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To investigate the imprint on the gravitational-wave emisgrom extreme mass-ratio inspirals in non-pure
Kerr spacetimes, we have studied the “kludge” waveform&gead in highly-accurate, numerically-generated
spacetimes containing a black hole and a self-gravitatiogiogeneous torus with comparable mass and spin. In
order to maximize their impact on the produced waveformshae considered tori that are compact, massive
and close to the central black hole, investigating undertwbaditions the LISA experiment could detect their
presence. Our results show that for a large portion of theespa parameters the waveforms produced by
EMRIs in these black hole-torus systems are indistinglikhiom pure-Kerr waveforms. Hence, a “confusion
problem” will be present for observations carried out ovéingescale below or comparable to the dephasing
time.

PACS numbers: 04.30.-w, 04.70.-s, 98.35.Jk, 98.62.Js

I. INTRODUCTION possibility that LISA observations could be used to detaemi
the presence (or absence) of these objects, providesauiliti

Extreme Mass Ratio Inspirals (EMRIs) are thought to besmentmc value to this challenging experiment.

one of the most interesting sources of gravitational waves Hereafter, we will adopt a more conservative view and as-
for the space-based gravitational-wave detector LISAfid:  sume that the central object is indeed an SMBH. Recent ob-
typical example is a black hole with mass1-10 M, orbit- ~ servations of the near-infrared fluxes of SgrA* support this
ing around the supermassive black hole (SMBH) at the centefiew by setting upper limits on the mass accretion rate of
of a galaxy. Itis expected that LISA will be able to detectany the Galactic center and showing that the central massive ob-
where from tens up to a thousand of these sources during if§Ct must have, under reasonable assumptions, an event hori
lifetime, which will probably be between 3 and 5 years. Al- zon [8]. Yet, even with this assumption, the modelling of EM-
though the masses of SMBHSs range frod to 10101/, [2], RIs can in principle suffer from the uncertainty of whethwes t

the mass of the SMBH involved in an EMRI must be aroundspacetime in the vicinity of the SMBH can be accurately de-
109 M., in order for the gravitational wave signal to be within scribed in terms of a (pure) Kerr solution. The origin of this
LISA’s sensitivity band: see, for instance, Ref. [3] for #gse  uncertainty is that SMBHSs are not expected to be in vacuum

pected event rates for different masses of the stellar ialgk ~ and indeed a considerable amount of matter is expected to be
and of the SMBH. present around the central massive object. In the caseieéact

As in the case of Earth-based detectors, for which the sigg""l‘_%t_iC n_uclei (AGNSs), for instance, the intense highr_gyle
nal is generally expected to be comparable with the noise, themission is thoughtto be the result of a pc-scale accretgin d

detection of gravitational waves emitted by EMRIs and the(and perhaps a thick torus) extending down aimost to the in-

subsequent characterization of the source is expectedeo ta"rmost stable circular orbit (ISCO), feeding the centiath
place at small values of the signal-to-noise ratio (SNR)sth hole. In addition, a dusty obscuratlt_)n torus is alsq betieroe
requiring some sort of matched filtering. This method is Hase Ige present on much larger scales (|¢e.10.—100 pe) (9. TOO
on cross-correlating the noisy gravitational wave signithw little is presently known about the properties of theseslaskd

a bank of templates, which should accurately model the tru&/though their mass is commonly thought to be much smaller
signal, and poses serious challenges both in building the te 'al? the mass of the ﬁMBH' thlerg_are (il(a)servanons hinting at
plates and in accessing them (see Ref. [3] for a detailed di§]-IIS s as massive as the central object [10].

cussion). Another example is given by SgrA* itself, where counter-

The SMBHs involved in EMRIs are commonly thought to rotating stellar pli_sks on scaleslle_zss than 1 pc have .been ob-
be describable by the pure Kerr solution of General RelativS€rved![11]. This is hardly surprising since the Galactitee
ity: this is the common assumption made in most work on'S expected to be a high density environment, as _the_ d|str|bu_
EMRIs. Nevertheless, a number of other “exotic” candidatedion Of stars shows a cusp there: the mass density in stars is
have been proposed as alternatives to the central massive dilievedto be ~ po(r/ro) =, with pg ~ 1.2 10°M /pc,
ject. These are, for instance, gravastars [4], boson s [ 70 ~ 0-04 pc anda ~ 1.4-2 [11].
fermion balls [6], oscillating axion bubbles [7], etc. CGlya Furthermore, even if an SMBH exists, it is still possible it
while it is not yet possible to exclude completely these poss could be surrounded by other, non-visible components, such
bilities, the presence of these objects at the centres akigal  as clusters of compact objects or high concentrations of ex-
would require a serious modification to the scenarios thinoug otic particles. Cosmological N-body simulations predinot,
which galaxies are expected to form. At the same time, thdact, that the cold dark matter (CDM) density in galactic ha-
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los should show a “cusp” near the galactic center with a pro“quasi-Kerr” spacetimes [21]: we studied EMRIs in the equa-
file of the type [12]p.py ~ po(r/ro)~ %, wWherea ~ 1: torial plane and computed semi-relativistic (“kludge”)wega
although the mass in CDM patrticles is generally thought toforms, comparing them to kludge, pure-Kerr waveforms.
be smaller than that in the stellar cusp (~ 100M /pc Babak and Glampedakis, in particular, find there could be a
andry ~ 3 pc [13]), the normalization of this power law is “confusion” problem, because although gravitational vgave
still very uncertain: In addition, although this CDM distri- emitted in a quasi-Kerr spacetime by a stellar mass blaak hol
bution is commonly thought to be spherically symmetric, themoving on an equatorial orbit are wildly different from tkeos
confrontation with observations still leaves a number of un emitted by the same stellar mass black hole moving along the
certainties, with the presence of the CDM cusp itself bemg i same orbitin a pure Kerr spacetime (having the same mass and
contrast with observations of galactic rotation curvesicwh spin as the quasi-Kerr spacetime), waveforms produced by
instead hint at a CDM core-profile in galactic centers [16].equatorial orbits having slightly different latus rectundaec-

The possibility that CDM could be distributed along causticcentricity but the same- and¢-frequencies turn out to be in-
rings in galactic halos has also been suggested [17]. distinguishable with LISA's sensitivity. We therefore egted

Clearly, gravitational-wave observations through theA IS and extended their analysis. In particular, we introduée, |
detector could shed some light on these issues, enabling th@em, a suitable cut-off in time in order not to have any rele-
distinction between competing models for the central rvassi vVant radiation-reaction effects on the geodetic motionilgvh
object and for the distribution of matter around it. Indeed,this could be avoided in Babak’s and Glampedakis’ quast-Ker
observations of EMRIs by LISA could allow us to build a SPacetimes (probably eliminating the confusion problege: s
map of the spacetime around galactic centers and determit@e analysis in Ref. [25]), this is actually a necessity im ou
with great precision the properties of the spacetime inoregi  ¢ase, since the effect of a torus on the loss of energy and an-
which are not easily accessible through electromagnetic ofgular momentum due to gravitational-wave emission is com-
servations. pletely unknown at present.

A number of different approaches to this “spacetime- Ve did nottry, for the moment, to produce tori describing
mapping” problem were considered in the the literature: EM-the accretion disk of AGNs (although we plan to do this in
RIs have been studied in spacetimes which are either appro® future paper), but rather adopted a more phenomenological
imate or exact solutions of the Einstein equations. AmongtPProach. Indeed, since little is known about the strond fiel
the former, a multipolar expansion suitable to describe gen€gion near the central massive black hole, we tried to build

eral stationary, axisymmetric, asympotically flat spaneg ~ SOMe “extreme” configurations,_i.e. configurations corit@'n
outside a central distribution of matter has been considlather massive and compact tori (close to the event horizon o

ered [18/ 19/ 20]. However, this multipolar expansion is inthe central black hole). The purpose is to understand if LISA
practice a series in/r (r being the distance to the central €an detect the presence of such tori, which are so close to the
object) around a Minkowski spacetime: an accurate represeforizon that they could not probably be detected otherwise
tation of the strong field regime would require the inclusion ~ (for instance, by means of stellar orbits), especially itimaf
many terms. Another possibility is the “quasi-Kerr” (i.err ~ SOme “dark” mass. We stress that the word “extreme” does not
plus a small quadrupole) spacetime studied by Glampedak/&ean that these conflguratlons are extremely }‘gr from Kerr,
and Babak[[21]. This can approximately describe the spacé_JUt just that these tori ameot the ones astrophysicists expect
time outside a slowly rotating boson star anchist an ex- 1N AGNSs.
pansion around Minkowski, thus being more promising in One possible objection is that it might be possible thatdhes
the strong field limit. Among exact solutions of the Einstein “extreme” configurations are unstable (tackling the proble
equations, only spherical boson stars [22] and “bumpy blaclkf stability is indeed one of the points in which the results o
holes” [23] (i.e., objects that, although involving nakéupsi- ~ Ref. [24] may be improved in the future), but we do not think
larities, arealmostSchwarzschild black holes, but have somethis should be a major concern at this stage. Our viewpoint
multipoles with the wrong values) have been considered. is that considering such extreme configurations will previd
At any rate, none of these spacetimes, neither exact ndt t€stbed to investigate the practical problems of spaeetim
approximate, can describe satisfactorily the “astroptatsi MaPping through EMRI-gravitational waves. In particular,
bumpiness” which is certainly present around SMBHs. Withthese configurations will also help to understand better the
this in mind, we have studied EMRIs in stationary, axisym-confusion problem pointed out by Glampedakis and Babak.
metric spacetimes which are highly accurate numericatsolyAS already stressed, while in quasi-Kerr spacetimes this co
tions of the Einstein equations and contain a rotating blackusion disappears when dropping the time cut-off and includ
hole and a torus [24]. ing radiation reactior. [25], in our case it may still be prese
j . . ue to the practical difficulties of computing radiationgea
We used these numerical spacetimes to perform a stu Yon in our spacetimes, whidbrceus to introduce a cut-off in
similar to that carried out by Babak and Glampedakis fortime. ’
We will see, however, that this confusion in the orbital pa-
rameters appears in our spacetimes only for (equatoriaitsor
1 The possibility that a steeper profile (i.e., larggrcould form under the in- far from the_blaCk h_()le'torus system, Where_as it disappiears
fluence of the SMBH was also proposed in Refl [14], althoughptiocess  the strong field region. Nevertheless, we find another confu-
does not seem to happen in a more realistic astrophysicahsog15]. sion problem, potentially more worrisome as it involves the



parameters of the black hole. Of course, if we could replacean be written as
the semi-relativistic approximation with a rigorous sajat o ' ' )
of the linearized Einstein equations and a proper treatmient T,il,‘f‘d = Tfl'fld + 15T,§1§ld + 25T3,,“‘d +O0((m/M)*) . (2)
self-force or radiation reaction, this confusion probleraym
disappear as well. However, such a rigorous treatment js verdn What follows, the background metricis used to raise and
hard to obtain in generic stationary and axisymmetric spacdower tensor indices. For the sake of simplicity, we willals
times (see Sedtlll) and, as far as the self-force is cormitler drop the subscript indicating first order quantities: in other
even in pure Kerr. words, iy = 1hy, anddT e = 6T

This paper is organized as follows. In S&gt. Il we show what It is well-known that the stress-energy tensor of a small
the rigorous treatment of EMRIs in non-vacuum, stationarnyP0dy with massm following a trajectoryz*(7) is given by
and axisymmetric spacetimes would be, and explain why thiésee for instance Ret. [27])
treatment has proved so hard that nobody has pursued it so

far. In Sect[1ll we review the non-Kerr spacetimes in which Tsorfallbody(x) =

the problem of EMRIs has been considered to date, ranging ' B B 5 (2 = 2)

from approximate (Sedi. II[A) to exact (Sect 1l B) solui® m / P (x,2) P (2, 2) 00" —==7=d7T (3)
of the Einstein equations, and we introduce the non-pure Ker (=9

spacetimes we will use instead (Séct. Il C). In SEct. IV we ~ _ B B _

review the semi-relativistic formalism used in Ref.|[21] to Where P (z,z), 7 andu* = dz"/d7 are respectively the
compute gravitational waves and explain how we adapted iarallel propagator from* to **, the proper time and the 4-
to our purposes: in particular we show how we integrated th&/€locity in the physical (i.e. perturbed) spacetime. Thisss-
geodesic equations and calculated kludge waveforms, and (EN€rgy tensor can then be expanded in a series/il:
Sect[TV A) explain what the overlap function and the dephas- _

ing time are. In SecEV we explain in detail how we perform Toivody = Tomaivoay + O ((m/M)?) 4)

a comparison between our non-pure Kerr spacetimes and pure

Kerr spacetimes. A summary of our results with a conclud-

ing discussion and the prospects of future work is presented Ts(:fallbod (z) =

in Sect[VA and VB. Finally, in the Appendix we review Y @)

the co_nnection_ between kludge waveforms and the linearized m / P (a, 2) PP (3, 2)ulu” 0 (x 1—;) dr. (5)
Einstein equations. (—9)Y

Throughout this paper, we will use a system of units in 5
which G = ¢ = 1. We will denote spacetime indices with WhereP7(z, z), 7 andu = dz*/dr are the parallel propa-

Greek letters and space indices with Latin letters. gator, proper time and 4-velocity in the background.
If the small body interacts only gravitationally with the tha

ter contained in the spacetime, its stress-energy tensonis

Il. WAVEFORMSFROM EMRISIN NON-VACUUM served in the physical spacetime:
SPACETIMES =~ ~
VT’

small body

=0, (6)

Let us consider a curved, non-vacuum spacetime with me
ric g and with a characteristic lengthscalé (for a space-
time containing an SMBH, this scale clearly coincides with
the black hole mass). The spacetime is intrinsically not
vacuum one because it contains a fluid with a stress-ener
tensorT™4, In addition, consider the presence of a smal
body, such as a black hole with mass < M.2 The small
body will of course perturb the geometry of spacetime: the

[('6 is the covariant derivative in the physical spacetime)sThi
implies that the small body follows a geodesic of the physi-
cal, perturbed spacetime (see for instance Ref. [27] for-a fo

al proof): expanding the geodesic equations in the phlysica
?gpacetimei(”ﬁ,,ﬁ“ = 0) into a series, itis possible to obtain,
to first-order inm /M,

metricg of the physical spacetime can therefore be written as Dot 1 (9" + uru”) (2V phux — Viohyy)uu?
the background metrig plus some perturbation of order dr 2
O (m/M), oh of orderO((m/M)?), etc.: + O ((m/M)?), (7)
Guv = Guw + 1P + 2y + O((m/M)3) . (1) whereV and D/dr are the covariant derivative and the total
covariant derivative in the background.
Similarly, the small body will excite perturbations in thadk- Clearly, to zeroth order EqLI(7) reduces to the geodesic

ground fluid: the perturbed stress-energy tensor of the flui@guations in the background spacetime, but it deviates from
them at first-order. The right-hand-side of Eg. (7) represen

the so-called “self-force” and is physically due to the rate
tion of the small body with its own gravitational field in the
2 Note that in this context a small black hole can be treatedsasadl body ~ CaSe€ ofa S.ma” bo.dy 9rb|t_|ng around an SMBH, this self-force
despite being a singularity of spacetirhel [26]. is responsible for its inspiral towards the black hole.
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In order to compute the right-hand side of Hd. (7) one needs* or, equivalently, by solving the geodesic equations for
to compute the metric perturbatidnand because this pertur- the background metric. In addition to the calculation of the
bation is produced by the small body itself, some of its com-small body’s contribution, a consistent solution at fireder
ponents will be divergent at the position of the small body. Afor the EMRI problem in a curved and non-vacuum spacetime
regularization procedure to cure these divergences has beeequires the solution of the fluid perturbatiéflg,;q. This
derived [26]| 28] for the trace-reversed metric perturlyeio can be computed by imposing the conservation of the stress-

] energy tensor of the fluidy 575, = 0, which gives, to first
B;LV = hul/ - 5 hg 9uv (8) Order’
— 167 V5 6T50, = 2GP7V .1
) —2G*P9gh — RP7V  hseg'™ . (13)
V. h*" =0. (9) ; e ; :
+ It is not difficult to realize, using Eqd._(IL0) arfd {13), thiadt
It should be noted that while this gauge allows one in princi_Lorenz gauge condition is conserved since it satisfies a homo

ple to remove the problem of divergences and has a numb&ceous equation - -

of other advantages (see Ref.|[29] for an extensive list), se O(V3h?) + szgh#ﬁ =0. (14)
force calculations are extremely hard to perform in practic
Indeed, no general inspirals have been computed so far usi

in the Lorenz gauge, which is defined as

r'gl’g(()jsummarize, the solution of EqE.{10) with the right-hand-
. . . > 'Stde given by Eqs[(13) and the zeroth-order contribution of
the regularized version of Eq.(7), not even in Schwarzdchil Eq. (7), provides the complete and consistent solution ef th

or Kerr s.pacletimes (seeh Ret. Elf :IBIO] fo(; a re\r/]i_e\r/]v). F%VA"EMRI problem at first-order im: /M. Unfortunately, for situ-
€ver, a simpler approach can be followed in which only the, g, ¢ of practical interest, such as for the observatibEd/6
dissipative part of the self-force is taken into accourgdiag

o ) N oo RIs performed by LISA, these first-order waveforms would be
o the s_o-ca_llled adiabatic approximation” [31Within th_|s . sufficiently accurate only for a few days or weeks| [21, 36],
approximation the small body moves along a geodesic wit

: ‘ imposing, at least in principle, the need for the solution of
slowly changing parameters (in Kerr, these parameterdare t second-order equations
energyE, :‘hti angulartmome?ttl;rﬂz (‘}ng Ct:_arters co_nst?nt . Clearly, the solution of the second-order perturbatioreequ
Q). —ne ot the advantages ot thé adiabalic approximation 14,4 i mych harder to obtain as these will have a schematic
that it prescribes a way to compute the evolution of these pa@eneric form of the type
rameters, revealing that their chandeand L, (with the dot
being the derivative with respect to the coordinate tijneor- D[2h] = O (VAVh,hVVh) , (15)

respond to the energy and angular momentum carried away tWhereD[gh] is a differential operator acting ash.
o 2 ; ; . , : .
gravitational waveg [33]. The change in Carter’s consgnt One could naively try to solve this equation by imposing a

on the other hand, is harder to compute, although an explic'@auge condition onk and using the Green function of thz

formula has been recently derived|[34]. operator, but the formal solution obtained in this way would
The first-order metric perturbatidncan be computed as a e givergent at every point because of the divergences of the
solution of the linearized Einstein equations|[35] first-order perturbatioh at the small body’s position. A reg-
_ _ _ ularization procedure to cure these divergences is knowin [3
Oh + 2R 4+ 5,2 PR = but it has not yet been applied in practical calculations.
_ 16#(5T;¢£d T Tsorfallbody) . (10) An alternative_ to the sqluti_on of th(_e full secont_j—o_rder per-
: turbation equations entails introducing the deviatioresir
where geodetic motion in the right-hand-side of EQ.](10). This ap-
proach is clearly not consistent, but hopefully accurataugh
Spavs = 2G 098 — Ruvgap — 29 Gags (11)  ifthe ratiom/M and consequently the deviations from geode-

tic motion are sufficiently small. This is indeed what was
done by Drasco and Hughes [38], who used the adiabatic ap-
proximation and a simplified formula fap to compute the

0=g"V,V, (12)

(Ruvag, Ry andG,,, are the background Riemann, Ricci M - . . ; : X
and Einstein tensors). Note that self-force effects argapt ~ deviations from geodetic motion, inserting them in the tigh

tained in [ID), which is a first order equation. In fact, sincenand-side of the Teukolsky equation/[39] and then solvimg fo

the stress-energy tensor of the small body at the lowest,orddi'St-orderperturbations. _ _ .
Tomall body, iS an intrinsically first-order quantity [remember _ While very appealing, as it provides a simple way to im-
the factorm appearing in Eq.{5)], the small body’s contri- Prove upon a purely first-order calculation, we will not &l

bution can be computed using a zeroth-order expression ¢fiS approach here. Rather, we will perform our calculation
within a semirelativistic (“kludge”) approximation to EE.0),

using however as a background spacetime a non-trivial depar
ture from a pure-Kerr solution. The properties of this space
3 It should be noted that it is not yet clear whether the adialzgtproxima- tlme anc_j of altematlve f_o_rmulatlons of _non'K_err spac_e_zBme
tion is accurate enough to compute waveforms for LISA asdneervative ~ Will be d|SC_Usseq In QEtall In SetZ]I_II, while a brief demﬂm
part of the self-force could have a secular effect as \Well.[32 of our semi-relativistic approach will be presented in B4t
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I1l. MODELLING THE BACKGROUND SPACETIME This is the celebrated “no hair” theorem: an (uncharged) sta
tionary black hole is uniquely determined by its mass and.spi

The discussion made in the previous section assumes thReviations from the Kerr metric can be therefore detected by
a background spacetimgis known and this is traditionally Measuring the mass, spin and higher order moments of the
assumed to be a “pure-Kerr” solution. However, this is notcentral massive object.
the only possibility. Indeed, in order to investigate LISA  While general and very elegant, this approach has serious
ability to detect deviations from Kerr, a number of attemptsdrawbacks in the strong-field region near the central massiv
have been made recently to replace the Kerr metric with othedbject, which is clearly the most interesting one. In fatis t
stationary solutions representing reasonable deviationsa  is the region which will be mapped by LISA and where the
single rotating black hole in vacuum. In what follows we will spacetime could be significantly different from Kerr. The or
briefly review these attempts and discuss a novel one basgins of these drawbacks are rather apparent when looking at
on the use of highly-accurate numerical solutions of the EinEqgs. [16)-(1B), which are in practice an expansion in pow-
stein equations for spacetimes containing a black hole and @&'s of 1/r around a Minkowski spacetime. As a result, an
compact torus (see Selt. 111 C). accurate representation of the strong field region nedgssar
requires the inclusion of many multipoles.
Another approach to the modelling of a non-Kerr back-
A. Approximate non-Kerr spacetimes ground spacetime was recently suggested by Babak and
Glampedakis in Ref. [21], and is based on the use of the
One first attempt to go beyond a pure-Kerr model for theHartle-Thorne metric [43]. This metric describes the space
central massive object was suggested by Ryan|[18, 19, 20lime outside slowly rotating stars, includes as a specisg ca
who considered a general stationary, axisymmetric, asympt the Kerr metric at orde®(a?), wherea = J/M?, and is accu-
ically flat, vacuum spacetime, which can be used to describgate up to the mass quadrupole moment. In order to isolate the
the gravitational field around a central distribution of tegt  quadrupolar deviation with respect to Kerr, the Hartle-fteo
and its expansion in terms of the mass multipdlésand of ~ metric can be rewritten in terms of the parametdefined as
the current multipoles) [40]. If one assumes reflection sym-
metry, the odd\/-moments and eveﬁ-r_noments are identi- _ Kemr 3 Kerr _J_2
cally zero [41] 42], so that the non-vanishing moments age th Q=Q eM”, Q i (20)
massM, = M, the mass quadrupold; and the higher-order
even multipoles\y, Mg, .. ., as well as the angular momen- wherelM, J and@ = M, are the mass, the angular momen-
tum S; = J, the current octupol§s and the higher-order odd tum and the mass quadrupole moment, respectively. Since
multipolesSs, Sz, . ... The metric can then be written as for Kerr Q = QX" ¢ can be used as a lowest-order mea-
sure of the deviation of the spacetime from a Kerr solution.
ds® = ="t dt* + ¢ (dr® + r* d6°) The metric expressed in this way can be further rewritten in
+ 7702 5in 0%(dp — wdt)® , (16) “quasi-Boyer-Lindquist coordinates”, i.e. coordinatesuc-
ing to Boyer-Lindquist coordinates éf = 0. This procedure
where the potentials, J, w, o depend only om andf. Each  then leads to the “quasi-Kerr” metric
of them can expanded in terms of the multipole moments: for

example gquasi—Kerr _ gKerr + Eh,#
g nv v
“+o0
Mo, . 2
=Y —27271% Py, (cos 0) + (higher order terms, (17) +0(ae, €) +O(0Mp=4,05e25) , (21)
n=0
wheregffyerr is the Kerr metric in Boyer-Lindquist coordinates,
oo . eh,, is the deviation from it andM,>4, 6S¢>3 are the de-
W — Z 2 S Py _1(cos0) viations of the higher-order multipoles from those of a Kerr
N 2n — 1 r2ntl sin 0 spacetime. Stated differently, the quasi-Kerr metric iasf
n=1 p y q

hiah d 18 a Kerr solution plus a small difference in the mass quadeipol
+ (higher order terms,  (18) expressed by the parameterwhile neglecting any devia-

whereP,,, Pl _, are the Legendre and the associated Leglions from Kerr in the higher-order multipole¥y, Ms, . . .,
endre polynomials and where only the lowest-ordgr- andSs, Ss, . . ., etc.
dependence of each multipole moment is shown. Because this approach does not involve any expansion in
The multipoles are related to the interior matter distiout ~ Powers of1/r, it can be used in the strong-field regions as
and could in principle be computed by solving the Einsteinlong as the central massive object is slowly rotating. Farth
equations. In the particular case of a Kerr spacetime, all thmore, it has the great advantage of being straightforward to
multipole moments are trivially related to the first two, mas implement, leaving the mass quadrupole parames the
and angular momentum, by the following relation: only adjustable one. However, it has the drawback that isdoe
not include any deviations in the multipoles higher than the
guadrupole with respect to the multipoles of pure Kerr, \Whic

. AN
My +18e = M <1M) ' (19)  could be important in the strong field regime.



B. Exact non-Kerr spacetimes wherev, 1, B andw are functions of the radial quasi-isotropic
coordinater,, and¢. The procedure for obtaining such nu-

A different approach to the modelling of the backgroundmerical S(_)Iutions is described in detail. in Ref.|[24] and we
consists instead of usirgxactsolutions of the Einstein equa- "€re provide only a summary of the main ideas. .

field regime, since they are not based on any series expaA-metric in Weyl-Lewis-Papapetrou coordinates as in [EQ. (22
sions. or (18). We fix our coordinates uniquely by stipulating that

Few attempts have been made in this direction. Howeveifl€ first derivatives of the metric functions be continuous a
Kesden, Gair & Kamionkowski [22] considered spacetimesthe ring’s surf_ace and by choosing the location of th_e hamzo
containing non-rotating boson stars and found that theigray©© P€ @ coordinate spherg = constant=r, . Specifying
tational waves produced by EMRIs look qualitatively digat  the boundary condition8 = 0, ¢*” = 0 andw = constanton
from the pure black hole case. The spherical boson stars thép's sphere ensures th_at it is indeed a_black hole horizon. We
consider are in fact identical to Schwarzschild spacetioes ~ further assume reflection symmetry with respect to the equa-
side their surfaces, making them indistinguishable froackl torial plane.
holes during the initial stages of an EMRI. However, for a We are interested only in the metric outside of the black
black hole the event horizon prevents any observationseof thhole and determine it using a multi-domain spectral method.
inspirals after the final plunge. Because boson stars aie hotfOne of the domains coincides precisely with the interior of
zonless however, many orbits inside the interior are exgaect the homogeneous, uniformly rotating perfect fluid ring, the
if the small body interacts only gravitationally with theagar ~ boundary of which must be solved for as part of the global
field out of which the star is made: the “smoking gun” for problem. This choice is important in order to avoid Gibbs
a boson star would therefore be that gravitational waves fro Phenomena. The vacuum region (outside the horizon) is di-
the inspiral are observed after the plunge. Gravitatiorzaies vided up into four subdomains with three fixed boundaries
from such an event could not be interpreted as an inspiml intseparating them. This somewhat arbitrary choice enables us
a black hole with different parameters, because the firgt paf0 resolve functions more accurately in the vicinities oftbo
of the inspiral is identical to the usual black-hole inspira  the ring and the black hole according to the scale determined

Another attempt was made by Collins and Hughes inPY €ach object itself. One of the four vacuum domains ex-
Ref. [23]. The analytical “bumpy black holes” they build are ©€nds out to infinity and is then compactified. A mapping of
objects that ar@lmostSchwarzschild black holes, but have ach domain onto a square is chosen in such away as to avoid
some multipoles with a ‘wrong’ value. These spacetimes reSt€ep gradients in the functions being solved for.
duce to the usual Schwarzschild black hole spacetimes in a The Einstein equations together with the specification of
natural way, by sending the “bumpiness” of the black hole toSymptotic flatness and the aforementioned boundary condi-
zero, but unfortunately they require naked singularitiak: ~ tions provide us with a complete set of equations to be solved
though they are not expected to exist in nature, “bumpy blacl@r- The metric functions and_ the function _de_:scnblng the
holes” could be useful as “straw-men” to set up null experi-fing’s boundary are expanded in terms of a finite number of

ments and test deviations from pure Kerr using EMRIs. Chebyshev polynomials. By specifying physical parameters
to describe a configuration and demanding that the equations

be fulfilled at collocation points on these five domains, we
get a non-linear system of algebraic equations determthiag
C. A sdf-gravitating torusaround arotating black hole coefficients in the expansion of the functions. We solve this
system using a Newton-Raphson method where an existent
A different and novel approach to the modelling of a back-neighbouring solution provides the initial guess (see 24
ground, non-Kerr spacetime is also possible and will be théor more details and for a discussion of how to obtain the first
one adopted in this paper. In particular, we exploit the con-initial guess”).
sistent numerical solution of the full Einstein equatiors d Note that throughout this paper, the masses and angular mo-
scribing a spacetime with an axisymmetric black hole and anenta of the black hole}/,,, and J,,,, of the torus,M_,
compact, self-gravitating torus of comparable mass am spi and.J,___, and of the whole systen/, , = M, + M, ...
These solutions have been recently obtained to great amcuraand J,,, = Jy,; + J...,» are the “Komar” masses and an-
with a numerical code using spectral methods. In generaular momenta [44, 45]. We note that the definition of the
the numerical solution will produce a solution of the Eiste mass of a single object in General Relativity can be quie sl
equations representing an axisymmetric and stationalgespa pery, especially when this measure is not an asymptotic one.
time containing a rotating black hole and a constant-dgnsit We also recall that while thiotal Komar mass of the system
uniformly rotating torus of adjustable mass and spin. The me coincides with the familiar “ADM” mass|_[46], other defini-
ric of thisnon-pure Kerr spacetimia quasi-isotropic (Ql) co- tions are possible for theingle masses of the torus and the

ordinates is generically given by black hole. As an example, it is possible to define the “irre-
ducible mass” of the black hole a¥,, = [A, /(16m)]'/2,

ds? = —e2di? + 1 2 sin® OB2e~% (do — wdt)? whereA_ is the horizon’s area [47], and then define the total
¢ mass of the black hole ad, . = [M2 +(J,,/(2M,,,))*]*/?

2 2 2 2
+e (dro” +14,°d9%) . (22)  (Note that this latter definition coincides with the Komarssa



for an isolated Kerr black hole.). Similarly, the mass of theequations is given in the Appendix. However, the strongest
torus can also be measured in terms of the “baryonic” masmotivation for introducing kludge waveforms is the surpris
M, .. = [ put\/=gd*z (p being the baryonic mass den- ing agreement they show with the accurate waveforms that
sity andwu the 4-velocity of the fluid of the torus). This mass can be computed in a Kerr spacetime using the Teukolsky for-
is simply a measure of the number of baryons, it does not inmalism [50]. In view of this, kludge waveforms represent the
clude the gravitational binding of the object, and thus daa a natural first approach to model the emission from EMRIs in
be rather different from the corresponding Komar mass. non-pure Kerr spacetimes and will be used throughout this
Overall, we have found that even in our non-pure Kerrwork.

spacetimes, all the definitions of the mass of the black hole As mentioned in Sedtlll, the adiabatic approximation affer
agree rather well. In particular, in the spacetimesnd B a simple way to include radiation-reaction effects in a Kerr
we will consider in sections VIA-VB (cf. tablg 1) we have spacetime. More specifically, if we denote Kerr geodesics by
M, =0.413, M, =0.457,M,  =0.468andM,, =0.1, kb ,(t,FE, L., Q), the trajectory of the small body is then

irr hole geod

M, = 0.1007, M, . = 0.1007, respectively. On the other corrected to be:*(t) = x‘g‘cod(t,E(t),Lz(t), Q(t)), that is,
hand, the Komar mass and the baryonic mass of the torus geodesic with varying parameters. The accurate calcula-
have been found to be different with/,,, .. = 0.121 and tion of the fluxesE, L, andQ is rather involved|[34, 38],
M,,,,.. = 0.0578 in spacetimed and M., . = 0.007 and  but approximate ways to compute them have also been sug-
aryon = 0-00656 in spacetimeB. As mentioned above, gested|[51] 52, 53]. Although Barack & Cutler [25] have
there is no reason to expect these two measures to be closgcently proposed including radiation reaction in quasi+K
and it is only interesting that this happens under certain ci spacetimes by using post-Newtonian fluxes in which the
cumstances (as in spacetimse for example). Furthermore, leading-order effect of the quadrupole of the spacetime is
these differences are not going to affect our analysis, lwhictaken into account, it is still unclear at this stage how accu
will never use the single mass of the torus. rately the fluxes for a Kerr or a quasi-Kerr spacetime couid de
scribe the non-geodetic motion of an EMRI around our black
hole-torus systems. Because of this, we have here preferred
IV. THE SEMI-REL ATIVISTIC APPROACH to consider the simplest scenario and thus model the motion
of the small body as a pure geodesic with equations of motion

_ _ that in the spacetime Eq.(22) are given by
Although the procedure outlined in Sdct. 1l to calculate the

waveforms from an EMRI in a non-vacuum spacetime is the 4t

. . ) . _ tt~ tp )
only mathematically correct one, it has never been apptiedi 7 = 9 €19 iz (23)
practice, not even to first order. Such an approach, in fact, do o b0
involves the solution of a complicated system of 14 coupled - = —¢"¢+g""(, (24)

partial differential equations [Eqd.(10) arid{(13)] and lehi

: L : : d>r dr\” do\? dr do
this can in principle be solved, alternative solutions hasen e (_) ~T%, (_) — 2y — —
traditionally sought in the literature. A very popular orse i dr? dr T dr dr

the “semi-relativistic” approach, which leads to the stiech L[ dt 2 . (do 2 . dt do
“kludge” waveforms([48, 49, 50] and which we will also adopt Tl =) —Tes | 2 to7- - » (25)

dr dr dr dr
hereafter. ) ) )

In essence, the semi-relativistic approach consists in con ﬂ — _1° (ﬂ) ¢ ﬁ) oT? ﬂﬁ
sidering geodetic motion for the small body (including, whe — d72 " \dr 9\ dr " dr dr
possible, corrections to account at least approximatelshie di\ 2 do 2 dt do
effects of radiation reaction) and in calculating the eeuitt ~TY, (E) G (E) - f‘ﬁﬂﬂ , (26)

gravitational waves as if the small body were moving in a
Minkowski spacetime. This latter assumption requires a-map,here; =

is the radial quasi-isotropic coordinateis the
ping between the real spacetime and the Minkowski spaces ert'mgqihe“’s are the ghr'stoﬁelspmbols arédind’;are
time: in the pure Kerr case, this is obtained by identifyingP' 0P€"IMe. : y

Boyer-Lindquist coordinates with the spherical coordasaif the energy and angular momentum per unit mass as measured

the Minkowski spacetime. The waveforms are then computegy_l?hn obserll{erat mf(;mty. be labelled with
using the standard quadrupole, octupole or higher order for € resutting geodesics can be ‘abetied with seven param-

: ; : _eters: four refer to the initial positiofy, ¢o, 70, 6o and the re-
g?rlgﬁiovgg\ﬁﬁrgggs”c\:\?;sler]lg?n:g rt;jés A\‘/\gaysg]re commonly re maining three identify the initial 4-velocity. In the casehich

A iustification of this orocedure in terms of the Einstein V€ will consider in this paper, of bound stable orbits in the
J P equatorial plane, only five parameters would remain. How-

ever, because of stationarity and axisymmetry it is notirest

tive to fixty = ¢o = 0 andry = r,, beingr, the periastron ra-

4 Note that comparisons with Teukolsky-based waveforms im &leow that dius. Therefore, except for a sign to distinguish between pr

the inclusion of multipoles higher than the octupole doest improve grade (b > O) a_nd retrogradei( < O) _OI’bItS, equatorlal bound
kludge waveforms [50]. Because of this, contributions amyto the oc-  Stable geodesics can be characterized by two parametgrs onl

tupole are used here to calculate kludge waveforms. which we can choose to be the so-called “latus rectppy”



and the “eccentricity?,,,, which are related to the coordinate
radii at apoastron and periastronhy = p, /(1 — e,) and

TP = pQI/(l + eQI)‘

. M = Myer= M ' M = My = M
Clearly, kludge waveforms computed from pure geodetic e ™ e o = Mer + Mraos
motion are expected to be accurate only below the timescale Fer = Jeer™ T+ Forus
over which radiation-reaction effects become apparent and ¥ ---------4  Toms L ----oooooooooo__

external orbits

make our waveforms differ significantly from the real signal internal orbits
A simple way to estimate this timescale exploits the conoépt I
“overlap” between two waveforms, which will be introduced

in Sect[1VA.

An important comment needed here is instead on the co-
ordinate mapping used in calculating kludge waveforms. As
already mentioned, this mapping has a straightforward reafigure 1: Schematic classification of the two regions of thacs-
ization in a Kerr spacetime, where the BL coordinates are adime. For equatorial orbits in region I (i.e. internal of)ithe mass
sociated with the spherical coordinates of a Minkowski spac @nd angular momentum of the Kerr black hole coincide withmtiass
time. In a similar manner, in our non-pure Kerr spacetimes wégir:;a}?g”f;ﬂ%ﬁi??:&;;t&ibri]a::sh:r!%' ;ﬁéjgfiﬁgﬁégﬁb:i
tranSform th? SO'“FiO” of th‘? geode?c equations fro”? Ql COkerr bla(.:k.hole coincide with the total mass and angular nrgoma
ordlna_ltes to qua5|-Boyer-L|nqu|st_ (QBL_) coordinateé®. ¢ the black hole-torus system.
coordinates that reduce to BL coordinates in the absenteof t
torus. These coordinates are then identified with the sgdileri
coordinates of a Minkowski spacetime as in Refl [21] and used
to compute kludge waveforms. A. Overlap and dephasing time

Fortunately, the transformation from QI to QBL coordi-
nates is straightforward and involves only a change in the ra In order to compare (kludge) waveforms computed in non-

dial coordinate: pure Kerr spacetimes with (kludge) waveforms computed
in Kerr spacetimes, we follow the procedure proposed in
g2 Ref. [21] and make use of the so-callederlap function Its
Tos =Tqn T M+ 2 (27)  meaning can be best understood through the more familiar
Tar concept of SNR, which we will now briefly review.

We recall that if a signat(t) is the sum of a gravitational
whereM is a parameter that reduces to the mass of the cerwaveh(t) and of some Gaussian noisgt), the SNR for a
tral black hole in the absence of the torus. Clearly, this-maptemplatei(t) is given by [54]
ping suffers from an intrinsic ambiguity as the magscould

be either associated with the mass of the black hole or with S 21 [h()w(t —7)s(r)drdt _ (h,s
the total mass of the system, or even with a _combina_tion of N rms U ﬁ(t) w(t — 7)n(r) drdt (ﬂ, ;1)1/2
the two. Although all the choices are essentially equivialen (28)

when the torus is very light, this is not necessarily the case
for some of the configurations considered here, for which th

torus has a mass comparable with that of the black hole. Sin . el .
»(f) being the spectral sensitivity of the detector), “rms

the parameteM is, at least in a Newtonian sense, the grav-yanotes the root mean square and the internal product "

itational mass experienced by the Srpf?‘" body, we have her(?an be defined in terms of the Fourier transforms (which are

followed a pragmatic approach and gdt= M, for equa-  genoted by a “tilde”):
torial orbits with periastron larger than the outer edgehef t

torus, which we will refer to as th&external orbits”. Con- 00 i ( £\], h 7 x
versely, we have set/ = M., for what we will refer to as (h1,h2) = 2/ iz (f)hQ(fg Jgflgl(f)h2(f)
the“internal orbits” , that is equatorial orbits with both perias- 0 "
tron and apoastron between the inner edge of the torus and theClearly, the SNR of Eq[(28) is a Gaussian random variable
horizon. This classification is summarized schematicaily i with zero average and unit variance if no gravitational wave
Fig.[d, which shows the two regions into which the spacetimesignal is present. On the other hand, in the presence of a grav
has been divided and the corresponding valued/of This itational wave the expected value for the SNR is nonzero with
choice is clearly an operative ansatz, but we have checked #time average given by

see that its influence on our results is indeed negligiblesand
detailed discussion of this will be presented in Sett. V. < S i > (h,h)

Finally, we note that we have not considered orbits crossing
the torus because the non-gravitational interaction betwe R
the small body and the fluid would cause deviations fromlf « measures the SNR for a templdt&) “matching” the
geodetic motion which are not easy to model. gravitational waveh(t) perfectly, i.e. (S/N) = (h,h)}/? =

herew(t) is Wiener’s optimal filter (i.e. the Fourier trans-
rm of the functionw(t) is given byw(f) = 1/S,(f), with

af . (29)

(30)



9

a, any “mismatch” between(t) andh(t) will degrade the and the overlap function, can now be applied to determine to
SNR ratio to(S/N) = a O(h }}), where the overlap function What extent LISA can detect a difference between a pure and
O is defined as a non-pure Kerr spacetime.

Hereafter we will restrict our attention to equatorial, hdu
and stable orbits, choosing the values of the mass and angula
momentum of the pure Kerr spacetime using the same logic
discussed in the previous sections, i.e.

The same logic can now be used to quantify the differences

3

7\ — (hv }AL)
Oh,h) = (h, R)V/2(h, h)/2

(31)

between kludge waveforms computed in different spacetimes My, =My, =M } internal orbits

More specifically, if we label with “1” a waveform com- Jkerr = Jam ’

puted in a non-pure Kerr spacetime and with “2” the clos- —

est equivalent in a Kerr spacetime, the overlap between the My, =M, =M } external orbits.

two O (hl, hg) = (hl, hg)/[(hl, h2)1/2(h1, h2)1/2] will ex- JKcrr = Jtot

press how much SNR is lost by an observer match-filtering (32)

a black hole-torus signal with a pure Kerr template. Stated
differently, O(h1, ho) = 1 if the two waveforms are identi- Note that for internal orbits we did try to compare our
cal, whileO(hy, he) = 0 if they are totally uncorrelated and non-pure Kerr spacetimes with pure Kerr spacetimes having

O(h1, ha) = —1if they are perfectly anticorrelated. M M = MandJ. = J.., (using these values also

. . . Kerr = tot Kerr

Having introduced the concept of overlap function, we canto compute the dephasing time, cf. SECE IV A), but this tdrne
proceed to an operative definition of the timescale belowbut not to be a good choige
which kludge waveforms computed from pure geodetic mo- Once a non-pure and a pure Kerr spacetime have been
tion are expected to be accurate. _ThIS _tlmescale, u_sually "uilt and the orbits have been isolated according to the re-
ferred to as the “dephasing timeg, is defined as the time at |ations [32), further care needs to be paid in selecting cor-
which the overlap between two waveforms in the Kerr spaceresponding geodesics. As mentioned in Sect. IV, equatorial
time, one computed considering geodetic motion and the othgyeodesics can be labelled by two parameters, which can be
one including radiation reaction effects, drops below @B5  chosen to be, for instance, the latus rectum and the eccentri
is indeed the threshold used to build template banks [55])ity Poyee, @Nde, ., calculated in QBL coordinates for the
Clearly, the dephasing time will be different for externatla non-pure Kerr spacetime and in BL coordinates for the Kerr
internal orbits and also in this case attention needs to lok Paspacetime.
to the mappings between non-pure and pure Kerr spacetimes. However, as already pointed out in Ref./[21], waveforms
Following the same logic discussed in the previous sectionyroduced by geodesics having the same,,, ande ., are

. L. 2JBL BL

we calculatery for an external equatorial orbit in our non- gjgnificantly different because they do not contain compara
pure Kerr spacetime by considering the equatorial orbit wit pje orbital frequencies, and give overlaps< 0.4. A sim-
the same latus rectum and eccentricity in the Kerr spacétimgar conclusion can be drawn in the case in which the free
with massM,,,, = M,,, and spin/,,, = J,,.. Onthe other parameters are chosen to be the periastron radius andrhe (ta
hand, for an internal orbit we calculatg by considering the  gential) velocity measured at the periastron by a zero angu-
orbit with the same latus rectum and eccentricity in the Kerar momentum observer (ZAMO): this choice gives overlaps
spacetime with mas¥/,,,, = M, andspinjy.,, = Juu. AS 0 ~ (.1 — 0.2. In view of this, any sensible comparison can
we will explain, in this case we have also looked into the influ he made only with geodesics in the two spacetimes that have
ence that this association has on the overall results pben the same orbital frequencies (this result was already pdint
in Sect[ V. o out in Ref. [21]).

In order to compute the dephasing time, we used the ap- \\e recall that an equatorial geodesic in a generic statjonar
proximate Kerr fluxes proposed in Ref. [53], which are basedyxisymmetric spacetime has ammotion that is periodic in
on post-Newtonian expansions and fits to fluxes computedrighe coordinate time. To see this, it is sufficient to combine
orously with the Teukolsky formalism. Egs. [23),[[24) and the normalization conditiopu” = —1

for an equatorial motiofl = 7/2 so that
V. COMPARING PURE AND NON-PURE KERR (dr/dt)? =V (r,&0) , (33)
SPACETIMES

with V' (r, €, £) being a function of- and of the two constants
The set oftools introduced in the previous sections, namelyof motion e and/. Clearly, Eq.[(3B) has a periodic solution
the kIudge waveforms, the numerical solution of the Eimstei with a frequency that we will denote,. A similar ana|ysi5
equations for spacetimes containing a black hole and a,torus

6i.e., for many bound stable orbits in the non-pure Kerr stimes that we
5 The latus rectum and the eccentricity are assumed to be iroBtdinates considered, it was impossible even to find bound stablesonbih the same
in pure Kerr and in QBL in non-pure Kerr spacetimes. latus rectum and eccentricity in the Kerr spacetime.
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can be carried out for the motion in tiedirection, which, 04 42d23n4m17s 42d23n33m0s 42d0him43s 43dOn ?‘im 26s

.. . . g signal

c_omblnmg Eqgs[(23) and(24) with= 7/2, satisfies an equa- same o eom.

tion of the type 03} same w, w,changing p, € ... i
B same wy, w, changing Myer, Jker  ©

do/dt = G(r,€0) , (34)

where G(r) is again a function of-, ¢ and (. Integrating
Eq. (33) withgg = to = 0 leads to

Fops Ny /M

o(t) = (Gt + / (G(r(t).6,0) — (G))dt . (35)

where (G) is the time average of/(r(t),¢,¢) over anr- 03

period. The second term on the right-hand-side of Ed. (35) is
clearly_perlodlc (WIFh zero average) trB(_) th.at thej-motion Figure 2: Kludge waveforms around the dephasing time for allsm
has a linearly growing term and.an _oscnlatlng one. Thg OVerpoqy with massn = 1M, moving in the spacetim of Tablel].
all frequency content of the motion is therefore determined The plack solid line shows the waveform produced by a geodesi
by wy = (G). with given latus rectum and eccentricity in spacetiBewhile the

The orbital frequencies, andw, can therefore be used to red dot-dashed one refers to a geodesic with the same latusire
characterize equatorial geodesics (and hence the waveformand eccentricity (in (Q)BL coordinates) in a Kerr spacetiwieh
that are expected to be as similar as possible (i.e. have tH¥xe. = M., andJy,,, = Ji.. The blue dotted line and the
largest possible overlap) in the two spacetimes. In pragtic 2rown circles are instead the waveforms produced by an wiitit
given a geodesic (and therefore a waveform) characterizef}® S2me- and¢-frequencies as obtained by adjustifig, de) or

. . M, d8J), respectively.

by w, andw, in the non-pure Kerr spacetime, we can com-
pare it to the waveform produced in the Kerr spacetime by
the orbit which has the same and¢-frequencies. Since,
andw, for equatorial orbits in a Kerr spacetime are functions
of Mi..., Juons Do, @ndey, (explicit expressions for these e
functions, which we will denotes, " andw,"", are given - Pasr
in Ref. [56]), matching the geodesics amounts to solving the w, (P, =Pasrs €sr = Capns Mie + M, Jy,,, + 8J),

1077 1077.5 1078 1078.5
Wt/21

would yield the same- and¢-frequencies, i.e.

eQBL) -

following equations in the unknowr® andde (38)
BH+|Torus
BH+Torus( ) wqﬁ (pQBL ? eQBL) =
Wy Pgry€qeL) = Kerr
Kerr We (pBL =PqeLs €L —C€qBLs MKerr + 5M7 JKerr + 5J) .
Wy (Pp =Papr T 0D €5, =eqp,, + 06, My, er) > (39)
(36)
o (p o) = Of course, a similar but distinct set of equations can also be
im QBL7TQBk built by considering orbits having the same latus rectum and
Wy (PpL =Pase T 0D €5, =€ + 06, My Jreonn) s eccentricity in QI coordinatés
(37) BH+Torus
wr (pQI? eQI) =
BH+Torus BH+Torus Kerr
WherewT (pQBL.’ eQBL) andw¢ . (le?L’ ?QBL) are Wy (pQI7eQI’MKcrr +0M, JKcrr + §J) ) (40)
ther- and¢-frequencies of the equatorial orbit with latus rec-
tum p,.,, and eccentricity ., in the non-pure Kerr space-
time under consideration and wheké,__,J,.__ follow the w(‘ZH”"‘“S (Poys €0y) =
selection rule in Eq[(32) to distinguish internal and exar o e
orbits. Indeed, this is the approach which was followed in Wy (Pars €qis Mo +0M, Jy,, +0J).  (41)

Ref. [21] and which highlighted the possibility of a confusi _ . _ Lo
problem in non-pure Kerr spacetimes. To illustrate how different correlations of orbits in theaw

An important difference with respect to the work presentedslo‘rchetlmes can lead to significantly different waveforms, w

in Ref. [21]is that we also considered a different way in vhic

it is possible to identify geodesics that have the samearbit

frequencies in a Kerr and in a non-pure Kerr spacetime. We, _ _ . .
can in fact consider the latus rectum and eccentricity fixed The transformation from BL to QI coordinates in a Kerr spaetis given
) " Yy for instance in Ref.[57], Eq. (80): the transformation &iput to be the
in (Q)BL and search for the values of the additional mass inverse of Eq.[27), with, o, = M(1 — a?)1/2/2 (M anda being the
oM and angular momentudJ of the Kerr spacetime which mass and the spin parameter of the Kerr spacetime undedesaton).
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SpacetimQMBH MTorus MBH /MTorus JBH JTorus JBH/JTorus ‘]BH /MéH Jtot /Mt2ot P "¢ qi|Tin,q1 |Tous,qr| €
A 0.413 0.121 34 +9.02e—2|1.17e—1| +7.69e—1 |+5.28¢e—1| 0.728 |[2.637/0.179|0.6064 0.6305/0.11
B 0.100 0.007 14.3 —1.74e—5|2.58e—3| —6.74e—3 | —1.74e—3| 0.224 |0.198/0.050|0.9156 1.0000|2.63

Table I: Parameters of the spacetimes analyzed in sdctiam dhits in which10’ My = G = ¢ = 1. 1, o, andr,,, , are the inner and
outer edges of the torus in QI coordinatgess the baryonic mass density of the torus and the paramgi@vides a lowest-order measure of
the deviation of the spacetime away from a Kerr solutionfef. (20)]. Note that is more sensitive to the ratio between the angular momenta
than to that between the masses.

show in Fig[2 some kludge waveforms for a small body withric (2I). The spacetimes were computed to sufficiently high
massm = 1M moving in the spacetim®& whose parame- accuracy so as to ensure that the numerical errors do not affe
ters are listed in Tablé I. The geodesics have been caldulatehe results. More specifically, for spacetiave usedt x 40

up to the dephasing time (i.e; ~ 42 d) and the figure shows Chebyshev polynomials in the vacuum domain extending out
a magnification of the waveforms around this time. In par-to infinity (domain 1 of|[24]) an®8 x 28 polynomials in the
ticular, the black solid line shows the waveform produced byother 4 domains. For spacetiniewe used31 x 27 polyno-

a geodesic witlp,,,, /M, = 21.237 ande,,, = 0.212in  mials in each of the 5 domains. Typical physical quantities,
spacetimeB, while the red dot-dashed one refers to a geodesisuch as mass and angular momentum, were thus accurate to
with the same latus rectum and eccentricity (in (Q)BL coor-aboutl0~% in spacetimed and10~7 in spacetime3. Besides
dinates) in a Kerr spacetime witlf, = M, , andJ_ =  these being errors that are orders of magnitude smaller than
J...- The blue dotted line and the brown circles are insteadhe onesO(ae, €2) + O(5M;>4,5S,>3) typically affecting

the waveforms produced by an orbit with the sarnend¢-  the approximate metri€ (21), the accuracy of our numesicall
frequencies as obtained by adjustiiag, oe) or (M, ), re-  generated spacetimes is sufficient for our purposes, sivece t
spectively. Clearly, fixing the same orbital paramefgrs,,, dephasing it introduces is comparable with the dephasieg du
ande,,,,, inthe two spacetimes would be misleading and will to radiation reaction, as the latter scales with the mass rat
inevitably produce very small overlaps. On the other handm /Mgy ~ 10~% — 10~7. As a result, introducing a cut-off at
ensuring that the orbital frequencies are the same by auljust the dephasing time not only makes the effects of radiatien re
oM anddJ provides waveforms that are much more similaraction negligible, but it also ensures that the numericairer
and even harder to distinguish over this timescale tham if in the calculation of the spacetimes do not affect the result
andoe are adjusted. As a further check, we have varied the number of Chebyshev
polynomials and verified that the numerical errors inhetent

In the following sections we will discuss in detail the con- . o ;
the spacetimes have a negligible impact on our final results.

fusion problem when considering the two different ways in
which the geodesics in the two spacetimes can be matched.

Before doing that, however, we will now briefly recall the

main properties of the numerically-generated spacetitms t  For all of the waveforms computed in this paper, we have
we have considered here, and whose parameters are listeddonsidered an observer located¢ats = 0,00s = 7/4
Tablell. We note that because the investigation of each spacand decomposed the incoming gravitational-wave signal int
time is a rather lengthy and computationally expensive@aper the usual “plus” and “cross” polarizations (see, for instan
tion, we have restricted our attention to two spacetimeg, onl Refs. [50/ 58] for details). Furthermore, labelling the\gtia

but with rather different properties. More specifically,nave  tional waves computed in the two spacetimes with 1 and 2, we
considered a first spacetime (denoted@baving a torus with  calculate the overlap between both polarizatiad& ", h3)
mass comparable with that of the black hole and slightlydarg and O(h;, k), and in the discussion of our results we re-
angular momentum (i.eM,,, = M. |Jsul S |Jr.el)  fer to the smallest of the two overlaps, i.€(hy, he) =

and a second spacetime (denoted®shaving a torus with  min[O(h], h3), O(hj’hg )]. In practice, however, the dif-
mass much smaller than that of the black hole but much largeierence betwee® (k" h; ) andO(h}, hS') for the overlaps
Torl << T rorne D- plotted in the figures of the next sections is typically serall

We also note that spacetimdehas a rather small quadrupole than 0.005 and in no case larger than 0.025.
parametere ~ 0.1 [cf. Eq. (20) for the definition] and
could therefore be used to validate the perturbative resiilt
Ref. [21] which, we recall, were formulated to the lowest or- Finally, we note that the results presented in the next sec-
der ine. Interestingly, we will see that taking into account the tions refer to a small body witlm = 1M and to a sensitivity
higher-order multipoles can lead to important qualitatife ~ function for LISA computed using the online generator [59]
ferences and weaken or even cancel, for orbits very close twith its default parameters and, in particular, no white dwa
the torus, the confusion problem found in Ref.[[21]. Spacenoise. As pointed out in Refl. [21], including white-dwarf
time B, on the other hand, has a considerably larger value fonoise would only lead to a slight increase in the dephasing
e and cannot, therefore, be described satisfactorily by e m time.

angular momentum (i.e\,, > M.

Torus’

orus
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A. Theconfusion problem when varying e and p (Egs. [28){(2b) withd = 7/2) over and beyond the dephasing
time, if the orbit does not intersect the torus andfactu-
lly corresponds to the periastron (amat to the apoastron)

heﬁggrwz)\(/ggocmg) ?hgto ?;J\/ae”?r?: sg;t\gelg?usg?ggtiiczn(j‘l /e extract the latus rectum and eccentricity so as to populat
fe (PosLs €qew) Plane and compute the overlaps with pure-

g??ﬁgc'\%rm ;rr]:aﬁuor\?eerllgd l:[lr?g—purrg dﬁig Svsgcfg\gefotrfc:rujgerr waveforms (the orbits in the Kerr spacetime are chosen
y b they p ' P go start at their periastron as well). Overall, a large nunadbe

waveforms having the same and¢-frequencies as obtained bound stable orbits (i.ez 2250) has been integrated for each

by changing the latus rectum and eccentricity while keepin%f ; ST : .
i s the figures shown in this paper. Notice that the requirdmen
M., andJy.,, fixed [cf. Eqs.[36) and(37)]. More specifi- thatry correspond to the periastron is important because, as

Kerr Kerr
cally, we already mention that the valuesigpfp,,,, obtained far as the overlaps are concerned, orbits having the saoe lat
rectum and eccentricity but different initial positiongarot

in the regions of the space of parametgrs,, , ez, ) where
the overlap between these waveforms is hight 0.95) are equivalent. We recall in fact that the overlaps are computed
by putting a cutoff at the dephasing time and if the initiat po

10p/Posl < 0.05 in spacetimeA and [0p/pgy,,| < 0.16
in spacetimel3. Similarly, the values obe obtained in the sitions are different, the portions of the orbits contribgtto
the overlap are different.

regions of the space of parameters whéle> 0.95 are

|0e] < 0.06 in spacetimed and |de| < 0.07 in spacetime .

B. Overall, because the waveforms agree very well with an
overlapO > 0.95 for most of the orbits we have considered,

the results in Fid.13 clearly show that a confusion problem si

ilar to the one presented in Ref. [21] is indeed possibleim th

Capr T ¢ Kerr? ¢ Kerr L spacetime for observational timescales below or comparabl
comparison for a large set of orbits in Fig$.[3, 4 and 5. Irlto the dephasing time. As indicated by the color-coding, the

particular, Fig.[B shqws the cplor-coded overlap betwee'?)verlap has a drastic reduction only in a limited region @f th
waveforms produced n spac_e_tma@eby external orbits na space of parameters and in particular for orbits with snwll e
(PapLs Cqnt) plar_1e, with positive values Ob,, referring .. centricity and close to the innermost bound stable orbits T

to prograde _orb|ts, and. negative ones to retrograde Orb't% not surprising as in these regions the local modificatadns
Nptq thatno internal orbits were found in spacetl_m&aand the spacetime due to the presence of the torus are the largest
this is due to the fact that in this case the torus is too clos%nd have a more marked impact on the waveforms. Interest-
to the blac_k hole for bpunpl stable orbits to exist in _region Iingly, prograde orbits produce overlaps that are sm'allmnth

of Fig. [ without plunging into the black hole. The different those produced by retrograde orbits with comparable values

!lrles Int Flgt'hB mark the malrglns O'ftr:hti d|bff|ere3t rt;gl(cj)rll_s of of Pag., @nde,,,,; , and appear therefore to be better tracers of
interest in the(p,y,,., €qp.) Plane, wi e blue dashed line ;. spacetime.

representing the outer “edge of the torus”, that is the set o o i i
points such thab,,, /(1 + equy) = 7. one- Similarly, the It is important to underline that the presence of an albeit

red solid line represents the innermost stable bound orbitSMall region of the space of parameters in which the over-
(this line is also referred to as the “separatrix” in Ref/jjg0 P is small, and hence the dangers of a confusion problem
for a Kerr spacetime with mass/ M. and spin decreased, represents an important difference compatieel to

Kerr = tot
J, = J

We have  computed the overlap between

hBH+Torus (pQBL7eQBL) and hKerr (pBL = PgeL + 6]?7 gL = ]
+ de, M., J....), and summarize the results of this

; " A L results presented in Ref. [21]. We recall that spacetinhas a

Ry .- Finally, the black dot-dashed line imits the rather small quadrupole parametdcf. Table]), comparable
regions of the(p .., eqs..) Plane where bound stable orbits "< X I : '
have been studied. with those used in Refi_[21]. Yet, the small overlaps near the

We underfine that these are not the only regions in Whicl'i}nnermost bound stable orbits indicate that taking intmaot

X , X he higher-order multipoles neglected in the mefrid (21) ca

bound stz_;\ble o_rblts exist, but they rather represent themeg lead to significant differences even far away from the black
we have investigated because of their being more directly re,q|q i 2 matter source is present
lated to LISA observations. In practice, we exploit the fact Fi ) . f' its simil h
that there is a one-to-one correspondence between the latus '93“? F;ugn%rlzis aseto .:ﬁgu tSMS'm' ar to g osl,le pre-
rectump,,,, and the eccentricity,,,, of bound stable orbits sented In hlg | ut Ocl)rdspaceltl b' ore specf| cally,
and their QI radius and tangential velocity (measured by 4t reports the color-coded overlap between waveforms pro-
ZAMO) at periastron;, andv,. We therefore choose the duced in spacetim®& by externalrbits and waveforms pro-

initial radial QI positionr, of the small body randomly in a duced_in a Kerr spacetime with masf,.,,, = M,,, and spin
limited range and vary its initial tangential velocity with Sicore = J

. ... Here again, all of the orbits have the same or-
small steps in the range of the velocities leading to ensrgie

bital frequencies as obtained by adjustipgandde. It should
per unit mass < 1.8 After integrating the geodesic equations be noted that in this case the confusion problem is less se-

vere and indeed essentially absent for orbits near the outer
edge of the torus (i.e., witp,,, /M, , < 30) and with ec-

ot v

centricitiese,,, < 0.2. Finally, we report in Figl’s5 again

8 We note that in both spacetimé and B all the equatorial bound stable
orbits not crossing the torus hage< 1 [this can be verified by computing
the values of for which the potential’ (r, €, £) in Eq. [33) is positive].
However, bound stable orbits which cross the torus and Bave 1 are present in both spacetimes.
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Figure 3: Overlap between waveforms produced in spacetirbg externalorbits and waveforms produced in a Kerr spacetime with mass
M,... = M, and spinJ._.. = J... The orbits all have the same and¢-frequencies as obtained by suitably changing the latusimec
and the eccentricity, with positive valuesygf,, referring to prograde orbits, and negative ones to retoegoabits. The different lines mark
the margins of the different relevant regions of (pg ., , eqx;,) Plane, with the blue dashed line representing the outere'@dghe torus”,
the red solid line representing the innermost stable bouhisdor a Kerr spacetime with masd ... = M,,, and spinJ. . = J,, and
the black dot-dashed line limiting the regions of {pg,,, , e,5;,) plane where bound stable orbits have been studied. A higtepvia large
regions of the space of parameters indicates that a confpsablem is indeed possible in this spacetime for obsematitimescales below

or comparable to the dephasing time, although this confiugisappears for orbits with small eccentricities and ctosthe innermost bound
stable orbits.

results for spacetimé& but this time forinternalorbits. We B. Theconfusion problem when varying M and J
recall, in fact, that in this case the torus is farther awayrifr
the black hole and thus bound stable orbits can be found in

region | of Fig.[l. As in the previous figures, the black dOt'having the same- and¢-frequencies, which was achieved by

dashed line limits the regions of the pl where g . .
bound stable orbits ha\?e been stucﬁgj%gat’ ;ng)ntrast to thchangmg the mass and spin of the Kerr black hole while keep-

case of external orbits these regions correspond to padlgtic ﬁ‘ﬁg the latus rectum and eccentricity fixed in either (Q)BL

all the bound stable orbits not crossing the torus. On theroth or QI coordinates [cf. EqSL{BSJ=(39) arid{(40}(41)]. Do-

L . : ing this corresponds to considering a hypothetical scenari
hand, the green solid line marks those orbits whose peasiastr . which it would be possible to measure, through inde-

lies on the event horizon, the purple dashed one those orbi§n

Next, we consider the overlap obtained by comparing orbits

) . ) endent astronomical observations, the latus rectum and ec
whose apoastron lies on the inner edge of the torus and finall

the red crossed-solid line indicates the innermost bowatulest entricity of the small body orbiting around the massive

orbits in a Kerr spacetime with mass and spi ey central black hole. In practice, and using the same com-
andJ. - J pCIearI no confusion rgg%é?’h |_s r}géent pact notation introduced above, we have compared wave-
Kerr LB Y. p p forms Of the typehBH+Tox'lls (pQBL7eQBL) With hKerr (pBL =

for these orbits, because the overlap is always very smdll an . M. ESM, T ¥ 8 fie. latus rec-

PqeL: €er = €qBLy MKerr
never larger than- 0.2. tum and eccentricity fixed in (Q)BL coordinate&) and

6.J solutions to Eqs.[(38)=(B9)] ank,,,, ... (Po:»€q:) O

In summary, the overlap computed in the two spacetirhes Pgenr (Pas €ar> Mycorr +0M, Jy . +6J) [i.€., latus rectum and

andB containing a black-hole and a torus by varying the Iatusgccentncny fixed in QI coordinatesM andd.J solutions to
rectum and the eccentricity reveals that there are regions i as- @HEH)]' o )

which the non-pure Kerr spacetimes can be “confused” with While formally distinct, these two approaches yield essen-
Kerr spacetimes that are equivalent to them at the sensitiially the same results quite irrespective of whether thiesla
ity of LISA. Clearly, this risk is concrete only for timeseasl ~ rectum and eccentricity are held fixed in (Q)BL or in QI co-
over which radiation-reaction effects are negligible anigi Ordinates. Because of this, hereafter we will discuss day t
not present for external orbits very close to the torus otifer ~ results obtained when fixing,, ,,, ande ,,, .

orbits between the torus and the black hole, if they exist. Figure[®, in particular, shows the overlap between wave-
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Figure 4: The same as in Fig. 3 but for spacetiBieNote that in this case the confusion problem is less sevetéraleed not present for
orbits near the outer edge of the torus (i.e., with, /M,,, < 30) and with eccentricities; < 0.2.

ot ~ ~

T | overlap
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0251 t —— Horizon ] 0.8
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X ~ " for a black hole with M=M, , and J=J,
X
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Figure 5: The same as in FIg. 4 but faternalorbits, with the green solid line marking those orbits whpegastron lies on the event horizon,
the purple dashed line representing the inner “edge of thes't@nd finally the red crossed-solid line marking the immest bound stable
orbits in a Kerr spacetime with mass and spify._., = My, andJ, .. = Jg,. Again, the black dot-dashed line limits the regions of the
(PapL €qsL) Plane where bound stable orbits have been studied, but imasorio the case of external orbits, these regions cormespn
practically all the bound stable orbits not crossing thesoNote that in this case the confusion problem is abseth,@Wi< 0.2.

forms produced in spacetimé by externalorbits and wave- of the relevant regions of thép, , e,z.) plane, with the
forms produced in a Kerr spacetime with magg

.. +0M = Dblue dashed line representing the outer “edge of the torus”,
M., + 6M and spinJ,.. +6J = J,, + 0J by orbits the red solid line representing the innermost stable bound o
with the samep, ., ande ., and the same orbital fre- bits for a Kerr spacetime with masd,.,, = M, and spin
quencies. As in Fid.13, the different lines mark the margins/, ., = J,,, and the black dot-dashed line limiting the re-

err tot
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Figure 6: Overlap between waveforms produced in spacetirbg externalorbits and waveforms produced in a Kerr spacetime with mass
My.,, +30M = M., + 6M and spinJy

e +0J = J,, + 0J by orbits with the same latus rectum and eccentricity [inBQyoordinates]

and the same- and¢-frequencies. Here too, the blue dashed line representsutiee “edge of the torus”, the red solid line the innermost
stable bound orbits for a Kerr spacetime with masgs

... = M., and spinJ, .. = J,. and the black dot-dashed line limits the regions of
the (porr, eqsr) Plane where bound stable orbits have been studied. An @vétla- 0.95 is present in all of the relevant regions of the
(pQBL7 eQBL) plane.
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Figure 7: The same as in FIg. 6 but for spacetitheNote that also in this case the overlap is very high 0.99) in almost all of the relevant

regions of the(p .., eqp,) Plane, with the exception of a very small set of orbits venselto the torus, for which Eq$.(39)=[39) have no
solutions (these orhits correspond to the blank regioriderthe black dot-dashed line).

gions of the(

Ponws €on) Plane where bound stable orbits measurements over a timescale below or comparable to the
have been studied. Note the very close match between thrdephasing time.

two waveforms, with an overla@ > 0.95 in essentially all Figures[J and8 provide complementary information for
of the relevant regions of th@,,.,, , e,s.) plane. This is a

spacetime3, with the first one referring texternabrbits and
clear indication that a confusion problem is present forA_LIS the second one tmternalones (the meaning of the lines ap-
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Figure 8: The same as in F[d. 7 but faternalorbits, with the green solid line marking those orbits whpegastron lies on the event horizon,

the purple dashed line representing the inner “edge of thes't@nd finally the red crossed-solid line marking the imnest bound stable
orbits in a Kerr spacetime with mass and spify._,. = My, andJ,_.. = Jg,. Again, the black dot-dashed line limits the regions of the
(PapL €qni) Plane where bound stable orbits have been studied, but imastrio the case of external orbits these regions corresfmon

practically all the bound stable orbits not crossing theigorNote that in this case the confusion problem is presemtdst of the relevant
regions of the(p ., eqrr.) Plane, becoming slightly less severe only for the largdetad eccentricities and for a very small set of orbits,

very close to the torus, for which EqE.{38)3(39) have notsmis (these orbits correspond to the blank regions insidebtack dot-dashed
line).

pearing in this figures is the same as in figures 4[dnd 5). Id/, . + éM and spin/,_ . + 6. that would be measured by

both cases it is apparent that the overlap is always verglarg an observer analyzing a gravitational wave from a black-hole
The only exceptions are the internal orbits with the largést torus system with pure Kerr templates. The correctiohs
lowed eccentricities, for which the overlap decrease$iig andd.J are those appearing in Eqs._(38)4(39) and have been
and a very small set of orbits very close to the torus, for Whic computed to determine the overlaps presented in this sectio
Egs. [38)-{(3P) have no solutions (these orbits correspond tif they are small and slowly varying, it is hard to imagine a
the blank regions inside the black dot-dashed line in figidres way in which the non-pure Kerr spacetime could be distin-

and3). guished from a pure Kerr one, even with the help of additional
In summary, the overlap computed in the two Spacetimegstronomical observatiqns.. _Conver_sely, if thes_el cowesti
by varying the mass and spin of the black hole reveals that &€ 1arge or rapidly varying it is possible that additiorstte-
LISA observation carried out over a timescale below or com1oMmical information on the system or an analysis of snajsshot
parable to the dephasing time would not allow an observer t8f the waveform taken at different times could be used to de-
distinguish between a Kerr and a non-pure Kerr spacetimd€rmine that the source is not an isolated Kerr black hole and
even in the case in which the orbital parameters of the Smapherefore lessen the confusion problem we find in our analy-
body, such as the the latus rectum and the eccentricity, wer@S-
known through astronomical observations. A synthesis of these corrections for the determinationef th
A simple explanation of why the overlap is always so largemass of the black hole in the case of spacetitie presented
when calculated by varying the mass and spin of the Kerin Fig.[9 and Figl_ID, with the first one showing the relative er
black hole is already illustrated in Fig. 2. This shows tihatt rordM /M, = M /M, inthe regions of thép,., , €qn.)
waveform obtained in this way captures not only the propeplane where the overlap plotted fexternalorbits is above
orbital frequencies, but also the overall “form” of the sign  0.95, and the second one showing the corresponding quantity
which is most sensitive to the values of the latus rectum anddM /M. = 0M /M., ) for internalorbits.
of the eccentricity of the orbit (cf. the solid black line ating Clearly, the corrections are very small and slowly varying
brown circles in Figl R).

in almost all of the relevant space of parametersexternal
The difficulty of distinguishing a Kerr spacetime from a orbits, meaning that an observer could not detect the pcesen

non-pure Kerr one can also be expressed in terms of the mas$ the torus using only these orbits. On the other hand, an
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Figure 9: Relative mass correctiof/ /M, .. = dM/M,,, in the regions of thép, , ey, ) Plane where the overlap plotted in Hig. 7 is
above 0.95. Note that far from the systéi/ /M, , approaches zero, as one would expect.
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Figure 10: The same as in Fig. 9 but faternal orbits In this case the deviations are computed &&/M,

= 0 M /My, in the regions of
the (pgp., eqn.) Plane where the overlap plotted in Hig. 8 is above 0.95.

err

observer could measure rather accurately the total make of t M/,,;) and external orbits (giving an estimate ff,_,) could
system. Note in particular that the correctidh/ /M, , goes  hint at the presence of a torus around the central black hole.
to zero far from the system, as one would expect. o ) )
Similar behaviour has also been found for spacetifne

This situation is only slightly different fointernalorbits, = Because no internal bound stable orbits are present, an ob-
for which the correction increases to some percent: using inserver could not measure the individual masses of the black
ternal orbits an observer could measure quite accurately thhole and the torus, whereas he could measure accurately the
mass of the central black hole. Note therefore that a combindotal mass of the system. In fact, the corrections are always
tion of observations of internal orbits (giving an estimite  very small with|6M /M, | = [6M/M,,,| < 0.02; again,

err ot
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the correctiofM /M, , goes to zero far from the system, as for our spacetimes, where the parametesda can beO(1).
one would expect. Note that due to the absence of internal okfe recall, indeed, that using post-Newtonian fluxes is not al

bits in this spacetime and to the smallness and slow vanigitio ways a good approximation even in Kerr spacetimes and that

of 6M /M., it extremely difficult to distinguish spacetimé  the most accurate “kludge” fluxes for Kerr [53] are certainly

from a pure Kerr spacetime. based on post-Newtonian expansions, but are also corrected
Information complementary to the one given by the masgising fits to rigorous Teukolsky-based fluxes.

correction §M is offered by the spin correctiond.J. In We also note than even with the radiation-reactionincluded

particular, for spacetimed the correctionda defined by a “confusion” problem might in principle still be present, a

Sa = (Jy.,, +0J)/(M,,, +M)*—a,., (Witha,, = least for equatorial orbits. In fact, requiring the equabf

s /lem = 0.728) can be readily calculated to be ther- and¢-frequencies fixes only two of the four free pa-

|6a/a,...| < 0.065, going to zero, as one would expect, far rameters characterizing the geodegice, M, ., andJ,,,,

from the system. This means that an observer could accwhile the remaining two could be used to obtain the equality
rately measure the total spin of the black hole-torus systeraf the time derivatives of the- and¢-frequencies at the initial
although, due to the absence of internal orbits in this syste time [, (to) =@, (to), @y (to) =@y (to)],

and to the slow variations a@fz, a measurement of the indi- which could ensure, at least initially, a similar evolutiomder
vidual spins of the torus and the black hole or even a simpleadiation reaction for the two waveforms.

detection of the torus seems unfeasible. Besides inclusion of radiation reaction, three other ap-

SpacetimeB is considered in figurds [1-12, in which we proaches to improve the estimates computed in this paper are
report the quantity,._ +da = (J,.,, +0J)/(M,,,. +dM)>  also worth considering. The first and most obvious one con-
for external (witha,.,, = J,.../M2 = 0.224) and internal sists of replacing the “kludge” waveforms with more rigasou
(with a,,, = Ji.../M2 = —1.74 x 10~3) orbits, respec- Waveforms, solutions of Eqs. {10) aid(13), possibly neglec
tively. As can be seen, the correctionsare, in both cases, ing the fluid perturbations appearing on the right-hane-sid
rather large and rapidly varying: an observer could propabl of Eq. (10) (the latter could be a rather good approximation
distinguish this spacetime from a pure Kerr one using estifor orbits far enough from the torus.). Doing this in praetic
mates of the spin obtained by analyzing the waveform at difis certainly not trivial since Eqs._(1.0) have been solved/onl
ferent times, but would have little chance to measure the spifor a Schwarzschild spacetime [29] so far. The second im-
of the central black hole correctly and should considerterbi provement is simpler and involves considering tori which ar
very far from the system in order to achieve accurate meaRot as compact and close to the black hole as the ones stud-
surements of the total spin. This was to be expected, sinded here, but are instead a better approximation of those ob-
spacetimeB has a large ratia/.,_/J,,., which causes the served around SMBHSs in AGNs. Finally, the third possible
quadrupole parameteto be large (cf. Tablg I). improvement involves the extension of the present analgsis

Before concluding this section, it is worth commenting Non-equatorial orbits. While this is more complicated as on
on how robust and generic these results are. While we bekannot require the strict equality of the orbital frequesdin
lieve they represent the first attempt to model consistentlgontrastto Kerr, Eqs[(23]=(P6) indicate that in generatth
the gravitational-wave emission from spacetimes thatatevi ¢-and¢-motions are not periodic in the time coordingtehe
considerably for Kerr due to the presence of matter, the apMotionsin the -, §- and¢-directions are almost periodic if the
proach followed here has the obvious limitation of neglect-torus is not too massive and hence the present analysis can be
ing radiation-reaction effects and thus of consideringavav €xtended straightforwardly in terms of these almost-ticio
forms only over a dephasing time which is typically of days motions.
or weeks. Itis therefore possible, if not likely, that catesing
waveforms over a timescale comparable with LISA's planned
lifetime (i.e. 3-5 years) would lower the overlaps computed VI. CONCLUSIONS
here and thus reduce the impact of a confusion problem.

As already mentioned, a simple way to include radiationre- EMRIs are expected to be among the most important
action would consist of using the adiabatic approximatimth a sources for LISA and, besides mapping accurately the space-
thus considering motion along a geodesic with slowly changtime around SMBHSs, they might also shed light on the distri-
ing parameters. In particular, approximate (*kludge”) g  bution of matter around them. We have here studied EMRIs
sions for the fluxed”, L, and(@ in Kerr have been derived and the corresponding gravitational-wave emission in epac
using post-Newtonian expansions|[51}, 52], recently coecbc times that are highly-accurate numerical solutions of time E
using fits to the fluxes computed rigorously with the Teukol-stein equations and consist of an SMBH and a compact torus
sky formalism [53]. Likewise, it may be possible to adopt with comparable mass and spin. We underline that the tori
similar strategies in non-Kerr spacetimes. For instanade€  considered heréo notrepresent a model for the accretion
& Barack [25] recently proposed including radiation reanti  disks in AGNs but, rather, are a phenomenological model for a
in quasi-Kerr spacetimes by using post-Newtonian fluxes ircompact source of matter close to the SMBH. Our goal in this
which the leading-order effect of the quadrupole of the spac paper has therefore been that of maximizing the impact sf thi
time is taken into account, potentially eliminating the €on matter on the waveforms, investigating whether gravitetio
fusion problem. Nevertheless, it is still unclear at thisget wave observations will be able to reveal its presence. This
whether post-Newtonian fluxes will be a good approximatiorhypothetical matter source, even if it exists, may not be de-
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orbits in spacetimé3, we haveu, ., = ay, = —1.74 x 10~ (cf. Table]).

tectable otherwise, being too close to the central SMBH andire produced by purely geodetic motion, these waveforms are

possibly “dark”. valid only over a rather short “dephasing” timescale. OlNgra
Using the semi-relativistic approach proposed in Ref.,[21] We find that waveforms produced by orbits having the same

we have compared kludge waveforms produced by equatdatus rectum and eccentricifyande are considerably differ-

rial orbits in non-pure Kerr spacetimes with waveforms pro-€nt throughout the whole space of paramefgrs:). On the

duced by equatorial orbits in Kerr spacetimes having theesamother hand, comparisons of waveforms produced by (equato-

mass and spin as the non-pure Kerr spacetimes. Because tH&3f) orbits having the same- and ¢-frequencies, with this
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condition being achieved by changing the latus rectum and We start by rewriting the Einstein equations in a more con-
eccentricity of the orbits in the Kerr spacetime, producerev venient form in which we isolate the perturbation as| [58, 61]
laps O > 0.95 for orbits far from the black hole-torus sys- B
tem, hence pointing out a confusion problem. This overlap aW =g — (—g)'?g" (A1)
decreases rapidly as one considers orbits which are close to , , , o
the torus, indicating that in the strong-field region no eenf Wheren"” is the Minkowski metric. Since far from the source
sion problem is present. Finally, if the equality of theand _the spacetime reduces to Mlnkowsk|_plus asmall per';urbat_lo
¢o-frequencies is obtained by changing the mass and spin &€ 9 = 7, the first-order pertgrbqﬂorjs there coincide with
the Kerr spacetime while maintaining fixed the latus rectumt?, i-€- H* = h#* 4 O(m /M), with h#*” being the trace-
and the eccentricity of the orbit, the resulting overlagsary ~ reversed potentials defined in Egl. (8). _
hlgh, with ©® > 0.99 for essentially all of the orbital parame- If We_ n_ow reSFrlCt our attention to a reglo_n of the spacetlme
tersp ande, indicating a confusion problem that is less severeVhere itis possible to choose the harmonic gauge
only lfor a few Qrbns very clo_se to the torus. . . 93 = 0 (A2)

This confusion problem in the mass and the spin might
therefore be more serious than the one involving latus recthis is always possible far enough from the source) fiifle
tum and eccentricity. Stated differently, an observeryana  Einstein equations give [61]
below the dephasing timescale a gravitational waveform pro -
duced by an EMRI in a black hole-torus system would not be Ot P = —1677°7 (A.3)
able to distinguish it from one produced in a pure Kerr space- _ )
time. This observer would therefore associate the EMRI tgVhereUa.. = 7*79,0, is the flat-spacetime wave opera-
a Kerr SMBH whose mass and spin would however be estitor- The right-hand side is given by the effective stressrgy
mated incorrectly. pseudotensor

While these results represent the first attempt to model con- o — 1 aa
sistently the gravitational-wave emission from spacesithat 0 = (=g)T*" + (16m) 7 TA7 (A4)
deviate considerably for Kerr, the approach followed here i
based on four approximations, namely:the use of kludge
waveforms in place of ones that are consistent solutiontseoft A28 — 16w(—§)t;’f + (H*,, ﬁﬁ'fm _ﬁaﬁw HMY |
Einstein equationsii) the use of a cut-off at the dephasing (A.5)
time beyond which radiation-reaction effects can no lorger andti‘f is the Landau-Lifshitz pseudotensor
ignored;iii) the restriction to purely equatorial orbits) the

whereA“? is given by

use of tori that are very compact and close to the black hole.  167(—g)t*? = g\.g"?H  H " (A.6)
Work is now in progress to relax one or more of these ap- 1 o R
proximations, with the expectation that this will lead teead +§§AM§°‘[5H7AP”H§“ — 2§, g H) H

serious confusion problem. 1 o
+3 (2G°°G" = GG ) (200 pGor — GpoGur ) HA HE
Because of the gauge conditidn (A.2), the source term of
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proximation one easily gets the usual quadrupole formela (s

tronomy". Ref. [58] for details):
o 2 [d2]%
_ iz ) =22 , (A.9)
Appendix: FROM THE EINSTEIN EQUATIONSTO THE r | dt'? ety
SEMIRELATIVISTIC APPROACH B -
() = /Too(f’,t/)a:”a:”dgx’ , (A.10)

Although the main motivation for the semirelativistic ap-
proach we use in this paper is the the surprising agreemaint thwherer? = & - . Note that one can easily relax the slow
“kludge” waveforms show in Kerr with the rigorous wave- motion assumption by including the octupole terms [62] or
forms computed using the Teukolsky formalismi [50], one careven all the higher order multipoles (the formula is due to
also try to make sense of it using the Einstein equations.  Pressl[63]).



Eq. [A9) clearly does not allow one to compuié”’
directly, because its right hand side dependsipt’ [cf.
Eq. (Ad)]. The semirelativistic approximation consists i
deed inpretendingthat H is “small”: making this assump-
tion, one can neglect, in the expression {A.4) for the eiffect
stress-energy tensef’, the terms quadratic i/ *” and the
terms in whichH % is multiplied by the mass: of the small
body. In addition, the semirelativistic approximationcaite-
glects all the terms involving the stress-energy tensohef t
fluid: with these assumptions?” can be written as

709z, t) = m~(t) 0% (7 — Z(t)) , (A.11)

& ) = mA(t) £(t) (& - 2(t)) (A.12)

TU(E, 1) = mAy(t) 2 (t) 2 (8) 6PN (Z — Z(t)),  (A13)
y=(1—-6;549)712
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where the dot indicates the derivative with respect to the co
ordinate timet and the trajectory’(¢) of the small body is
obtained by solving the geodesic equations, which are ohdee
contained in Eq.[{AlB). Note that Eqs. (Al11)-(Al13) repre-
sent the stress-energy tensor of a small body moving along
the trajectoryzi(¢) in a Minkowski spacetime, which con-
stitutes exactly the assumption on which kludge waveforms
are based. In particular, the quadrupole momieni (A.10) re-
duces, in the slow motion approximation, to its textbook ver
sion I (t) = mz'(t)z7(t), while analogous simplifications
happen for the octupole and Press formulas (see Ref. [50] for
details).

Having calculatedd™ ~ h%, it is then a trivial task to
project out the gauge invariant transverse traceless rbartu
tionsh andhy at infinity (see for instance Refs. [50,/58] for
details).
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