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Dynamics of compact object clusters: a post-Newtonian study
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ABSTRACT

Compact object clusters are likely to exist in the centres of some galaxies because of mass
segregation. The high densities and velocities reached in them need a better understanding.
The formation of binaries and their subsequent merging by gravitational radiation emission
are important to the evolution of such clusters. We address the evolution of such a system in a
relativistic regime. The recurrent mergers at high velocities create an object with a mass much
larger than the average. For this purpose we modified the direct NBODY6++ code to include
post-Newtonian effects on the force during two-body encounters. We adjusted the equations of
motion to include for the first time the effects of both periastron shift and energy loss by emission
of gravitational waves, and so to study the eventual decay and merger of radiating binaries.
The method employed allows us to give here an accurate post-Newtonian description of the
formation of a runaway compact object by successive mergers with surrounding particles,
as well as the distribution of characteristic eccentricities in the events. This study should
be envisaged as a first step towards a detailed, accurate study of possible gravitational wave
sources, thanks to the combination of the direct NBODY numerical tool with the implementation
of post-Newtonian terms.
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1 I N T RO D U C T I O N

It is nowadays well established that most, if not all, galaxies harbour
a supermassive black hole (SMBH) in their centre with a mass of
some 106−9 M� (see e.g. the recent reviews by Ferrarese et al. 2001;
Kormendy & Gebhardt 2001; Ferrarese & Ford 2005). There is also
evidence for masses of 106 M� (Greene & Ho 2005). In the case
of our Galaxy this is even more established: an SMBH with a mass
of about ∼3–4 × 106 M� (Ghez et al. 2000; Eckart et al. 2002;
Schödel et al. 2003; Ghez et al. 2003) must be ensconced in its
centre. If one extends the correlation between the SMBH mass and
the stellar velocity dispersion of the bulge of the host galaxy (the
M•–σ correlation) observed for galactic nuclei (Gebhardt et al.
2000; Ferrarese & Merritt 2000) to smaller systems, like globular
clusters, one should expect intermediate-mass black holes (IMBHs)
with masses of between 103 and 104 M� to be lurking in the centres
of such stellar clusters. There are observations of M15 in the Milky
Way or G1 in M31 (Gerssen et al. 2002; Gebhardt, Rich & Ho 2002;
van der Marel et al. 2002) which are compatible with this possibility,
but N-body models of these clusters have been made which do not
require the presence of an IMBH (Baumgardt et al. 2003b).
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The densities observed in the central regions of galaxies, where
these very massive objects are located, are very high and may even
exceed the core density of globular clusters by a factor of 100 (about
107–108 M� pc−3 for the Galactic Centre, for instance), thus making
them very special laboratories for stellar dynamics.

On the other hand, it is not strictly excluded that the central mass
concentrations are not massive black holes (MBHs). Mass segrega-
tion creates a flow of compact objects like neutron stars or stellar
black holes to the central parts of the cluster (Lee 1987; Miralda-
Escudé & Gould 2000), where they may constitute a subcluster.
This could mimic the effect of the MBH, and thus give an alter-
native explanation of the properties of clusters that have undergone
core collapse, like M15 and G1 (Gebhardt et al. 2002; van der Marel
et al. 2002; Baumgardt et al. 2003a,b). On the other hand, MBHs
are favoured in the case of galaxies, in particular the Milky Way
(Maoz 1998; Miller 2006).

For the case of a globular cluster it has been deduced that stellar
black holes are probably ejected from the system. Stellar black holes
should form three-body binaries and kick each other out of the
cluster (Phinney & Sigurdsson 1991; Kulkarni, Hut & McMillan
1993; Sigurdsson & Hernquist 1993; Portegies Zwart & McMillan
2000). None the less, if the velocity dispersion is high enough, then
binaries will not be created because of three-body encounters, as
in the classical case considered before, but their potential energy
is converted to gravitational waves during two-body encounters.
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A simple way to understand this is that the components of a binary
merge before a third particle or a second binary comes in sufficiently
close to interact with them so as to eject the binary or one of its
components. Thus ejections cannot happen in such a scenario. As a
matter of fact, for velocity dispersions of �300 km s−1 the merging
time in clusters with two mass components is already shorter than
the required time between interactions before a third particle or a
second binary can bring about an ejection (Lee 1995).

Relativistic stellar dynamics are of paramount importance for the
study of a number of subjects. For instance, if we want to have
a better understanding of what the constraints on alternatives to
SMBHs are, in order to investigate the possibility of ruling out
stellar clusters, one must do detailed analysis of the dynamics of
relativistic clusters and determine in particular the core collapse time
(Miller 2006). Also, when we want to investigate more competently
the formation of MBHs, learn how the dynamics around them are,
for instance to estimate captures of compact objects on a central
SMBH via extreme mass ratio in-spiralling, or study a system of
many SMBHs, etc., the inclusion of relativistic effects is essential.

Our current work includes the study of stars on relativistic orbits
around a SMBH, so as to be able to estimate captures of compact
objects on a central SMBH via extreme mass ratio in-spiralling and
binary evolution of two SMBHs.

Efforts to understand the dynamical evolution of a stellar cluster
in which relativistic effects may be important have already been
made by Lee (1987), Quinlan & Shapiro (1989, 1990) and Lee
(1993). In his work, Lee (1993, hereafter MHL93) addressed the
problem of the dynamical evolution of a cluster composed of com-
pact objects by, with some approximations, adding an estimate of
the gravitational wave emission term correction to NBODY5 (see
Section 3). Nevertheless, he neglected the first two post-Newtonian
terms, 1PN and 2PN (see the next section), and made use of the
formalism introduced by Peters (1964), possibly because of compu-
tational concerns. The computation of the PN corrections is CPU-
consuming, for we have to compute both the accelerations and their
time-derivatives (see next section). Also, NBODY5 is not suitable for
supercomputers or special-purpose GRAPE (GRAvity Pip E) hard-
ware; here either NBODY6++ or NBODY4 has to be used (Spurzem
1999; Aarseth 1999).

In this work we describe a new tool that allows us to address this
problem in a much more rigorous way than has been done in the
existing literature, including deviations from the Newtonian formal-
ism of the standard direct NBODY6++ code (Spurzem 1999), based
on Aarseth’s direct NBODY codes (Aarseth 1999). We have modified
the code in order to allow for post-Newtonian (PN ) effects, imple-
menting in it the 1PN , 2PN and 2.5PN corrections without any
further approximation than those inherent to the calculation of the
PN terms themselves (Soffel 1989).

In Section 2 we give a brief description of the method and of the
implementation of the PN terms into a standard NBODY code. An
analysis of the formation and evolution of a particle that gains more
and more mass from successive mergers in the system (the ‘runaway
particle’) is made in Section 3 and, to conclude, in Section 4 we
present a summary and discussion of the main results obtained.

2 M E T H O D : D I R E C T S U M M AT I O N N B O DY

W I T H P O S T- N E W TO N I A N C O R R E C T I O N S

The version of the direct summation NBODY method that
we have employed for the calculations, NBODY6++, includes
‘Kustaanheimo–Stiefel (KS) regularization’. This means that when
two particles are tightly bound to each other or the separation be-

tween them becomes smaller during a hyperbolic encounter, the
couple becomes a candidate for a ‘KS pair’ in order to avoid prob-
lematically small individual time-steps (Kustaanheimo & Stiefel
1965a,b). We modified this scheme to allow for relativistic correc-
tions to the Newtonian forces by expanding the acceleration in a
series of powers of 1/c (where c is the speed of light) in the follow-
ing way (Damour & Dervelle 1981; Soffel 1989):

a = a0︸︷︷︸
Newt.
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1PN
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grav. rad.

+O(c−6), (1)

where a is the acceleration of particle 1, a0 = −Gm2n/r2 is the New-
tonian acceleration, G is the gravitational constant, m1 and m2 are the
masses of the two particles, r is the distance between the particles,
n is the unit vector pointing from particle 2 to 1, and 1PN , 2PN
and 2.5PN are post-Newtonian corrections to the Newtonian accel-
eration, responsible for the pericentre shift (1PN , 2PN ) and the
quadrupole gravitational radiation (2.5PN ), respectively, as shown
in equation (1). The expressions for the accelerations are
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In the last expressions v1 and v2 are the velocities of the particles.
For simplification, we have denoted the dot product of two vectors,
x1 and x2, as x1 x2. The basis of direct NBODY4 and NBODY6++ codes
relies on an improved Hermit integrator scheme (Makino & Aarseth
1992; Aarseth 1999) for which we need not only the accelerations
but also their time derivatives. These derivatives are not included in
these pages for succinctness. We integrated our correction terms into
the KS regularization scheme as perturbations, similarly to what is
done to account for passing stars influencing a KS pair. Note that
formally the perturbation force in the KS formalism does not need
to be small compared with the two-body force (Mikkola 1997). If
the internal KS time-step is properly adjusted, the method will work
even for relativistic terms becoming comparable to the Newtonian
force component.

3 DY NA M I C A L E VO L U T I O N O F A C L U S T E R

O F C O M PAC T O B J E C T S

3.1 The initial system and units

The units used in our models correspond to the so-called N-body
unit system, in which G = 1, the total initial mass of the stellar
cluster is 1 and its initial total energy is −1/4 (Hénon 1971; Heggie
& Mathieu 1986). The system was chosen to be initially identical
to that employed by MHL93: i.e. a spherical cluster with a num-
ber of compact stars N� = 103 of identical mass m. These were
distributed in an isotropic Plummer sphere, which means that the
phase-space distribution function is proportional to |E|7/2, where E is
the energy per unit mass of one star. The density profile is thusρ(r ) =
ρ0[1 + (r/RPl)

2]−5/2, where RPl is the Plummer scaling length.
For such a model the N-body length unit is Ul = (16/3π)RPl.

In the situations considered here, the evolution of the cluster is
driven by two-body relaxation. A natural time-scale is the (initial)
half-mass relaxation time. We use the definition of Spitzer (1987),

Trh(0) = 0.138N
ln �

(
R3

1/2

GMcl

)1/2

. (5)

For instance, for a Plummer model, the half-mass radius is R1/2 =
0.769Ul = 1.305RPl. Mcl is the total stellar mass and ln � =
ln (γ N ) is the Coulomb logarithm.

For the situation considered in this work, the square ratio of the
central velocity dispersion σ cen to the speed of light c,(

σcen

c

)2

≈ GMcl

Rclc2
≈ Rcl

Schw

Rcl
, (6)

is big enough, so that we can expect that relativistic effects play a
noticeable role in the evolution of the system. For this aim, we chose
σ cen to be ∼4300 km s−1. G is the gravitational constant, Rcl is the
radius of the cluster and Rcl

Schw = 2GMcl/c2 is the Schwarzschild
radius of the cluster.

In our calculations the PN terms are acting all the time during
the calculations but obviously become important only when veloc-
ities are high. Our criterion for particles to merge is that they reach
their common Schwarzschild radius RSchw – i.e. the sum of their
Schwarzschild radii. This is of course approximate because the PN
treatment breaks down when particles are that close (and v ∼ c), but
this should not matter, for the merging phase is much shorter than any
stellar dynamical time. The gravitational recoil, the expected loss
of linear momentum in asymmetric systems in which the merger
remnant receives a kick from the gravitational wave emission, obvi-
ously does not show up in our models, because we truncate the series
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Figure 1. Time evolution of merging masses. The formation of the runaway
particle is about the time of the cluster core collapse. Fore more details, see
text.

at 2.5 PN and it is only to be treated as an effect of higher-order
terms.

3.2 Formation of a runaway body

Even though we started with a single-mass stellar system, the masses
of some objects in the cluster increased by relativistic mergers. In
Fig. 1 we survey the time evolution of the mass increase. We find a
number of mergers that lead to the variation of the initial single-mass
situation. The particle masses increase after the relativistic merging
events, since we are assuming that the particles merge perfectly
when they reach the distance of their RSchw (see above). We find
the formation of a runaway particle that reaches almost 6 per cent
of the initial total mass by the end of the simulation (see Fig. 1). We
have denoted the mass of the runaway body by red crosses and the
mass of other mergers by blue crosses.

One can observe that the runaway body dominates the system
after its fast-growing phase around 300 time-units, which is ap-
proximately the moment at which the core collapse of the system
happens, as we can see in Fig. 2. Only some merger events which
are independent of the runaway body can occur after this phase.
This fast-growing phase occurs at the core collapse of the system
(Meylan & Heggie 1997). In Fig. 2 we follow the evolution of the
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Figure 2. Evolution of the Lagrangian radii corresponding, from bottom to
top, to 1, 5, 10, 20, 30, 50, 70, 90 and 100 per cent of the total mass.
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Figure 3. Evolution of the runaway particle mass in units of the core mass
(at the same time).

so-called Lagrangian radii of the system, spheres containing 1, 5,
10, 20, 30, 50, 70, 90 and 100 per cent of the total mass of the clus-
ter; the centre of the cluster is defined to be the centre of the mass
density. Since the runaway particle is included, and in the end its
mass reaches 5 per cent of the total initial mass of the cluster, the
curves corresponding to 1 and 5 per cent roughly correspond to its
evolution. We observe that the runaway stops the core collapse and
allows for an expansion.

The process of mergers translates directly into a production of
energy in the central regions of the cluster. The centre adapts to
supply the cluster with the same amount of energy that it can obtain
via relaxation, and this amount is determined by the large-scale
structure.

According to, for instance, the table given in Freitag & Benz
(2001), the standard value for the core collapse time is roughly
∼15–20 times the half-mass relaxation time T rh. We find neverthe-
less that the core collapse time is tcc ∼ 11T rh, with a value of γ =
0.11 in the Coulomb logarithm (Giersz & Heggie 1994), which
clearly suggests that the PN terms accelerate the collapse. This
can be seen more clearly in Fig. 2, which corresponds to the same
simulation but without making use of relativistic corrections. There
we can see that tcc ∼ 380 ∼ 14T rh.

In Fig. 3 we show the evolution of the runway particle mass
normalized to the mass contained in the core of the cluster, defined
as in Casertano & Hut (1985). The mass of the runway particle
can grow only up to the core mass. The core mass continuously
decreases as the core collapse proceeds. We see this in the figure,
where the runaway particle grows and saturates to the core mass
after ∼1200 time units.

The evolution and formation of the runaway particle mass are
not as fast as they were in MHL93, as we can see in fig. 5 of that
paper. For our simulation the sudden jump in the growth of the
mass comes in slightly later and is smoother, reaching final values
for the runaway particle mass about three times smaller than in
MHL93. The differences can be attributed to the following: MHL93
calculated the influence of the 2.5PN term on the orbits in an
unperturbed pair and made them merge after a decay time-scale,
following the Peters (1964) formalism. This requires the assumption
that particles move along their orbits on an ellipse, only valid when
they are very far from the relativistic regime. On the other hand,
we implemented the 2.5PN term in the code itself, so that the
relativistic corrections are a natural feature the influence of which on
the evolution of the system comes in when the velocities of the stars

become high enough. The influence of the 1PN and 2PN terms
corresponds to the conservative-phase evolution of the orbit and
cannot be relevant because they do not change its energy and angular
momentum.

4 C O N C L U S I O N S

In this work we have presented a study of the formation and evolu-
tion of a runaway particle in a dense cluster of compact objects –
which initially had the same mass – as a result of relativistic merg-
ers. We have employed a modified version of the direct summation
NBODY6 code in which we have implemented the 1PN , 2PN and
2.5PN terms to take into account post-Newtonian corrections to
the standard NBODY Newtonian acceleration.

The runaway particle reaches at the end of our simulations
∼6 per cent of the initial total stellar mass of the cluster. We have also
compared our work with a previous result based on a more approxi-
mate scheme, the approach described by Peters (1964), and we have
found that the net result is that the growth of the runaway particle in
the study of MHL93 is ∼3 times larger. Since the 1PN , 2PN terms
modify the extrinsic features of the orbits (e.g. the orientation) but
do not affect their intrinsic parameters (like frequency), we there-
fore can expect their effect to be averaged out during the evolution
of the system and not influence the merger rates. One should thus
attribute the differences to the approach that Man Hoi Lee made,
somehow inadequate for the velocity regime considered.

This study should be envisaged as successful test of the code,
which has been shown to be robust. This tool can be applied to
other astrophysical scenarios that require a post-Newtonian treat-
ment. This includes on-going work, such as e.g. captures of compact
objects by a SMBH in a galactic centre, also known as extreme mass
ratio in-spirals. One of the fundamental aims is to explore the param-
eter space rigorously, so that we can provide the LISA data analysis
community with realistic estimates of, for instance, the eccentric-
ity, mass ratio, etc., at the beginning of the final merger, when the
smaller compact object enters the LISA band. An assumption for the
initial parameter space is necessary in order to develop waveform
‘banks’ for this kind of event. One must note here that the inclusion
of the 1PN and 2PN terms is very relevant, for resonant relaxation
(or Kozai) effects, which may increase the rate of in-spiral signifi-
cantly, may be strongly affected by relativistic precession and may
thus have an impact on the number of captures (Kozai 1962; Hopman
& Alexander 2006). The inclusion of higher order PN terms is also
part of the current studies, and will also shed light on other aspects of
this subject (spin–spin coupling, spin–orbit interaction and radiation
recoil).
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