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Abstract.
GEO 600 is an interferometric Gravitational Wave detector with a 600 m arm-

length and which uses a dual-recycled optical configuration to give enhanced sensitivity
over certain frequencies in the detection band. Due to the dual-recycling, GEO 600
has two main output signals, both of which potentially contain Gravitational Wave
signal. These two outputs are calibrated to strain using a time-domain method. In
order to simplify the analysis of the GEO 600 data set, it is desirable to combine
these two calibrated outputs to form a single strain signal that has optimal signal-to-
noise ratio across the detection band. This paper describes a time-domain method for
doing this combination. The method presented is similar to one developed for optimally
combining the outputs of two colocated Gravitational Wave detectors. In the scheme
presented in this paper, some simplifications are made to allow its implementation using
time-domain methods.

1. Introduction

GEO 600 [1], is part of an international network of gravitational wave observatories
which is searching for gravitational wave signatures from various source types.
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GEO 600 is the only long-baseline dual-recycled Michelson Interferometer in the
world. With its 600 m arm-length, it should, when fully commissioned, be sensitive
to strain amplitudes of the order of1× 10−22 1/

√
Hz.

GEO 600 uses a dual-recycling configuration which means that two additional
mirrors are added to the standard Michelson Interferometer optical layout. One mirror,
the power-recycling (PR) mirror, is added at the input port of the Michelson. Since the
Michelson interferometer in GEO 600 is operated at a dark fringe, the light reflected
from the input port is made resonant by the cavity formed between the PR mirror and
the Michelson. Another mirror, the signal-recycling (SR) mirror, is placed at the output
of the Michelson to create a resonant cavity for any signal sidebands that leave the
interferometer (see [2, 3] for details).

The use of signal-recycling gives an enhancement in strain sensitivity over a certain
band of frequencies. This band is defined by the reflectivity of the SR mirror and
the length of the SR cavity. One consequence of using such an optical scheme is
that the gravitational wave (GW) signal gained from demodulating the detector output
at the frequency of the control sidebands is spread between the two demodulation
quadratures. This means that, for a given demodulation phase, the GW signal content
in one quadrature can only be optimised for one frequency; at all other frequencies, the
demodulation phase is not optimal. In the absence of noise, the complete signal could
be recovered by calibrating only one of the output quadratures. However, since there is
noise in the system, the data from both output quadratures need to be calibrated such that
at any given frequency, the data stream with the best signal-to-noise ratio is available
for analysis. Having calibrated both output data streams, we have two estimates for the
detected strain of the interferometer. This is somewhat undesirable since a choice must
be made, based on the analysis to be performed, as to which strain signal to analyse.

To remove the need for this choice, we seek to combine the two calibrated output
signals of GEO 600 into a single strain signal that has an optimal signal-to-noise ratio
at all frequencies in the detection band (40 Hz to 6 kHz). In addition, as we will see,
the combination of the two calibrated streams, if done correctly, leads to a signal that is
more sensitive than either of the two separate signals. In order to fit in with the current
calibration scheme of GEO 600, we want to do this combination in the time-domain.
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2. Time-domain calibration of GEO 600

The calibration of GEO 600 is done using a time-domain method. Calibration lines
are continuously injected into the differential length-control actuators of the Michelson
interferometer at a few frequencies across the detection band. The response of the
detector to this differential displacement, and hence to strain, is computed once per
second by forming the transfer function from the injection point to the two detector
outputs; a model of this transfer function is then fit to the measurements. This model
is then inverted and used to create time-domain filters. By filtering the two detector
outputs,P (t) andQ(t), through these time-domain filters, we recover two estimates,
hP(t) and hQ(t), of the apparent detected strain of the interferometer. The details,
development, and application of the calibration scheme are given in [4, 5, 6, 7]. The
method runs in real-time with a latency of a few seconds.

3. Optimal combination of two calibrated output signals of GEO 600

The combination of the two calibrated output signals of GEO 600 can be done by
considering the variance of the noise in the two signals in a particular frequency bin.
Here we wish to combine the two signals together so as to achieve the best estimate of
the detected gravitational wave strain. In addition, we want to take into account any
correlations that may exist between the two calibrated output signals.

3.1. Maximum likelihood method of combining two signals

We start from the assumption that the two calibrated output signals,hP andhQ, contain
the same gravitational wave signals. This is true to a level consistent with the accuracy
of the calibration of each output signal. In addition, each calibrated output contains
noise components which will, in general, be different, but may be correlated to a varying
degree at some frequencies. Then we can write

hP(t) = h(t) + NP(t), (1)

hQ(t) = h(t) + NQ(t), (2)

whereh(t) is the underlying signal we seek, andNP(t) andNQ(t) represent the noise
in the two calibrated output quadratures.
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The method centres around the covariance matrix of the two signals:

C =

(
σPP σPQ

σQP σQQ

)
,

whereσQP =
〈
ÑPÑ∗

Q

〉
= σ∗PQ and̃ denotes Fourier transform. Here, the cross terms

σPQ andσQP are the variances of those signal components that are common to bothhP

andhQ. These terms are, in general, complex functions of frequency.

For a single frequency,f , it can be shown that the optimal combination of the two
calibrated strain signals is given by

ĥ(f) =
hP(f)σQQ(f) + hQ(f)σPP(f)− σPQ(f)hP(f)− σQPhQ(f)

σPP(f) + σQQ(f)− [σPQ(f) + σQP(f)]
, (3)

where ĥ(f) is a maximum likelihood estimate for the underlying gravitational wave
strain signature,h(f). An outline of the derivation of Equation3 is given inAppendix
A. (This expression for̂h(f) can also be derived using a minimum variance method,
see Appendix A of [8] for details.)

3.2. Computing the weighting functions

In order to apply the formula given in equation3 in the time-domain, we must compute
the optimal combination for each frequency in the detection band, and convert this array
of ‘weights’ into time-domain filters.

The variance terms,σPP andσQQ, in equation3 can be estimated by looking at
the noise components of the two calibrated signals at each frequency; in other words,
by considering the noise floor of the power spectral density (PSD) of each signal. (The
variance of a particular signal at a given frequency is proportional to the mean value of
the PSD at that frequency.) How good an estimate this is depends on the observation
time and stationarity of the signal when making the PSD. If the noise is stationary, then
the estimate of the PSD, and hence of the variance, can be improved by taking more and
more averages. If the noise is non-stationary, then the PSD needs to be constructed over
the appropriate time-scale. The termsσPQ andσQP can be estimated for each frequency
by considering the noise floor of the cross-power spectral density ofhP andhQ; the
same considerations of stationarity and observation time apply.
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Figure 1. Power- and cross-spectral densities of the two calibrated outputs of
GEO 600. Noise-floor estimates constructed from a running median estimator are also
shown.

Figure1 shows typical power spectral density estimates ofhP andhQ, together with
an estimate of the cross-power spectral density (CSD); a noise floor estimate for each
is also shown. The phase components of the CSD are shown in Figure2. The noise
floor estimates are constructed by using a running median estimator. For a particular
frequency bin,f , the values in the surroundingN bins are sorted in ascending order and
the tophcut% are discarded in order to discard outliers (from lines, for example). The
median of the remaining values is taken as an estimate of the noise floor at frequencyf .
For the noise floor estimates shown in Figure1, N = 32 bins, andhcut = 0.9.

Equation3 can be re-written such that we have two complex frequency-dependent
weighting factors,A(f) andB(f), for hP andhQ:

ĥ(f) = A(f)hP(f) + B(f)hQ(f), (4)
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Figure 2. The phase components of the cross-spectral density ofhP(t) andhQ(t). A
‘noise-floor estimate’ is also shown.

where,

A(f) =
σQQ(f)− σPQ(f)

σPP(f) + σQQ(f)− [σPQ(f) + σQP(f)]
, (5)

B(f) =
σPP(f)− σQP(f)

σPP(f) + σQQ(f)− [σPQ(f) + σQP(f)]
. (6)

Figure3 shows an example of the magnitude and phase of the weighting functions
for the data used in Figures1 and2.

3.3. Designing the filters

The weighting functions that were computed in the previous section are, in general,
complex. In order to make time-domain filter representations of these two weighting
functions, we need a way to compute time-domain filters that have arbitrary magnitude
and phase responses. One such method is to consider the magnitude and phase responses
separately. We can writeA(f) andB(f) in terms of their magnitude and phase parts,
such that

A(f) = a(f)eiφa(f), (7)

B(f) = b(f)eiφb(f). (8)

Now we construct 4 filters,MP, PP, MQ, andPQ which have the frequency
responses,a(f), eiφa(f), b(f), andeiφb(f) respectively.
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Figure 3. The optimal weighting functions for combining signalshP(f) and hQ(f)
which have the power- and cross-spectral densities shown in figure1. Also shown
are the overall magnitude and phase responses of the filters pairs designed using the
method described in the text.

Construction of the time-domain filters,MP andMQ, is done by assuming that the
response we seek (a(f) andb(f)) are the Fourier transforms of the impulse responses
of the two linear-phase time-domain filters [9, 10, 11]. For this to be the case, we need
to generate the appropriate phase delay for the two filters. This is just a frequency
dependent linear phase shift defined by the filter order we require. If we want filters
of orderNtaps, then we construct a grid ofNG equally spaced frequency points that
run from 0 to the Nyquist rate and estimate the magnitude and phase at each point.
The magnitude estimates come directly froma(f) andb(f) (interpolated or averaged
as necessary), and the phase components are just linear with frequency starting from 0
phase shift, such that

M̃P(f) = a(j) exp

[
−(Ntaps − 1)iπj

2(NG − 1)

]
(9)



Optimal time-domain calibration ofGEO 600 8

M̃Q(f) = b(j) exp

[
−(Ntaps − 1)iπj

2(NG − 1)

]
, (10)

whereM̃P(f) denotes the response of the filterMP (the single-sided Fourier transform
of the impulse response),i =

√
−1, andj ∈ [0 : NG).

We can then form the two-sided Fourier transform of the impulse response of the
filter by concatenating the vector̃MP(f) with the reverse sequence of the conjugate of
M̃P(f); the same is done for̃MQ(f). Thus we have a frequency series that runs from
−fs/2 to +fs/2. This is what we would get from the Fourier Transform of a real data
series. If we take the inverse transform, and apply a window function, we get the filter
coefficients we seek forMP andMQ. The time shifts introduced when applying these
filters can simply be removed by appropriate buffering of the filtered signals.

The filters representing the phase components of the weighting functions are
constructed as all-pass filters. Here the magnitude response of the filter is designed to be
unity for a significant part of the pass-band. The phase response is an approximation to
that phase response we seek. These filters can be designed by minimising the difference
between the desired response,eiφa(f), and the response of the filter,̃PP(f) using, for
example, a non-linear least-squares routine. The error-function that was minimised in
this application was

ε = Σk|P̃P(fk)− eiφa(fk)|2. (11)

An example of the combined magnitude and phase response ofMP with PP, and
MQ with PQ is shown in Figure3. Also shown are the original weighting functions.
(The linear-phase response ofMP andMQ is omitted for clarity). The examples shown
are 300 tap filters for the magnitude parts, and 512 tap filters for the phase parts.

3.4. Results

Having constructed the time-domain filters, we can easily compute the optimalh(t)

signal in the time-domain by

h(t) = M̃P {hP(t)}+ P̃P {hP(t)}+ M̃Q {hQ(t)}+ P̃Q {hQ(t)} . (12)

The result of applying this to real GEO 600data is shown in Figure4. Here we see
three amplitude spectral densities constructed fromhP(t), hQ(t), andh(t).
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Figure 4. Snap-shot amplitude spectral densities (ASD) of the two calibrated outputs
of GEO 600, hP(t), hQ(t), and of the optimally combined signal,h(t). Injected
calibration lines are highlighted with filled markers. An ASD of the strain induced by
the injected calibration signal is also shown with the peaks marked by the grey circles.

An amplitude spectral density of the injected calibration signal calibrated to strain
is also shown. The calibration peaks used for determining the detector response are
indicated with filled markers. In order to confirm that any gravitational wave signal
in h(t) is not corrupted during the combining process, we can look at a relative
comparison of the calibrated and combined strain signals to the induced strain signal.
By computing the magnitude and phase of the calibration peaks in all signals, we can
form the magnitude ratio and phase difference between the induced strain, and the three
computed strain signals. Figure5 shows the results of this calculation for the data stretch
shown in Figure4. We can see that, at least at these spot-frequencies, the combined
h(t) preserves the signal present in the underlyinghP(t) andhQ(t) to a good degree.
The phase-lag seen at low frequencies in this comparison is the result of two high-pass



Optimal time-domain calibration ofGEO 600 10

filters; one applied in the calibration routine to restrict the dynamic range of the signals,
and one applied in the spectral analysis to reduce the effect of spectral leakage from
the window function. We can also see from Figure5 that the combination of the two
calibrated data streams is poorer at low frequencies compared to high frequencies. There
are two possible reasons for this: the calibration of the individual strain signals,hP(t)

andhQ(t), is less good at these frequencies due to effect of the Michelson length-control
servo (which has unity gain around 100 Hz) on the calibration model; a series of strong
lines and features around 100 Hz makes it more difficult to accurately estimate the noise
floor and hence to create suitable time-domain filters.
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Figure 5. The magnitude ratio and phase difference of the strain induced by injecting
calibration lines to the detected strain as measured in the two calibrated output signals,
as well as the combined strain signal. The comparison is made at each calibration line
frequency.
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4. Summary and future work

The on-line calibration scheme used at GEO 600 was extended to include an optimal
time-domain combination of the two calibrated output signals. The result is a single
h(t) signal that is at least as sensitive as either of the two calibrated output signals at all
frequencies in the detection band, and is a significant improvement at some frequencies.
One further step is to allow for time-variation in the optimal combination filters. This
means determining the filters on-line periodically, and then smoothly moving from using
one set of filters to the next. This is in principle straightforward, with the complexity
lying only in the implementation since we wish to maintain the real-time, low-latency
nature of the current system.
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Appendix A. Maximum likelihood estimator for h(t)

We are given two pieces of data,hp andhq, which are generally complex and are related
to a complex parameterh by

hp = h + Np (A.1)

hq = h + Nq. (A.2)

We write this in vector form as

d = h + N. (A.3)

The noises are complex and correlated with a (Hermitian) covariance matrix

C =

(
σpp σpq

σqp σqq

)
(A.4)

where

σij = 〈NiN
∗
j 〉 (A.5)
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and∗ denotes complex conjugate. The determinant of this matrix is

det C = σppσqq − σqpσpq = σppσqq − |σpq|2, (A.6)

and its inverse is

C−1 =
1

det C

(
σqq −σpq

−σqp σpp

)
. (A.7)

The likelihood ofh is the probability of the data givenh, taken to be a complex bivariate
gaussian, i.e.,

p(hp, hq|h) =
1

π2det C
exp

[
−(d− h)HC−1(d− h)

]
, (A.8)

with xH the conjugate transpose ofx. The maximum likelihood estimator forh is the
value that maximises this probability, or alternatively minimises

Q = (d− h)HC−1(d− h) (A.9)

= dHC−1d + hHC−1h− 2<{hHC−1d} (A.10)

with respect to the real and imaginary components ofh. Our constraints are therefore
∂Q

∂<{h}
= 0;

∂Q

∂={h}
= 0. (A.11)

Multiplying out individual terms we get

hHC−1h =
hh∗

det C
(σpp + σqq − σpq − σqp) (A.12)

and

hHC−1d =
h∗

det C
[hp(σqq − σpq) + hq(σpp − σqp)], (A.13)

so the maximum likelihood estimator ofh is

ĥML =
hp(σqq − σpq) + hq(σpp − σqp)

(σpp + σqq)− (σpq + σqp)
. (A.14)

Note the denominator of this is purely real.
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