi identities, imposing the evolution
equations and introducing the additional constraint vari-
ables Zij = (∂iC

k
Γ)γ̃kj , the constraint propagation system

can be rewritten as a first order system of the form

∂̂0C = α
[

A(u)i∂iC + B(u)C
]

, (1)

where C are the constraint variables, u =
(α, φ, γ̃ij , K, Ãij , Γ̃

i) are the main variables, and
A

1, A
2, A

3 and B are matrix-valued functions of u. De-
composing Zij = Ẑ(ij) + Z[ij] + γijZ/3 into its trace-free

symmetric part Ẑ(ij), its anti-symmetric part Z[ij], and

its trace Z = γijZij with respect to the physical three-
metric γij , and representing C in terms of the variables

C = (Ci
Γ, S1 := 2mH+Z, S2 := H+2σZ, Mj, Ẑ(ij), Z[ij]),

the principal symbol A(n) = A(u)ini is given by

A(n)C =

(

0, 0, njMj ,
1

3
njS2 +

1

2
niẐ(ij) +

1

2
niZ[ij] ,

2(n(iMj))
TF , 2n[iMj]

)

, (2)

where ni ≡ γijnj and ni is normalized such that nin
i =

1. This system is symmetric hyperbolic, and its charac-
teristic speeds (with respect to normal observers) are 0
and ±1. A symmetrizer is given by the quadratic form

CT
HC = γ̃ijC

i
ΓCj

Γ + S2
1 +

1

3
S2

2 + γijMiMj

+
1

4
γikγjlẐ(ij)Ẑ(kl) +

1

4
γikγjlZ[ij]Z[kl] .

The symmetrizer, along with the fact that there are no
superluminal characteristic speeds, allow us to obtain an

1 However, constraint violations can still be introduced by im-

proper outer boundary conditions.
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energy estimate for the constraint variables C and to
show that no constraint violations from the interior of
a black hole can propagate to the outside. The explicit
estimate will be presented elsewhere along with more de-
tails of the results presented in this paper.

III. SINGLE BLACK HOLE EVOLUTIONS AND

THE END STATE

In this section we present insights obtained by applying
the turducken technique to a single spherically symmetric
black hole. For these studies we use both the three–
dimensional (3D) code described in section IV, as well as
the one–dimensional (1D) BSSN code discussed in [23].
Both codes use a formulation of the BSSN equations that
is strongly hyperbolic everywhere except in regions of
the computational domain that are likely sets of measure
zero, and have causal constraint propagation.

For a single black hole we use turduckened Kerr–Schild
(KS) initial data. Without turduckening, a KS slice hits
the singularity. We first define the spacetime metric
gµν = ηµν + 2Hℓµℓν in terms of Cartesian coordinates
x, y, z, where ηµν is the Minkowski metric, H = M/r̄
and ℓµ = (1, x, y, z)/r̄. Here, r̄ is defined in terms of co-

ordinate radius r = (x2 + y2 + z2)1/2 by r̄ = (rp + ǫp)1/p.
The contravariant metric gµν is obtained from gµν by
raising indices with ηµν . In Cartesian coordinates the
initial metric is defined by the spatial components of gµν

and the initial extrinsic curvature is defined by the usual
expression Kij = (−ġij+βk∂kgij+2gk(i∂j)β

k)/2α, where

α = 1/
√

−gtt and βi = −git/gtt. The initial data for the
1D code is obtained by transforming the Cartesian data
to spherical coordinates.

For r ≫ ǫ we find r̄ ≈ r and the initial data coincides
with a KS slice of a non–rotating black hole. For r close
to the origin, the data are smooth and regular as long
as ǫ 6= 0. This form of turduckening is not ideal since
it leads to constraint violations that extend beyond the
horizon r = 2 M . Typical values used in our simulations
are ǫ = 0.1M and p = 4. These values lead to initial
violations of the Hamiltonian constraint of ∼ 104/M2 at
r = 0 and ∼ 10−5/M2 at r = 2 M .

Experiments in 1D show that after an evolution time
of 50 M , the Hamiltonian constraint violation throughout
the computational domain drops to a level ∼ 10−5/M2.
Similar results hold for the other constraints. By t =
50 M the data have become nearly stationary; the final
state in the t → ∞ limit coincides with a portion of the
stationary 1+log slice of Schwarzschild. This is the same
end state obtained with puncture evolution [8, 10]. The
key ingredient responsible for these remarkable behaviors
is the Gamma–driver shift condition. With this condition
the shift grows large in the interior region to counteract
the grid stretching that would otherwise occur as the
lapse collapses. As a result the time flow vector field tips
outside the physical light cone (toward increasing r) and
the grid points near r = 0 are quickly driven out of causal
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Figure 1: Areal radius R versus proper distance d from the
horizon. The initially turduckened KS become indistinguish-
able from the portion d >

∼−9 of a stationary 1+log slice after
t ≈ 50M . The region R < 2M is the black hole interior.

contact with the constraint violating portion of the initial
data. With the constraints (nearly) satisfied everywhere
in the computational domain, the numerical data repre-
sents a slice of Schwarzschild that extends from region I
of the Kruskal diagram, crosses the black hole horizon,
and terminates at a resolution–dependent location inside
the black hole. The 1 + log slicing condition then guides
the slice to a stationary state.

Fig. 1 shows the areal radius R versus proper distance
d (in the radial direction) for a single non–spinning black
hole, obtained from the 1D code with resolution M/200.
The data evolve to the stationary 1 + log slice in spite of
the fact that the initial data violate the constraints.

Alternatively, the initial KS data can be changed only
inside a sphere of radius r0 < 2M . In 1D simulations such
initial data can lead to the formation of gauge shocks, like
those discussed in [9]. The shocks typically form just out-
side the black hole, independent of the parameter r0; this
suggests that the formation of shocks is a consequence of
the gauge conditions, and not the black hole turducken-
ing. We have not seen this behavior in 3D, perhaps due
to lack of resolution.

IV. BINARY BLACK HOLE EVOLUTIONS

USING COOK-PFEIFFER DATA

We evolve quasi-equilibrium binary black hole initial
data using the form of the equations described above, im-
plemented in CCATIE, a three-dimensional adaptive mesh
refinement code which uses the Cactus framework [24]
and the Carpet mesh refinement driver [25, 26]. This
evolution code is fourth order accurate. It uses cen-
tered finite differencing operators, except for the advec-
tion terms which are upwinded. We use fifth order spa-
tial and second order temporal polynomial interpolation
at mesh refinement boundaries, and buffer zones as de-
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Figure 2: Apparent horizons in a binary black hole evolution
of Cook-Pfeiffer data. This figure shows the tracks of the
centroids of the apparent horizons, as well as their shapes at
t = 0 M , at merger (t ≈ 37M), and at late times (t ≥ 200 M).

scribed in [25] to ensure stability. We therefore expect
our code to be third order accurate in the limit of infinite
resolution, and expect it to show approximate fourth or-
der convergence away from the outer boundary and for
the resolutions used here. We use a fourth order Runge-
Kutta time integrator with a CFL factor of 0.4. We use
Sommerfeld outer boundary conditions for the individual
components of the evolved variables, which are not con-
straint preserving; we therefore place the outer bound-
aries at a large distance from the source.

The initial data were provided by Harald Pfeiffer [27]
and are described in [28, 29]. In particular we use
the data set sep_07.00_59a.tgz in which the binary
black hole system is expected to orbit approximately
once before merging. These data have an ADM mass
MADM ≈ 2.44449 ≈ 0.977795 M , where we use a scale
factor M = 2.5. The black holes are centered about
x = ±1.4 M , and the apparent horizons have a coordi-
nate radius rAH ≈ 0.35 M .

Our simulations use reflection symmetry about z = 0
and π-rotation symmetry about the z axis. We choose
a simulation domain with outer boundaries at 204.8 M ,
and use altogether 9 successively smaller levels of mesh
refinement, where the finest level has an extent of 0.8 M ,
centered about each black hole. Our resolution is h =
3.2 M on the coarsest grid, h = 0.8 M near the gravita-
tional wave detector, and h = 0.0125 M on the finest grid.
We include results from two coarser runs with coarse grid
resolutions h ≈ 4.5 M and h ≈ 4.1 M , respectively.

The initial data are provided in terms of spectral ex-
pansion coefficients for the ADM variables on multiple
domains and need to be interpolated to our grid points.
The initial data setup excises the apparent horizons but
extrapolates a distance of up to 0.25 rAH = 0.0875 M
into the horizon. The remainder of the interior of the
apparent horizons needs to be turduckened.

We have experimented with various methods for tur-
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Figure 3: Real part of the waveform Q+

22, extracted at R =
50M . The vertical lines indicate approximately when the
initial burst of spurious radiation first reaches the detector
and when the common horizon is “seen” by the detector. The
“junk” radiation near t = 50 M is a well-known feature from
puncture evolutions.

duckening the black hole interior, and find that the de-
tails do not matter much in practice, as long as the space-
time remains unchanged within the finite differencing
stencil radius of the horizon. Since there are preciously
few grid points between the excised region and the hori-
zon, we chose a method which leaves all given spacetime
data unchanged and fills in the excised points in a smooth
manner. (One alternative would be a blending method
which fills the excised region with arbitrary data, and
then modifies some of the non-excised grid points to cre-
ate a smooth match.)

In particular, we solve the elliptic equation (∂6/∂x6 +
∂6/∂y6 + ∂6/∂z6)A = 0 to fill the excised points of a
quantity A, using standard centered derivatives every-
where and using the given non-excised data as boundary
conditions where necessary. This is equivalent to provid-
ing boundary conditions for A and its normal derivatives
∂A/∂n, and ∂2A/∂n

2. The result is therefore C2 every-
where within the horizon. We solve this equation with a
standard conjugate gradient method.

We follow the evolution of these data through merger
and ringdown for about 200 M . Fig. 2 shows the loca-
tions, shapes, and tracks of the individual and the com-
mon apparent horizons. A common horizon appears at
about t = 37 M . The common horizon initially has a
strong Y22 deformation which is radiated away. This is
clearly shown in the real part of the ℓ = m = 2 mode of
the Zerilli function Q+, extracted on a coordinate sphere
at R = 50 M and shown in Fig. 3. Fig. 4 shows the re-
sults of a convergence test, although the resolutions are
too close together to give reliable results. Both the hori-
zon dynamics and waveforms are very similar to those
from puncture initial data. We will present a study of
this and other systems with larger initial separations in
more detail elsewhere.
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Figure 4: Difference between waveforms, scaled for 4th order
convergence. The waveform phases have been shifted in time
so that all resolutions have the same phase at the beginning
of the merger radiation burst at t ≈ 60M . The initial high-
frequency oscillations in the error are caused by the small
amount of “junk” radiation near t = 50 M , and similar oscil-
lations near t = 140 M are probably caused by its reflection
at the coarsest refinement level. The noise near t = 170 M

appears at a time when the waveform has already rung down.

V. FINAL REMARKS

A key property needed in a “free black hole evolu-
tion” approach is that the constraints propagate causally.
This cannot be taken for granted, and must be proved
(or tested) for any particular formulation of the Einstein
equations used. Note that even apparently small varia-
tions in the evolution system can change the constraint
propagation from causal to acausal.

Causal propagation of the constraints alone is not suf-
ficient. In modifying the initial data by smoothing away
the singularity, we are not guaranteeing that the evolu-
tion will proceed to a smooth, regular end-state. That
this end-state is numerically well-behaved is the other

key ingredient in any evolution that relies on modifying
the interior of the horizon in some way. As the numer-
ical evidence presented here shows, evolutions in spheri-
cal symmetry do tend to a recognizable end-state for the
given set of gauge conditions and form of the equations.
It seems likely that a similar picture will hold away from
spherical symmetry.

Our work suggests that the turducken technique will
hold irrespective of how and when the data inside the
horizon are modified, thus allowing the method to be
applied without modification to the final stages of evo-
lutions performed with possibly different codes and/or
methods, or to horizons formed e.g. in stellar collapse
scenarios.

Most of the results of this paper were originally pre-
sented [30] by one of us (ES) at the Tenth Eastern Grav-
ity Meeting. Since then, and while completing this paper,
independent results complementary to those presented
here have been presented in Ref. [31].
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