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To investigate the imprint on the gravitational-wave emission from extreme mass-ratio inspirals in non-pure
Kerr spacetimes, we have studied the “kludge” waveforms generated in highly-accurate, numerically-generated
spacetimes containing a black hole and a self-gravitating,homogeneous torus with comparable mass and spin. In
order to maximize their impact on the produced waveforms, wehave considered tori that are compact, massive
and close to the central black hole, investigating under what conditions the LISA experiment could detect their
presence. Our results show that for a large portion of the space of parameters the waveforms produced by
EMRIs in these black hole-torus systems are indistinguishable from pure-Kerr waveforms. Hence, a “confusion
problem” will be present for observations carried out over atimescale below or comparable to the dephasing
time.

PACS numbers: 04.30.-w, 04.70.-s, 98.35.Jk, 98.62.Js

I. INTRODUCTION

Extreme Mass Ratio Inspirals (EMRIs) are thought to be
one of the most interesting sources of gravitational waves
for the space-based gravitational-wave detector LISA [1]:the
typical example is a black hole with mass∼ 1–10 M⊙ orbit-
ing around the supermassive black hole (SMBH) at the center
of a galaxy. It is expected that LISA will be able to detect any-
where from tens up to a thousand of these sources during its
lifetime, which will probably be between 3 and 5 years. Al-
though the masses of SMBHs range from106 to 1010M⊙ [2],
the mass of the SMBH involved in an EMRI must be around
106M⊙ in order for the gravitational wave signal to be within
LISA’s sensitivity band: see, for instance, Ref. [3] for theex-
pected event rates for different masses of the stellar blackhole
and of the SMBH.

As in the case of Earth-based detectors, for which the sig-
nal is generally expected to be comparable with the noise, the
detection of gravitational waves emitted by EMRIs and the
subsequent characterization of the source is expected to take
place at small values of the signal-to-noise ratio (SNR), thus
requiring some sort of matched filtering. This method is based
on cross-correlating the noisy gravitational wave signal with
a bank of templates, which should accurately model the true
signal, and poses serious challenges both in building the tem-
plates and in accessing them (see Ref. [3] for a detailed dis-
cussion).

The SMBHs involved in EMRIs are commonly thought to
be describable by the pure Kerr solution of General Relativ-
ity: this is the common assumption made in most work on
EMRIs. Nevertheless, a number of other “exotic” candidates
have been proposed as alternatives to the central massive ob-
ject. These are, for instance, gravastars [4], boson stars [5],
fermion balls [6], oscillating axion bubbles [7], etc. Clearly,
while it is not yet possible to exclude completely these possi-
bilities, the presence of these objects at the centres of galaxies
would require a serious modification to the scenarios through
which galaxies are expected to form. At the same time, the

possibility that LISA observations could be used to determine
the presence (or absence) of these objects, provides additional
scientific value to this challenging experiment.

Hereafter, we will adopt a more conservative view and as-
sume that the central object is indeed an SMBH. Recent ob-
servations of the near-infrared fluxes of SgrA* support this
view by setting upper limits on the mass accretion rate of
the Galactic center and showing that the central massive ob-
ject must have, under reasonable assumptions, an event hori-
zon [8]. Yet, even with this assumption, the modelling of EM-
RIs can in principle suffer from the uncertainty of whether the
spacetime in the vicinity of the SMBH can be accurately de-
scribed in terms of a (pure) Kerr solution. The origin of this
uncertainty is that SMBHs are not expected to be in vacuum
and indeed a considerable amount of matter is expected to be
present around the central massive object. In the case of active
galactic nuclei (AGNs), for instance, the intense high-energy
emission is thought to be the result of a pc-scale accretion disk
(and perhaps a thick torus) extending down almost to the in-
nermost stable circular orbit (ISCO), feeding the central black
hole. In addition, a dusty obscuration torus is also believed to
be present on much larger scales (i.e.,∼ 10–100 pc) [9]. Too
little is presently known about the properties of these disks and
although their mass is commonly thought to be much smaller
than the mass of the SMBH, there are observations hinting at
disks as massive as the central object [10].

Another example is given by SgrA* itself, where counter-
rotating stellar disks on scales less than 1 pc have been ob-
served [11]. This is hardly surprising since the Galactic center
is expected to be a high density environment, as the distribu-
tion of stars shows a cusp there: the mass density in stars is
believed to beρ ∼ ρ0(r/r0)

−α, with ρ0 ∼ 1.2×106M⊙/pc3,
r0 ∼ 0.04 pc andα ∼ 1.4–2 [11].

Furthermore, even if an SMBH exists, it is still possible it
could be surrounded by other, non-visible components, such
as clusters of compact objects or high concentrations of ex-
otic particles. Cosmological N-body simulations predict,in
fact, that the cold dark matter (CDM) density in galactic ha-
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los should show a “cusp” near the galactic center with a pro-
file of the type [12]ρ

CDM
∼ ρ0(r/r0)

−α, whereα ∼ 1:
although the mass in CDM particles is generally thought to
be smaller than that in the stellar cusp (ρ0 ∼ 100M⊙/pc2

andr0 ∼ 3 pc [13]), the normalization of this power law is
still very uncertain.1 In addition, although this CDM distri-
bution is commonly thought to be spherically symmetric, the
confrontation with observations still leaves a number of un-
certainties, with the presence of the CDM cusp itself being in
contrast with observations of galactic rotation curves, which
instead hint at a CDM core-profile in galactic centers [16].
The possibility that CDM could be distributed along caustic
rings in galactic halos has also been suggested [17].

Clearly, gravitational-wave observations through the LISA
detector could shed some light on these issues, enabling the
distinction between competing models for the central massive
object and for the distribution of matter around it. Indeed,
observations of EMRIs by LISA could allow us to build a
map of the spacetime around galactic centers and determine
with great precision the properties of the spacetime in regions
which are not easily accessible through electromagnetic ob-
servations.

A number of different approaches to this “spacetime-
mapping” problem were considered in the the literature: EM-
RIs have been studied in spacetimes which are either approx-
imate or exact solutions of the Einstein equations. Among
the former, a multipolar expansion suitable to describe gen-
eral stationary, axisymmetric, asympotically flat spacetimes
outside a central distribution of matter has been consid-
ered [18, 19, 20]. However, this multipolar expansion is in
practice a series in1/r (r being the distance to the central
object) around a Minkowski spacetime: an accurate represen-
tation of the strong field regime would require the inclusionof
many terms. Another possibility is the “quasi-Kerr” (i.e.,Kerr
plus a small quadrupole) spacetime studied by Glampedakis
and Babak [21]. This can approximately describe the space-
time outside a slowly rotating boson star and isnot an ex-
pansion around Minkowski, thus being more promising in
the strong field limit. Among exact solutions of the Einstein
equations, only spherical boson stars [22] and “bumpy black
holes” [23] (i.e., objects that, although involving naked singu-
larities, arealmostSchwarzschild black holes, but have some
multipoles with the wrong values) have been considered.

At any rate, none of these spacetimes, neither exact nor
approximate, can describe satisfactorily the “astrophysical
bumpiness” which is certainly present around SMBHs. With
this in mind, we have studied EMRIs in stationary, axisym-
metric spacetimes which are highly accurate numerical solu-
tions of the Einstein equations and contain a rotating black
hole and a torus [24].

We used these numerical spacetimes to perform a study
similar to that carried out by Babak and Glampedakis for

1 The possibility that a steeper profile (i.e., largerα) could form under the in-
fluence of the SMBH was also proposed in Ref. [14], although the process
does not seem to happen in a more realistic astrophysical scenario [15].

“quasi-Kerr” spacetimes [21]: we studied EMRIs in the equa-
torial plane and computed semi-relativistic (“kludge”) wave-
forms, comparing them to kludge, pure-Kerr waveforms.
Babak and Glampedakis, in particular, find there could be a
“confusion” problem, because although gravitational waves
emitted in a quasi-Kerr spacetime by a stellar mass black hole
moving on an equatorial orbit are wildly different from those
emitted by the same stellar mass black hole moving along the
same orbit in a pure Kerr spacetime (having the same mass and
spin as the quasi-Kerr spacetime), waveforms produced by
equatorial orbits having slightly different latus rectum and ec-
centricity but the samer- andφ-frequencies turn out to be in-
distinguishable with LISA’s sensitivity. We therefore repeated
and extended their analysis. In particular, we introduce, like
them, a suitable cut-off in time in order not to have any rele-
vant radiation-reaction effects on the geodetic motion. While
this could be avoided in Babak’s and Glampedakis’ quasi-Kerr
spacetimes (probably eliminating the confusion problem: see
the analysis in Ref. [25]), this is actually a necessity in our
case, since the effect of a torus on the loss of energy and an-
gular momentum due to gravitational-wave emission is com-
pletely unknown at present.

We did not try, for the moment, to produce tori describing
the accretion disk of AGNs (although we plan to do this in
a future paper), but rather adopted a more phenomenological
approach. Indeed, since little is known about the strong field
region near the central massive black hole, we tried to build
some “extreme” configurations, i.e. configurations containing
rather massive and compact tori (close to the event horizon of
the central black hole). The purpose is to understand if LISA
can detect the presence of such tori, which are so close to the
horizon that they could not probably be detected otherwise
(for instance, by means of stellar orbits), especially if made of
some “dark” mass. We stress that the word “extreme” does not
mean that these configurations are extremely far from Kerr,
but just that these tori arenot the ones astrophysicists expect
in AGNs.

One possible objection is that it might be possible that these
“extreme” configurations are unstable (tackling the problem
of stability is indeed one of the points in which the results of
Ref. [24] may be improved in the future), but we do not think
this should be a major concern at this stage. Our viewpoint
is that considering such extreme configurations will provide
a testbed to investigate the practical problems of spacetime-
mapping through EMRI-gravitational waves. In particular,
these configurations will also help to understand better the
confusion problem pointed out by Glampedakis and Babak.
As already stressed, while in quasi-Kerr spacetimes this con-
fusion disappears when dropping the time cut-off and includ-
ing radiation reaction [25], in our case it may still be present
due to the practical difficulties of computing radiation reac-
tion in our spacetimes, whichforceus to introduce a cut-off in
time.

We will see, however, that this confusion in the orbital pa-
rameters appears in our spacetimes only for (equatorial) orbits
far from the black hole-torus system, whereas it disappearsin
the strong field region. Nevertheless, we find another confu-
sion problem, potentially more worrisome as it involves the
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parameters of the black hole. Of course, if we could replace
the semi-relativistic approximation with a rigorous solution
of the linearized Einstein equations and a proper treatmentof
self-force or radiation reaction, this confusion problem may
disappear as well. However, such a rigorous treatment is very
hard to obtain in generic stationary and axisymmetric space-
times (see Sect. II) and, as far as the self-force is considered,
even in pure Kerr.

This paper is organized as follows. In Sect. II we show what
the rigorous treatment of EMRIs in non-vacuum, stationary
and axisymmetric spacetimes would be, and explain why this
treatment has proved so hard that nobody has pursued it so
far. In Sect. III we review the non-Kerr spacetimes in which
the problem of EMRIs has been considered to date, ranging
from approximate (Sect. III A) to exact (Sect. III B) solutions
of the Einstein equations, and we introduce the non-pure Kerr
spacetimes we will use instead (Sect. III C). In Sect. IV we
review the semi-relativistic formalism used in Ref. [21] to
compute gravitational waves and explain how we adapted it
to our purposes: in particular we show how we integrated the
geodesic equations and calculated kludge waveforms, and (in
Sect. IV A) explain what the overlap function and the dephas-
ing time are. In Sect. V we explain in detail how we perform
a comparison between our non-pure Kerr spacetimes and pure
Kerr spacetimes. A summary of our results with a conclud-
ing discussion and the prospects of future work is presented
in Sect. V A and V B. Finally, in the Appendix we review
the connection between kludge waveforms and the linearized
Einstein equations.

Throughout this paper, we will use a system of units in
which G = c = 1. We will denote spacetime indices with
Greek letters and space indices with Latin letters.

II. WAVEFORMS FROM EMRIS IN NON-VACUUM
SPACETIMES

Let us consider a curved, non-vacuum spacetime with met-
ric g and with a characteristic lengthscaleM (for a space-
time containing an SMBH, this scale clearly coincides with
the black hole mass). The spacetime is intrinsically not a
vacuum one because it contains a fluid with a stress-energy
tensorT fluid. In addition, consider the presence of a small
body, such as a black hole with massm ≪ M .2 The small
body will of course perturb the geometry of spacetime: the
metricg̃ of the physical spacetime can therefore be written as
the background metricg plus some perturbations1h of order
O (m/M), 2h of orderO((m/M)2), etc.:

g̃µν = gµν + 1hµν + 2hµν + O((m/M)3) . (1)

Similarly, the small body will excite perturbations in the back-
ground fluid: the perturbed stress-energy tensor of the fluid

2 Note that in this context a small black hole can be treated as asmall body
despite being a singularity of spacetime [26].

can be written as

T̃ fluid
µν = T fluid

µν + 1δT
fluid
µν + 2δT

fluid
µν + O((m/M)3) . (2)

In what follows, the background metricg is used to raise and
lower tensor indices. For the sake of simplicity, we will also
drop the subscript1 indicating first order quantities: in other
words,hµν ≡ 1hµν andδT fluid

µν ≡ 1δT
fluid
µν .

It is well-known that the stress-energy tensor of a small
body with massm following a trajectoryzµ(τ̃ ) is given by
(see for instance Ref. [27])

T̃ αβ
small body(x) =

m

∫
P̃α

µ(x, z)P̃ β
ν(x, z)ũµũν δ(4)(x − z)

(−g̃)1/2
dτ̃ (3)

where P̃α
µ(x, z), τ̃ and ũµ ≡ dzµ/dτ̃ are respectively the

parallel propagator fromzµ to xµ, the proper time and the 4-
velocity in the physical (i.e. perturbed) spacetime. This stress-
energy tensor can then be expanded in a series inm/M :

T̃ αβ
small body = T αβ

small body + O ((m/M)2) , (4)

T αβ
small body(x) =

m

∫
Pα

µ(x, z)P β
ν(x, z)uµuν δ(4)(x − z)

(−g)1/2
dτ , (5)

whereP β
ν(x, z), τ anduµ = dzµ/dτ are the parallel propa-

gator, proper time and 4-velocity in the background.
If the small body interacts only gravitationally with the mat-

ter contained in the spacetime, its stress-energy tensor iscon-
served in the physical spacetime:

∇̃β T̃ αβ
small body = 0 , (6)

(∇̃ is the covariant derivative in the physical spacetime). This
implies that the small body follows a geodesic of the physi-
cal, perturbed spacetime (see for instance Ref. [27] for a for-
mal proof): expanding the geodesic equations in the physical
spacetime (̃uν∇̃ν ũµ = 0) into a series, it is possible to obtain,
to first-order inm/M ,

Duµ

dτ
= −1

2

(
gµν + uµuν

)(
2∇ρhνλ −∇νhλρ

)
uλuρ

+ O ((m/M)2), (7)

where∇ andD/dτ are the covariant derivative and the total
covariant derivative in the background.

Clearly, to zeroth order Eq. (7) reduces to the geodesic
equations in the background spacetime, but it deviates from
them at first-order. The right-hand-side of Eq. (7) represents
the so-called “self-force” and is physically due to the interac-
tion of the small body with its own gravitational fieldh; in the
case of a small body orbiting around an SMBH, this self-force
is responsible for its inspiral towards the black hole.
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In order to compute the right-hand side of Eq. (7) one needs
to compute the metric perturbationh and because this pertur-
bation is produced by the small body itself, some of its com-
ponents will be divergent at the position of the small body. A
regularization procedure to cure these divergences has been
derived [26, 28] for the trace-reversed metric perturbations

h̄µν ≡ hµν − 1

2
hα

α gµν (8)

in the Lorenz gauge, which is defined as

∇µh̄µν = 0 . (9)

It should be noted that while this gauge allows one in princi-
ple to remove the problem of divergences and has a number
of other advantages (see Ref. [29] for an extensive list), self-
force calculations are extremely hard to perform in practice.
Indeed, no general inspirals have been computed so far using
the regularized version of Eq. (7), not even in Schwarzschild
or Kerr spacetimes (see Ref. [27, 30] for a review). How-
ever, a simpler approach can be followed in which only the
dissipative part of the self-force is taken into account, leading
to the so-called “adiabatic approximation” [31]3. Within this
approximation the small body moves along a geodesic with
slowly changing parameters (in Kerr, these parameters are the
energyE, the angular momentumLz and Carter’s constant
Q). One of the advantages of the adiabatic approximation is
that it prescribes a way to compute the evolution of these pa-
rameters, revealing that their changesĖ andL̇z (with the dot
being the derivative with respect to the coordinate timet) cor-
respond to the energy and angular momentum carried away by
gravitational waves [33]. The change in Carter’s constantQ̇,
on the other hand, is harder to compute, although an explicit
formula has been recently derived [34].

The first-order metric perturbationh can be computed as a
solution of the linearized Einstein equations [35]

� h̄αβ + 2R α β
µ ν h̄µν + S α β

µ ν h̄µν =

− 16π(δT αβ
fluid + T αβ

small body) , (10)

where

Sµανβ = 2Gµ(αgβ)ν − Rµνgαβ − 2gµνGαβ , (11)

� ≡ gµν∇µ∇ν (12)

(Rµναβ , Rµν and Gµν are the background Riemann, Ricci
and Einstein tensors). Note that self-force effects are notcon-
tained in (10), which is a first order equation. In fact, since
the stress-energy tensor of the small body at the lowest order,
T small body, is an intrinsically first-order quantity [remember
the factorm appearing in Eq. (5)], the small body’s contri-
bution can be computed using a zeroth-order expression of

3 It should be noted that it is not yet clear whether the adiabatic approxima-
tion is accurate enough to compute waveforms for LISA as the conservative
part of the self-force could have a secular effect as well [32].

uµ or, equivalently, by solving the geodesic equations for
the background metric. In addition to the calculation of the
small body’s contribution, a consistent solution at first-order
for the EMRI problem in a curved and non-vacuum spacetime
requires the solution of the fluid perturbationδT fluid. This
can be computed by imposing the conservation of the stress-
energy tensor of the fluid,̃∇β T̃ αβ

fluid = 0, which gives, to first
order,

− 16π∇β δT αβ
fluid = 2Gβσ∇σh̄α

β

− 2Gαβ∂β h̄ − Rβσ∇γ h̄βσgγα . (13)

It is not difficult to realize, using Eqs. (10) and (13), that the
Lorenz gauge condition is conserved since it satisfies a homo-
geneous equation

�(∇βh̄αβ) + Rα
µ∇β h̄µβ = 0 . (14)

To summarize, the solution of Eqs. (10) with the right-hand-
side given by Eqs. (13) and the zeroth-order contribution of
Eq. (7), provides the complete and consistent solution of the
EMRI problem at first-order inm/M . Unfortunately, for situ-
ations of practical interest, such as for the observations of EM-
RIs performed by LISA, these first-order waveforms would be
sufficiently accurate only for a few days or weeks [21, 36],
imposing, at least in principle, the need for the solution of
second-order equations.

Clearly, the solution of the second-order perturbation equa-
tions is much harder to obtain as these will have a schematic
generic form of the type

D[2h] = O (∇h∇h, h∇∇h) , (15)

whereD[2h] is a differential operator acting on2h.
One could naı̈vely try to solve this equation by imposing a

gauge condition on2h and using the Green function of theD
operator, but the formal solution obtained in this way would
be divergent at every point because of the divergences of the
first-order perturbationh at the small body’s position. A reg-
ularization procedure to cure these divergences is known [37],
but it has not yet been applied in practical calculations.

An alternative to the solution of the full second-order per-
turbation equations entails introducing the deviations from
geodetic motion in the right-hand-side of Eq. (10). This ap-
proach is clearly not consistent, but hopefully accurate enough
if the ratiom/M and consequently the deviations from geode-
tic motion are sufficiently small. This is indeed what was
done by Drasco and Hughes [38], who used the adiabatic ap-
proximation and a simplified formula foṙQ to compute the
deviations from geodetic motion, inserting them in the right-
hand-side of the Teukolsky equation [39] and then solving for
first-orderperturbations.

While very appealing, as it provides a simple way to im-
prove upon a purely first-order calculation, we will not follow
this approach here. Rather, we will perform our calculations
within a semirelativistic (“kludge”) approximation to Eq.(10),
using however as a background spacetime a non-trivial depar-
ture from a pure-Kerr solution. The properties of this space-
time and of alternative formulations of non-Kerr spacetimes
will be discussed in detail in Sect. III, while a brief description
of our semi-relativistic approach will be presented in Sect. IV.
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III. MODELLING THE BACKGROUND SPACETIME

The discussion made in the previous section assumes that
a background spacetimeg is known and this is traditionally
assumed to be a “pure-Kerr” solution. However, this is not
the only possibility. Indeed, in order to investigate LISA’s
ability to detect deviations from Kerr, a number of attempts
have been made recently to replace the Kerr metric with other
stationary solutions representing reasonable deviationsfrom a
single rotating black hole in vacuum. In what follows we will
briefly review these attempts and discuss a novel one based
on the use of highly-accurate numerical solutions of the Ein-
stein equations for spacetimes containing a black hole and a
compact torus (see Sect. III C).

A. Approximate non-Kerr spacetimes

One first attempt to go beyond a pure-Kerr model for the
central massive object was suggested by Ryan [18, 19, 20],
who considered a general stationary, axisymmetric, asymptot-
ically flat, vacuum spacetime, which can be used to describe
the gravitational field around a central distribution of matter,
and its expansion in terms of the mass multipolesMℓ and of
the current multipolesSℓ [40]. If one assumes reflection sym-
metry, the oddM -moments and evenS-moments are identi-
cally zero [41, 42], so that the non-vanishing moments are the
massM0 = M , the mass quadrupoleM2 and the higher-order
even multipolesM4, M6, . . ., as well as the angular momen-
tumS1 = J , the current octupoleS3 and the higher-order odd
multipolesS5, S7, . . .. The metric can then be written as

ds2 = −eγ+δ dt2 + e2α (dr2 + r2 dθ2)

+ eγ−δ r2 sin θ2(dφ − ωdt)2 , (16)

where the potentialsγ, δ, ω, α depend only onr andθ. Each
of them can expanded in terms of the multipole moments: for
example

δ =

+∞∑

n=0

−2
M2n

r2n+1
P2n(cos θ)+ (higher order terms) , (17)

ω =
+∞∑

n=1

− 2

2n− 1

S2n−1

r2n+1

P 1
2n−1(cos θ)

sin θ

+ (higher order terms) , (18)

whereP2n, P 1
2n−1 are the Legendre and the associated Leg-

endre polynomials and where only the lowest-order1/r-
dependence of each multipole moment is shown.

The multipoles are related to the interior matter distribution
and could in principle be computed by solving the Einstein
equations. In the particular case of a Kerr spacetime, all the
multipole moments are trivially related to the first two, mass
and angular momentum, by the following relation:

Mℓ + iSℓ = M

(
i
J

M

)ℓ

. (19)

This is the celebrated “no hair” theorem: an (uncharged) sta-
tionary black hole is uniquely determined by its mass and spin.
Deviations from the Kerr metric can be therefore detected by
measuring the mass, spin and higher order moments of the
central massive object.

While general and very elegant, this approach has serious
drawbacks in the strong-field region near the central massive
object, which is clearly the most interesting one. In fact, this
is the region which will be mapped by LISA and where the
spacetime could be significantly different from Kerr. The ori-
gins of these drawbacks are rather apparent when looking at
Eqs. (16)–(18), which are in practice an expansion in pow-
ers of 1/r around a Minkowski spacetime. As a result, an
accurate representation of the strong field region necessarily
requires the inclusion of many multipoles.

Another approach to the modelling of a non-Kerr back-
ground spacetime was recently suggested by Babak and
Glampedakis in Ref. [21], and is based on the use of the
Hartle-Thorne metric [43]. This metric describes the space-
time outside slowly rotating stars, includes as a special case
the Kerr metric at orderO(a2), wherea ≡ J/M2, and is accu-
rate up to the mass quadrupole moment. In order to isolate the
quadrupolar deviation with respect to Kerr, the Hartle-Thorne
metric can be rewritten in terms of the parameterǫ defined as

Q = QKerr − ǫ M3 , QKerr = −J2

M
(20)

whereM , J andQ ≡ M2 are the mass, the angular momen-
tum and the mass quadrupole moment, respectively. Since
for Kerr Q = QKerr, ǫ can be used as a lowest-order mea-
sure of the deviation of the spacetime from a Kerr solution.
The metric expressed in this way can be further rewritten in
“quasi-Boyer-Lindquist coordinates”, i.e. coordinates reduc-
ing to Boyer-Lindquist coordinates ifǫ = 0. This procedure
then leads to the “quasi-Kerr” metric

gquasi−Kerr
µν = gKerr

µν + ǫ hµν

+ O(a ǫ, ǫ2) + O(δMℓ≥4, δSℓ≥3) , (21)

wheregKerr
µν is the Kerr metric in Boyer-Lindquist coordinates,

ǫhµν is the deviation from it andδMℓ≥4, δSℓ≥3 are the de-
viations of the higher-order multipoles from those of a Kerr
spacetime. Stated differently, the quasi-Kerr metric consists of
a Kerr solution plus a small difference in the mass quadrupole
expressed by the parameterǫ, while neglecting any devia-
tions from Kerr in the higher-order multipolesM4, M6, . . .,
andS3, S5, . . ., etc.

Because this approach does not involve any expansion in
powers of1/r, it can be used in the strong-field regions as
long as the central massive object is slowly rotating. Further-
more, it has the great advantage of being straightforward to
implement, leaving the mass quadrupole parameterǫ as the
only adjustable one. However, it has the drawback that it does
not include any deviations in the multipoles higher than the
quadrupole with respect to the multipoles of pure Kerr, which
could be important in the strong field regime.
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B. Exact non-Kerr spacetimes

A different approach to the modelling of the background
consists instead of usingexactsolutions of the Einstein equa-
tions: these spacetimes of course behave well in the strong
field regime, since they are not based on any series expan-
sions.

Few attempts have been made in this direction. However,
Kesden, Gair & Kamionkowski [22] considered spacetimes
containing non-rotating boson stars and found that the gravi-
tational waves produced by EMRIs look qualitatively different
from the pure black hole case. The spherical boson stars they
consider are in fact identical to Schwarzschild spacetimesout-
side their surfaces, making them indistinguishable from black
holes during the initial stages of an EMRI. However, for a
black hole the event horizon prevents any observations of the
inspirals after the final plunge. Because boson stars are hori-
zonless however, many orbits inside the interior are expected
if the small body interacts only gravitationally with the scalar
field out of which the star is made: the “smoking gun” for
a boson star would therefore be that gravitational waves from
the inspiral are observed after the plunge. Gravitational waves
from such an event could not be interpreted as an inspiral into
a black hole with different parameters, because the first part
of the inspiral is identical to the usual black-hole inspiral.

Another attempt was made by Collins and Hughes in
Ref. [23]. The analytical “bumpy black holes” they build are
objects that arealmostSchwarzschild black holes, but have
some multipoles with a ‘wrong’ value. These spacetimes re-
duce to the usual Schwarzschild black hole spacetimes in a
natural way, by sending the “bumpiness” of the black hole to
zero, but unfortunately they require naked singularities:al-
though they are not expected to exist in nature, “bumpy black
holes” could be useful as “straw-men” to set up null experi-
ments and test deviations from pure Kerr using EMRIs.

C. A self-gravitating torus around a rotating black hole

A different and novel approach to the modelling of a back-
ground, non-Kerr spacetime is also possible and will be the
one adopted in this paper. In particular, we exploit the con-
sistent numerical solution of the full Einstein equations de-
scribing a spacetime with an axisymmetric black hole and a
compact, self-gravitating torus of comparable mass and spin.
These solutions have been recently obtained to great accuracy
with a numerical code using spectral methods. In general,
the numerical solution will produce a solution of the Einstein
equations representing an axisymmetric and stationary space-
time containing a rotating black hole and a constant-density,
uniformly rotating torus of adjustable mass and spin. The met-
ric of thisnon-pure Kerr spacetimein quasi-isotropic (QI) co-
ordinates is generically given by

ds2 = −e2νdt2 + r
QI

2 sin2 θB2e−2ν (dφ − ωdt)
2

+ e2µ
(
drQI

2 + r
QI

2dθ2
)

, (22)

whereν, µ, B andω are functions of the radial quasi-isotropic
coordinater

QI
andθ. The procedure for obtaining such nu-

merical solutions is described in detail in Ref. [24] and we
here provide only a summary of the main ideas.

The entire spacetime outside of the horizon is described by
a metric in Weyl-Lewis-Papapetrou coordinates as in Eq. (22)
or (16). We fix our coordinates uniquely by stipulating that
the first derivatives of the metric functions be continuous at
the ring’s surface and by choosing the location of the horizon
to be a coordinate sphererQI = constant≡ r

+,QI
. Specifying

the boundary conditionsB = 0, e2ν = 0 andω = constant on
this sphere ensures that it is indeed a black hole horizon. We
further assume reflection symmetry with respect to the equa-
torial plane.

We are interested only in the metric outside of the black
hole and determine it using a multi-domain spectral method.
One of the domains coincides precisely with the interior of
the homogeneous, uniformly rotating perfect fluid ring, the
boundary of which must be solved for as part of the global
problem. This choice is important in order to avoid Gibbs
phenomena. The vacuum region (outside the horizon) is di-
vided up into four subdomains with three fixed boundaries
separating them. This somewhat arbitrary choice enables us
to resolve functions more accurately in the vicinities of both
the ring and the black hole according to the scale determined
by each object itself. One of the four vacuum domains ex-
tends out to infinity and is then compactified. A mapping of
each domain onto a square is chosen in such a way as to avoid
steep gradients in the functions being solved for.

The Einstein equations together with the specification of
asymptotic flatness and the aforementioned boundary condi-
tions provide us with a complete set of equations to be solved
for. The metric functions and the function describing the
ring’s boundary are expanded in terms of a finite number of
Chebyshev polynomials. By specifying physical parameters
to describe a configuration and demanding that the equations
be fulfilled at collocation points on these five domains, we
get a non-linear system of algebraic equations determiningthe
coefficients in the expansion of the functions. We solve this
system using a Newton-Raphson method where an existent
neighbouring solution provides the initial guess (see Ref.[24]
for more details and for a discussion of how to obtain the first
“initial guess”).

Note that throughout this paper, the masses and angular mo-
menta of the black hole,MBH andJBH , of the torus,MTorus

andJ
Torus

, and of the whole system,M
tot

≡ M
BH

+ M
Torus

andJtot ≡ JBH + JTorus , are the “Komar” masses and an-
gular momenta [44, 45]. We note that the definition of the
mass of a single object in General Relativity can be quite slip-
pery, especially when this measure is not an asymptotic one.
We also recall that while thetotal Komar mass of the system
coincides with the familiar “ADM” mass [46], other defini-
tions are possible for thesinglemasses of the torus and the
black hole. As an example, it is possible to define the “irre-
ducible mass” of the black hole asM

irr
≡ [A

+
/(16π)]1/2,

whereA
+

is the horizon’s area [47], and then define the total
mass of the black hole asM

hole
≡ [M2

irr
+(JBH/(2Mirr))

2]1/2

(Note that this latter definition coincides with the Komar mass
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for an isolated Kerr black hole.). Similarly, the mass of the
torus can also be measured in terms of the “baryonic” mass
M

baryon
=

∫
ρ ut√−g d3x (ρ being the baryonic mass den-

sity andu the 4-velocity of the fluid of the torus). This mass
is simply a measure of the number of baryons, it does not in-
clude the gravitational binding of the object, and thus can also
be rather different from the corresponding Komar mass.

Overall, we have found that even in our non-pure Kerr
spacetimes, all the definitions of the mass of the black hole
agree rather well. In particular, in the spacetimesA andB
we will consider in sections V A-V B (cf. table I) we have
M

BH
= 0.413, M

irr
= 0.457, M

hole
= 0.468 andM

BH
= 0.1,

M
irr

= 0.1007, M
hole

= 0.1007, respectively. On the other
hand, the Komar mass and the baryonic mass of the torus
have been found to be different withM

Torus
= 0.121 and

M
baryon

= 0.0578 in spacetimeA andM
Torus

= 0.007 and
M

baryon
= 0.00656 in spacetimeB. As mentioned above,

there is no reason to expect these two measures to be close
and it is only interesting that this happens under certain cir-
cumstances (as in spacetimeB, for example). Furthermore,
these differences are not going to affect our analysis, which
will never use the single mass of the torus.

IV. THE SEMI-RELATIVISTIC APPROACH

Although the procedure outlined in Sect. II to calculate the
waveforms from an EMRI in a non-vacuum spacetime is the
only mathematically correct one, it has never been applied in
practice, not even to first order. Such an approach, in fact,
involves the solution of a complicated system of 14 coupled
partial differential equations [Eqs. (10) and (13)] and while
this can in principle be solved, alternative solutions havebeen
traditionally sought in the literature. A very popular one is
the “semi-relativistic” approach, which leads to the so-called
“kludge” waveforms [48, 49, 50] and which we will also adopt
hereafter.

In essence, the semi-relativistic approach consists in con-
sidering geodetic motion for the small body (including, when
possible, corrections to account at least approximately for the
effects of radiation reaction) and in calculating the emitted
gravitational waves as if the small body were moving in a
Minkowski spacetime. This latter assumption requires a map-
ping between the real spacetime and the Minkowski space-
time: in the pure Kerr case, this is obtained by identifying
Boyer-Lindquist coordinates with the spherical coordinates of
the Minkowski spacetime. The waveforms are then computed
using the standard quadrupole, octupole or higher order for-
mulas4. Waveforms obtained in this way are commonly re-
ferred to as “kludge” waveforms [48, 49, 50]

A justification of this procedure in terms of the Einstein

4 Note that comparisons with Teukolsky-based waveforms in Kerr show that
the inclusion of multipoles higher than the octupole does not improve
kludge waveforms [50]. Because of this, contributions onlyup to the oc-
tupole are used here to calculate kludge waveforms.

equations is given in the Appendix. However, the strongest
motivation for introducing kludge waveforms is the surpris-
ing agreement they show with the accurate waveforms that
can be computed in a Kerr spacetime using the Teukolsky for-
malism [50]. In view of this, kludge waveforms represent the
natural first approach to model the emission from EMRIs in
non-pure Kerr spacetimes and will be used throughout this
work.

As mentioned in Sect. II, the adiabatic approximation offers
a simple way to include radiation-reaction effects in a Kerr
spacetime. More specifically, if we denote Kerr geodesics by
xµ

geod(t, E, Lz, Q), the trajectory of the small body is then
corrected to bexµ(t) = xµ

geod(t, E(t), Lz(t), Q(t)), that is,
a geodesic with varying parameters. The accurate calcula-
tion of the fluxesĖ, L̇z and Q̇ is rather involved [34, 38],
but approximate ways to compute them have also been sug-
gested [51, 52, 53]. Although Barack & Cutler [25] have
recently proposed including radiation reaction in quasi-Kerr
spacetimes by using post-Newtonian fluxes in which the
leading-order effect of the quadrupole of the spacetime is
taken into account, it is still unclear at this stage how accu-
rately the fluxes for a Kerr or a quasi-Kerr spacetime could de-
scribe the non-geodetic motion of an EMRI around our black
hole-torus systems. Because of this, we have here preferred
to consider the simplest scenario and thus model the motion
of the small body as a pure geodesic with equations of motion
that in the spacetime Eq. (22) are given by

dt

dτ
= −gttǫ̃ + gtφℓ̃ , (23)

dφ

dτ
= −gtφǫ̃ + gφφℓ̃ , (24)

d2r

dτ2
= −Γr

rr

(
dr

dτ

)2

− Γr
θθ

(
dθ

dτ

)2

− 2Γr
rθ

dr

dτ

dθ

dτ

−Γr
tt

(
dt

dτ

)2

− Γr
φφ

(
dφ

dτ

)2

− 2Γr
tφ

dt

dτ

dφ

dτ
, (25)

d2θ

dτ2
= −Γθ

rr

(
dr

dτ

)2

− Γθ
θθ

(
dθ

dτ

)2

− 2Γθ
rθ

dr

dτ

dθ

dτ

−Γθ
tt

(
dt

dτ

)2

− Γθ
φφ

(
dφ

dτ

)2

− 2Γθ
tφ

dt

dτ

dφ

dτ
, (26)

wherer ≡ r
QI

is the radial quasi-isotropic coordinate,τ is the
proper time, theΓ’s are the Christoffel symbols and̃ǫ andℓ̃ are
the energy and angular momentum per unit mass as measured
by an observer at infinity.

The resulting geodesics can be labelled with seven param-
eters: four refer to the initial positiont0, φ0, r0, θ0 and the re-
maining three identify the initial 4-velocity. In the case,which
we will consider in this paper, of bound stable orbits in the
equatorial plane, only five parameters would remain. How-
ever, because of stationarity and axisymmetry it is not restric-
tive to fix t0 = φ0 = 0 andr0 = rp, beingrp the periastron ra-
dius. Therefore, except for a sign to distinguish between pro-
grade (̇φ > 0) and retrograde (̇φ < 0) orbits, equatorial bound
stable geodesics can be characterized by two parameters only,
which we can choose to be the so-called “latus rectum”p

QI
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and the “eccentricity”e
QI

, which are related to the coordinate
radii at apoastron and periastron byra ≡ p

QI
/(1 − e

QI
) and

rp ≡ p
QI

/(1 + e
QI

).

Clearly, kludge waveforms computed from pure geodetic
motion are expected to be accurate only below the timescale
over which radiation-reaction effects become apparent and
make our waveforms differ significantly from the real signal.
A simple way to estimate this timescale exploits the conceptof
“overlap” between two waveforms, which will be introduced
in Sect. IV A.

An important comment needed here is instead on the co-
ordinate mapping used in calculating kludge waveforms. As
already mentioned, this mapping has a straightforward real-
ization in a Kerr spacetime, where the BL coordinates are as-
sociated with the spherical coordinates of a Minkowski space-
time. In a similar manner, in our non-pure Kerr spacetimes we
transform the solution of the geodesic equations from QI co-
ordinates to “quasi-Boyer-Lindquist” (QBL) coordinates,i.e.
coordinates that reduce to BL coordinates in the absence of the
torus. These coordinates are then identified with the spherical
coordinates of a Minkowski spacetime as in Ref. [21] and used
to compute kludge waveforms.

Fortunately, the transformation from QI to QBL coordi-
nates is straightforward and involves only a change in the ra-
dial coordinate:

r
QBL

= r
QI

+ M̃ +
r2
+,QI

r
QI

, (27)

whereM̃ is a parameter that reduces to the mass of the cen-
tral black hole in the absence of the torus. Clearly, this map-
ping suffers from an intrinsic ambiguity as the mass̃M could
be either associated with the mass of the black hole or with
the total mass of the system, or even with a combination of
the two. Although all the choices are essentially equivalent
when the torus is very light, this is not necessarily the case
for some of the configurations considered here, for which the
torus has a mass comparable with that of the black hole. Since
the parameter̃M is, at least in a Newtonian sense, the grav-
itational mass experienced by the small body, we have here
followed a pragmatic approach and set̃M = M

tot
for equa-

torial orbits with periastron larger than the outer edge of the
torus, which we will refer to as the“external orbits”. Con-
versely, we have set̃M = M

BH
for what we will refer to as

the“internal orbits” , that is equatorial orbits with both perias-
tron and apoastron between the inner edge of the torus and the
horizon. This classification is summarized schematically in
Fig. 1, which shows the two regions into which the spacetime
has been divided and the corresponding values ofM̃ . This
choice is clearly an operative ansatz, but we have checked to
see that its influence on our results is indeed negligible anda
detailed discussion of this will be presented in Sect. V.

Finally, we note that we have not considered orbits crossing
the torus because the non-gravitational interaction between
the small body and the fluid would cause deviations from
geodetic motion which are not easy to model.
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M = M     = M

J     = J
Kerr BH Kerr BH Torus

J    = J    + J

BH
external orbits

~
Kerr BH Torus

~
Kerr BH

internal orbits

I II

M = M     = M    + M

Torus

Figure 1: Schematic classification of the two regions of the space-
time. For equatorial orbits in region I (i.e. internal orbits) the mass
and angular momentum of the Kerr black hole coincide with themass
and angular momentum of the black hole. For equatorial orbits in re-
gion II (i.e. external orbits) the mass and angular momentumof the
Kerr black hole coincide with the total mass and angular momentum
of the black hole-torus system.

A. Overlap and dephasing time

In order to compare (kludge) waveforms computed in non-
pure Kerr spacetimes with (kludge) waveforms computed
in Kerr spacetimes, we follow the procedure proposed in
Ref. [21] and make use of the so-calledoverlap function. Its
meaning can be best understood through the more familiar
concept of SNR, which we will now briefly review.

We recall that if a signals(t) is the sum of a gravitational
waveh(t) and of some Gaussian noisen(t), the SNR for a
templatêh(t) is given by [54]

S

N
[ĥ] =

∫
ĥ(t)w(t − τ) s(τ) dτdt

rms
[∫

ĥ(t)w(t − τ)n(τ) dτdt
] =

(ĥ, s)

(ĥ, ĥ)1/2

(28)
wherew(t) is Wiener’s optimal filter (i.e. the Fourier trans-
form of the functionw(t) is given byw̃(f) = 1/Sn(f), with
Sn(f) being the spectral sensitivity of the detector), “rms”
denotes the root mean square and the internal product “( , )”
can be defined in terms of the Fourier transforms (which are
denoted by a “tilde”):

(h1, h2) ≡ 2

∫ ∞

0

h̃∗
1(f)h̃2(f) + h̃1(f)h̃∗

2(f)

Sn(f)
df . (29)

Clearly, the SNR of Eq. (28) is a Gaussian random variable
with zero average and unit variance if no gravitational wave
signal is present. On the other hand, in the presence of a grav-
itational wave the expected value for the SNR is nonzero with
a time average given by

〈
S

N
[ĥ]

〉
=

(ĥ, h)

(ĥ, ĥ)1/2
+

(ĥ, n)

(ĥ, ĥ)1/2
=

(ĥ, h)

(ĥ, ĥ)1/2
. (30)

If α measures the SNR for a templateĥ(t) “matching” the
gravitational waveh(t) perfectly, i.e.〈S/N〉 = (h, h)1/2 ≡
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α, any “mismatch” between̂h(t) andh(t) will degrade the
SNR ratio to〈S/N〉 = αO(h, ĥ), where the overlap function
O is defined as

O(h, ĥ) ≡ (h, ĥ)

(ĥ, ĥ)1/2(h, h)1/2
. (31)

The same logic can now be used to quantify the differences
between kludge waveforms computed in different spacetimes.
More specifically, if we label with “1” a waveform com-
puted in a non-pure Kerr spacetime and with “2” the clos-
est equivalent in a Kerr spacetime, the overlap between the
two O (h1, h2) ≡ (h1, h2)/[(h1, h2)

1/2(h1, h2)
1/2] will ex-

press how much SNR is lost by an observer match-filtering
a black hole-torus signal with a pure Kerr template. Stated
differently,O(h1, h2) = 1 if the two waveforms are identi-
cal, whileO(h1, h2) = 0 if they are totally uncorrelated and
O(h1, h2) = −1 if they are perfectly anticorrelated.

Having introduced the concept of overlap function, we can
proceed to an operative definition of the timescale below
which kludge waveforms computed from pure geodetic mo-
tion are expected to be accurate. This timescale, usually re-
ferred to as the “dephasing time”τd, is defined as the time at
which the overlap between two waveforms in the Kerr space-
time, one computed considering geodetic motion and the other
one including radiation reaction effects, drops below 0.95(this
is indeed the threshold used to build template banks [55]).
Clearly, the dephasing time will be different for external and
internal orbits and also in this case attention needs to be paid
to the mappings between non-pure and pure Kerr spacetimes.
Following the same logic discussed in the previous section,
we calculateτd for an external equatorial orbit in our non-
pure Kerr spacetime by considering the equatorial orbit with
the same latus rectum and eccentricity in the Kerr spacetime5

with massMKerr = Mtot and spinJKerr = Jtot . On the other
hand, for an internal orbit we calculateτd by considering the
orbit with the same latus rectum and eccentricity in the Kerr
spacetime with massM

Kerr
= M

BH
and spinJ

Kerr
= J

BH
. As

we will explain, in this case we have also looked into the influ-
ence that this association has on the overall results presented
in Sect. V.

In order to compute the dephasing time, we used the ap-
proximate Kerr fluxes proposed in Ref. [53], which are based
on post-Newtonian expansions and fits to fluxes computed rig-
orously with the Teukolsky formalism.

V. COMPARING PURE AND NON-PURE KERR
SPACETIMES

The set of tools introduced in the previous sections, namely:
the kludge waveforms, the numerical solution of the Einstein
equations for spacetimes containing a black hole and a torus,

5 The latus rectum and the eccentricity are assumed to be in BL coordinates
in pure Kerr and in QBL in non-pure Kerr spacetimes.

and the overlap function, can now be applied to determine to
what extent LISA can detect a difference between a pure and
a non-pure Kerr spacetime.

Hereafter we will restrict our attention to equatorial, bound
and stable orbits, choosing the values of the mass and angular
momentum of the pure Kerr spacetime using the same logic
discussed in the previous sections, i.e.

M
Kerr

= M
BH

= M̃
J

Kerr
= J

BH

}
internal orbits,

M
Kerr

= M
tot

= M̃
J

Kerr
= J

tot

}
external orbits.

(32)

Note that for internal orbits we did try to compare our
non-pure Kerr spacetimes with pure Kerr spacetimes having
M

Kerr
= M

tot
= M̃ andJ

Kerr
= J

tot
(using these values also

to compute the dephasing time, cf. Sect. IV A), but this turned
out not to be a good choice6.

Once a non-pure and a pure Kerr spacetime have been
built and the orbits have been isolated according to the re-
lations (32), further care needs to be paid in selecting cor-
responding geodesics. As mentioned in Sect. IV, equatorial
geodesics can be labelled by two parameters, which can be
chosen to be, for instance, the latus rectum and the eccentric-
ity p

(Q)BL
ande

(Q)BL
, calculated in QBL coordinates for the

non-pure Kerr spacetime and in BL coordinates for the Kerr
spacetime.

However, as already pointed out in Ref. [21], waveforms
produced by geodesics having the samep

(Q)BL
ande

(Q)BL
are

significantly different because they do not contain compara-
ble orbital frequencies, and give overlapsO . 0.4. A sim-
ilar conclusion can be drawn in the case in which the free
parameters are chosen to be the periastron radius and the (tan-
gential) velocity measured at the periastron by a zero angu-
lar momentum observer (ZAMO): this choice gives overlaps
O ≃ 0.1 − 0.2. In view of this, any sensible comparison can
be made only with geodesics in the two spacetimes that have
the same orbital frequencies (this result was already pointed
out in Ref. [21]).

We recall that an equatorial geodesic in a generic stationary,
axisymmetric spacetime has anr-motion that is periodic in
the coordinate timet. To see this, it is sufficient to combine
Eqs. (23), (24) and the normalization conditionuµuµ = −1
for an equatorial motionθ = π/2 so that

(dr/dt)2 = V (r, ǫ̃, ℓ̃) , (33)

with V (r, ǫ̃, ℓ̃) being a function ofr and of the two constants
of motion ǫ̃ and ℓ̃. Clearly, Eq. (33) has a periodic solution
with a frequency that we will denoteωr. A similar analysis

6 i.e., for many bound stable orbits in the non-pure Kerr spacetimes that we
considered, it was impossible even to find bound stable orbits with the same
latus rectum and eccentricity in the Kerr spacetime.
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can be carried out for the motion in theφ direction, which,
combining Eqs. (23) and (24) withθ = π/2, satisfies an equa-
tion of the type

dφ/dt = G(r, ǫ̃, ℓ̃) , (34)

whereG(r) is again a function ofr, ǫ̃ and ℓ̃. Integrating
Eq. (34) withφ0 = t0 = 0 leads to

φ(t) = 〈G〉t +

∫ t

0

(G(r(t), ǫ̃, ℓ̃) − 〈G〉)dt , (35)

where 〈G〉 is the time average ofG(r(t), ǫ̃, ℓ̃) over anr-
period. The second term on the right-hand-side of Eq. (35) is
clearly periodic (with zero average) int so that theφ-motion
has a linearly growing term and an oscillating one. The over-
all frequency content of theφ motion is therefore determined
by ωφ = 〈G〉.

The orbital frequenciesωr andωφ can therefore be used to
characterize equatorial geodesics (and hence the waveforms)
that are expected to be as similar as possible (i.e. have the
largest possible overlap) in the two spacetimes. In practice,
given a geodesic (and therefore a waveform) characterized
by ωr andωφ in the non-pure Kerr spacetime, we can com-
pare it to the waveform produced in the Kerr spacetime by
the orbit which has the samer- andφ-frequencies. Sinceωr

andωφ for equatorial orbits in a Kerr spacetime are functions
of MKerr , JKerr , p

BL
ande

BL
(explicit expressions for these

functions, which we will denoteω
Kerr

r andω
Kerr

φ , are given
in Ref. [56]), matching the geodesics amounts to solving the
following equations in the unknownsδp andδe

ω
BH+Torus

r (p
QBL

, e
QBL

) =

ω
Kerr

r (p
BL

=p
QBL

+ δp, e
BL

=e
QBL

+ δe, M
Kerr

, J
Kerr

) ,

(36)

ω
BH+Torus

φ (p
QBL

, e
QBL

) =

ω
Kerr

φ (p
BL

=p
QBL

+ δp, e
BL

=e
QBL

+ δe, M
Kerr

, J
Kerr

) ,

(37)

whereω
BH+Torus

r (p
QBL

, e
QBL

) andω
BH+Torus

φ (p
QBL

, e
QBL

) are
ther- andφ-frequencies of the equatorial orbit with latus rec-
tum p

QBL
and eccentricitye

QBL
in the non-pure Kerr space-

time under consideration and whereM
Kerr

, J
Kerr

follow the
selection rule in Eq. (32) to distinguish internal and external
orbits. Indeed, this is the approach which was followed in
Ref. [21] and which highlighted the possibility of a confusion
problem in non-pure Kerr spacetimes.

An important difference with respect to the work presented
in Ref. [21] is that we also considered a different way in which
it is possible to identify geodesics that have the same orbital
frequencies in a Kerr and in a non-pure Kerr spacetime. We
can in fact consider the latus rectum and eccentricity fixed
in (Q)BL and search for the values of the additional mass
δM and angular momentumδJ of the Kerr spacetime which
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Figure 2: Kludge waveforms around the dephasing time for a small
body with massm = 1M⊙ moving in the spacetimeB of Table I.
The black solid line shows the waveform produced by a geodesic
with given latus rectum and eccentricity in spacetimeB, while the
red dot-dashed one refers to a geodesic with the same latus rectum
and eccentricity (in (Q)BL coordinates) in a Kerr spacetimewith
MKerr = Mtot and JKerr = Jtot . The blue dotted line and the
brown circles are instead the waveforms produced by an orbitwith
the samer- andφ-frequencies as obtained by adjusting(δp, δe) or
(δM, δJ), respectively.

would yield the samer- andφ-frequencies, i.e.

ω
BH+Torus

r (p
QBL

, e
QBL

) =

ω
Kerr

r (p
BL

=p
QBL

, e
BL

=e
QBL

, MKerr + δM, JKerr + δJ) ,

(38)

ω
BH+Torus

φ (p
QBL

, e
QBL

) =

ω
Kerr

φ (p
BL

=p
QBL

, e
BL

=e
QBL

, M
Kerr

+ δM, J
Kerr

+ δJ) .

(39)

Of course, a similar but distinct set of equations can also be
built by considering orbits having the same latus rectum and
eccentricity in QI coordinates7

ω
BH+Torus

r (p
QI

, e
QI

) =

ω
Kerr

r (p
QI

, e
QI

, M
Kerr

+ δM, J
Kerr

+ δJ) , (40)

ω
BH+Torus

φ (p
QI

, e
QI

) =

ω
Kerr

φ (p
QI

, e
QI

, M
Kerr

+ δM, J
Kerr

+ δJ) . (41)

To illustrate how different correlations of orbits in the two
spacetimes can lead to significantly different waveforms, we

7 The transformation from BL to QI coordinates in a Kerr spacetime is given
for instance in Ref. [57], Eq. (80): the transformation turns out to be the
inverse of Eq. (27), withr+QI = M(1 − a2)1/2/2 (M anda being the
mass and the spin parameter of the Kerr spacetime under consideration).
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spacetimeMBH MTorus MBH/MTorus JBH JTorus JBH/JTorus JBH/M2

BH
Jtot/M2

tot
ρ r+ ,QI rin ,QI rout ,QI ǫ

A 0.413 0.121 3.4 +9.02e−2 1.17e−1 +7.69e−1 +5.28e−1 0.728 2.637 0.179 0.6064 0.6305 0.11

B 0.100 0.007 14.3 −1.74e−5 2.58e−3 −6.74e−3 −1.74e−3 0.224 0.198 0.050 0.9156 1.0000 2.63

Table I: Parameters of the spacetimes analyzed in section V,in units in which107M⊙ = G = c = 1. rin ,QI androut ,QI are the inner and
outer edges of the torus in QI coordinates,ρ is the baryonic mass density of the torus and the parameterǫ provides a lowest-order measure of
the deviation of the spacetime away from a Kerr solution [cf.Eq. (20)]. Note thatǫ is more sensitive to the ratio between the angular momenta
than to that between the masses.

show in Fig. 2 some kludge waveforms for a small body with
massm = 1M⊙ moving in the spacetimeB whose parame-
ters are listed in Table I. The geodesics have been calculated
up to the dephasing time (i.e.τd ≃ 42 d) and the figure shows
a magnification of the waveforms around this time. In par-
ticular, the black solid line shows the waveform produced by
a geodesic withp

QBL
/M

tot
= 21.237 ande

QBL
= 0.212 in

spacetimeB, while the red dot-dashed one refers to a geodesic
with the same latus rectum and eccentricity (in (Q)BL coor-
dinates) in a Kerr spacetime withM

Kerr
= M

tot
andJ

Kerr
=

J
tot

. The blue dotted line and the brown circles are instead
the waveforms produced by an orbit with the samer- andφ-
frequencies as obtained by adjusting(δp, δe) or (δM, δJ), re-
spectively. Clearly, fixing the same orbital parametersp

(Q)BL

ande
(Q)BL

in the two spacetimes would be misleading and will
inevitably produce very small overlaps. On the other hand,
ensuring that the orbital frequencies are the same by adjusting
δM andδJ provides waveforms that are much more similar
and even harder to distinguish over this timescale than ifδp
andδe are adjusted.

In the following sections we will discuss in detail the con-
fusion problem when considering the two different ways in
which the geodesics in the two spacetimes can be matched.
Before doing that, however, we will now briefly recall the
main properties of the numerically-generated spacetimes that
we have considered here, and whose parameters are listed in
Table I. We note that because the investigation of each space-
time is a rather lengthy and computationally expensive opera-
tion, we have restricted our attention to two spacetimes only,
but with rather different properties. More specifically, wehave
considered a first spacetime (denoted asA) having a torus with
mass comparable with that of the black hole and slightly larger
angular momentum (i.e.M

BH
& M

Torus
, |J

BH
| . |J

Torus
|)

and a second spacetime (denoted asB) having a torus with
mass much smaller than that of the black hole but much larger
angular momentum (i.e.M

BH
≫ M

Torus
, |J

BH
| ≪ |J

Torus
|).

We also note that spacetimeA has a rather small quadrupole
parameterǫ ≃ 0.1 [cf. Eq. (20) for the definition] and
could therefore be used to validate the perturbative results of
Ref. [21] which, we recall, were formulated to the lowest or-
der inǫ. Interestingly, we will see that taking into account the
higher-order multipoles can lead to important qualitativedif-
ferences and weaken or even cancel, for orbits very close to
the torus, the confusion problem found in Ref. [21]. Space-
timeB, on the other hand, has a considerably larger value for
ǫ and cannot, therefore, be described satisfactorily by the met-

ric (21). The spacetimes were computed to sufficiently high
accuracy so as to ensure that the numerical errors do not affect
the results. More specifically, for spacetimeA we used40×40
Chebyshev polynomials in the vacuum domain extending out
to infinity (domain 1 of [24]) and28 × 28 polynomials in the
other 4 domains. For spacetimeB we used31 × 27 polyno-
mials in each of the 5 domains. Typical physical quantities,
such as mass and angular momentum, were thus accurate to
about10−6 in spacetimeA and10−7 in spacetimeB. Besides
these being errors that are orders of magnitude smaller than
the onesO(a ǫ, ǫ2) + O(δMℓ≥4, δSℓ≥3) typically affecting
the approximate metric (21), the accuracy of our numerically
generated spacetimes is sufficient for our purposes, since the
dephasing it introduces is comparable with the dephasing due
to radiation reaction, as the latter scales with the mass ratio
m/MBH ≈ 10−6 − 10−7. As a result, introducing a cut-off at
the dephasing time not only makes the effects of radiation re-
action negligible, but it also ensures that the numerical errors
in the calculation of the spacetimes do not affect the results.
As a further check, we have varied the number of Chebyshev
polynomials and verified that the numerical errors inherentto
the spacetimes have a negligible impact on our final results.

For all of the waveforms computed in this paper, we have
considered an observer located atφobs = 0, θobs = π/4
and decomposed the incoming gravitational-wave signal into
the usual “plus” and “cross” polarizations (see, for instance,
Refs. [50, 58] for details). Furthermore, labelling the gravita-
tional waves computed in the two spacetimes with 1 and 2, we
calculate the overlap between both polarizations,O(h+

1 , h+
2 )

andO(h×
1 , h×

2 ), and in the discussion of our results we re-
fer to the smallest of the two overlaps, i.e.O(h1, h2) ≡
min[O(h+

1 , h+
2 ), O(h×

1 , h×
2 )]. In practice, however, the dif-

ference betweenO(h+
1 , h+

2 ) andO(h×
1 , h×

2 ) for the overlaps
plotted in the figures of the next sections is typically smaller
than 0.005 and in no case larger than 0.025.

Finally, we note that the results presented in the next sec-
tions refer to a small body withm = 1M⊙ and to a sensitivity
function for LISA computed using the online generator [59]
with its default parameters and, in particular, no white dwarf
noise. As pointed out in Ref. [21], including white-dwarf
noise would only lead to a slight increase in the dephasing
time.
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A. The confusion problem when varying e and p

After excluding a comparison between geodesics (and
hence waveforms) that have the same latus rectum and ec-
centricity in the pure and non-pure Kerr spacetimes because
of the very small overlap they produce, we have compared
waveforms having the samer- andφ-frequencies as obtained
by changing the latus rectum and eccentricity while keeping
MKerr andJKerr fixed [cf. Eqs. (36) and (37)]. More specifi-
cally, we already mention that the values ofδp/p

QBL
obtained

in the regions of the space of parameters(pQBL , eQBL) where
the overlap between these waveforms is high (O > 0.95) are
|δp/pQBL| . 0.05 in spacetimeA and |δp/pQBL | . 0.16
in spacetimeB. Similarly, the values ofδe obtained in the
regions of the space of parameters whereO > 0.95 are
|δe| . 0.06 in spacetimeA and |δe| . 0.07 in spacetime
B.

We have computed the overlap between
hBH+Torus(pQBL , eQBL) and hKerr(pBL = pQBL + δp, eBL =
e
QBL

+ δe, M
Kerr

, J
Kerr

), and summarize the results of this
comparison for a large set of orbits in Figs. 3, 4 and 5. In
particular, Fig. 3 shows the color-coded overlap between
waveforms produced in spacetimeA by external orbits in a
(p

QBL
, e

QBL
) plane, with positive values ofp

QBL
referring

to prograde orbits, and negative ones to retrograde orbits.
Note thatno internal orbits were found in spacetimeA and
this is due to the fact that in this case the torus is too close
to the black hole for bound stable orbits to exist in region I
of Fig. 1 without plunging into the black hole. The different
lines in Fig. 3 mark the margins of the different regions of
interest in the(p

QBL
, e

QBL
) plane, with the blue dashed line

representing the outer “edge of the torus”, that is the set of
points such thatp

QBL
/(1 + e

QBL
) = r

out,QBL
. Similarly, the

red solid line represents the innermost stable bound orbits
(this line is also referred to as the “separatrix” in Ref. [60])
for a Kerr spacetime with massM

Kerr
= M

tot
and spin

J
Kerr

= J
tot

. Finally, the black dot-dashed line limits the
regions of the(p

QBL
, e

QBL
) plane where bound stable orbits

have been studied.

We underline that these are not the only regions in which
bound stable orbits exist, but they rather represent the regions
we have investigated because of their being more directly re-
lated to LISA observations. In practice, we exploit the fact
that there is a one-to-one correspondence between the latus
rectump

QBL
and the eccentricitye

QBL
of bound stable orbits

and their QI radius and tangential velocity (measured by a
ZAMO) at periastron,rp andvφ. We therefore choose the
initial radial QI positionr0 of the small body randomly in a
limited range and vary its initial tangential velocityvφ with
small steps in the range of the velocities leading to energies
per unit mass̃ǫ < 1.8 After integrating the geodesic equations

8 We note that in both spacetimeA andB all the equatorial bound stable
orbits not crossing the torus haveǫ̃ < 1 [this can be verified by computing
the values of̃ǫ for which the potentialV (r, ǫ̃, ℓ̃) in Eq. (33) is positive].
However, bound stable orbits which cross the torus and haveǫ̃ > 1 are

(Eqs. (23)-(25) withθ = π/2) over and beyond the dephasing
time, if the orbit does not intersect the torus and ifr0 actu-
ally corresponds to the periastron (andnot to the apoastron)
we extract the latus rectum and eccentricity so as to populate
the (p

QBL
, e

QBL
) plane and compute the overlaps with pure-

Kerr waveforms (the orbits in the Kerr spacetime are chosen
to start at their periastron as well). Overall, a large number of
bound stable orbits (i.e.& 2250) has been integrated for each
of the figures shown in this paper. Notice that the requirement
that r0 correspond to the periastron is important because, as
far as the overlaps are concerned, orbits having the same latus
rectum and eccentricity but different initial positions are not
equivalent. We recall in fact that the overlaps are computed
by putting a cutoff at the dephasing time and if the initial po-
sitions are different, the portions of the orbits contributing to
the overlap are different.

Overall, because the waveforms agree very well with an
overlapO > 0.95 for most of the orbits we have considered,
the results in Fig. 3 clearly show that a confusion problem sim-
ilar to the one presented in Ref. [21] is indeed possible in this
spacetime for observational timescales below or comparable
to the dephasing time. As indicated by the color-coding, the
overlap has a drastic reduction only in a limited region of the
space of parameters and in particular for orbits with small ec-
centricity and close to the innermost bound stable orbits. This
is not surprising as in these regions the local modificationsof
the spacetime due to the presence of the torus are the largest
and have a more marked impact on the waveforms. Interest-
ingly, prograde orbits produce overlaps that are smaller than
those produced by retrograde orbits with comparable values
of p

QBL
ande

QBL
, and appear therefore to be better tracers of

this spacetime.

It is important to underline that the presence of an albeit
small region of the space of parameters in which the over-
lap is small, and hence the dangers of a confusion problem
decreased, represents an important difference compared tothe
results presented in Ref. [21]. We recall that spacetimeA has a
rather small quadrupole parameterǫ (cf. Table I), comparable
with those used in Ref. [21]. Yet, the small overlaps near the
innermost bound stable orbits indicate that taking into account
the higher-order multipoles neglected in the metric (21) can
lead to significant differences even far away from the black
hole if a matter source is present.

Figure 4 summarizes a set of results similar to those pre-
sented in Fig. 3 but for spacetimeB. More specifically,
it reports the color-coded overlap between waveforms pro-
duced in spacetimeB by externalorbits and waveforms pro-
duced in a Kerr spacetime with massM

Kerr
= M

tot
and spin

JKerr = Jtot . Here again, all of the orbits have the same or-
bital frequencies as obtained by adjustingδp andδe. It should
be noted that in this case the confusion problem is less se-
vere and indeed essentially absent for orbits near the outer
edge of the torus (i.e., withp

QBL
/M

tot
. 30) and with ec-

centricitiese
QBL

. 0.2. Finally, we report in Fig. 5 again

present in both spacetimes.
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Figure 3: Overlap between waveforms produced in spacetimeA by externalorbits and waveforms produced in a Kerr spacetime with mass
MKerr = Mtot and spinJKerr = Jtot . The orbits all have the samer- andφ-frequencies as obtained by suitably changing the latus rectum
and the eccentricity, with positive values ofpQBL referring to prograde orbits, and negative ones to retrograde orbits. The different lines mark
the margins of the different relevant regions of the(pQBL , eQBL) plane, with the blue dashed line representing the outer “edge of the torus”,
the red solid line representing the innermost stable bound orbits for a Kerr spacetime with massMKerr = Mtot and spinJKerr = Jtot and
the black dot-dashed line limiting the regions of the(pQBL , eQBL) plane where bound stable orbits have been studied. A high overlap in large
regions of the space of parameters indicates that a confusion problem is indeed possible in this spacetime for observational timescales below
or comparable to the dephasing time, although this confusion disappears for orbits with small eccentricities and closeto the innermost bound
stable orbits.

results for spacetimeB but this time forinternalorbits. We
recall, in fact, that in this case the torus is farther away from
the black hole and thus bound stable orbits can be found in
region I of Fig. 1. As in the previous figures, the black dot-
dashed line limits the regions of the plane(p

QBL
, e

QBL
) where

bound stable orbits have been studied, but in contrast to the
case of external orbits these regions correspond to practically
all the bound stable orbits not crossing the torus. On the other
hand, the green solid line marks those orbits whose periastron
lies on the event horizon, the purple dashed one those orbits
whose apoastron lies on the inner edge of the torus and finally
the red crossed-solid line indicates the innermost bound stable
orbits in a Kerr spacetime with mass and spinM

Kerr
= M

BH

andJ
Kerr

= J
BH

. Clearly, no confusion problem is present
for these orbits, because the overlap is always very small and
never larger than≃ 0.2.

In summary, the overlap computed in the two spacetimesA
andB containing a black-hole and a torus by varying the latus
rectum and the eccentricity reveals that there are regions in
which the non-pure Kerr spacetimes can be “confused” with
Kerr spacetimes that are equivalent to them at the sensitiv-
ity of LISA. Clearly, this risk is concrete only for timescales
over which radiation-reaction effects are negligible and it is
not present for external orbits very close to the torus or forthe
orbits between the torus and the black hole, if they exist.

B. The confusion problem when varying M and J

Next, we consider the overlap obtained by comparing orbits
having the samer- andφ-frequencies, which was achieved by
changing the mass and spin of the Kerr black hole while keep-
ing the latus rectum and eccentricity fixed in either (Q)BL
or QI coordinates [cf. Eqs. (38)–(39) and (40)–(41)]. Do-
ing this corresponds to considering a hypothetical scenario
in which it would be possible to measure, through inde-
pendent astronomical observations, the latus rectum and ec-
centricity of the small body orbiting around the massive
central black hole. In practice, and using the same com-
pact notation introduced above, we have compared wave-
forms of the typehBH+Torus(pQBL , eQBL) with hKerr(pBL =
p

QBL
, e

BL
= e

QBL
, M

Kerr
+ δM, J

Kerr
+ δJ) [i.e., latus rec-

tum and eccentricity fixed in (Q)BL coordinates,δM and
δJ solutions to Eqs. (38)–(39)] andh

BH+Torus
(p

QI
, e

QI
) to

h
Kerr

(p
QI

, e
QI

, M
Kerr

+δM, J
Kerr

+δJ) [i.e., latus rectum and
eccentricity fixed in QI coordinates,δM andδJ solutions to
Eqs. (40)–(41)].

While formally distinct, these two approaches yield essen-
tially the same results quite irrespective of whether the latus
rectum and eccentricity are held fixed in (Q)BL or in QI co-
ordinates. Because of this, hereafter we will discuss only the
results obtained when fixingp

(Q)BL
ande

(Q)BL
.

Figure 6, in particular, shows the overlap between wave-
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−10 −8 −6 −4 −2 0 2 4 6 8 10
0

0.05

0.1

0.15

0.2

0.25

p
QBL

/M
BH

e Q
B

L

0
0

−
0
.2

0

−
0
.2

−0.2

0
0

0
.2

0

0
.2

−
0
.2

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8
Inner edge of the torus

Horizon

Innermost stable bound orbits
for a black hole with M=M

BH
 and J=J

BH

Region of bound stable orbits considered

overlap

Figure 5: The same as in Fig. 4 but forinternalorbits, with the green solid line marking those orbits whoseperiastron lies on the event horizon,
the purple dashed line representing the inner “edge of the torus” and finally the red crossed-solid line marking the innermost bound stable
orbits in a Kerr spacetime with mass and spinMKerr = MBH andJKerr = JBH . Again, the black dot-dashed line limits the regions of the
(pQBL , eQBL) plane where bound stable orbits have been studied, but in contrast to the case of external orbits, these regions correspond to
practically all the bound stable orbits not crossing the torus. Note that in this case the confusion problem is absent, withO . 0.2.

forms produced in spacetimeA by externalorbits and wave-
forms produced in a Kerr spacetime with massM

Kerr
+δM =

Mtot + δM and spinJKerr + δJ = Jtot + δJ by orbits
with the samep

(Q)BL
and e

(Q)BL
and the same orbital fre-

quencies. As in Fig. 3, the different lines mark the margins

of the relevant regions of the(pQBL , eQBL) plane, with the
blue dashed line representing the outer “edge of the torus”,
the red solid line representing the innermost stable bound or-
bits for a Kerr spacetime with massM

Kerr
= M

tot
and spin

JKerr = Jtot and the black dot-dashed line limiting the re-
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Figure 7: The same as in Fig. 6 but for spacetimeB. Note that also in this case the overlap is very high (O > 0.99) in almost all of the relevant
regions of the(pQBL , eQBL) plane, with the exception of a very small set of orbits very close to the torus, for which Eqs. (38)–(39) have no
solutions (these orbits correspond to the blank regions inside the black dot-dashed line).

gions of the(p
QBL

, e
QBL

) plane where bound stable orbits
have been studied. Note the very close match between the
two waveforms, with an overlapO > 0.95 in essentially all
of the relevant regions of the(p

QBL
, e

QBL
) plane. This is a

clear indication that a confusion problem is present for LISA

measurements over a timescale below or comparable to the
dephasing time.

Figures 7 and 8 provide complementary information for
spacetimeB, with the first one referring toexternalorbits and
the second one tointernalones (the meaning of the lines ap-
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Figure 8: The same as in Fig. 7 but forinternalorbits, with the green solid line marking those orbits whoseperiastron lies on the event horizon,
the purple dashed line representing the inner “edge of the torus” and finally the red crossed-solid line marking the innermost bound stable
orbits in a Kerr spacetime with mass and spinMKerr = MBH andJKerr = JBH . Again, the black dot-dashed line limits the regions of the
(pQBL , eQBL) plane where bound stable orbits have been studied, but in contrast to the case of external orbits these regions correspond to
practically all the bound stable orbits not crossing the torus. Note that in this case the confusion problem is present inmost of the relevant
regions of the(pQBL , eQBL) plane, becoming slightly less severe only for the largest allowed eccentricities and for a very small set of orbits,
very close to the torus, for which Eqs. (38)–(39) have no solutions (these orbits correspond to the blank regions inside the black dot-dashed
line).

pearing in this figures is the same as in figures 4 and 5). In
both cases it is apparent that the overlap is always very large.
The only exceptions are the internal orbits with the largestal-
lowed eccentricities, for which the overlap decreases slightly,
and a very small set of orbits very close to the torus, for which
Eqs. (38)–(39) have no solutions (these orbits correspond to
the blank regions inside the black dot-dashed line in figures7
and 8).

In summary, the overlap computed in the two spacetimes
by varying the mass and spin of the black hole reveals that a
LISA observation carried out over a timescale below or com-
parable to the dephasing time would not allow an observer to
distinguish between a Kerr and a non-pure Kerr spacetime,
even in the case in which the orbital parameters of the small
body, such as the the latus rectum and the eccentricity, were
known through astronomical observations.

A simple explanation of why the overlap is always so large
when calculated by varying the mass and spin of the Kerr
black hole is already illustrated in Fig. 2. This shows that the
waveform obtained in this way captures not only the proper
orbital frequencies, but also the overall “form” of the signal,
which is most sensitive to the values of the latus rectum and
of the eccentricity of the orbit (cf. the solid black line andthe
brown circles in Fig. 2).

The difficulty of distinguishing a Kerr spacetime from a
non-pure Kerr one can also be expressed in terms of the mass

M
Kerr

+ δM and spinJ
Kerr

+ δJ that would be measured by
an observer analyzing a gravitational wave from a black hole-
torus system with pure Kerr templates. The correctionsδM
andδJ are those appearing in Eqs. (38)–(39) and have been
computed to determine the overlaps presented in this section.
If they are small and slowly varying, it is hard to imagine a
way in which the non-pure Kerr spacetime could be distin-
guished from a pure Kerr one, even with the help of additional
astronomical observations. Conversely, if these corrections
are large or rapidly varying it is possible that additional astro-
nomical information on the system or an analysis of snapshots
of the waveform taken at different times could be used to de-
termine that the source is not an isolated Kerr black hole and
therefore lessen the confusion problem we find in our analy-
sis.

A synthesis of these corrections for the determination of the
mass of the black hole in the case of spacetimeB is presented
in Fig. 9 and Fig. 10, with the first one showing the relative er-
ror δM/MKerr = δM/Mtot in the regions of the(pQBL , eQBL)
plane where the overlap plotted forexternalorbits is above
0.95, and the second one showing the corresponding quantity
(δM/M

Kerr
= δM/M

BH
) for internalorbits.

Clearly, the corrections are very small and slowly varying
in almost all of the relevant space of parameters forexternal
orbits, meaning that an observer could not detect the presence
of the torus using only these orbits. On the other hand, an
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observer could measure rather accurately the total mass of the
system. Note in particular that the correctionδM/M

tot
goes

to zero far from the system, as one would expect.

This situation is only slightly different forinternalorbits,
for which the correction increases to some percent: using in-
ternal orbits an observer could measure quite accurately the
mass of the central black hole. Note therefore that a combina-
tion of observations of internal orbits (giving an estimatefor

M
BH

) and external orbits (giving an estimate forM
tot

) could
hint at the presence of a torus around the central black hole.

Similar behaviour has also been found for spacetimeA.
Because no internal bound stable orbits are present, an ob-
server could not measure the individual masses of the black
hole and the torus, whereas he could measure accurately the
total mass of the system. In fact, the corrections are always
very small with |δM/M

Kerr
| = |δM/M

tot
| . 0.02; again,
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the correctionδM/M
tot

goes to zero far from the system, as
one would expect. Note that due to the absence of internal or-
bits in this spacetime and to the smallness and slow variations
of δM/M

tot
it extremely difficult to distinguish spacetimeA

from a pure Kerr spacetime.
Information complementary to the one given by the mass

correction δM is offered by the spin correctionδJ . In
particular, for spacetimeA the correctionδa defined by
δa ≡ (J

Kerr
+ δJ)/(M

Kerr
+ δM)2 − a

Kerr
(with a

Kerr
=

J
Kerr

/M2
Kerr

= 0.728) can be readily calculated to be
|δa/a

Kerr
| . 0.065, going to zero, as one would expect, far

from the system. This means that an observer could accu-
rately measure the total spin of the black hole-torus system
although, due to the absence of internal orbits in this system
and to the slow variations ofδa, a measurement of the indi-
vidual spins of the torus and the black hole or even a simple
detection of the torus seems unfeasible.

SpacetimeB is considered in figures 11-12, in which we
report the quantitya

Kerr
+δa ≡ (J

Kerr
+δJ)/(M

Kerr
+δM)2

for external (witha
Kerr

= J
Kerr

/M2
Kerr

= 0.224) and internal
(with a

Kerr
= J

Kerr
/M2

Kerr
= −1.74 × 10−3) orbits, respec-

tively. As can be seen, the correctionsδa are, in both cases,
rather large and rapidly varying: an observer could probably
distinguish this spacetime from a pure Kerr one using esti-
mates of the spin obtained by analyzing the waveform at dif-
ferent times, but would have little chance to measure the spin
of the central black hole correctly and should consider orbits
very far from the system in order to achieve accurate mea-
surements of the total spin. This was to be expected, since
spacetimeB has a large ratioJ

Torus
/J

BH
, which causes the

quadrupole parameterǫ to be large (cf. Table I).
Before concluding this section, it is worth commenting

on how robust and generic these results are. While we be-
lieve they represent the first attempt to model consistently
the gravitational-wave emission from spacetimes that deviate
considerably for Kerr due to the presence of matter, the ap-
proach followed here has the obvious limitation of neglect-
ing radiation-reaction effects and thus of considering wave-
forms only over a dephasing time which is typically of days
or weeks. It is therefore possible, if not likely, that considering
waveforms over a timescale comparable with LISA’s planned
lifetime (i.e. 3–5 years) would lower the overlaps computed
here and thus reduce the impact of a confusion problem.

As already mentioned, a simple way to include radiation re-
action would consist of using the adiabatic approximation and
thus considering motion along a geodesic with slowly chang-
ing parameters. In particular, approximate (“kludge”) expres-
sions for the fluxesĖ, L̇z andQ̇ in Kerr have been derived
using post-Newtonian expansions [51, 52], recently corrected
using fits to the fluxes computed rigorously with the Teukol-
sky formalism [53]. Likewise, it may be possible to adopt
similar strategies in non-Kerr spacetimes. For instance, Cutler
& Barack [25] recently proposed including radiation reaction
in quasi-Kerr spacetimes by using post-Newtonian fluxes in
which the leading-order effect of the quadrupole of the space-
time is taken into account, potentially eliminating the con-
fusion problem. Nevertheless, it is still unclear at this stage
whether post-Newtonian fluxes will be a good approximation

for our spacetimes, where the parametersǫ anda can beO(1).
We recall, indeed, that using post-Newtonian fluxes is not al-
ways a good approximation even in Kerr spacetimes and that
the most accurate “kludge” fluxes for Kerr [53] are certainly
based on post-Newtonian expansions, but are also corrected
using fits to rigorous Teukolsky-based fluxes.

We also note than even with the radiation-reaction included,
a “confusion” problem might in principle still be present, at
least for equatorial orbits. In fact, requiring the equality of
the r- andφ-frequencies fixes only two of the four free pa-
rameters characterizing the geodesic,p, e, M

Kerr
andJ

Kerr
,

while the remaining two could be used to obtain the equality
of the time derivatives of ther- andφ-frequencies at the initial
time [ω̇

BH+Torus

r (t0) = ω̇
Kerr

r (t0), ω̇
BH+Torus

φ (t0) = ω̇
Kerr

φ (t0)],
which could ensure, at least initially, a similar evolutionunder
radiation reaction for the two waveforms.

Besides inclusion of radiation reaction, three other ap-
proaches to improve the estimates computed in this paper are
also worth considering. The first and most obvious one con-
sists of replacing the “kludge” waveforms with more rigorous
waveforms, solutions of Eqs. (10) and (13), possibly neglect-
ing the fluid perturbations appearing on the right-hand-side
of Eq. (10) (the latter could be a rather good approximation
for orbits far enough from the torus.). Doing this in practice
is certainly not trivial since Eqs. (10) have been solved only
for a Schwarzschild spacetime [29] so far. The second im-
provement is simpler and involves considering tori which are
not as compact and close to the black hole as the ones stud-
ied here, but are instead a better approximation of those ob-
served around SMBHs in AGNs. Finally, the third possible
improvement involves the extension of the present analysisto
non-equatorial orbits. While this is more complicated as one
cannot require the strict equality of the orbital frequencies [in
contrast to Kerr, Eqs. (23)–(26) indicate that in general ther-,
θ- andφ-motions are not periodic in the time coordinatet], the
motions in ther-, θ- andφ-directions are almost periodic if the
torus is not too massive and hence the present analysis can be
extended straightforwardly in terms of these almost-periodic
motions.

VI. CONCLUSIONS

EMRIs are expected to be among the most important
sources for LISA and, besides mapping accurately the space-
time around SMBHs, they might also shed light on the distri-
bution of matter around them. We have here studied EMRIs
and the corresponding gravitational-wave emission in space-
times that are highly-accurate numerical solutions of the Ein-
stein equations and consist of an SMBH and a compact torus
with comparable mass and spin. We underline that the tori
considered heredo not represent a model for the accretion
disks in AGNs but, rather, are a phenomenological model for a
compact source of matter close to the SMBH. Our goal in this
paper has therefore been that of maximizing the impact of this
matter on the waveforms, investigating whether gravitational-
wave observations will be able to reveal its presence. This
hypothetical matter source, even if it exists, may not be de-
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tectable otherwise, being too close to the central SMBH and
possibly “dark”.

Using the semi-relativistic approach proposed in Ref. [21],
we have compared kludge waveforms produced by equato-
rial orbits in non-pure Kerr spacetimes with waveforms pro-
duced by equatorial orbits in Kerr spacetimes having the same
mass and spin as the non-pure Kerr spacetimes. Because they

are produced by purely geodetic motion, these waveforms are
valid only over a rather short “dephasing” timescale. Overall,
we find that waveforms produced by orbits having the same
latus rectum and eccentricityp ande are considerably differ-
ent throughout the whole space of parameters(p, e). On the
other hand, comparisons of waveforms produced by (equato-
rial) orbits having the samer- andφ-frequencies, with this
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condition being achieved by changing the latus rectum and
eccentricity of the orbits in the Kerr spacetime, produce over-
lapsO > 0.95 for orbits far from the black hole-torus sys-
tem, hence pointing out a confusion problem. This overlap
decreases rapidly as one considers orbits which are close to
the torus, indicating that in the strong-field region no confu-
sion problem is present. Finally, if the equality of ther- and
φ-frequencies is obtained by changing the mass and spin of
the Kerr spacetime while maintaining fixed the latus rectum
and the eccentricity of the orbit, the resulting overlaps are very
high, withO > 0.99 for essentially all of the orbital parame-
tersp ande, indicating a confusion problem that is less severe
only for a few orbits very close to the torus.

This confusion problem in the mass and the spin might
therefore be more serious than the one involving latus rec-
tum and eccentricity. Stated differently, an observer analyzing
below the dephasing timescale a gravitational waveform pro-
duced by an EMRI in a black hole-torus system would not be
able to distinguish it from one produced in a pure Kerr space-
time. This observer would therefore associate the EMRI to
a Kerr SMBH whose mass and spin would however be esti-
mated incorrectly.

While these results represent the first attempt to model con-
sistently the gravitational-wave emission from spacetimes that
deviate considerably for Kerr, the approach followed here is
based on four approximations, namely:i) the use of kludge
waveforms in place of ones that are consistent solutions of the
Einstein equations;ii) the use of a cut-off at the dephasing
time beyond which radiation-reaction effects can no longerbe
ignored;iii) the restriction to purely equatorial orbits;iv) the
use of tori that are very compact and close to the black hole.
Work is now in progress to relax one or more of these ap-
proximations, with the expectation that this will lead to a less
serious confusion problem.
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Appendix: FROM THE EINSTEIN EQUATIONS TO THE
SEMIRELATIVISTIC APPROACH

Although the main motivation for the semirelativistic ap-
proach we use in this paper is the the surprising agreement that
“kludge” waveforms show in Kerr with the rigorous wave-
forms computed using the Teukolsky formalism [50], one can
also try to make sense of it using the Einstein equations.

We start by rewriting the Einstein equations in a more con-
venient form in which we isolate the perturbation as [58, 61]

H̄µν ≡ ηµν − (−g̃)1/2g̃µν , (A.1)

whereηµν is the Minkowski metric. Since far from the source
the spacetime reduces to Minkowski plus a small perturbation,
i.e. g = η, the first-order perturbations there coincide with
H̄, i.e. H̄µν = h̄µν + O(m/M)2, with h̄µν being the trace-
reversed potentials defined in Eq. (8).

If we now restrict our attention to a region of the spacetime
where it is possible to choose the harmonic gauge

∂βH̄αβ = 0 (A.2)

(this is always possible far enough from the source), thefull
Einstein equations give [61]

�flatH̄
αβ = −16πταβ , (A.3)

where�flat ≡ ηµν∂µ∂ν is the flat-spacetime wave opera-
tor. The right-hand side is given by the effective stress-energy
pseudotensor

ταβ = (−g̃)T̃ αβ + (16π)−1Λαβ , (A.4)

whereΛαβ is given by

Λαβ = 16π(−g̃)tαβ
LL

+ (H̄αµ,ν H̄βν ,µ −H̄αβ ,µν H̄µν) ,
(A.5)

andtαβ
LL

is the Landau-Lifshitz pseudotensor

16π(−g̃)tαβ
LL

≡ g̃λµg̃νρH̄αλ
,ν H̄βµ

,ρ (A.6)

+
1

2
g̃λµg̃αβH̄λν

,ρ H̄ρµ
,ν − 2g̃µν g̃λ(αH̄β)ν

,ρ H̄ρµ
,λ

+
1

8
(2g̃αλg̃βµ − g̃αβ g̃λµ)(2g̃νρg̃στ − g̃ρσ g̃ντ )H̄ντ

,λ H̄ρσ
,µ .

Because of the gauge condition (A.2), the source term of
Eq. (A.3) satisfies the conservation law

ταβ
,β = 0 , (A.7)

which is equivalent to the equations of motion of the matter

∇̃β T̃ αβ = 0 . (A.8)

Combining then Eqs. (A.3) and (A.7), in the slow motion ap-
proximation one easily gets the usual quadrupole formula (see
Ref. [58] for details):

H̄ij(~x, t) =
2

r

[
d2Iij

dt′2

]

t′=t−r

, (A.9)

Iij(t′) =

∫
τ00(~x′, t′)x′ix′jd3x′ , (A.10)

wherer2 ≡ ~x · ~x. Note that one can easily relax the slow
motion assumption by including the octupole terms [62] or
even all the higher order multipoles (the formula is due to
Press [63]).



21

Eq. (A.9) clearly does not allow one to computēHij

directly, because its right hand side depends onH̄αβ [cf.
Eq. (A.4)]. The semirelativistic approximation consists in-
deed inpretendingthat H̄ is “small”: making this assump-
tion, one can neglect, in the expression (A.4) for the effective
stress-energy tensorταβ , the terms quadratic in̄Hαβ and the
terms in whichH̄αβ is multiplied by the massm of the small
body. In addition, the semirelativistic approximation also ne-
glects all the terms involving the stress-energy tensor of the
fluid: with these assumptions,ταβ can be written as

τ00(~x, t) = m γ(t) δ(3)(~x − ~z(t)) , (A.11)

τ0i(~x, t) = m γ(t) żi(t) δ(3)(~x − ~z(t)) , (A.12)

τ ij(~x, t) = m γ(t)żi(t) żj(t) δ(3)(~x − ~z(t)) , (A.13)

γ ≡ (1 − δij ż
iżj)−1/2 ,

where the dot indicates the derivative with respect to the co-
ordinate timet and the trajectoryzi(t) of the small body is
obtained by solving the geodesic equations, which are indeed
contained in Eq. (A.8). Note that Eqs. (A.11)-(A.13) repre-
sent the stress-energy tensor of a small body moving along
the trajectoryzi(t) in a Minkowski spacetime, which con-
stitutes exactly the assumption on which kludge waveforms
are based. In particular, the quadrupole moment (A.10) re-
duces, in the slow motion approximation, to its textbook ver-
sion Iij(t) = mzi(t)zj(t), while analogous simplifications
happen for the octupole and Press formulas (see Ref. [50] for
details).

Having calculatedH̄ij ≈ h̄ij , it is then a trivial task to
project out the gauge invariant transverse traceless perturba-
tionsh+ andh× at infinity (see for instance Refs. [50, 58] for
details).
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