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Abstract

We construct the AdS description of the Higgs branch of the finite N = 2 Sp(N) gauge theory

with one antisymmetric hypermultiplet and four fundamental hypermultiplets. Holography,

combined with the non-renormalization of the metric on the Higgs branch, leads to novel con-

straints on unknown terms in the non-abelian Dirac-Born-Infeld action. These terms include

non-minimal couplings of D-branes to bulk supergravity fields.
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1 Introduction

Many generalisations of the original AdS/CFT duality have been proposed and in par-
ticular there have been numerous articles discussing supergravity duals of theories with
matter in the fundamental representation, including examples with confinement and chi-
ral symmetry breaking. We will discuss the supergravity description of the Higgs branch
of a finite four-dimensional N = 2 gauge theory with fundamental representations 1.
This article is based on work which is expounded in more detail in [1]. Besides allowing
one to study the Higgs phase of strongly coupled large N gauge theories, this work leads
to constraints on unknown terms coupling D-branes to supergravity, as well as possible
cosmological applications [2].

The AdS description of the Higgs branch involves a supergravity background with
probe D-branes. We will specifically consider a finite N = 2 Sp(N) gauge theory which is
conformal at the origin of moduli space, and is dual to string theory in AdS5×S5/Z2, with
D7-branes wrapping the Z2 fixed subspace with geometry AdS5 × S3. This background
is the near horizon limit of a D3-D7-O7 system, with the D7-branes treated as probes.

The N = 2 theory we consider has one hypermultiplet in the antisymmetric repre-
sentation and four in the fundamental representation. For this theory, there is a known
exact correspondence between the Higgs branch and the moduli space of Yang-Mills in-
stantons [3,4] (see [5] for a review). We will show that the equations of motion obtained
from the D7-brane effective action at leading order in the α′ expansion admit solutions
which are the usual Yang-Mills instantons, despite the curved background. The existence
of these solutions is due to a conspiracy between the Yang-Mills and Wess-Zumino terms
in the D7-brane action.

At higher orders in α′, little is known about the non-Abelian DBI action in flat space,
with the exception of a few low order terms [6–9]. Even less is known about non-minimal
couplings between the world-volume gauge fields on D-branes and bulk fields (curvature,
p-forms and dilaton) which appear at higher orders in α′, although some terms of the form
R2 trF 2 have been studied [10, 11]. We will show that the F 4 corrections in the D-brane
effective action do not modify the leading order solution, but without knowing all the
coupling to bulk fields with non-zero background value we can not explicitly show that
conventional Yang-Mills instantons remain solutions at higher orders in α′. However the
exact correspondence between instantons and the Higgs branch implies that instantons
must be solutions to all orders in the α′ expansion. This leads, reversing the point of view,
to constraints on the unknown couplings. We find for example that all terms containing
bulk fields which are quadratic in the D7-brane field strength must sum to zero when
the bulk fields are set equal to their background values. This constraint is similar in
spirit to constraints on the flat space DBI action which follow from requiring that stable
holomorphic bundles solve the equations of motion [9, 12, 13].

The metric on the Higgs branch moduli space can be computed at large ’t Hooft
coupling by considering slowly varying instantons on the probe D-branes. The non-
renormalization of the metric on the Higgs branch [14] implies that the leading term
in the strong coupling expansion generated by the AdS/CFT duality must be the only

1In related work, the AdS description of the Higgs branch of a (4, 4) defect CFT was constructed
in [15].
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non-zero term, and should equal the weak coupling tree level result. We will show that
the leading term in our construction gives rise to the correct metric on the Higgs branch
and that higher order corrections vanish assuming that certain bulk – brane couplings
sum to zero.

2 Holography for an N = 2 gauge theory with fun-

damental representations

We will consider the N = 2 theory which describes the low energy dynamics of a D3-
D7-O7 system. This system consists of 4 D7-branes coincident with an O7-plane, such
that one has a consistent tadpole free string background, and N D3-branes within the
D7-O7-plane. It arises considering the near horizon geometry on a stack of D3-branes in
the vicinity of a fixed point in the type IIB orientifold T 2/(−1)F ΩI. At low energies, this
system is described by a four dimensional gauge theory with Sp(N) gauge symmetry and
SO(8) flavor symmetry. There is one hypermultiplet in the anti-symmetric representation
and four in the fundamental representation. The latter arise from open strings stretched
between the D3- and D7-branes, and have non-zero expectation values on the Higgs
branch.

At the origin of the moduli space, the theory is conformal and is dual to string theory
in AdS5 × S5/Z2 with a D7-brane wrapping the AdS5 × S3 fixed surface [16, 17]. The
near horizon geometry on the D3-branes is AdS5 × S5/Z2, with metric

ds2 =
r2

L2

(

−dx2
0 + dx2

1 + dx2
2 + dx2

3

)

+
L2

r2

(

dr2 + r2dΩ̂2
5

)

, (2.1)

where L is the radius of both the AdS5 and the S5 factors and as usual L4 = 4πgsNα′2.
In (2.1) we have denoted with xµ, µ = 0, 1, 2, 3, the coordinates on the AdS5 boundary
and with r the radial coordinate transverse to the D3-branes, r2 = X2

4 + · · · + X2
9 . In

(2.1) dΩ̂2
5 denotes the metric on S5/Z2 given by

dΩ̂2
5 = dθ2 + sin2 θ dφ2 + cos2 θ dΩ2

3 , (2.2)

where the range of φ is [0, π] instead of [0, 2π] as for an ordinary S5.
The D7-branes are at a fixed point of the orientifold, X8 = X9 = 0. After taking the

near horizon limit they fill AdS5 and wrap the S3 corresponding to θ = 0 in (2.2), which
is fixed under Z2. The induced metric on the D7-branes is

ds2 =
U2

L2
dx2

‖ +
L2

U2

(

dU2 + U2dΩ2
3

)

= υ2 dx2
‖ +

1

υ2
dX2

⊥ , (2.3)

where

U2 = r2
∣

∣

X8=X9=0
= X2

4 + X2
5 + X2

6 + X2
7

and

dx2
‖ = −dx2

0 + dx2
1 + dx2

2 + dx2
3 , dX2

⊥ = dX2
4 + dX2

5 + dX2
6 + dX2

7 .

For convenience of notation in (2.3) we have also defined the dimensionless variable υ
related to U by υ2 = U2/L2.
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3 The Higgs branch

There is a well know exact map between the moduli space of Yang-Mills instantons
and the Higgs branch of the p + 1 dimensional theories describing Dp – D(p+4) brane
systems [3, 4]. The Higgs branch corresponds to Dp-branes which are not pointlike,
but which have instead been dissolved in the D(p+4)-branes. Dissolved Dp-branes can
be viewed as instantons in the p + 5 dimensional world-volume theory on the D(p+4)-
branes [18], due to the Wess-Zumino coupling

SWZ = µp

∫

dp+5ξ C(p+1) ∧ tr (F ∧ F ) . (3.1)

The low energy degrees of freedom on the D7-branes are described by an eight-dimensional
gauge theory, but due to the curved geometry resulting from the embedding in the near
horizon geometry (2.1) of the D3-branes the existence of instanton solutions in such a
theory is far from obvious. Moreover the inclusion of higher order corrections gives rise
to an infinite number of higher dimensional couplings which could modify the solutions
of the leading order equations of motion. We will find however that despite the curved
geometry the theory admits ordinary instanton solutions which under certain assumptions
are not corrected by the inclusion of higher derivative interactions. The D7 action takes
the form,

S =
1

(2π)7gsα′4

∫

∑

q

C(q) ∧ tr (e2πα′F )

+
1

(2π)7gsα′4

∫

d8x
√−g (2πα′)2 1

4
tr(FABF AB) + · · · . (3.2)

We have not written terms involving world-volume fermions or scalars. This action
is the sum of a Wess-Zumino term, a Yang-Mills term, and an infinite number of α′

corrections represented by “· · · ”. Very little is known about the latter. Nevertheless,
the correspondence between instantons and the Higgs branch suggest that the equations
of motion should be solved by field strengths which are self dual with respect to a flat
four-dimensional metric.

Let us first consider the equations of motion to leading order in the α′ expansion2.
With non-trivial field strengths only in the directions X⊥, the leading order action for
D7-branes embedded in (2.1) with induced metric (2.3) is

S =
1

(2π)5gsα′2

(
∫

C(4) ∧ tr F ∧ F +

∫

d8x
√−g

1

4
tr(FabF

ab)

)

=
N

(2π)4λL4

∫

d4x‖ d4X⊥ υ4 1

2
tr(

1

2
ǫmnrsFmnFrs + FmnFmn)

=
N

(2π)4λL4

∫

d4x‖ d4X⊥ υ4 1

4
trF 2

+ , (3.3)

where the lowercase latin indices m label the X⊥ = X4,5,6,7 directions and, to arrive
at the last line, we have used the explicit form of the Ramond-Ramond four-form in

2In the AdS setting, the α′ expansion effectively becomes a large ’t Hooft coupling expansion.
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AdS5 × S5/Z2,

C
(4)
0123 =

U4

L4
. (3.4)

Thus, at leading order in α′, field strengths for which F+ = 0 (anti-self-dual with respect
to the flat metric dX2

⊥) solve the equations of motion due to a conspiracy between the
Wess-Zumino and Yang-Mills terms.

The correspondence with the Higgs branch moduli space of the N = 2 SYM theory
requires that the F+ = 0 configurations remain solutions when higher order corrections
are included in the D7-brane effective action. Temporarily neglecting terms which involve
non-minimal couplings to bulk supergravity fields, the action to order α′2 is given by

S =
N

λ2

1

(2π)5

∫

tr

[

1

2
x4
⊥F+

mnF+
mn − x8

⊥

4πλ

1

384

(

2F+
mnF

+
mnF−

rsF
−
rs + F+

mnF
−
rsF

+
mnF

−
rs

)

]

, (3.5)

where we have written the (known [6–8]) F 4 terms in terms of self dual and anti-self-dual
field strengths. Since the F 4 terms are quadratic in F+, anti-self-dual field strengths are
still manifestly solutions of the equations of motion of (3.5). However, even to this order
in the α′ expansion, not all the couplings to bulk fields needed for a complete proof are
known. There may also be terms of the general form R2trF 2,F4

(5)trF
2, RF2

(5)trF
2 which

effect the equations of motion in the AdS background, for which the curvature R and
Ramond-Ramond five-form F(5) are non-vanishing. Rather than proving that self-dual
field strengths solve the equations of motion, we will show that the existence of such
solutions leads to constraints on the unknown couplings.

The CP odd Wess-Zumino term proportional to υ4ǫmnrsFmnFrs is exact, with no
corrections at any order in α′. In order to preserve the F+ = 0 solutions, the quadratic
CP even term must be υ4 1

2
trFmnFmn with exactly the same coefficient. As discussed

above, this is already the case at leading order in α′. Thus, at every order in the α′

expansion, the terms of the form f(R,F(5))trF
2 must sum to zero when the bulk fields

are set equal to their AdS values.
Some terms of the form R2F 2 have appeared in the literature. These are [10, 11]

SR2F 2 = −µp(2πα′)2

∫ √
g

1

4
trFαβF αβ

[

1

24

(4π2α′)2

32π2

(

(RT )αβγδ(RT )αβγδ

−2(RT )αβ(RT )αβ − (RN )abαβ(RN)abαβ + 2R̄abR̄
ab

)]

. (3.6)

The curvature terms appearing after FαβF αβ are the same as the pure R2 terms computed
in [19]. The various curvature tensors appearing in (3.6) are defined in [19]. For the special
case of an embedding with vanishing second fundamental form, the tensors (RT )αβγδ and
(RN)abαβ are just pull-backs of the bulk Riemann tensor to the tangent and normal
bundle, indicated by greek and latin indices respectively (we emphasize that this is a
change of notation from the previous sections). The tensors (RT )αβ and R̄ab are not
pull-backs of the bulk Ricci tensor, but are obtained from contractions of tangent indices
in the pull-backs of the Riemann tensor. Specifically, for vanishing second fundamental
form,

R̄ab ≡ gαβRαabβ , (RT )αβ ≡ gλµRλαµβ , (3.7)
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where gαβ is the induced metric on the D-brane. For the AdS5 × S3 embedding in
AdS5 × S5/Z2, the second fundamental form vanishes. In this background,

(RT )αβγδ(RT )αβγδ − 2(R̂T )αβ(R̂T )αβ − (RN )abαβ(RN)abαβ + 2R̄abR̄
ab = − 6

25
L2 , (3.8)

where L2 =
√

λα′ is the square of the AdS5 (or S5) curvature radius. Thus (3.6) can not
be the only term of the form f(R,F (5))F 2 at order α′2, which must collectively sum to
zero in the AdS background.

4 The metric on the Higgs Branch

To two derivative order, the effective action on the Higgs branch of the four-dimensional
N = 2 theory we are considering is equivalent to the action describing slowly varying
“instantons” in eight-dimensional super Yang-Mills (see [5] for a review). This action has
the form

S =

∫

dx0 · · ·dx3Gij(M)∂µMi∂µMj , (4.1)

where Mi(x
µ) are either Higgs branch or instanton moduli. From the point of view of

the eight-dimensional theory the instantons we are considering are solitons for which the
gauge fields only depend on the four Euclidean coordinates x4,5,6,7 and have a self-dual
field strength with respect the flat metric in these directions. These solutions depend on
moduli Mi. The metric (4.1) is obtained in the moduli space approximation in which the
parameters Mi are allowed to depend on the coordinates x0,1,2,3, but are slowly varying.
The metric Gij(M) is also known to be tree level exact in the four-dimensional N = 2
theory.

In the AdS dual description of the N = 2 theory, one can compute the metric on
the Higgs branch by finding the action for slowly varying instantons of the D7-brane
theory (3.2). To two derivative order, the effective action must be the same as that for
slowly varying instantons in conventional super Yang-Mills theory in eight-dimensional
flat space, which gives the exact un-renormalized metric on the Higgs branch.

The metric on the Higgs branch is determined by inserting the instanton solution into
the action, letting the moduli depend on the coordinates x0, . . . , x3, which we indicate
by greek indices. The instantons are localized in the directions xm = x4,5,6,7 and depend
on moduli Mi, Am = Ainst

m (xn,Mi). Configurations in which the moduli are coordinate
dependent, Am = Ainst

m (xn,Mi(x
α)), are approximate solution in the limit of slowly

varying moduli. More precisely, the metric on the Higgs branch can be extracted from
the equations which configurations

Am = Ainst
m (xn,Mi(x

α))

Aµ = Ωi∂µMi(x
α) (4.2)

must satisfy in order to solve the full equations of motion to leading (two derivative)
order in a derivative expansion. The relevant terms in the Dirac Born Infeld action are

6



those involving two greek indices. Two order α′2 (or equivalently O(1/λ)), the relevant
terms are (neglecting bulk couplings)

S =
N

λ

1

(2π)5

∫

d4X⊥
1

4
tr(FµmFµm)

+
N

λ2

1

(2π)6

∫

d4X⊥ X4
⊥

1

12
tr

[

FsµFµn

(

{Fnr, Frs} −
1

2
δsnFtuFut

)

+
1

2

(

FµnFnrFsµFrs + FµnFrsFsµFnr −
1

2
FµnFrsFnµFsr

)]

. (4.3)

Note that the leading term is just that of Yang-Mills theory in eight flat dimensions; the
warp factors appearing in the AdS5×S3 metric cancel in this term. It is useful to rewrite
the field strengths Fmn in the subleading term in terms of self-dual and anti-self-dual
parts, giving

S =
N

λ

1

(2π)5

∫

d4X⊥
1

4
tr(FµmFµm)

+
N

λ2

1

(2π)6

∫

d4X⊥ X4
⊥

1

48
tr

[

FsµFµn

(

{F+
nr, F

−
rs} + {F−

nr, F
+
rs}

)

+
1

2

(

FµnF+
nrFsµF−

rs + FµnF−
nrFsµF

+
rs + FµnF+

rsFsµF
−
nr + FµnF−

rsFsµF+
nr

)]

. (4.4)

The equations of motion δ
δAµ

S = 0 give

∂µMi

(

Dm

δAm

δMi

− DmDmΩi

)

= 0 , (4.5)

which has a unique solution for Ωi as a function of xm and Mi. Taking this Ωi and
inserting (4.2) into the action (4.4) gives the metric on the Higgs branch via the relation

∂µMi∂µMjGij(M) =
N

λ

1

(2π)5

∫

d4X⊥
1

4
tr(FµmFµm) , (4.6)

where the higher order term vanishes because the configuration (4.2) satisfies F+ = 0.
One therefore gets the same result from instantons on the D7-brane embedded in AdS
as one gets from Yang-Mills theory in flat space. We emphasize that this result assumes
that bulk couplings of the form hnmµν(R,F (5))FµnFνm sum to zero when R and F (5) are
set to their AdS background values. With this assumption, the non-renormalization of
the metric on the Higgs branch is realized in the strong coupling expansion obtained
using holography. The leading and only term is the same as the exact tree level result.
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