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1 Quantum Einstein Gravity

The assumption that Einstein’s classical theory of gravity can be quantised
non-perturbatively is at the root of a wide variety of approaches to quantum
gravity. The assumption constitutes the basis of several discrete methods [1],
such as dynamical triangulations and Regge calculus, but it also implicitly
underlies the older Euclidean path integral approach [2, 3] and the somewhat
more indirect arguments which suggest that there may exist a non-trivial fixed
point of the renormalisation group [4–6]. Finally, it is the key assumption
which underlies loop and spin foam quantum gravity. Although the assump-
tion is certainly far-reaching, there is to date no proof that Einstein gravity
cannot be quantised non-perturbatively, either along the lines of one of the
programs listed above or perhaps in an entirely different way.

In contrast to string theory, which posits that the Einstein–Hilbert action
is only an effective low-energy approximation to some other, more fundamen-
tal, underlying theory, loop and spin foam gravity takes Einstein’s theory in
four space-time dimensions as the basic starting point, either with the con-
ventional or with a (constrained) ‘BF-type’ formulation.1 These approaches
are background independent in the sense that they do not presuppose the ex-
istence of a given background metric. In comparison to the older geometrody-
namics approach (which is also formally background independent) they make
use of many new conceptual and technical ingredients. A key role is played
by the reformulation of gravity in terms of connections and holonomies. A re-
lated feature is the use of spin networks in three (for canonical formulations)

1 In the remainder, we will often follow established (though perhaps misleading)
custom and summarily refer to this framework of ideas simply as ‘Loop Quantum
Gravity’, or LQG for short.
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and four (for spin foams) dimensions. These, in turn, require other math-
ematical ingredients, such as non-separable (‘polymer’) Hilbert spaces and
representations of operators which are not weakly continuous. Undoubtedly,
novel concepts and ingredients such as these will be necessary in order to
circumvent the problems of perturbatively quantised gravity (that novel in-
gredients are necessary is, in any case, not just the point of view of LQG but
also of most other approaches to quantum gravity). Nevertheless, it is impor-
tant not to lose track of the physical questions that one is trying to answer.

Evidently, in view of our continuing ignorance about the ‘true theory’ of
quantum gravity, the best strategy is surely to explore all possible avenues.
LQG, just like the older geometrodynamics approach [7], addresses several as-
pects of the problem that are currently outside the main focus of string theory,
in particular the question of background independence and the quantisation
of geometry. Whereas there is a rather direct link between (perturbative)
string theory and classical space-time concepts, and string theory can there-
fore rely on familiar notions and concepts, such as the notion of a particle
and the S-matrix, the task is harder for LQG, as it must face up right away
to the question of what an observable quantity is in the absence of a proper
semi-classical space-time with fixed asymptotics.

The present text, which is based in part on the companion review [8], is
intended as a brief introductory and critical survey of loop and spin foam
quantum gravity,2 with special attention to some of the questions that are
frequently asked by non-experts, but not always adequately emphasised (for
our taste, at least) in the pertinent literature. For the canonical formulation
of LQG, these concern in particular the definition and implementation of
the Hamiltonian (scalar) constraint and its lack of uniqueness. An important
question (which we will not even touch on here) concerns the consistent incor-
poration of matter couplings, and especially the question as to whether the
consistent quantisation of gravity imposes any kind of restrictions on them. Es-
tablishing the existence of a semi-classical limit, in which classical space-time
and the Einstein field equations are supposed to emerge, is widely regarded
as the main open problem of the LQG approach. This is also a prerequisite
for understanding the ultimate fate of the non-renormalisable UV divergences
that arise in the conventional perturbative treatment. Finally, in any canoni-
cal approach there is the question whether one has succeeded in achieving (a
quantum version of) full space-time covariance, rather than merely covariance
under diffeomorphisms of the three-dimensional slices. In [8] we have argued
(against a widely held view in the LQG community) that for this, it is not
enough to check the closure of two Hamiltonian constraints on diffeomorphism
invariant states, but that it is rather the off-shell closure of the constraint al-
gebra that should be made the crucial requirement in establishing quantum
space-time covariance.

2 Whereas [8] is focused on the ‘orthodox’ approach to loop quantum gravity, to
wit the Hamiltonian framework.



Loop and Spin Foam Quantum Gravity: A Brief Guide for Beginners 153

Many of these questions have counterparts in the spin foam approach,
which can be viewed as a ‘space-time covariant version’ of LQG, and at the
same time as a modern variant of earlier attempts to define a discretised path
integral in quantum gravity. For instance, the existence of a semi-classical limit
is related to the question whether the Einstein–Hilbert action can be shown to
emerge in the infrared (long distance) limit, as is the case in (2+1) gravity in
the Ponzano–Regge formulation, cf. (38). Regarding the non-renormalisable
UV divergences of perturbative quantum gravity, many spin foam practition-
ers seem to hold the view that there is no need to worry about short distance
singularities and the like because the divergences are simply ‘not there’ in
spin foam models, due to the existence of an intrinsic cutoff at the Planck
scale. However, the same statement applies to any regulated quantum field
theory (such as lattice gauge theory) before the regulator is removed, and on
the basis of this more traditional understanding, one would therefore expect
the ‘correct’ theory to require some kind of refinement (continuum) limit,3

or a sum ‘over all spin foams’ (corresponding to the ‘sum over all metrics’
in a formal path integral). If one accepts this point of view, a key question
is whether it is possible to obtain results which do not depend on the spe-
cific way in which the discretisation and the continuum limit are performed
(this is also a main question in other discrete approaches which work with
reparametrisation invariant quantities, such as in Regge calculus). On the
other hand, the very need to take such a limit is often called into question
by LQG proponents, who claim that the discrete (regulated) model correctly
describes physics at the Planck scale. However, it is then difficult to see (and,
for gravity in (3+1) dimensions, has not been demonstrated all the way in a
single example) how a classical theory with all the requisite properties, and
in particular full space-time covariance, can emerge at large distances. Fur-
thermore, without considering such limits, and in the absence of some other
unifying principle, one may well remain stuck with a multitude of possible
models, whose lack of uniqueness simply mirrors the lack of uniqueness that
comes with the need to fix infinitely many coupling parameters in the con-
ventional perturbative approach to quantum gravity.

Obviously, a brief introductory text such as this cannot do justice to the
numerous recent developments in a very active field of current research. For
this reason, we would like to conclude this introduction by referring readers
to several ‘inside’ reviews for recent advances and alternative points of view,
namely [9–11] for the canonical formulation, [12–14] for spin foams, and [15]
for both. A very similar point of view to ours has been put forward in [16, 17].4

Readers are also invited to have a look at [18] for an update on the very latest
developments in the subject.
3 Unless quantum gravity is ultimately a topological theory, in which case the

sequence of refinements becomes stationary. Such speculations have also been
entertained in the context of string and M theory.

4 However, [16, 17] only addresses the so-called ‘m-ambiguity’, whereas we will
argue that there are infinitely many other parameters which a microscopic theory
of quantum gravity must fix.
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2 The Kinematical Hilbert Space of LQG

There is a general expectation (not only in the LQG community) that at the
very shortest distances, the smooth geometry of Einstein’s theory will be re-
placed by some quantum space or space-time, and hence the continuum will
be replaced by some ‘discretuum’. Canonical LQG does not do away with
conventional spacetime concepts entirely, in that it still relies on a spatial
continuum Σ as its ‘substrate’, on which holonomies and spin networks live
(or ‘float’) – of course, with the idea of eventually ‘forgetting about it’ by
considering abstract spin networks and only the combinatorial relations be-
tween them. On this substrate, it takes as the classical phase space variables
the holonomies of the Ashtekar connection,

he[A] = P exp
∫

e

Aamτadxm , with Aam := − 1
2ε
abcωmbc + γ Ka

m . (1)

Here, τa are the standard generators of SU(2) (Pauli matrices), but one can
also replace the basic representation by a representation of arbitrary spin,
denoted by ρj(he[A]). The Ashtekar connection A is thus a particular lin-
ear combination of the spin connection ωmbc and the extrinsic curvature Ka

m

which appear in a standard (3+1) decomposition. The parameter γ is the so-
called ‘Barbero-Immirzi parameter’. The variable conjugate to the Ashtekar
connection turns out to be the inverse densitised dreibein Ẽa

m := e ea
m. Us-

ing this conjugate variable, one can find the objects which are conjugate to
the holonomies. These are given by integrals of the associated two-form over
two-dimensional surfaces S embedded in Σ,

FS [Ẽ, f ] :=
∫

S

εmnpẼ
m
a fa dxn ∧ dxp , (2)

where fa(x) is a test function. This flux vector is indeed conjugate to the
holonomy in the sense described in Fig. 1: if the edge associated to the holon-
omy intersects the surface associated to the flux, the Poisson bracket between
the two is non-zero,

{

(he[A])αβ , FS [Ẽ, f ]
}

= ± γ fa(P )
(

he1 [A] τa he2 [A]
)

αβ
, (3)

where e = e1 ∪ e2 and the sign depends on the relative orientation of the edge
and the two-surface. This Poisson structure is the one which gets promoted
to a commutator algebra in the quantum theory.

Instead of building a Hilbert space as the space of functions over configura-
tions of the Ashtekar connection, i.e. instead of constructing wave-functionals
Ψ [Am(x)], LQG uses a Hilbert space of wave functionals which “probe” the
geometry only on one-dimensional submanifolds, the so-called spin networks .
The latter are (not necessarily connected) graphs Γ embedded in Σ consisting
of finitely many edges (links). The wave functionals are functionals over the
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e1

e2

Fig. 1. LQG employs holonomies and fluxes as elementary conjugate variables.
When the edge of the holonomy and the two-surface element of the flux intersect, the
canonical Poisson bracket of the associated operators is non-vanishing, and inserts
a τ -matrix at the point of intersection, cf. (3)

space of holonomies. In order to make them C-valued, the SU(2) indices of the
holonomies have to be contracted using invariant tensors (i.e. Clebsch–Gordan
coefficients). The wave function associated to the spin network in Fig. 2 is,
for instance, given by

Ψ [fig.2] =
(

ρj1(he1 [A])
)

α1β1

(

ρj2(he2 [A])
)

α2β2

×
(

ρj3(he3 [A])
)

α3β3

Cj1j2j3
β1β2β3

. . . , (4)

where dots represent the remainder of the graph. The spin labels j1, . . . must
obey the standard rules for the vector addition of angular momenta, but
otherwise can be chosen arbitrarily. The spin network wave functions Ψ are
thus labelled by Γ (the spin network graph), by the spins {j} attached to the
edges, and the intertwiners {C} associated to the vertices.

At this point, we have merely defined a space of wave functions in terms
of rather unusual variables, and it now remains to define a proper Hilbert
space structure on them. The discrete kinematical structure which LQG im-
poses does, accordingly, not come from the description in terms of holonomies
and fluxes. After all, this very language can also be used to describe ordi-
nary Yang–Mills theory. The discrete structure which LQG imposes is also
entirely different from the discreteness of a lattice or naive discretisation of
space (i.e. of a finite or countable set). Namely, it arises by ‘polymerising’ the
continuum via an unusual scalar product . For any two spin network states,
one defines this scalar product to be

〈

ΨΓ,{j},{C}
∣

∣Ψ ′
Γ ′,{j′},{C′}

〉

=

⎧

⎪

⎨

⎪

⎩

0 if Γ �= Γ ′ ,
∫

∏

ei∈Γ
dhei ψ̄Γ,{j},{C} ψ′

Γ ′,{j′},{C′} if Γ = Γ ′ ,
(5)



156 H. Nicolai and K. Peeters

e6
e4e1

e3
e2

e5

υ4

υ 3

υ1

υ 2

Σ

Fig. 2. A simple spin network, embedded in the spatial hypersurface Σ. The hyper-
surface is only present in order to provide coordinates which label the positions of
the vertices and edges. Spin network wave functions only probe the geometry along
the one-dimensional edges and are insensitive to the geometry elsewhere on Σ

where the integrals
∫

dhe are to be performed with the SU(2) Haar measure.
The spin network wave functions ψ depend on the Ashtekar connection only
through the holonomies. The kinematical Hilbert space Hkin is then defined as
the completion of the space of spin network wave functions w.r.t. this scalar
product (5). The topology induced by the latter is similar to the discrete
topology (‘pulverisation’) of the real line with countable unions of points as
the open sets. Because the only notion of ‘closeness’ between two points in
this topology is whether or not they are coincident, whence any function is
continuous in this topology, this raises the question as to how one can recover
conventional notions of continuity in this scheme.

The very special choice of the scalar product (5) leads to representations of
operators which need not be weakly continuous: this means that expectation
values of operators depending on some parameter do not vary continuously as
these parameters are varied. Consequently, the Hilbert space does not admit
a countable basis, hence is non-separable, because the set of all spin network
graphs in Σ is uncountable, and non-coincident spin networks are orthogonal
w.r.t. (5). Therefore, any operation (such as a diffeomorphism) which moves
around graphs continuously corresponds to an uncountable sequence of mutu-
ally orthogonal states in Hkin. That is, no matter how ‘small’ the deformation
of the graph in Σ, the associated elements of Hkin always remain a finite
distance apart, and consequently, the continuous motion in ‘real space’ gets
mapped to a highly discontinuous one in Hkin. Although unusual, and per-
haps counter-intuitive, as they are, these properties constitute a cornerstone
for the hopes that LQG can overcome the seemingly unsurmountable prob-
lems of conventional geometrodynamics: if the representations used in LQG
were equivalent to the ones of geometrodynamics, there would be no reason
to expect LQG not to end up in the same quandary.
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Because the space of quantum states used in LQG is very different from
the one used in Fock space quantisation, it becomes non-trivial to see how
semi-classical ‘coherent’ states can be constructed, and how a smooth classi-
cal space-time might emerge. In simple toy examples, such as the harmonic
oscillator, it has been shown that the LQG Hilbert space indeed admits states
(complicated linear superpositions) whose properties are close to those of the
usual Fock space coherent states [19]. In full (3+1)-dimensional LQG, the
classical limit is, however, far from understood (so far only kinematical co-
herent states are known [20–25], i.e. states which do not satisfy the quantum
constraints). In particular, it is not known how to describe or approximate
classical space-times in this framework that ‘look’ like, say, Minkowski space,
or how to properly derive the classical Einstein equations and their quan-
tum corrections. A proper understanding of the semi-classical limit is also
indispensable to clarify the connection (or lack thereof) between conventional
perturbation theory in terms of Feynman diagrams and the non-perturbative
quantisation proposed by LQG.

However, the truly relevant question here concerns the structure (and defi-
nition!) of physical space and time. This, and not the kinematical ‘discretuum’
on which holonomies and spin networks ‘float’, is the arena where one should
try to recover familiar and well-established concepts like the Wilsonian renor-
malisation group, with its continuous ‘flows’. Because the measurement of
lengths and distances ultimately requires an operational definition in terms
of appropriate matter fields and states obeying the physical state constraints,
‘dynamical’ discreteness is expected to manifest itself in the spectra of the rel-
evant physical observables. Therefore, let us now turn to a discussion of the
spectra of three important operators and to the discussion of physical states.

3 Area, Volume, and the Hamiltonian

In the current setup of LQG, an important role is played by two relatively
simple operators: the ‘area operator’ measuring the area of a two-dimensional
surface S ⊂ Σ and the ‘volume operator’ measuring the volume of a three-
dimensional subset V ⊂ Σ. The latter enters the definition of the Hamiltonian
constraint in an essential way. Nevertheless, it must be emphasised that the
area and volume operators are not observables in the Dirac sense, as they do
not commute with the Hamiltonian. To construct physical operators corre-
sponding to area and volume is more difficult and would require the inclusion
of matter (in the form of ‘measuring rod fields’).

The area operator is most easily expressed as

AS [g] =
∫

S

√
dF a · dF a , with dFa := εmnpẼ

m
a dxn ∧ dxp (6)

(the area element is here expressed in terms of the new ‘flux variables’ Ẽm
a , but

is equal to the standard expression dFa := εabcem
ben

cdxm ∧ dxn). The next
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step is to rewrite this area element in terms of the spin network variables,
in particular the momentum Ẽa

m conjugate to the Ashtekar connection. In
order to do so, we subdivide the surface into infinitesimally small surfaces SI
as in Fig. 3. Next, one approximates the area by a Riemann sum (which, of
course, converges for well-behaved surfaces S), using

∫

SI

√
dF a · dF a ≈

√

F a
SI

[Ẽ]F a
SI

[Ẽ] . (7)

This turns the operator into the expression

AS [Ẽa
m] = lim

N→∞

N
∑

I=1

√

F a
SI

[Ẽ]F a
SI

[Ẽ] . (8)

If one applies the operator (8) to a wave function associated with a fixed graph
Γ and refines it in such a way that each elementary surface SI is pierced by
only one edge of the network, one obtains, making use of (3) twice,

ÂSΨ = 8πl2pγ
#edges
∑

p=1

√

jp(jp + 1)Ψ . (9)

These spin network states are thus eigenstates of the area operator. The situa-
tion becomes considerably more complicated for wave functions which contain
a spin network vertex which lies in the surface S; in this case the area operator
does not necessarily act diagonally anymore (see Fig. 4). Expression (9) lies
at the core of the statement that areas are quantised in LQG.

The construction of the volume operator follows similar logic, although it
is substantially more involved. One starts with the classical expression for the
volume of a three-dimensional region Ω ⊂ Σ,

V (Ω) =
∫

Ω

d3x

√

∣

∣

∣

∣

1
3!

εabcεmnpẼa
mẼb

nẼ
c
p

∣

∣

∣

∣

. (10)

Fig. 3. The computation of the spectrum of the area operator involves the division
of the surface into cells, such that at most one edge of the spin network intersects
each given cell
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Fig. 4. The action of the area operator on a node with intertwiner Cj1j2k
α1α2βC

j3j4k
α3α4β.

Whether or not this action is diagonal depends on the orientation of the surface
associated to the area operator. In the figure on the (left), the location of the
edges with respect to the surface is such that the invariance of the Clebsch–Gordan
coefficients can be used to evaluate the action of the area operator. The result can
be written in terms of a ‘virtual’ edge. In the figure on the (right), however, this is
not the case, a recoupling relation is needed, and the spin network state is not an
eigenstate of the corresponding area operator

Just as with the area operator, one partitions Ω into small cells Ω = ∪IΩI ,
so that the integral can be replaced with a Riemann sum. In order to express
the volume element in terms of the canonical quantities introduced before,
one then again approximates the area elements dF a by the small but finite
area operators F a

S [Ẽ], such that the volume is obtained as the limit of a
Riemann sum

V (Ω) = lim
N→∞

N
∑

I=1

√

∣

∣

∣

∣

1
3!

εabcF a
S1

I
[Ẽ]F b

S2
I
[Ẽ]F c

S3
I
[Ẽ]

∣

∣

∣

∣

. (11)

The main problem is now to choose appropriate surfaces S1,2,3 in each cell.
This should be done in such a way that the r.h.s. of (11) reproduces the correct
classical value. For instance, one can choose a point inside each cube ΩI , then
connect these points by lines and ‘fill in’ the faces. In each cell ΩI one then
has three lines labelled by a = 1, 2, 3; the surface SaI is then the one that is
traversed by the a-th line. With this choice it can be shown that the result is
insensitive to small ‘wigglings’ of the surfaces, hence independent of the shape
of SaI , and the above expression converges to the desired result. See [26, 27]
for some recent results on the spectrum of the volume operator.

The key problem in canonical gravity is the definition and implementa-
tion of the Hamiltonian (scalar) constraint operator, and the verification that
this operator possesses all the requisite properties. The latter include (quan-
tum) space-time covariance as well as the existence of a proper semi-classical
limit, in which the classical Einstein equations are supposed to emerge. It is
this operator which replaces the Hamiltonian evolution operator of ordinary
quantum mechanics, and encodes all the important dynamical information
of the theory (whereas the Gauss and diffeomorphism constraints are merely
‘kinematical’). More specifically, together with the kinematical constraints,
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it defines the physical states of the theory, and thereby the physical Hilbert
space Hphys (which may be separable [28], even if Hkin is not).

To motivate the form of the quantum Hamiltonian one starts with the
classical expression, written in loop variables. To this aim one rewrites the
Hamiltonian in terms of Ashtekar variables, with the result

H [N ] =
∫

Σ

d3xN
Ẽm
a Ẽn

b
√

det Ẽ

(

εabcFmnc − 1
2
(1 + γ2)K[m

aKn]
b
)

. (12)

For the special values γ = ±i, the last term drops out, and the Hamilto-
nian simplifies considerably. This was indeed the value originally proposed by
Ashtekar, and it would also appear to be the natural one required by local
Lorentz invariance (as the Ashtekar variable is, in this case, just the pullback
of the four-dimensional spin connection). However, imaginary γ obviously im-
plies that the phase space of general relativity in terms of these variables
would have to be complexified, such that the original phase space could be
recovered only after imposing a reality constraint. In order to avoid the diffi-
culties related to quantising this reality constraint, γ is now usually taken to
be real. With this choice, it becomes much more involved to rewrite (12) in
terms of loop and flux variables.

4 Implementation of the Constraints

In canonical gravity, the simplest constraint is the Gauss constraint. In the
setting of LQG, it simply requires that the SU(2) representation indices en-
tering a given vertex of a spin network enter in an SU(2) invariant man-
ner. More complicated are the diffeomorphism and Hamiltonian constraint.
In LQG these are implemented in two entirely different ways. Moreover, the
implementation of the Hamiltonian constraint is not completely independent,
as its very definition relies on the existence of a subspace of diffeomorphism
invariant states.

Let us start with the diffeomorphism constraint. Unlike in geometrody-
namics, one cannot immediately write down formal states which are mani-
festly diffeomorphism invariant, because the spin network functions are not
supported on all of Σ, but only on one-dimensional links, which ‘move around’
under the action of a diffeomorphism. A formally diffeomorphism invariant
state is obtained by ‘averaging’ over the diffeomorphism group, and more
specifically by considering the formal sum

η(Ψ)[A] :=
∑

φ∈Diff(Σ|Γ )

ΨΓ [A ◦ φ] . (13)

Here Diff(Σ|Γ ) is obtained by dividing out the diffeomorphisms leaving in-
variant the graph Γ . Although this is a continuous sum which might seem to
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be ill-defined, it can be given a mathematically precise meaning because the
unusual scalar product (5) ensures that the inner product between a state and
a diffeomorphism-averaged state,

〈η(ΨΓ ′ ) |ΨΓ 〉 =
∑

φ∈Diff(Σ|Γ ′)

〈φ∗ ◦ ΨΓ ′ |ΨΓ 〉 , (14)

consists at most of a finite number of terms. It is this fact which ensures
that 〈η(ΨΓ )| is indeed well defined as an element of the space dual to the
space of spin networks (which is dense in Hkin). In other words, although
η(Ψ) is certainly outside of Hkin, it does make sense as a distribution. On the
space of diffeomorphism averaged spin network states (regarded as a subspace
of a distribution space) one can now again introduce a Hilbert space structure
‘by dividing out’ spatial diffeomorphisms, namely

〈〈η(Ψ)|η(Ψ ′)〉〉 := 〈η(Ψ)|Ψ ′〉 . (15)

The completion by means of this scalar product defines the space Hdiff; but
note that Hdiff is not a subspace of Hkin!

As mentioned above, however, it is the Hamiltonian constraint which plays
the key role in canonical gravity, as it this operator which encodes the dy-
namics. Implementing this constraint on Hdiff or some other space is fraught
with numerous choices and ambiguities, inherent in the construction of the
quantum Hamiltonian as well as the extraordinary complexity of the resulting
expression for the constraint operator [29]. The number of ambiguities can be
reduced by invoking independence of the spatial background [10], and indeed,
without making such choices, one would not even obtain sensible expressions.
In other words, the formalism is partly ‘on-shell’ in that the very existence of
the (unregulated) Hamiltonian constraint operator depends very delicately on
its ‘diffeomorphism covariance’, and the choice of a proper ‘habitat’, on which
it is supposed to act in a well-defined manner. A further source of ambiguities,
which, for all we know, has not been considered in the literature so far, con-
sists in possible �-dependent ‘higher order’ modifications of the Hamiltonian,
which might still be compatible with all consistency requirements of LQG.

In order to write the constraint in terms of only holonomies and fluxes, one
has to eliminate the inverse square root Ẽ−1/2 in (12) as well as the extrinsic
curvature factors. This can be done through a number of tricks found by
Thiemann [30]. The vielbein determinant is eliminated using

εmnpε
abcẼ−1/2Ẽb

nẼc
p =

1
4γ

{

Am
a(x), V

}

. (16)

where V ≡ V (Σ) is the total volume, cf. (10). The extrinsic curvature is
eliminated by writing it as

Km
a(x) =

1
γ

{

Am
a(x) , K̄

}

where K̄ :=
∫

Σ

d3xKm
aẼa

m , (17)
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and then eliminating the integrand of K̄ using

K̄(x) =
1

γ3/2

{ Ẽa
mẼb

n

√

Ẽ
εabcFmnc(x), V

}

=
1

4γ5/2
εmnp

{

{Ama , V }Fnpa , V
}

,

(18)

i.e. writing it as a nested Poisson bracket. Inserting these tricks into the Hamil-
tonian constraint, one replaces (12) with the expression

H [N ] =
∫

Σ

d3xNεmnpTr
(

Fmn{Ap, V }

− 1
2
(1 + γ2){Am, K̄}{An, K̄}{Ap, V }

)

, (19)

with K̄ understood to be eliminated using (18). This expression, which now
contains only the connection A and the volume V , is the starting point for
the construction of the quantum constraint operator.

In order to quantise the classical Hamiltonian (19), one next elevates all
classical objects to quantum operators as described in the foregoing sections,
and replaces the Poisson brackets in (19) by quantum commutators. The re-
sulting regulated Hamiltonian then reduces to a sum over the vertices vα of
the spin network with lapses N(vα)

Ĥ [N, ε] =
∑

α

N(vα) εmnp

× Tr
{

(

h∂Pmn(ε) − h−1
∂Pmn(ε)

)

h−1
p

[

hp, V̂
]

− 1
2 (1+γ2)h−1

m

[

hm, K̄
]

h−1
n

[

hn, K̄
]

h−1
p

[

hp, V̂
]

}

,

(20)

where ∂Pmn(ε) is a small loop attached to the vertex vα that must eventu-
ally be shrunk to zero. In writing the above expression, we have furthermore
assumed a specific (but, at this point, not specially preferred) ordering of the
operators.

Working out the action of (20) on a given spin network wave function is
rather non-trivial, and we are not aware of any concrete calculations in this
regard, other than for very simple special configurations (see, e.g., [31]); to
get an idea of the complications, readers may have a look at a recent analysis
of the volume operator and its spectrum in [32]. In particular, the available
calculations focus almost exclusively on the action of the first term in (20),
whereas the second term (consisting of multiply nested commutators, cf. (18))
is usually not discussed in any detail. At any rate, this calculation involves
a number of choices in order to fix various ambiguities, such as the ordering
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ambiguities in both terms in (20). An essential ingredient is the action of the
operator h∂Pmn(ε)−h−1

∂Pmn(ε), which is responsible for the addition of a plaque-
tte to the spin network. The way in which this works is depicted (schemat-
ically) in Fig. 5. The plaquette is added in a certain SU(2) representation,
corresponding to the representation of the trace in (20). This representation
label j is arbitrary, and constitutes a quantisation ambiguity (often called
‘m-ambiguity’).

Having defined the action of the regulated Hamiltonian, the task is not
finished, however, because one must still take the limit ε → 0, in which the
attached loops are shrunk to zero. As it turns out, this limit cannot be taken
straightforwardly: due to the scalar product (5) and the non-separability of
Hkin the limiting procedure runs through a sequence of mutually orthogo-
nal states, and therefore does not converge in Hkin. For this reason, LQG
must resort to a weaker notion of limit, either by defining the limit as a
weak limit on a (subspace of the) algebraic dual of a dense subspace of
Hkin [11, 33] or by taking the limit in the weak ∗ operator topology [10].
In the first case, the relevant space (sometimes referred to as the ‘habitat’)
is a distribution space which contains the space Hdiff of formally diffeomor-
phism invariant states as a subspace, but its precise nature and definition
is still a matter of debate. In the second case, the limit is implemented (in
a very weak sense) on the original kinematical Hilbert space Hkin, but that
space will not contain any diffeomorphism invariant states other than the
‘vacuum’ Ψ = 1. The question of the proper ‘habitat’ on which to implement
the action of the Hamiltonian constraint is thus by no means conclusively
settled.

From a more general point of view, it should be noted that the action
of the Hamiltonian constraint is always ‘ultralocal’: all changes to the spin
network are made in an ε → 0 neighbourhood of a given vertex, while the
spin network graph is kept fixed [34–36]. Pictorially speaking, the only action
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3

2

3

1

j

j

j

j

j

j

j

k

k

Fig. 5. Schematic depiction of the action of the Hamiltonian constraint on a vertex
of a spin network wave function. Two new vertices are introduced, and the original
vertex is modified. Note that in order for this to be true, particular choices have
been made in the quantisation prescription
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H

Fig. 6. The action of the Hamiltonian constraint is ‘ultra-local’, in the sense that
it acts only in a neighbourhood of ‘size’ ε around a spin network vertex

of the (regulated) Hamiltonian is to dress up the vertices with ‘spiderwebs’, see
Fig. 6. More specifically, it has been argued [33] that the Hamiltonian acts at
a particular vertex only by changing the intertwiners at that vertex. This is in
stark contrast to what happens in lattice field theories. There the action of the
Hamiltonian always links two different existing nodes, the plaquettes are by
construction always spanned between existing nodes, and the continuum limit
involves the lattice as a whole, not only certain sub-plaquettes that shrink to
a vertex. This is also what one would expect on physical grounds for a theory
with non-trivial dynamics.

The attitude often expressed with regard to the ambiguities in the con-
struction of the Hamiltonian is that they correspond to different physics,
and therefore the choice of the correct Hamiltonian is ultimately a matter
of physics (experiment?), and not mathematics. However, it appears unlikely
to us that Nature will allow such a great degree of arbitrariness at its most
fundamental level: in fact, our main point here is that the infinitely many am-
biguities which killed perturbative quantum gravity are also a problem that
other (to wit, non-perturbative) approaches must address and solve.5

5 Quantum Space-Time Covariance?

Space-time covariance is a central property of Einstein’s theory. Although
the Hamiltonian formulation is not manifestly covariant, full covariance is
still present in the classical theory, albeit in a hidden form, via the classical
(Poisson or Dirac) algebra of constraints acting on phase space. However, this
is not necessarily so for the quantised theory. As we explained, LQG treats the
diffeomorphism constraint and the Hamiltonian constraint in a very different
manner. Why and how then should one expect such a theory to recover full
space-time (as opposed to purely spatial) covariance? The crucial issue here

5 The abundance of ‘consistent’ Hamiltonians and spin foam models (see below)
is sometimes compared to the vacuum degeneracy problem of string theory, but
the latter concerns different solutions of the same theory, as there is no dispute
as to what (perturbative) string theory is. However, the concomitant lack of
predictivity is obviously a problem for both approaches.
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is clearly what LQG has to say about the quantum algebra of constraints.
Unfortunately, to the best of our knowledge, the ‘off-shell’ calculation of the
commutator of two Hamiltonian constraints in LQG – with an explicit op-
eratorial expression as the final result – has never been fully carried out.
Instead, a survey of the possible terms arising in this computation has led to
the conclusion that the commutator vanishes on a certain restricted ‘habitat’
of states [33, 37, 38], and that therefore the LQG constraint algebra closes
without anomalies. By contrast, we have argued in [8] that this ‘on-shell clo-
sure’ is not sufficient for a full proof of quantum space-time covariance, but
that a proper theory of quantum gravity requires a constraint algebra that
closes ‘off shell’, i.e. without prior imposition of a subset of the constraints.
The fallacies that may ensue if one does not insist on off-shell closure can be
illustrated with simple examples. In our opinion, this requirement may well
provide the acid test on which any proposed theory of canonical quantum
gravity will stand or fail.

While there is general agreement as to what one means when one speaks
of ‘closure of the constraint algebra’ in classical gravity (or any other classical
constrained system [39]), this notion is more subtle in the quantised theory.6

Let us therefore clarify first the various notions of closure that can arise:
we see at least three different possibilities. The strongest notion is ‘off-shell
closure’ (or ‘strong closure’), where one seeks to calculate the commutator of
two Hamiltonians

[

Ĥ [N1] , Ĥ [N2]
]

= Ô(N1;N2) . (21)

Here we assume that the quantum Hamiltonian constraint operator,

Ĥ [N ] := lim
ε→0

Ĥ [N, ε] , (22)

has been rigorously defined as a suitably weak limit, and without further re-
strictions on the states on which (21) is supposed to hold. In writing the above
equations, we have thus been (and will be) cavalier about habitat questions
and the precise definition of the Hamiltonian; see, however, [8, 33, 38] for
further details and critical comments.

Unfortunately, it appears that the goal of determining Ô(N1;N2) as a
bona fide ‘off-shell’ operator on a suitable ‘habitat’ of states, and prior to the
imposition of any constraints, is unattainable within the current framework
of LQG. For this reason, LQG must resort to weaker notions of closure, by
making partial use of the constraints. More specifically, (21) can be relaxed
substantially by demanding only

[

Ĥ [N1], Ĥ [N2]
] |X 〉 = 0 , (23)

but still with the unregulated Hamiltonian constraint Ĥ[N ]. This ‘weak clo-
sure’ should hold for all states |X 〉 in a restricted habitat of states that are
6 For reasons of space, we here restrict attention to the bracket between two Hamil-

tonian constraints, because the remainder of the algebra involving the kinematical
constraints is relatively straightforward to implement.
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‘naturally’ expected to be annihilated by the r.h.s. of (21), and that are sub-
ject to the further requirement that the Hamiltonian can be applied twice
without leaving the ‘habitat’. The latter condition is, for instance, met by the
‘vertex smooth’ states of [33]. As shown in [33, 38], the commutator of two
Hamiltonians indeed vanishes on this ‘habitat’, and one is therefore led to
conclude that the full constraint algebra closes ‘without anomalies’.

The same conclusion was already arrived at in an earlier computation of
the constraint algebra in [30, 37], which was done from a different perspective
(no ‘habitats’), and makes essential use of the space of diffeomorphism invari-
ant states Hdiff, the ‘natural’ kernel of the r.h.s. of (21). Here the idea is to
verify that [30, 37]

lim
ε1→0
ε2→0

〈X | [Ĥ [N1, ε1], Ĥ [N2, ε2]
]

Ψ〉 = 0 , (24)

for all |X 〉 ∈ Hdiff, and for all |Ψ〉 in the space of finite linear combinations
of spin network states. As for the Hamiltonian itself, letting ε1,2 → 0 in this
expression produces an uncountable sequence of mutually orthogonal states
w.r.t. the scalar product (5). Consequently, the limit again does not exist in
the usual sense, but only as a weak ∗ limit. The ‘diffeomorphism covariance’
of the Hamiltonian is essential for this result. Let us stress that (23) and
(24) are by no means the same: in (23) one uses the unregulated Hamiltonian
(where the limit ε → 0 has already been taken), whereas the calculation of
the commutator in (24) takes place inside Hkin, and the limit ε → 0 is taken
only after computing the commutator of two regulated Hamiltonians. These
two operations (taking the limit ε→ 0, and calculating the commutator) need
not commute. Because with both (23) and (24) one forgoes the aim of finding
an operatorial expression for the commutator

[

Ĥ [N1], Ĥ[N2]
]

, making partial
use of the constraints, we say (in a partly supergravity inspired terminology)
that the algebra closes ‘on-shell’.

Although on-shell closure may perhaps look like a sufficient condition on
the quantum Hamiltonian constraint, it is easy to see, at the level of sim-
ple examples, that this is not true. Consider, for instance, the Hamiltonian
constraint of bosonic string theory, and consider modifying it by multiplying
it with an operator which commutes with all Virasoro generators. There are
many such operators in string theory, for instance the mass-squared operator
(minus an arbitrary integer). In this way, we arrive at a realisation of the con-
straint operators which is very similar to the one used in LQG: the algebra of
spatial diffeomorphisms is realised via a (projective) unitary representation,
and the Hamiltonian constraint transforms covariantly (the extra factor does
not matter, because it commutes with all constraints). In a first step, one can
restrict attention to the subspace of states annihilated by the diffeomorphism
constraint, the analogue of the space Hdiff. Imposing now the new Hamilto-
nian constraint (the one multiplied with the Casimir) on this subspace would
produce a ‘non-standard’ spectrum by allowing extra diffeomorphism invari-
ant states of a certain prescribed mass. The algebra would also still close
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on-shell, i.e. on the ‘habitat’ of states annihilated by the diffeomorphism con-
straint. The point here is not so much whether this new spectrum is ‘right’
or ‘wrong’, but rather that in allowing such modifications which are compat-
ible with on-shell closure of the constraint algebra, we introduce an infinite
ambiguity and arbitrariness into the definition of the physical states. In other
words, if we only demand on-shell closure as in LQG, there is no way of telling
whether or not the vanishing of a commutator is merely accidental, i.e. not
really due to the diffeomorphism invariance of the state, but caused by some
other circumstance.

By weakening the requirements on the constraint algebra and by no longer
insisting on off-shell closure, crucial information gets lost. This loss of infor-
mation is reflected in the ambiguities inherent in the construction of the LQG
Hamiltonian. It is quite possible that the LQG Hamiltonian admits many fur-
ther modifications on top of the ones we have already discussed, for which the
commutator continues to vanish on a suitably restricted habitat of states –
in which case neither (23) nor (24) would amount to much of a consistency
test.

6 Canonical Gravity and Spin Foams

Attempts to overcome the difficulties with the Hamiltonian constraint have
led to another development, spin foam models [40–42]. These were originally
proposed as space-time versions of spin networks, to wit, evolutions of spin
networks in ‘time’, but have since developed into a class of models of their
own, disconnected from the canonical formalism. Mathematically, spin foam
models represent a generalisation of spin networks, in the sense that group the-
oretical objects (holonomies, representations, intertwiners, etc.) are attached
not only to vertices and edges (links), but also to higher-dimensional faces in
a simplicial decomposition of space-time.

The relation between spin foam models and the canonical formalism is
based on a few general features of the action of the Hamiltonian constraint
operator on a spin network (for a review on the connection, see [43]). As
we have discussed above, the Hamiltonian constraint acts, schematically, by
adding a small plaquette close to an existing vertex of the spin network (as
in Fig. 5). In terms of a space-time picture, we see that the edges of the spin
network sweep out surfaces, and the Hamiltonian constraint generates new
surfaces, as in Fig. 7; but note that this graphical representation does not
capture the details of how the action of the Hamiltonian affects the intertwin-
ers at the vertices. Instead of associating spin labels to the edges of the spin
network, one now associates the spin labels to the surfaces, in such a way that
the label of the surface is determined by the label of the edge which lies in
either the initial or final surface.

In analogy with proper-time transition amplitudes for a relativistic parti-
cle, it is tempting to define the transition amplitude between an initial spin
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j
j

Fig. 7. From spin networks to spin foams, in (2+1) dimensions. The Hamiltonian
constraint has created one new edge and two new vertices. The associated surface
inherits the label j of the edge which is located on the initial or (in this case) final
space-like surface

network state and a final one as

ZT := 〈ψf | exp
(

i

∫ T

0

dtH
)

|ψi〉

=
∞
∑

n=0

(i T )n

n!

∫

dψ1 . . . dψn 〈ψf |H |ψ1〉

× 〈ψ1|H |ψ2〉 · · · 〈ψn|H |ψi〉 , (25)

where we have repeatedly inserted resolutions of unity. A (somewhat heuristic)
derivation of the above formula can be given by starting from a formal path
integral [41], which, after gauge fixing and choice of a global time coordinate
T , and with appropriate boundary conditions, can be argued to reduce to the
above expression. There are many questions one could ask about the physical
meaning of this expression, but one important property is that (just as with
the relativistic particle) the transition amplitude will project onto physical
states (formally, this projection is effected in the original path integral by
integrating over the lapse function multiplying the Hamiltonian density). One
might thus consider (25) as a way of defining a physical inner product.

Because path integrals with oscillatory measures are notoriously difficult
to handle, one might wonder at this point whether to apply a formal Wick
rotation to (25), replacing the Feynman weight with a Boltzmann weight, as
is usually done in Euclidean quantum field theory. This is also what is sug-
gested by the explicit formulae in [41], where i in (25) is replaced by (−1).
However, this issue is much more subtle here than in ordinary (flat space)
quantum field theory. First of all, the distinction between a Euclidean (Rie-
mannian) and a Lorentzian (pseudo-Riemannian) manifold obviously requires
the introduction of a metric of appropriate signature. However, spin foam
models, having their roots in (background independent) LQG, do not come
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with a metric, and thus the terminology is to some extent up to the beholder.
To avoid confusion, let us state clearly that our use of the words ‘Euclidean’
and ‘Lorentzian’ here always refers to the use of oscillatory weights eiSE and
eiSL , respectively, where the actions SE and SL are the respective actions
for Riemannian resp. pseudo-Riemannian metrics. The term ‘Wick rotated’,
on the other hand, refers to the replacement of the oscillatory weight eiS by
the exponential weight e−S , with either S = SE or S = SL. However, in
making use of this terminology, one should always remember that there is no
Osterwalder–Schrader type reconstruction theorem in quantum gravity, and
therefore any procedure (or ‘derivation’) remains formal. Unlike the standard
Euclidean path integral [2, 3], the spin foam models to be discussed below are
generally interpreted to correspond to path integrals with oscillatory weights
eiS , but come in both Euclidean and Lorentzian variants (corresponding to
the groups SO(4) and SO(1,3), respectively). This is true even if the state
sums involve only real quantities (nj-symbols, edge amplitudes, etc.), cf. the
discussion after (38).

The building blocks 〈ψk|H |ψl〉 in the transition amplitude (25) correspond
to elementary spin network transition amplitudes, as in Fig. 7. For a given
value of n, i.e. a given number of time slices, we should thus consider objects
of the type

Zψ1,...,ψn = 〈ψf |H |ψ1〉〈ψ1|H |ψ2〉 · · · 〈ψn|H |ψi〉 . (26)

Each of the building blocks depends only on the values of the spins at the
spin network edges and the various intertwiners in the spin network state.
The points where the Hamiltonian constraint acts non-trivially get associated
to spin foam vertices; see Fig. 8. Instead of working out (26) directly from
the action of the Hamiltonian constraint, one could therefore also define the
amplitude directly in terms of sums over expressions which depend on the
various spins meeting at the spin foam nodes. In this way, one arrives at the
so-called state sum models, which we will describe in the following section.

A problematic issue in the relation between spin foams and the canonical
formalism comes from covariance requirements. While tetrahedral symmetry
(or the generalisation thereof in four dimensions) is natural in the spin foam
picture, the action of the Hamiltonian constraint, depicted in Fig. 7, does
not reflect this symmetry. The Hamiltonian constraint only leads to the so-
called ‘1→ 3 moves’, in which a single vertex in the initial spin network is
mapped to three vertices in the final spin network. In the spin foam pic-
ture, the restriction to only these moves seems to be in conflict with the idea
that the slicing of space-time into a space+time decomposition can be chosen
arbitrarily. For space-time covariance, one expects 2 → 2 and 0 → 4 moves
(and their time-reversed partners) as well, see Fig. 9. These considerations
show that there is no unique path from canonical gravity to spin foam mod-
els, and thus no unique model either (even if there was a unique canonical
Hamiltonian).
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Fig. 8. A spin foam (left) together with its spin network evolution (right) in
(2+1) dimensions. Spin foam nodes correspond to the places where the Hamiltonian
constraint in the spin network acts non-trivially (black dots). Spin foam edges corre-
spond to evolved spin network nodes (grey dots), and spin foam faces correspond to
spin network edges. The spin labels of the faces are inherited from the spin labels of
spin network edges. If all spin network nodes are three-valent, the spin foam nodes
sit at the intersection of six faces, and the dual triangulation consists of tetrahedrons

It has been argued [41] that these missing moves can be obtained from the
Hamiltonian formalism by a suitable choice of operator ordering. In Sect. 4
we have used an ordering, symbolically denoted by FEE, in which the Hamil-
tonian first opens up a spin network and subsequently glues in a plaquette.

Fig. 9. The Hamiltonian constraint induces a 1→3 move in the spin foam formalism
(figure on the left). However, by slicing space-time in a different way, one can
equivalently interpret this part of the spin foam as containing a 2→2 move (figure
on the right). This argument suggests that the ultra-local Hamiltonian may not
be sufficient to achieve space-time covariance. For clarity, the network edges which
lie in one of the spatial slices have been drawn as thick lines
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If one chooses the ordering to be EEF , then the inverse densitised vielbeine
can open the plaquette, thereby potentially inducing a 2→ 2 or 0→ 4 move.
However, [30] has argued strongly against this operator ordering, claiming
that in such a form the Hamiltonian operator cannot even be densely defined.
In addition, the derivation sketched here is rather symbolic and hampered
by the complexity of the Hamiltonian constraint [44]. Hence, to summarise,
for (3+1) gravity a decisive proof of the connection between spin foam mod-
els and the full Einstein theory and its canonical formulation appears to be
lacking, and it is by no means excluded that such a link does not even exist.

7 Spin Foam Models: Some Basic Features

In view of the discussion above, it is thus perhaps best to view spin foam
models as models in their own right, and, in fact, as a novel way of defining a
(regularised) path integral in quantum gravity. Even without a clear-cut link
to the canonical spin network quantisation programme, it is conceivable that
spin foam models can be constructed which possess a proper semi-classical
limit in which the relation to classical gravitational physics becomes clear.
For this reason, it has even been suggested that spin foam models may pro-
vide a possible ‘way out’ if the difficulties with the conventional Hamiltonian
approach should really prove insurmountable.

The simplest context in which to study state sum models is (2+1) gravity,
because it is a topological (‘BF-type’) theory, i.e. without local degrees of
freedom, which can be solved exactly (see e.g. [45–47] and [48] for a more
recent analysis of the model within the spin foam picture). The most general
expression for a state sum in (2+1) dimensions takes, for a given spin foam φ,
the form

Zφ =
∑

spins {j}

∏

f,e,v

Af ({j})Ae({j})Av({j}) , (27)

where f, e, v denote the faces, edges, and vertices respectively. The amplitudes
depend on all these sub-simplices, and are denoted by Af , Ae, and Av respec-
tively. There are many choices which one can make for these amplitudes. In
three Euclidean dimensions, space-time covariance demands that the contri-
bution to the partition sum has tetrahedral symmetry in the six spins of the
faces which meet at a node (here we assume a ‘minimal’ spin foam; models
with more faces intersecting at an edge are of course possible).

Now, a model of this type has been known for a long time: it is the
Ponzano–Regge model for three-dimensional gravity, which implements the
above principles by defining the partition sum

ZPR
φ =

∑

spins {ji}

∏

faces f

(2 jf + 1)
∏

vertices v

j1

j3j4

j6
j5

j2 (28)
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The graphical notation denotes the Wigner 6j symbol, defined in terms of
four contracted Clebsch–Gordan coefficients as

{6j} ∼
∑

m1,...,m6

Cj1
m1

j2
m2

j3
m3

Cj5
m5

j6
m6

j1
m1

Cj6
m6

j4
m4

j2
m2

Cj4
m4

j5
m5

j3
m3

. (29)

For SU(2) representations, the sum over spins in the Ponzano–Regge state
sum (28) requires that one divides by an infinite factor in order to ensure con-
vergence (more on finiteness properties below) and independence of the trian-
gulation. The tetrahedron appearing in (28) in fact has a direct geometrical
interpretation as the object dual to the spin foam vertex. The dual tetrahe-
dron can then also be seen as an elementary simplex in the triangulation of the
manifold. Three-dimensional state sums with boundaries, appropriate for the
calculation of transition amplitudes between two-dimensional spin networks,
have been studied in [49].

When one tries to formulate spin foam models in four dimensions, the first
issue one has to deal with is the choice of the representation labels on the spin
foam faces. From the point of view of the canonical formalism it would seem
natural to again use SU(2) representations, as these are used to label the edges
of a spin network in three spatial dimensions, whose evolution produces the
faces (2-simplices) of the spin foam. However, this is not what is usually done.
Instead, the faces of the spin foam are supposed to carry representations of
SO(4) ≈ SO(3) × SO(3) [or SO(1,3) ≈ SL(2,C) for Lorentzian space-times].
The corresponding models in four dimensions are purely topological theories,
the so-called “BF models”, where F (A) is a field strength and B the Lagrange
multiplier two-form field whose variation enforces F (A) = 0. Up to this point,
the model is analogous to gravity in (2+1) dimensions, except that the relevant
gauge group is now SO(4) [or SO(1,3)]. However, in order to recover general
relativity and to re-introduce local (propagating) degrees of freedom into the
theory, one must impose a constraint on B.

Classically, this constraint says that B is a ‘bi-vector’, i.e. Bab = ea ∧ eb.
The quantum mechanical analogue of this constraint amounts to a restric-
tion to a particular set of representations of SO(4) = SU(2)⊗ SU(2), namely
those where the spins of the two factors are equal, the so-called balanced rep-
resentations , denoted by (j, j) (for j = 1

2 , 1,
3
2 , . . . ). Imposing this restriction

on the state sum leads to a class of models first proposed by Barrett and
Crane [50, 51]. In these models the vertex amplitudes are given by combining
the 10 spins of the faces which meet at a vertex, as well as possibly further
‘virtual’ spins associated to the vertices themselves, using an expression built
from contracted Clebsch–Gordan coefficients. For instance, by introducing an
extra ‘virtual’ spin ik associated to each edge where four faces meet, one can
construct an intertwiner between the four spins by means of the following
expression:

Ij1m1
···
···
j4
m4

;ik =
∑

mk

Cj1
m1

j2
m2

ik
mk

Cj3
m3

j4
m4

ik
mk

. (30)
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However, this prescription is not unique as we can choose between three dif-
ferent ‘channels’ (here taken to be 12 ↔ 34); this ambiguity can be fixed
by imposing symmetry, see below. Evidently, the number of channels and
virtual spins increases rapidly with the valence of the vertex. For the above
four-vertex, this prescription results in a state sum7

Z
{ik}
φ =

∑

spins {ji}

∏

faces f

∏

edges e

Af ({j}) Ae({j})

×
∏

vertices v

j1

j2

j0

j6

j5

j4

j7j8

j9 j3

i1

i2

i3i4

i5

, (31)

where the spins j denote spin labels of balanced representations (j, j) (as we
already mentioned, without this restriction, the model above corresponds to
the topological BF model [52–54]). The precise factor corresponding to the
pentagon (or “15j” symbol) in this formula is explicitly obtained by multi-
plying the factors (30) (actually, one for each SO(3) factor in SO(4)), and
contracting (summing) over the labels mi,

{15j} =
∑

mi

Ij1m1
j4
m4

j9
m9

j5
m5

;i1Ij1m1
j2
m2

j7
m7

j3
m3

;i2

× Ij4m4
j2
m2

j8
m8

j0
m0

;i3Ij9m9
j7
m7

j0
m0

j6
m6

;i4Ij5m5
j3
m3

j8
m8

j6
m6

;i5 . (32)

There are various ways in which one can make (31) independent of the spins ik
associated to the edges. One way is to simply sum over these spins. This leads
to the so-called ‘15j BC model’,

Z15j
φ =

∑

spins {ji, ik}

∏

faces f

∏

edges e

Af ({j}) Ae({j})×
∏

vertices v

{

15j
}

. (33)

An alternative way to achieve independence of the edge intertwiner spins is
to include a sum over the ik in the definition of the vertex amplitude. These
models are known as ‘10j BC models’,

Z10j
φ =

∑

spins {ji}

∏

faces f

∏

edges e

Af ({j}) Ae({j})

×
∏

vertices v

∑

spins {ik}
f({ik})

{

15j
}

, (34)

7 There is now no longer such a clear relation of the graphical object in (31) to the
dual of the spin foam vertex: faces and edges of the spin foam map to faces and
tetrahedrons of the dual in four dimensions, respectively, but these are neverthe-
less represented with edges and vertices in the figure in (31).
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labelled by an arbitrary function f({ik}) of the intertwiner spins. Only for
the special choice [50]

f({ik}) =
5
∏

k=1

(2ik + 1) (35)

does the vertex amplitude have simplicial symmetry [55], i.e. is invariant under
the symmetries of the pentagon (31) (where the pentagon really represents a
4-simplex).8

While the choice (34, 35) for the vertex amplitude Av({j}) is thus preferred
from the point of view of covariance, there are still potentially many differ-
ent choices for the face and edge amplitudes Af ({j}) and Ae({j}). Different
choices may lead to state sums with widely varying properties. The depen-
dence of state sums on the face and edge amplitudes is clearly illustrated by,
e.g., the numerical comparison of various models presented in [57]. A natural
and obvious restriction on the possible amplitudes is that the models should
yield the correct classical limit – to wit, Einstein’s equations – in the large j
limit, corresponding to the infrared (see also the discussion in the following
section). Therefore, any function of the face spins which satisfies the pentagon
symmetries and is such that the state sum has appropriate behaviour in the
large j limit is a priori allowed. Furthermore, the number of possible ampli-
tudes, and thus of possible models, grows rapidly if one allows for more general
valences of the vertices. In the literature, the neglect of higher-valence vertices
is often justified by invoking the fact that the valence ≤ 4 spin network wave
functions in the Hamiltonian formulation constitute a superselection sector in
Hkin (because the ‘spiderwebs’ in Fig. 6 do not introduce higher valences).
However, we find this argument unconvincing because (i) the precise relation
between the Hamiltonian and the spin foam formulation remains unclear, and
(ii) physical arguments based on ultralocality (cf. our discussion at the end of
Sect. 6) suggest that more general moves (hence, valences) should be allowed.

Let us also mention that, as an alternative to the Euclidean spin foam
models, one can try to set up Lorentzian spin foam models , as has been done
in [58, 59]. In this case, the (compact) group SO(4) is replaced by the non-
compact Lorentz group SO(1,3) [or SL(2,C)]. Recall that in both cases we deal
with oscillatory weights, not with a weight appropriate for a Wick-rotated
model. It appears unlikely that there is any relation between the Lorentzian
models and the Euclidean ones. Furthermore, the analysis of the corresponding

8 There is an interesting way to express combinatorial objects such as the 10j sym-
bol in terms of integrals over group manifolds, which goes under the name of
‘group field theory’ (see, e.g., [56]), and which also allows an interpretation in
terms of ‘Feynman diagrams’. The relation between spin foams and group field
theory is potentially useful to evaluate state sums because the corresponding in-
tegrals can be evaluated using stationary phase methods. We will, however, not
comment on this development any further since there is (under certain assump-
tions) a one-to-one map between spin foam models and group field theory models.
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Lorentzian state sums is much more complicated due to the fact that the
relevant (i.e. unitary) representations are now infinite-dimensional.

8 Spin Foams and Discrete Gravity

To clarify the relation between spin foam models and earlier attempts to define
a discretised path integral in quantum gravity, we recall that the latter can
be roughly divided into two classes, namely:

• Quantum Regge Calculus (see, e.g., [60]), where one approximates space-
time by a triangulation consisting of a fixed number of simplices, and
integrates over all edge lengths, keeping the ‘shape’ of the triangulation
fixed;

• Dynamical Triangulations (see, e.g., [61–63]), where the simplices are as-
signed fixed edge lengths, and one sums instead over different triangula-
tions, but keeping the number of simplices fixed (thus changing only the
‘shape’, but not the ‘volume’ of the triangulation).

Both approaches are usually based on a positive signature (Euclidean) met-
ric, where the Boltzmann factor is derived from, or at least motivated by,
some discrete approximation to the Einstein–Hilbert action, possibly with a
cosmological constant (but see [64, 65] for some recent progress with a Wick-
rotated ‘Lorentzian’ dynamical triangulation approach which introduces and
exploits a notion of causality on the space-time lattice). In both approaches,
the ultimate aim is then to recover continuum space-time via a refinement
limit in which the number of simplices is sent to infinity. Establishing the
existence of such a limit is a notoriously difficult problem that has not been
solved for four-dimensional gravity. In fact, for quantum Regge models in
two dimensions such a continuum limit does not seem to agree with known
continuum results [66–69] (see, however, [70]).

From the point of view of the above classification, spin foam models belong
to the first, ‘quantum Regge’, type, as one sums over all spins for a given spin
foam, but does not add, remove, or replace edges, faces, or vertices, at least
not in the first step. Indeed, for the spin foams discussed in the foregoing
section, we have so far focused on the partition sum for a single given spin
foam. An obvious question then concerns the next step, or more specifically the
question how spin foam models can recover (or even only define) a continuum
limit. The canonical setup, where one sums over all spin network states in
expressions like (25), would suggest that one should sum over all foams,

Ztotal =
∑

foams φ

wφ Zφ , (36)

where Zφ denotes the partition function for a given spin foam φ, and where
we have allowed for the possibility of a non-trivial weight wφ depending only
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on the topological structure (‘shape’) of the foam. The reason for this sum
would be to achieve formal independence of the triangulations. In a certain
sense this would mimic the dynamical triangulation approach (except that
one now would also sum over foams with a different number of simplices and
different edge lengths), and thus turn the model into a hybrid version of the
above approaches. However, this prescription is far from universally accepted,
and several other ideas on how to extract classical, continuum physics from
the partition sum Zφ have been proposed.

One obvious alternative is to not sum over all foams, but instead look for
a refinement with an increasing number of cells,9

Z∞ = lim
# cells→∞

Zφ . (37)

The key issue is then to ensure that the final result does not depend on the way
in which the triangulations are performed and refined (this is a crucial step
which one should understand in order to interpret results on single-simplex
spin foams like those of [71, 72]). The refinement limit is motivated by the fact
that it does appear to work in three space-time dimensions, where (allowing
for some ‘renormalisation’) one can establish triangulation independence [73].
Furthermore, for large spins, the 6j symbol which appears in the Ponzano–
Regge model approximates the Feynman weight for Regge gravity [74, 75].
More precisely, when all six spins are simultaneously taken large,

{6j} ∼
(

eiSRegge({j})+ iπ
4 + e−iSRegge({j})− iπ

4

)

. (38)

Here SRegge({j}) is the Regge action of a tetrahedron, given by

SRegge({j}) =
6

∑

i=1

ji θi , (39)

where θi is the dihedral angle between the two surfaces meeting at the ith
edge. Related results in four dimensions are discussed in [76] and, using group
field theory methods, in [77]. We emphasise once more that this by no means
singles out the 6j symbol as the unique vertex amplitude: we can still multiply
it by any function of the six spins which asymptotes to one for large spins.

The 6j symbol is of course real, which explains the presence of a cosine
instead of a complex oscillatory weight on the right-hand side of (38). Indeed,
it seems rather curious that, while the left-hand side of (38) arises from an
expression resembling a Boltzmann sum, the right-hand side contains oscil-
latory factors which suggest a path integral with oscillatory weights. In view
of our remarks in Sect. 6, and in order to make the relation to Regge gravity

9 But note that, formally, the sum over all foams can also be thought of as a
refinement limit if one includes zero spin representations (meaning no edge) in
the refinement limit.
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somewhat more precise, one must therefore argue either that a proper path
integral in gravity produces both terms, or otherwise that one can get rid of
one of the terms by some other mechanisms. The first possibility appears to
be realised in (2+1) gravity, because one can cast the gravitational action into
Chern–Simons form S =

∫

R∧ e, in which case a sum over orientations of the
dreibein would lead to terms with both signs in the exponent. Unfortunately,
this argument does not extend to four dimensions, where the gravitational
action S =

∫

R∧ e∧ e depends quadratically on the vierbein. For this reason,
it has instead been suggested that one of the two oscillatory terms disappears
for all physical correlation functions [71].

The vertex amplitudes represented by the 6j or 10j symbols only form
part of the state sum (27). The known four-dimensional models depend rather
strongly on the choice of the face and edge amplitudes: while some versions of
the Barrett–Crane 10j model have diverging partition sums, others are dom-
inated by configurations in which almost all spins are zero, i.e. configurations
which correspond to zero-area faces [57]. Once more, it is important to remem-
ber that even in ‘old’ Regge models in two dimensions, where a comparison
with exact computations in the continuum is possible [78–80], the continuum
limit does not seem to agree with these exact results [66–69] (the expectation
values of edge lengths do not scale as a power of the volume when a diffeomor-
phism invariant measure is used, in contrast to the exact results). Therefore,
it is far from clear that (37) will lead to a proper continuum limit.

A third proposal is to take a fixed spin foam and to simply define the
model as the sum over all spins [56, 81, 82]; this proposal differs considerably
from both the Regge and dynamical triangulation approaches. Considering
a fixed foam clearly only makes sense provided the partition sum is actu-
ally independent of the triangulation of the manifold (or more correctly, one
would require that physical correlators are independent of the triangulation).
Such a situation arises in the three-dimensional Ponzano–Regge model, but
three-dimensional gravity does not contain any local degrees of freedom. For
higher dimensions, the only triangulation-independent models known so far
are topological theories, i.e. theories for which the local degrees of freedom
of the metric do not matter. If one insists on triangulation independence also
for gravity, then one is forced to add new degrees of freedom to the spin foam
models (presumably living on the edges). In this picture, a change from a fine
triangulation to a coarse one is then compensated by more information stored
at the edges of the coarse triangulation. This then also requires (presumably
complicated) rules which say how these new degrees of freedom behave under
a move from one triangulation to another. Note that even when the partition
sum is independent of the refinement of the triangulation, one would probably
still want to deal with complicated cross sections of foams to describe ‘in’ and
‘out’ coherent states. At present, there is little evidence that triangulation in-
dependence can be realised in non-topological theories, or that the problems
related to the continuum limit will not reappear in a different guise.
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9 Predictive (Finite) Quantum Gravity?

Let us now return to the question as to what can be said about finiteness
properties of spin foam models, and how they relate to finiteness properties
(or rather, lack thereof!) of the standard perturbative approach – after all, one
of the main claims of this approach is that it altogether avoids the difficulties
of the standard approach. So far, investigations of finiteness have focused on
the partition sum itself. Namely, it has been shown that for a variety of spin
foam models, the partition sum for a fixed spin foam is finite,

∑

spins {j}
Zφ

({j}) = finite . (40)

Even though a given spin foam consists of a finite number of links, faces, . . . ,
divergences could arise in principle because the range of each spin j is infi-
nite. One way to circumvent infinite sums is to replace the group SU(2) by
the quantum group SU(2)q (which has a finite number of irreps), or equiv-
alently, by introducing an infinite positive cosmological constant [73]; in all
these cases the state sum becomes finite.10 A similar logic holds true in four
dimensions and for Lorentzian models, although in the latter case the analysis
becomes more complicated due to the non-compactness of the Lorentz group,
and the fact that the unitary representations are all infinite dimensional [84].
Perhaps unsurprisingly, there exist choices for edge and surface amplitudes
in four dimensions which look perfectly reasonable from the point of view of
covariance, but which are nevertheless not finite [57].

It should, however, be emphasised that the finiteness of (40) is a state-
ment about infrared finiteness. Roughly speaking, this is because the spin j
corresponds to the ‘length’ of the link, whence the limit of large j should be
associated with the infinite volume limit. In statistical mechanics, partition
functions generically diverge in this limit, but in such a way that physical
correlators possess a well-defined limit (as quotients of two quantities which
diverge). From this point of view, the finiteness properties established so far
say nothing about the UV properties of quantum gravity, which should in-
stead follow from some kind of refinement limit, or from an averaging pro-
cedure where one sums over all foams, as discussed above. The question of
convergence or non-convergence of such limits has so far not received a great
deal of attention in the literature.

This then, in a sense, brings us back to square one, namely the true prob-
lem of quantum gravity, which lies in the ambiguities associated with an in-
finite number of non-renormalisable UV divergences. As is well known this

10 The division by the infinite factor which is required to make the Ponzano–Regge
state sum finite can be understood as dividing out the volume of the group of
residual invariances of Regge models [83]. These invariances correspond to changes
of the triangulation which leave the curvature fixed. However, dividing out by the
volume of this group does not eliminate the formation of ‘spikes’ in Regge gravity.
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problem was originally revealed in a perturbative expansion of Einstein gravity
around a fixed background, which requires an infinite series of counterterms,
starting with the famous two-loop result [85–87]

Γ
(2)
div =

1
ε

209
2880

1
(16π2)2

∫

d4x
√
g CμνρσC

ρσλτCλτ
μν . (41)

The need to fix an infinite number of couplings in order to make the the-
ory predictive renders perturbatively quantised Einstein gravity useless as a
physical theory. What we would like to emphasise here is that any approach
to quantum gravity must confront this problem, and that the need to fix
infinitely many couplings in the perturbative approach, and the appearance
of infinitely many ambiguities in non-perturbative approaches are really just
different sides of the same coin.

At least in its present incarnation, the canonical formulation of LQG does
not encounter any UV divergences, but the problem reappears through the
lack of uniqueness of the canonical Hamiltonian. For spin foams (or, more gen-
erally, discrete quantum gravity) the problem is no less virulent. The known
finiteness proofs all deal with the behaviour of a single foam, but, as we ar-
gued, these proofs concern the infrared rather than the ultraviolet. Just like
canonical LQG, spin foams thus show no signs of ultraviolet divergences so far,
but, as we saw, there is an embarras de richesse of physically distinct models,
again reflecting the non-uniqueness that manifests itself in the infinite number
of couplings associated with the perturbative counterterms. Indeed, fixing the
ambiguities of the non-perturbative models by ad hoc, albeit well-motivated,
assumptions is not much different from defining the perturbatively quantised
theory by fixing infinitely many coupling constants ‘by hand’ (and thereby
remove all divergences). Furthermore, even if they do not ‘see’ any UV diver-
gences, non-perturbative approaches cannot be relieved of the duty to explain
in all detail how the 2-loop divergence (41) and its higher loop analogues
‘disappear’, be it through cancellations or some other mechanism.

Finally, let us remark that in lattice gauge theories, the classical limit
and the UV limit can be considered and treated as separate issues. As for
quantum gravity, this also appears to be the prevailing view in the LQG
community. However, the continuing failure to construct viable physical semi-
classical states, solving the constraints even in only an approximate fashion,
seems to suggest (at least to us) that in gravity the two problems cannot be
solved separately, but are inextricably linked – also in view of the fact that
the question as to the precise fate of the two-loop divergence (41) can then
no longer be avoided.
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