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1. Introduction

Understanding the quantum spectrum of string theory in AdS5 × S5 is an important open

problem. Solving this problem will open up venues for testing the ideas of gauge/string

duality in the genuine stringy regime. It is becoming more and more clear that progress in

quantizing strings on AdS5 × S5 is impossible without serious input from the dual N = 4
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supersymmetric Yang-Mills theory (SYM). One idea that has proved extremely useful on

the gauge theory side and could potentially be applied to AdS strings, is to compute the

spectrum using a Bethe ansatz. The Bethe ansatz is the standard approach to quantize

integrable systems [1] and it is believed that both planar N = 4 SYM and string theory in

AdS5 × S5 are integrable.

As was observed first at one loop [2, 3] and then at higher orders in perturbation

theory [4 – 6], the planar dilatation operator of N = 4 SYM can be identified with a

hamiltonian of an integrable spin chain.1 The integrability on the string theory side arises

because the classical world-sheet sigma-model admits a Lax representation. For the bosonic

reduction this almost immediately follows [10] from the integrability of the O(n) model [11].

The Lax pair for the full supersymmetric sigma-model in AdS5 × S5 [12] was constructed

in [13].

Because the classical equations of motion of the AdS string are integrable, their so-

lutions can be parameterized by the spectral data of the Lax operator. By reformulating

the standard solution of the spectral problem [14] it was shown in [15] that the spectral

density for the string moving on the R × S3 subspace of AdS5 × S5 satisfies an integral

equation that strikingly resembles the large-volume (thermodynamic) limit of the quan-

tum Bethe equations for the spectrum of the dilatation operator in the dual gauge theory.

These results were extended to other sectors [16 – 19] and eventually to the most general

solution including world-sheet fermions [20]. Of course the classical approximation in the

sigma-model is accurate only at strong ’t Hooft coupling (i.e. weak worldsheet coupling).

In addition, the Noether charges of the string have to be large. In order to quantize the

string one needs to “undo” the thermodynamic limit and turn the integral equations for

the sigma-model into discrete, quantum string Bethe equations. Such a discretization was

first proposed for the su(2) subsector [21], then for other rank-one sectors [22] and subse-

quently for the complete set of Bethe equations with the psu(2, 2|4) symmetry [23]. The

quantum string Bethe equations work remarkably well in several tractable limits: they

have the right classical limit (by construction), reproduce the leading quantum corrections

for the BMN states and yield the correct energies of massive states in the strict strong-

coupling limit.

There are very few explicit calculations for quantum strings in AdS5 ×S5. One major

example is string quantization in the plane-wave limit [24] which leads to a solvable string

theory [25] and can be understood as quantization around the simplest point-like solution

of the string spinning on S5 [26]. The curvature corrections [27] to the string states in

this background (BMN states) were calculated in [28]. Frolov-Tseytlin solutions [29, 30]

generalize this setup to macroscopic strings and it is possible to quantize fluctuations

around these solutions in some cases [31 – 34]. For these solutions, the classical string

energies can be compared to the anomalous dimensions in the gauge theory (see [30, 35]

1Although the dilatation operator is not integrable beyond leading order in the 1/N expansion [4], the

planar integrability is still useful in the study of decays of semiclassical strings [7] and in the computation

of three-point functions [8]. We should also mention that the classical equations of motion of N = 4 SYM

admit a Lax representation [9], but we do not know if this property has anything to do with the quantum

integrability of the planar dilatation operator.
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for review), because the ’t Hooft coupling λ combines with the R-charge J into the BMN

coupling 1/J 2 ≡ λ/J2, which can be small even if the ’t Hooft coupling is large, provided

that the R-charge is large enough. In particular, the string action reduces to the effectve

action of the spin chain in the limit of large J [36]. Generically, one finds that string theory

and SYM agree up to two loops and start to disagree at three loops. For the quantum

corrections the comparison has only been done at the one-loop level [37, 38]. It would be

interesting to understand what happens at higher orders of perturbation theory.

Our goal is to compare quantum corrections to macroscopic strings with the quan-

tum string Bethe ansatz at higher loops [21 – 23]. The conjectured quantum string Bethe

equations were rigorously tested at infinite λ, but they can potentially receive 1/
√

λ cor-

rections [21]. Comparison of the quantum string Bethe ansatz to the direct quantum

string calculation provides an explicit check of whether such corrections are present at

O(1/
√

λ) or not. Furthermore, the string Bethe equations are known to exactly reproduce

the first two orders of the SYM perturbation theory independently of J [39], and we can

just expand the energies computed from them in the ’t Hooft coupling to find the two

loop anomalous dimensions in SYM. In this way we can extend the analysis of [37, 38] to

two loops.

Let us briefly review the classical string configurations that we shall study. The one-

loop quantum corrections were computed for two classes of string solutions — for circu-

lar strings rotating in S5 with two independent angular momenta [31, 32] and for cir-

cular strings spinning in AdS3 and rotating around S5 [33]. The first case is plagued

by instabilities [29, 31] and for this reason we shall concentrate on strings moving in

AdS3×S1 ⊂ AdS5×S5 [40] (throughout the paper, we shall adopt the conventions of [33]).

The relevant part of the AdS5 × S5 metric in global coordinates is

ds2 = − cosh2 ρ dt2 + dρ2 + sinh2 ρ dθ2 + dφ2 , (1.1)

where the first three terms are the metric of AdS3 and φ is the angle of a big circle in S5.

The circular string solution has the following form

ρ = const , t = κτ , θ =
√

κ2 + k2 τ + kσ , φ =
√

κ2 + k2 τ + mσ , (1.2)

where

r2
1 ≡ sinh2 ρ =

S√
κ2 + k2

, (1.3)

E =
κS√

κ2 + k2
+ κ , (1.4)

2κE − κ2 = 2
√

κ2 + k2 S + J 2 + m2 , (1.5)

kS + mJ = 0 . (1.6)

Global charges of the string (the energy E, the spin S, and the angular momentum J)

combine with the string tension into the following “dimensionless” ratios, which stay finite

– 3 –
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in the classical (λ → ∞, J → ∞, S → ∞) limit [30]:

E =
E√
λ

, S =
S√
λ

, J =
J√
λ

. (1.7)

Thus 1/
√

λ or 1/J can be used interchangeably as the loop counting parameters in the

sigma-model. In addition, at any given order in 1/J one can further expand in the BMN

coupling 1/J 2 = λ/J2. In this way one recovers the two-loop perturbative SYM results.

In section 2 we review the string theory computation and evaluate the energy shift,

at leading order in 1/J and at the first three orders in 1/J 2. Although the exact energy

shift is finite, individual terms of the 1/J expansion diverge. To render the results finite

we use a particular prescription, the zeta-function regularization.

In section 3 we compute the energy shift from the quantum string Bethe ansatz, again

perturbatively in 1/J . Unlike in the string theory calculation, the 1/J expansion is man-

ifestly finite. However, the resulting expressions agree with the zeta-regularized string

energy shift at third order in perturbation theory.

In section 4 we calculate the energy shift in the non-perturbative regime (i.e., small

J ) of large winding number. The energy shift is finite on both sides in this case. We find

a clear discrepancy between the Bethe ansatz and the string calculation. In section 5, we

present numerical results which support the analytical evidence for the discrepancy.

We discuss our results in section 6. Various technical details are collected in the

appendices.

2. Quantum corrections in string theory

2.1 Energy shift

The semiclassical string quantization of [33] yields the following correction to the classical

energy (1.4)

δEstring = δE(0) + δEosc . (2.1)

Here the zero-mode contribution is given by

δE(0) =
1

2κ

(

4ν + 2κ + 2
√

κ2 + (1 + r2
1)k

2 − 8
√

c2 + a2

)

. (2.2)

The oscillator part has the following form

δEosc =
1

κ

∞
∑

n=1

(

4
√

n2 + ν2 + 2
√

n2 + κ2 − 4
√

(n + γ)2 + α2 − 4
√

(n − γ)2 + α2 +

+
1

2

4
∑

I=1

sign(C
(n)
I )ωI,n

)

, (2.3)

where the last term is the contribution of the sl(2)-modes, which are the four solutions of

the quartic equation

(ω2 − n2)2 + 4r2
1κ

2ω2 − 4(1 + r2
1)

(
√

κ2 + k2 ω − kn
)2

= 0 . (2.4)

– 4 –
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The first line corresponds to the transverse and fermionic modes. The various parameters

are defined as

ν =
√

J 2 − m2

α =

√

κ2 + ν2

2

r2
1 =

κ2 − 2m2 − ν2

2k2
= −m

k

J√
κ2 + k2

γ =
1

2
κ

(

1 +
2k2(1 + r2

1)

κ2 − ν2

)

√

κ2 − ν2 − 2k2r2
1

2(κ2 + k2)
. (2.5)

The sign factors are determined from

C
(n)
I = (ω2

I,n − n2)
∏

J 6=I

(ωI − ωJ) . (2.6)

It is possible to perform a partial summation of the series (2.3). The series is absolutely

convergent, because the summand decreases as 1/n2 at n → ∞. Therefore one can sum

each frequency separately by regularizing the divergences; one adds and subtracts terms of

the form c1n+ c2/n before separating various frequencies. This does not change the result,

because each partial sum is again absolutely convergent. The basic sum is

∞
∑

n=1

[

√

(n + γ)2 + α2 +
√

(n − γ)2 + α2 − 2n − α2

n

]

= γ2 −
√

γ2 + α2 + F ({γ}, α) , (2.7)

where {γ} denotes the fractional part of γ and the function F (β, α) is defined by the

following integral representation

F (β, α) ≡
√

α2 + β2 − β2 + α2

∫ ∞

0

dξ

e ξ − 1

(

2J1(αξ)

αξ
cosh βξ − 1

)

. (2.8)

Using this result we find

δEosc =
1

κ

[

2F (0, ν) + F (0, κ) − 4F ({γ}, α) − 2ν − κ − 4γ2 + 4
√

γ2 + α2 +

+
1

2

∞
∑

n=1

4
∑

I=1

(

sign C
(n)
I ωI,n − n − κ2

2n

)

]

. (2.9)

The last sum can be seen to absolutely converge if we use the asymptotic values of the

frequencies ωI,n from [33]. The asymptotic expansion of F (β, α) in 1/α terminates at the

second order:

F (β, α) = −α2 ln

(

e C−1/2

2
α

)

+
1

6
+ O

(

e−α
)

, (2.10)

where C = 0.5772 . . . is the Euler constant. The dependence on the fractional part of γ is

therefore non-perturbative in 1/α and thus in 1/J . In particular it will not be seen in the

numerical calculations in section 5 which will be done for sufficiently large values of J .
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2.2 Perturbative expansion

It is hard to find a useful integral representation for the sl(2) modes because of the sign

factors in (2.9). In computing the perturbative 1/J expansion of the string energy shift

we shall follow a more straightforward approach of evaluating the sum by first expanding

all the frequencies in 1/J and then computing the sum order by order in 1/J . As was

already observed in [32] this procedure is not so harmless, because the sum is not uniformly

convergent and modes with n ∼ J 2 can give a finite contribution. This is reflected in

superficial divergences which arise starting from second order in 1/J 2. We shall ignore

these problems and will use zeta-function regularization to sum the divergent series. This

approach might not look well motivated but we shall find a surprising agreement of this

naive summation prescription with the Bethe ansatz to third order in 1/J 2, which gives

us a hint that this prescription may be the correct way to compute the energy correction

on the string theory side.

Using the pertubative expressions for the mode frequencies, which are given in ap-

pendix B, we can write the pertubative expression for the energy shift δE in powers of 1/J 2

δEstring =
∞
∑

p=1

δEstring
p

J 2p
. (2.11)

It is given by

δEstring
1 =

1

2
m(k − m) +

1

2

∞
∑

n=1

2(k − m)m − n2 + n
√

n2 + 4m(m − k) , (2.12)

δEstring
2 = −1

8
m(k − m)(4k2 − 11km + 3m2) +

+

∞
∑

n=1

1

8

{

− 2(k − m)m(4k2− 11km + 3m2) + 2(3k2− 10km + 5m2)n2+ n4
}

−

−n(−4(k − m)m(5k2 − 15km + 6m2) + 2(k − 3m)(3k − 2m)n2 + n4)

8
√

n2 + 4m(m − k)
, (2.13)

δEstring
3 =

1

16
(k − m)m(8k4 − 52k3m + 89k2m2 − 42km3 + 5m4) +

+

∞
∑

n=1

1

16
{2(k − m)m(8k4 − 52k3m + 89k2m2 − 42km3 + 5m4) −

− (15k4128k3m + 279k2m2 − 202km3 + 44m4)n2 −
− (15k2 − 38km + 19m2)n4 − n6} +

+
1

16(n2 + 4m(m − k))3/2
×

×
{

4(k − m)2m2(45k4 − 324k3m + 621k2m2 − 370km3 + 60m4)n −
− 2(k − m)m(53k4 − 481k3m + 1083k2m2 − 815km3 + 192m4)n3 +

+ (15k4 − 218k3m + 603k2m2 − 556km3 + 164m4)n5 +

+ (15k2 − 44km + 25m2)n7 + n9
}

. (2.14)

We shall compare this expression to the energy shift calculated using the Bethe ansatz in

the next section.
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3. Bethe ansatz

3.1 Classical limit

Classical solutions for the string moving in AdS3×S1 are uniquely specified by the spectral

data of the Lax operator. One can introduce the spectral density ρ(x) defined on a set of

intervals CI = (aI , bI). The spectral density satisfies a singular integral equation [16]

2−
∫

dy
ρ(y)

x − y
= 2πkI − 2π

(J + m

x − 1
+

J − m

x + 1

)

, x ∈ CI . (3.1)

This can be called the classical Bethe equation, as such type of equations arise in the

thermodynamic limit of quantum Bethe equations.

In addition, the density obeys a set of normalization conditions
∫

dx
ρ(x)

x
= −2πm , (3.2)

∫

dx
ρ(x)

x2
= 2π(E − S − J ) , (3.3)

∫

dx ρ(x) = 2π(E + S − J ) . (3.4)

Here 2πm is the total world-sheet momentum which must be quantized because of the

periodic boundary conditions on the world-sheet coordinates.

We shall consider the simplest solutions of (3.1) with only one cut C = (a, b) which

corresponds to the circular string (1.2). There is only one mode number k in this case. This

simplification is crucial and allows us to rewrite the integral equation (3.1) as an algebraic

equation for the resolvant

G(x) =

∫

dy
ρ(y)

x − y
. (3.5)

The normalization conditions for the density (3.2)–(3.4) become boundary conditions for

G(x)

G(0) = 2πm , (3.6)

G′(0) = −2π(E − S − J ) , (3.7)

lim
z→∞

zG(z) = 2π(E + S − J ) . (3.8)

Multiplying both sides of (3.1) by ρ(x)/(z − x) and integrating over x we find

G2(z) − 2π

(

k − 2
J z + m

z2 − 1

)

G(z) − 2π

(J + m

z − 1
G(1) +

J − m

z + 1
G(−1)

)

= 0 . (3.9)

The boundary conditions (3.6)–(3.8) can be used to eliminate G(±1) from this equation.

Expanding (3.9) at z = 0 and z = ∞ we get

kS + mJ = 0 , (3.10)

in accord with [40], and

(J ± m)G(±1) = −πk(E + S − J ) ± πm(k + m) . (3.11)

The condition (3.10) imposes rationality on the spins and requires the integers k and m to

have opposite signs. We shall assume for definiteness that m > 0 and k < 0.

– 7 –
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Figure 1: Graph of the quartic polynomial −P (z) (the ordering of the zeroes is a < b < c).

Plugging (3.11) back into (3.9) we get

G2(z) − 2π

(

k − 2
J z + m

z2 − 1

)

G(z) +
4π2

z2 − 1
[k(E + S − J )z − m(k + m)] = 0 . (3.12)

The solution of this quadratic equation is

G(z) = π

(

k − 2
J z + m

z2 − 1

)

+
π
√

P (z)

z2 − 1
, (3.13)

where

P (z) = k2z4 − 4k(E + S)z3 + 2(2J 2 + 2m2 − k2)z2 + 4k(E − S)z + k2 . (3.14)

The resolvant determines the density through the discontinuity on the cut

G(x + i0) − G(x − i0) = 2πiρ(x) , x ∈ C, (3.15)

and we find

ρ(x) =

√

−P (x)

x2 − 1
. (3.16)

We need one extra condition to express the energy in terms of the spin and the angular

momentum. This condition cannot arise from equation (3.9). Instead one should look more

closely at the structure of the density ρ(x). For general values of the energy, the angular

momentum and the spin, the density is real on two cuts, whereas we have assumed that the

solution has only one cut. This can be made consistent by requiring that the discriminant

of the quartic polynomial (3.14) is zero, then P (z) has one double root (figure 1)

P (c) = 0, P ′(c) = 0 . (3.17)

These two equations determine the dependence of the energy on the angular momenta,

E = E(S,J ), in a parametric form and are equivalent to (1.4), (1.5) upon the identification

κ = −k

2

(

1

c
− c

)

. (3.18)

– 8 –
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3.2 Quantum corrections

If the integral equation (3.1) is interpreted as the classical limit of some Bethe equations,2

the density ρ(x) has the meaning of an asymptotic distribution of Bethe roots in the

limit when their number (naturally identified with the spin S of the quantum string state)

becomes infinite

ρ(x) =
4π√

λ

S
∑

k=1

x2
k

x2
k − 1

δ(x − xk) . (3.19)

The normalization factor 2π/
√

λ is the coupling constant of the world-sheet sigma-model.

The classical (weak-coupling) limit corresponds to λ → ∞. Because S scales with
√

λ

according to (1.7), the classical limit coincides with the thermodynamic limit, in which the

number of roots becomes infinite.

Our starting point are the quantum Bethe equations proposed in [22, 23]3

(

x+
k

x−
k

)J

=
∏

j 6=k

x−
k − x+

j

x+
k − x−

j

1 − 1
x−

k
x+

j

1 − 1
x+

k
x−

j





1 − 1
x−

k
x+

j

1 − 1
x+

k
x+

j

1 − 1
x+

k
x−

j

1 − 1
x−

k
x−

j





i
√

λ(uk−uj)

2π

, (3.20)

where4

uk = xk +
1

xk
(3.21)

and

x±
k +

1

x±
k

= uk ± 2πi√
λ

. (3.22)

These equations reduce to (3.1) in the thermodynamic limit when
√

λ, J, S → ∞. Our goal

will be to compute the leading-order quantum correction to the classical Bethe equations.

It might seem that (3.20) can only give rise to even powers of 1/
√

λ, since the equations

are invariant under
√

λ → −
√

λ. Nevertheless the odd powers of 1/
√

λ arise in the expan-

sion and the leading quantum correction is O(1/
√

λ) for the following reason. The Bethe

roots xk condense into cuts in the thermodynamic limit such that the distance between

nearby roots goes to zero. But the simultaneous limit of λ → ∞ and xk+1 − xk → 0 is

singular in the Bethe equations and this singularity gives rise to a local anomaly [44]. The

anomaly cancels at the leading order [45], but contributes to the 1/
√

λ quantum correc-

tion [37, 38]. We shall calculate the anomaly directly from the Bethe equations (3.20). The

2Bethe ansatz only works for integrable systems, so here we must assume quantum intergrability of the

world-sheet sigma-model. There are indeed some indications that integrability is not destroyed by quantum

corrections [41].
3Although the quantum string can fluctuate in all directions in AdS5 × S5, the quantum string Bethe

equations have the same number of degrees of freedom as in the pure sl(2) sector. On the gauge theory

side different sectors do not talk to each other because operators with different quantum numbers do not

mix [42], but it is not a priori clear why various sectors can be separated on the string theory side (see [43]

for a more detailed discussion of this issue).
4Our notation differs from that of [23] by a rescaling of xk and uk: xk → xk

√
λ/4π, uk → uk

√
λ/4π.

– 9 –
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calculations are rather complicated and the details are given in appendix A. The resulting

equation for the resolvant differs from (3.12) by a correction term

G2(z) − 2π

(

k − 2
J z + m

z2 − 1

)

G(z) +
4π2

z2 − 1

[

k(E + S − J )z − m(k + m)

]

+

+
4π√

λ

z2

z2 − 1

∫

dx
ρ′(x)πρ(x) coth πρ(x)

z − x
= 0 . (3.23)

Solving this quadratic equation we find a density which is of the form (3.16), where

the function P (z) obtains a correction

δP (z) =
4π√

λ

z2(1 − z2)

π2

∫

dx
ρ′(x)πρ(x) coth πρ(x)

z − x
. (3.24)

The energy can be found as before, from the requirement that there is only one cut present

P (c + δc) + δP (c + δc) = 0 , P ′(c + δc) + δP ′(c + δc) = 0 . (3.25)

Expanding the first equation to linear order we get

∂P (c)

∂E δE +
∂P (c)

∂c
δc + δP (c) = 0 . (3.26)

Taking into account that ∂P (c)/∂c = 0 we find

δE = − δP (c)

∂P (c)/∂E . (3.27)

For ∂P/∂E we get from (3.14)

∂P (c)

∂E = −4kc(c2 − 1) . (3.28)

Rescaling back to the physical energy we obtain

δEBethe =
c

πk

∫

dx
ρ′(x)πρ(x) coth πρ(x)

x − c
. (3.29)

We can also introduce

ρ̃(x) =
1

π

∫ πρ(x)

0
dξξ coth ξ . (3.30)

Then integration by parts in (3.29) yields

δEBethe =
c

πk

∫

dx
ρ̃(x)

(x − c)2
. (3.31)

Let us see how the one-loop SYM result [37, 38] is recovered. From (3.17), (3.14) we

find that c = −k/(2J ) at large J . Inserting this into (3.31) and rescaling x → 4πJ x, we

get for the energy shift at the leading order in 1/J

δEBethe
1 = − 1

8π2J 2

∫

dx
ρ̃(x)

x2
, (3.32)

in agreement with [37].
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To perturbatively evaluate the integral (3.29), we shall need to expand various pa-

rameters characterizing the classical string configuration in a power series in 1/J . In

particular, we need to find the zeroes of the quartic polynomial P (x). Recall that P (x)

defined in (3.14) can be factorized as

P (x) = (x − a)(x − b)(x − c)2 , (3.33)

For our sign choice (m > 0, k < 0), the roots are ordered as a < b < c.

The zeroes a, b, c admit an expansion in 1
J . Solving (3.17) perturbatively in 1/J we

get

c = − k

2J +
k

8J 3
(2m2 − 4mk + k2) +

+
k

16J 5
(−3m4 + 16m3k − 23m2k2 + 10mk3 − k4) + O

(

1

J 7

)

, (3.34)

E =
(

1 − m

k

)

J +
1

2J m(m − k) − 1

8J 3
m(m − k)(m2 − 3mk + k2) +

+
1

16J 5
m(m − k)(m4 − 7m3k + 13m2k2 − 7mk3 + k4) + O

(

1

J 7

)

. (3.35)

The expression (3.35) agrees with the perturbative expansion of the classical string energy

computed in [33].

3.3 Mode expansion

Our starting point is (3.29), which can be written as a contour integral, because the inte-

grand has a square-root branch cut along the contour of integration. If we introduce the

function

f(z) =

√

P (z)

z2 − 1
, (3.36)

the energy shift becomes

δEBethe =
c

k

∮

Cab

dz

2πi

f ′(z)f(z) cot(πf(z))

z − c
, (3.37)

where the integration contour Cab encircles the cut clockwise. We can use the following

series representation for cot πf(z)

cot(ξ) =
1

ξ
+ 2ξ

∞
∑

n=1

1

ξ2 − n2π2
. (3.38)

Inserting this into the contour integral we obtain

δEBethe =
c

k

∮

Cab

dz
f ′(z)

(z − c)
+

2c

k

∞
∑

n=1

∮

Cab

dz
f ′(z)f2(z)

(z − c)(f2(z) − n2)
. (3.39)

The only singularities of the integrands outside the contour of integration are poles and

the integrals can be calculated by evaluating the residues. The integrand in the first term
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has poles at z = c and z = ±1. The poles of the second term are at z = ±1 and at z = zn,

where the zn’s are solutions of

f(zn) = ±n , n ∈ N . (3.40)

Squaring this equation we find that zn’s are the roots of the quartic equation

P (z) = n2(z2 − 1)2 . (3.41)

It can be shown that the fluctuation energies around the classical solution are determined

by the same equation, in accord with the general relationship between fluctuations [46] and

finite-size corrections for Bethe ansatz [48]. The residues at z = ±1 are rather complicated,

but the residues at z = zn are easy to evaluate

Resz=zn =
c

k

(

nεn

zn − c

)

. (3.42)

The sign εn of the residue is the same as the sign in the equation f(zn) = ±n and can be

determined by analyzing (3.41) with the help of (3.33)

εn =

{

+1 for z ∈ [−∞, a] ∪ [−1, c] ∪ [1,∞]

−1 for z ∈ [b,−1] ∪ [c, 1] .
(3.43)

3.4 Perturbative expansion and comparison to string theory

We have evaluated the residues in (3.39) perturbatively in 1/J . The calculations are

lengthy and are given in appendix C. We also checked that the first two orders are repro-

duced by a direct expansion of the integral (3.31). Unlike the string sum over modes, its

Bethe counterpart is manifestly finite at each order of the perturbative expansion. This

might indicate that our method of computing the series over string modes breaks down

at two loops (see also the discussion in [32]). However, if we compare the zeta-regularized

sum (2.12), (2.13) and (2.14) with the Bethe ansatz, we find complete agreement! We

checked this up to the third order

δEBethe
p = δEstring

p , p = 1, 2, 3 . (3.44)

The agreement at the first two orders implies that the string energy shifts agree with the

finite-size corrections to the anomalous dimensions at two loops in the SYM theory. At

three loops, the string Bethe ansatz that was our starting point, differs from the gauge

Bethe ansatz [47] which computes the anomalous dimensions.

The agreement between the Bethe ansatz and the direct string calculation is rather

spectacular. The initial expressions look too complicated for this to be a pure accident.

Nevertheless, the string and the Bethe calculation have a different status. The Bethe

ansatz energy shift is automatically finite order by order in 1/J . On the string side we

encountered divergences despite the complete, unexpanded energy shift being finite. No

doubt, there should be a better way to approach the weak-coupling (large J ) limit on the

string side.
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4. Limit of large winding number

Because of the divergences in the naive 1/J expansion of the string sum, it would be

desirable to do an independent test which avoids the convergence issues mentioned earlier.

One option is to evaluate the energy shifts numerically. This is done in the next section.

Here we consider a particular regime, the limit of large winding number (|k| À 1), in which

the energy shifts can be calculated analytically.5 In this limit J , E and m stay finite, but

the spin goes to zero: S ¿ 1. The string remains macroscopic in this limit, since it winds

the big circle of S5, but in AdS5 the string shrinks to zero size (cf. (1.3)). We will have to

assume that J /|k| ¿ 1, which means that there is no overlap with the perturbative regime

we have discussed so far. In fact, the energy shift turns out to depend on 1/J =
√

λ/J

rather than 1/J 2 in the large-k limit, and it is not possible to compare string quantum

corrections to perturbative SYM theory in this regime.

The details of the string calculation are given in appendix D. The result is

δE =
2F

(

0,
√
J 2 − m2

)

+ 2F (0,J + m) − 4F
(

{|k|/2},
√

J (J + m)
)

J + m
+

+
√

mJ + (J + m) ln

√
J + m√
J +

√
m

− m , (4.1)

where the function F (β, α) is defined in (2.8). A peculiar property of this result is the

dependence on the fractional part of k/2, which means that the large-k limit of the string

energy shift depends on whether the winding number k is even or odd. This effect probably

arises because of the k-dependent field redefinition of the world-sheet fermions which was

used to find the spectrum of fluctuations [31 – 33]. This kind of irregularity does not arise

in the Bethe ansatz, and also in the zeta-regularized large-J expansion.

4.1 Bethe ansatz calculation

We begin with the classical limit. To take the large-k limit it is convenient to rewrite (3.14)

in the two equivalent forms

P (x) = k2(x2 − 1)2 − 4kEx(x2 − 1) + 4mJ x(x ± 1)2 + 4(J ∓ m)2x2 . (4.2)

The first two terms blow up in the k → ∞ limit unless x is close to 1 or −1. The roots of

P , a, b and c, thus lie in the vicinity of ±1. Changing the variables to

x = ±1 +
v

k
, (4.3)

5In the narrow sense, we are just comparing two mathematical expressions — the string one-loop correc-

tions (2.1)–(2.3) and the finite-size correction from the Bethe ansatz (3.29). Each is a well-defined function

of the parameters k, m and J . If the two expressions agree (or disagree), they must agree (disagree) at all

values of the parameters, in particular if one of the parameters (k in this case) takes its extreme value. From

this point of view the limit of large k is just a simplifying assumption that allows us to calculate δEString

and δEBethe explicitly in some corner of the parameter space. On the other hand, not only the classical

energy of the string, but also the quantum correction to it stays finite in the large-k limit. This probably

means that the limit of large winding (or small spin) is well-defined for this type of string solutions and it

would be very interesting to study this limit further. The winding number in that, more general setting

should be much larger than the rescaled quantities E and J , but should be much smaller than
√

λ (and

thus E and J) in order not to interfere with the loop expansion of the sigma-model.
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and taking the limit k → ∞, we get

P (x) = 4v2 − 8Ev + 4(J ± m)2 , at x → ±1 . (4.4)

Thus two of the roots of P (x) lie near 1 and two lie near −1. The double root should lie

at x ≈ 1, from which we find

E = J + m (4.5)

and

c = 1 − E
|k| . (4.6)

Solving (4.4) near x = −1, we find the endpoints of the cut

{

b

a

}

= −1 −
(√

J ±√
m

)2

|k| . (4.7)

We see that the cut shrinks to a very small size, whereas the density according to (3.2)-(3.4)

is still normalized to O(1). Thus the density is highly peaked near −1. Indeed, from (3.16)

and (4.4) we find

ρ(x) =
|k|
v

√

2 (J + m) v − v2 − (J − m)2 . (4.8)

The integral (3.31) can be easily evaluated in the k → ∞ limit. Because the density is

large, cosh ξ in (3.30) can be approximated by 1, and thus

ρ̃ =
π

2
ρ2 , at ρ → ∞ . (4.9)

We thus get from (3.31)

δEBethe =
1

8k

∫

dx ρ2(x) . (4.10)

Using dx = dv/|k| and the explicit expression (4.8) for the density, we find

δEBethe =
J + m

2
ln

√
J +

√
m√

J −√
m

−
√

mJ . (4.11)

This clearly disagrees with the string theory calculation (4.1), in particular the Bethe

ansatz result has a regular dependence on k. We shall see this discrepancy also in the

numerical calculations. Let us also note that even though the explicit computation in this

section was done in the simplifying large k limit, the deviations between the Bethe ansatz

and the string theory computation are also observed numerically for finite values of the

parameter k (see figure 3 in the next section).

5. Numerical evaluation of energy shifts

In this section we numerically compare corrections to the energy of the circular string

obtained by the semiclassical quantization (2.3) and the one deduced from the proposed

quantum string Bethe equation (3.29). Both evaluations of the sums are done for various

values of the parameters.
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Figure 2: Energy shifts (δE)×J 2 for J = 5 . . . 50, m = 3, k = −2, Bethe vs. semi-classical string.

We first consider the large-J limit. From figure 2 we see that both functions have

the same leading order behaviour, in agreement with the earlier analytic results. Next,

we try to extract the coefficients of the 1/J 2 expansion of the energy shift numerically.

In practice, numerically computing higher order effects is hard, since it requires a high

numerical precision and stability.

Yet, by using high precision numerical evaluations let us try to extract the first sub-

leading (1/J 2) correction from the exact semiclassical expression (2.3) and compare it with

the zeta-function regularized result (2.13). Subtracting the analytic one-loop piece (2.12)

from the numerical expression for the semiclassical energy shift (2.3) leads to very unstable

numerical results, given in table 5.1.

m = 3.0 , k = −2 .

J 50 100 150 200 250

(δEstring − δE1) × J 2 1041 620 −82 −1066 −2329

J 300 350 400 450 500

(δEstring − δE1) × J 2 −3871 −5693 −7794 −10174 −12831

(5.1)

This should be compared to the zeta-function regularized two-loop result (2.13) for the

same values of m and k which gives

δE2 = 393.375 . (5.2)

The numerical stability is greatly improved, if instead of subtracting the analytic one-loop

result (2.12), we use the asymptotic numerical value for the energy shift (obtained for

J = 103)

δEstring
asymptot = −77.781 . (5.3)

The results are given in table (5.4). We see that it is much less fluctuating compared to the

result in table (5.1). The deviations from the constant value, may be attributed to higher

orders in 1/J 2 and insufficient numerical precision. The average value from the table (5.4)

is different from the regularized two-loop result (5.2), but the numerics is rather unstable

and we cannot draw any definite conclusions at this point because of insufficient numerical
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Figure 3: Energy shifts (δE) × J 2 for J = 3, m = 2, −k = (40 . . . 1). The upper curve is the

string calculation. The lower curve is the prediction of the Bethe ansatz.

accuracy.
m = 3.0 , k = −2 ,

J 50 100 150 200 250

(δEstring − δEasymptot) ×J 2 1170 1167 1147 1120 1087

J 300 350 400 450 500

(δEstring − δEasymptot) ×J 2 1048 1004 952 896 835

(5.4)

We get much better accuracy if we look at a finite value of J and vary k at fixed

m and J . We shall take J = 3 and m = 2 and vary k from −40 to −1. The results

are given in figure 3. The upper curve is the semiclassical string computation, the lower

curve is computed from the Bethe ansatz.6 We see that both the semiclassical and the

Bethe energy shifts tend asymptotically to constant but different values, which are in

good numerical agreement with the analytic calculations in the previous section. Here our

numerical precision is sufficient to discriminate the two results.

6. Conclusions

We have compared quantum correction to the energy of macroscopic rigid strings in AdS5×
S5 with the finite-size corrections to the quantum string Bethe ansatz. Taken at face value,

the two results disagree, but an interpretation of this discrepancy is unclear to us. If we

do the string calculation in a more naive way by first expanding fluctuation frequencies in

1/J and then summing the series over string modes, the straightforward zeta-regularized

expansion in 1/J 2 agrees with the Bethe ansatz to the first three orders. Perhaps the

sum over frequencies on the string side should be redefined such that it automatically

reproduces zeta-regularized 1/J expansion. The methods used to evaluate related sums in

the context of plane-wave string theory [49] can be helpful to implement such zeta-function

prescription. On the other hand the sum is finite and well-defined as it stands and there

are no apparent regularization ambiguities.

6By that we mean numerical integration in (3.29). Direct numerical solution of the discrete Bethe

equations with subsequent extrapolation to the thermodynamic limit requires substantially more involved

calculations.
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Another possible explanation of the discrepancy is that the string Bethe equations re-

ceive non-trivial 1/
√

λ corrections. We cannot discriminate between these two possibilities

at present. Studying other classes of string solutions will be certainly helpful to resolve this

puzzle. We should first of all mention stable circular strings on S5 which were analyzed

both in string theory [31] and using the Bethe ansatz [50].
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A. Calculation of anomaly

In this appendix the anomaly term is derived from the quantum string Bethe equa-

tions (3.20). The following integral representation turns out to be useful

ln
f(x+

1 , . . . , x+
S ;x−

1 , . . . , x−
S )

f(x1, . . . , xS ;x1, . . . , xS)
= i

∫ 2π√
λ

0
dε

1

f

S
∑

k=1

(

x+ 2
k

x+2
k − 1

∂f

∂x+
k

− x− 2
k

x− 2
k − 1

∂f

∂x−
k

)

, (A.1)

where f is an arbitrary function and

x±
k +

1

x±
k

= uk ± iε , (A.2)

under the integral (x±
k on the left-hand-side is defined in (3.22)). This representation singles

out a particular branch of the logarithm, so when we write the Bethe equations (3.20) in

the logarithmic form, we should introduce an arbitrary phase which parameterizes different

branches of the logarithm

∫ 2π√
λ

0
dε

{

J

(

x+
k

x+2
k − 1

+
x−

k

x−2
k − 1

)

+

+
∑

j 6=k

[(

x+2
k

x+2
k − 1

+
x−2

j

x−2
j − 1

)

1

x+
k − x−

j

+

(

x−2
k

x−2
k − 1

+
x+2

j

x+2
j − 1

)

1

x−
k − x+

j

]

−

−
∑

j 6=k

[

x+
j

(x+2
j − 1)(x−

k x+
j − 1)

+
x−

j

(x−2
j − 1)(x+

k x−
j − 1)

−

− x+
k

(x+2
k − 1)(x+

k x−
j − 1)

− x−
k

(x−2
k − 1)(x−

k x+
j − 1)

]

− i
√

λ

2π

∑

j 6=k

(uk − uj) ×

×
[

x+2
k (x+

j −x−
j )

(x+2
k −1)(x+

k x−
j −1)(x+

k x+
j −1)

+
x−2

k (x+
j −x−

j )

(x−2
k −1)(x−

k x+
j −1)(x−

k x−
j −1)

+ (A.3)

+
x+2

j (x+
k −x−

k )

(x+2
j −1)(x+

k x+
j −1)(x−

k x+
j −1)

+
x−2

j (x+
k −x−

k )

(x−2
j −1)(x+

k x−
j −1)(x−

k x−
j −1)

]}

= 2πk .

– 17 –



J
H
E
P
0
9
(
2
0
0
5
)
0
5
1

An important property of this terrible-looking equation is the symmetry with respect to

ε → −ε, which means that the direct strong-coupling expansion starts from order O(1/λ).

The only source of 1/
√

λ corrections is the first sum over j, in which terms with j ∼ k

become singular in the ε → 0 limit. The contribution of these terms is the anomaly. In

the remaining terms we can take the limit ε → 0 directly

4πJ xk

x2
k − 1

+
4π√

λ

∑

jk

xk − xj

(x2
k − 1)(x2

j − 1)
+ (A.4)

+

∫ 2π√
λ

0
dε

∑

j 6=k

[(

x+2
k

x+2
k − 1

+
x−2

j

x−2
j − 1

)

1

x+
k − x−

j

+

(

x−2
k

x−2
k − 1

+
x+2

j

x+2
j − 1

)

1

x−
k − x+

j

]

= 2πk ,

where we have used the equality

uk − uj =
(xk − xj)(xkxj − 1)

xkxj
.

The next step is to multiply both sides of (A.4) by 1/(z−xk) and sum over k. Because

of the anti-symmetry in k and j, in the double sums 1/(z − xk) can be replaced by

1

z − xk
→ 1

2

(

1

z − xk
− 1

z − xj

)

=
xk − xj

2(z − xk)(z − xj)
.

Now we can disentangle the “normal” contribution of j − k ∼
√

λ from the local “anoma-

lous” contribution of j − k ¿
√

λ. In the latter case

xj+n ≈ xj +
4πx2

jn√
λ(x2

j − 1)ρ(xj)
, (A.5)

according to the definition of the density in (3.19). Also,

x±
j+n ≈ xj +

x2
j

x2
j − 1

(

4πn√
λρ(xj)

± iε

)

(A.6)

and
xj+n − xj

x±
j+n − x∓

j

− 1 = ∓ 2iε
4πn√
λρ(xj)

± 2iε
.

Separating the long-distance contributions from the short-distance ones we find, after some

calculations

G2(z) − 2π

(

k − 2
J z + m

z2 − 1

)

G(z) +
4π2

z2 − 1

[

k(E − S − J )z − 2mJ x − m(k + m)
]

− (A.7)

− 4π√
λ

x2

x2 − 1

∑

j

2x2
j

(x2
j − 1)(z − xj)2

∫ 2π√
λ

0
dε

∑

n 6=0

ε2

4π2n2

λρ2(xj)
+ ε2

= 0 ,

where

G(z) =
4π√

λ

∑

k

x2
k

x2
k − 1

1

z − xk
. (A.8)
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The asymptotics of (A.7) at z → ∞ shows that the condition (3.10) does not receive

quantum corrections. Performing the summation in the anomaly term and changing the

integration variable to ξ =
√

λρε/2 we finally get

G2(z) − 2π

(

k − 2
J z + m

z2 − 1

)

G(z) +
4π2

z2 − 1
[k(E + S − J )z − m(k + m)] −

− 4π√
λ

x2

x2 − 1

∫

dy
ρ̃(x)

z − x
= 0 , (A.9)

where ρ̃(x) is defined in (3.30). The form of the anomaly used in the main text is obtained

after integrating by parts and taking into account that

ρ̃′ = ρ′πρ coth πρ . (A.10)

B. Details of string theory computation

B.1 Contribution of sl(2) modes

The main difficulty in evaluating the energy from the string theory is the sum over the

roots of the quartic polynomial (2.4)

δEsl(2) =
∑

I

sign(C
(n)
I )ωI,n . (B.1)

The quartic equation is equivalently given by

ω4 + a2ω
2 + a1ω + a0 = 0 , (B.2)

where

a2 = −4k2 − 2n2 − 4k2r2
1 − 4κ2

a1 = 8kn
√

k2 + κ2(1 + r2
1)

a0 = n4 − 4k2n2(1 + r2
1) . (B.3)

In particular, the absence of the cubic term implies
∑4

I=1 ωI,n = 0. The roots can be

written as

ω1/2,n =
1

2
(Rn ± Dn)

ω3/4,n =
1

2
(−Rn ± Fn) , (B.4)

where

Rn =
√

y1 − a2

Dn =

√

−R2
n − 2a2 −

2a1

Rn

Fn =

√

−R2
n − 2a2 +

2a1

Rn
, (B.5)
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and y1 is a real root of the discriminant cubic equation

y3 − a2y
2 − 4a0y + 4a2a0 − a2

1 = 0 . (B.6)

That is

y1 =
1

3
a2 +

(

M +
√

M2 + S3
)1/3

+
(

M −
√

M2 + S3
)1/3

, (B.7)

where

S =
1

9
(−12a0 − a2

2)

M =
1

54
(27a2

1 − 72a0a2 + 2a3
2) . (B.8)

Furthermore, we need to address the issue of the signs in front of the frequencies. If

we take all square roots with positive sign, it is clear that for a generic n and J there are

two possibilities for the relative ordering of the frequencies ωI

I : ω4 < ω3 < ω2 < ω1 (B.9)

II : ω4 < ω2 < ω3 < ω1 . (B.10)

In order to discriminate these, consider the large J À n limit. The asymptotics are

ω1 ∼ −ω4 ∼ 2J and so (ω2 − n2) > 0. Hence,

sign(C
(n)
1,B) = +1 , sign(C

(n)
4,B) = −1 . (B.11)

On the other hand, in the same limit we have ω2 ∼ −ω3 ∼ n/2J and thus (ω2 − n2) < 0,

wherefore

sign(C
(n)
2,B) = −1 , sign(C

(n)
3,B) = +1 . (B.12)

Hence, in the large J limit the eigenvalues are ordered as in the first case in (B.9). Note

that the ordering of ωI
n as a function of n keeping J fixed does not change, i.e., the roots

do not “cross” (see figure 5).

Using (B.11) and (B.12) the expression for δEsl(2) in the large J limit can be simplified

to

δEsl(2) =
∑

n

(−ω4 + ω3 − ω2 + ω1) = 2
∑

n

(ω1 + ω3) =
∑

n

Dn + Fn . (B.13)

In summary, to compute δEsl(2) one only needs to determine the sum over the combination

Dn + Fn.

B.2 Perturbative expansion of modes

The combination of sl(2) modes, Dn + Fn, has the following expansion in 1/J

δEsl(2)

2κ
=

∑

n

(

2k(k − m) + n2 + n
√

4m(m − k) + n2

2

)

1

J 2
+

+

(

−−4m(k − m)(5k2 − 15km + 6m2) + 2(k − 3m)(3k − 2m)n3 + n5

8
√

n2 + 4m(m − k)
+
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+
1

8

(

−2k(k − m)(k2− 11km + 6m2) − 2(3k2− 10km + 5m2)n2− n4
)

)

1

J 4
+

+

(

1

16

{

2k(k − m)(k4 − 23k3m + 86k2m2 − 71km3 + 15m4) +

+ (15k4 − 128k3m + 279k2m2 − 202km3 + 44m4)n2 +

+ (15k2 − 38km + 19m2)n4 + n6
}

+

+
1

16(n2 + 4m(m − k))3/2
×

×
{

+4(k − m)2m2(45k4 − 324k3m + 621k2m2 − 370km3 + 60m4)n −
− 2(k − m)m(53k4 − 481k3m + 1083k2m2 − 815km3 + 192m4)n3+

+ (15k4 − 218k3m + 603k2m2 − 556km3 + 164m4)n5 +

+ (15k2 − 44km + 25m2)n7 + n9
}

)

1

J 6
. (B.14)

The other terms, i.e., the transverse and fermionic terms, are as follows

δE − δEsl(2)

2κ
=

∑

n

(

−(k − m)2 − n2
) 1

J 2

+
1

16

(

(k − m)2(k2− 42km − 7m2) + 8(3k2− 10km + 5m2)n2+ 4n4
) 1

J 4
+

+
1

128

(

−(k − m)2(k4 − 232k3m + 962k2m2 − 80km3 − 11m4) −
− 4(15k4 − 260k3m + 594k2m2 − 340km3 + 23m4)n2 −
− 16(15k2 − 38km + 19m2)n4 − 16n6

) 1

J 6
. (B.15)

Note the three-loop term, where the expression at order n2 has a different structure from

the one in (B.14).

Furthermore, expanding the zero mode part of the energy shift (2.2) in 1/J we obtain

E(0) =
1

2
m(k − m)

1

J 2
− 1

32
(3k − 7m)(k − m)(k + m)2

1

J 4
+

+
1

256
(k − m)

(

15k5 − 135k4m + 182k3m2 − 94k2m3 + 171km4 − 11m5
) 1

J 6
+

+O

(

1

J 8

)

. (B.16)

We shall now combine these terms and obtain the energy shifts up to third order in per-

turbation theory.

B.3 First and second order

The first and second order terms in the 1/J 2 expansion of the energy shift (2.1) are

δEosc
1 =

∑

n

2(k − m)m − n2 + n
√

n2 + 4m(m − k)

2
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δEosc
2 =

∑

n

−n(−4m (k − m)
(

5k2 − 15km + 6m2
)

+ 2 (k − 3m) (3k − 2m) n2 + n4)

8
√

n2 + 4m(m − k)
+

+
1

16
((k − m) (k + m)2 (−3k + 7m) + 4

(

3k2 − 10km + 5m2
)

n2 + 2n4) . (B.17)

The large n behaviour of the summand in δEosc
1 is 1/n2, which ensures that the energy

shift at first order is finite. In the second order term the summand has asymptotics

(δEosc
2 )n = − 1

16
(k − m)2(3k2 − 14km + 19m2) + O

(

1

n2

)

. (B.18)

Thus, there is an anomalous pieces, which needs to be regularized. Applying zeta-function

regularization the regularized energy reads

(δEosc
2 )reg =

1

32
(k − m)2(3k2 − 14km + 19m2) (B.19)

+
∑

n

{

n(−4m(k − m)
(

5k2− 15km + 6m2
)

+ 2(k − 3m)(3k − 2m)n2+ n4)

8
√

n2 + 4m(m − k)
+

+
1

8
(−2(k − m)m

(

4k2−11km+3m2
)

+ 2
(

3k2−10km+5m2
)

n2+n4)

}

.

Combining the zero-mode energy shift with the oscillator contribution, we obtain in sum-

mary that at order 1/J 2 and 1/J 4 the shift is

δEstring
1 =

1

2
m(k − m) +

∑

n

2(k − m)m − n2 + n
√

n2 + 4m(m − k)

2
+

δEstring
2 = −1

8
m(k − m)(4k2 − 11km + 3m2) + (B.20)

+
∑

n

{

−n
(

−4m(k − m)
(

5k2− 15km + 6m2
)

+ 2(k − 3m)(3k − 2m)n2+ n4
)

8
√

n2 + 4m(m − k)
+

+
1

8

(

−2(k − m)m
(

4k2−11km+3m2
)

+ 2
(

3k2−10km+5m2
)

n2+ n4
)

}

.

B.4 Third order

Further expanding the string theory result for the contributions of the oscillators to the

energy up to third order, i.e., order 1/J 6, yields

δEosc
3 =

∑

n

1

128

{

15k6 − 150k5m + 317k4m2 − 276k3m3 + 265k2m4 − 182km5 + 11m6 +

+ 4(15k4 + 4k3m − 36k2m2 − 64km3 + 65m4)n2 −
− 8(15k2 − 38km + 19m2)n4 − 8n6

}

+

+
1

16(n2 + 4m(m − k))3/2
×

×
{

4(k − m)2m2(45k4 − 324k3m + 621k2m2 − 370km3 + 60m4)n −
− 2(k − m)m(53k4 − 481k3m + 1083k2m2 − 815km3 + 192m4)n3 +
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+ (15k4 − 218k3m + 603k2m2 − 556km3 + 164m4)n5 +

+ (15k2 − 44km + 25m2)n7 + n9
}

. (B.21)

The sum is again divergent as the large n behaviour of the summand in (B.21) is

(δEosc
3 )n =

9

32
(k − m)2(5k2 − 18km + 17m2)n2 + (B.22)

+
1

128
(k − m)2(15k4 − 248k3m + 766k2m2 − 752km3 + 91m4) + O

(

1

n2

)

.

We again apply zeta-function regularization. In the present case, we need to evaluate the

Riemann zeta function ζ(s) =
∑∞

n=1 1/ns at s = −2, 0. The values can be calculated by

writing the zeta-function as

ζ(s) =
1

1 − 21−s

∞
∑

n=0

1

2n+1

n
∑

k=0

(−1)k
(

n

k

)

(k + 1)−s , (B.23)

and evaluating the inner sum first. This results for k > 1 in

ζ(−k + 1) = −Bk

k
, (B.24)

where Bk are the Bernoulli numbers. Now B3 = 0 and therefore only ζ(0) gives a non-

vanishing contribution, namely ζ(0) = −1/2. The regularized contribution from the oscil-

lators to the zero modes is thus

(δEosc
3 )reg =

1

256
(k − m)2

(

15k4 − 248k3m + 766k2m2 − 752km3 + 91m4
)

+
∑

n

· · · ,

(B.25)

where the dots indicate the non-zero mode contributions, with the terms in (B.22) sub-

tracted.

Combining all terms, we arrive at the third order energy shift as computed from the

string theory side

δEstring
3 =

1

16
(k − m)m(8k4 − 52k3m + 89k2m2 − 42km3 + 5m4) +

+
∑

n

1

16

{

2(k − m)m(8k4 − 52k3m + 89k2m2 − 42km3 + 5m4) −

− (15k4 − 128k3m + 279k2m2 − 202km3 + 44m4)n2 −
− (15k2 − 38km + 19m2)n4 − n6

}

+
1

16(n2 + 4m(m − k))3/2
×

×
{

4(k − m)2m2(45k4 − 324k3m + 621k2m2 − 370km3 + 60m4)n −
− 2(k − m)m(53k4 − 481k3m + 1083k2m2 − 815km3 + 192m4)n3 +

+ (15k4 − 218k3m + 603k2m2 − 556km3 + 164m4)n5 +

+ (15k2 − 44km + 25m2)n7 + n9
}

. (B.26)

We shall see subsequently, that this regularized energy shift agrees with the prediction from

the Bethe ansatz.
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C. Details of Bethe ansatz computation

C.1 Zero-modes

The zero mode integral is

δE(0) =
c

k

∮

Cab

dz
f ′(z)

(z − c)
. (C.1)

By deforming the contour to infinity, we pick up the residues at z = c and z = ±1.

Combining these residues and subsequently expanding them in 1/J by making use

of (3.34), yields

δE(0) =
1

2
m(k − m)

1

J 2
−

−1

8
m(k − m)(4k2 − 11km + 3m2)

1

J 4
+

+
1

16
(k − m)m(8k4 − 52k3m + 89k2m2 − 42km3 + 5m4)

1

J 6
+ O

(

1

J 8

)

. (C.2)

Comparison to the string theory result, which were computed in the previous section shows

that up to third order in the 1/J 2 perturbation expansion, the zero-mode terms (C.2) agree

with the ones of the zeta-function regularized expressions on the string side.

C.2 Non-zero modes

The non-zero mode contributions come from the sum in (3.38) and are

δEosc =
∞

∑

n=1

δE(n) =
2c

k

∞
∑

n=1

∮

Cab

dz
f ′(z)f2(z)

(z − c)(f2(z) − n2)
. (C.3)

Again, deforming the contour to infinity, we pick up (possibly non-trivial) residues at z = c,

z = ∞, z = ±1 as well as z = zn, where zn were defined in (3.40).

The residues at z = c and z = ∞ vanish. The residue at z = zn was evaluated in (3.42).

In order to expand this in 1/J , one first needs to solve (3.41) perturbatively for zn (note

that there are two roots zn each for positive n and for negative n).

The expansion of (3.42) yields up to third order

Resz=zn =
1

2

{

2k(m − k) − n2 + n
√

n2 + 4m(m − k)

}

1

J 2
+

+
1

8

{

−2k(m − k)(k2 − 11km + 6m2) + 2(3k2 − 10km + 5m2)n2 + n4 −

− −4(k−m)m(5k2−15km+6m2)n + 2(k−3m)(3k−2m)n3 + n5

√

n2 + 4m(m − k)

}

1

J 4
+

+
1

32

{

−9k6 + 184k5m − 848k4m2+ 1380k3m3− 934k2m4+ 252km5− 20m6 +

− 2(15k4 − 128k3m + 279k2m2 − 202km3 + 44m4)n2 −
− 2(15k2 − 38km + 19m2)n4 − 2n6 +

2

(n2 + 4m(m − k))3/2
×
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×
(

4(k − m)2m2(45k4 − 324k3m + 621k2m2 − 370km3 + 60m4)n −
− 2(k − m)m(53k4− 481k3m + 1083k2m2− 815km3+ 192m4)n3 +

+ (15k4 − 218k3m + 603k2m2 − 556km3 + 164m4)n5 +

+ (15k2 − 44km + 25m2)n7 + n9
)

}

1

J 6
+ O

(

1

J 8

)

. (C.4)

Finally, there are the residues at z = ±1, which contribute to the n-independent terms

of the summands δE(n)

Resz=1+Resz=−1 = (k2 − m2)
1

J 2
− 1

4
(k − m)(k + m)(k2 − 8km + 3m2)

1

J 4
−

− 1

32
k(−9k5+ 152k4m − 608k3m2+ 816k2m3− 410km4+ 64m5)

1

J 6
+

+O

(

1

J 8

)

. (C.5)

Putting the residues in (C.4) and (C.5) together we obtain

δE(n) =
1

2

{

−2m(m − k) − n2 + n
√

n2 + 4m(m − k)

}

1

J 2
+

+
1

8

{

−2(k − m)m(4k2 − 11km + 3m2) + 2(3k2 − 10km + 5m2)n2 + n4 −

− −4(k − m)m(5k2− 15km + 6m2)n + 2(k − 3m)(3k − 2m)n3+ n5

√

n2 + 4m(m − k)

}

1

J 4
+

+
1

32

{

4(k − m)m(8k4 − 52k3m + 89k2m2 − 42km3 + 5m4) −

− 2(15k4 − 128k3m + 279k2m2 − 202km3 + 44m4)n2 −
− 2(15k2 − 38km + 19m2)n4 − 2n6 +

2

(n2 + 4m(m − k))3/2
×

×
(

4(k − m)2m2(45k4 − 324k3m + 621k2m2 − 370km3 + 60m4)n −
− 2(k − m)m(53k4 − 481k3m + 1083k2m2 − 815km3 + 192m4)n3 +

+ (15k4 − 218k3m + 603k2m2 − 556km3 + 164m4)n5 +

+ (15k2 − 44km + 25m2)n7 + n9
)

}

1

J 6
+ O

(

1

J 8

)

. (C.6)

The complete energy shift is then

δE = δE(0) +

∞
∑

n=1

δE(n) , (C.7)

where the various terms are written out in (C.2) and (C.6).

In summary, the Bethe result agrees with the string results (B.20), (B.26) including

order 1/J 6.

– 25 –



J
H
E
P
0
9
(
2
0
0
5
)
0
5
1

100 200 300 400 500 600 700

-1000

-500

500

20 40 60 80 100 120 140

-300

-200

-100

100

10 20 30 40 50

-40

-30

-20

-10

10 5 10 15 20 25 30 35

-8

-6

-4

-2

Figure 4: Profiles of the summands for k = 400, k = 100, k = 20 and k = 5, respectively, with

(J = 3, m = 2).
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Figure 5: Profiles of the ω frequencies for k = 400, (J = 3, m = 2). The plot on the right hand

side zooms into the plot on the left hand side.

D. Details of the large k string computation

We evaluate the energy shift δEstring in the large k limit, for fixed m and J . Again, the

problematic part in the computation are the ω-dependent terms, for which we are forced

to use approximations for finding the roots in different regions of the parameters.

Note that first expanding the summands in (2.2) and (2.3) 1/k before summing them

yields divergent expressions. However, unlike the divergences that occured in the 1/J
expansion at second and third order in perturbation theory, these divergences cannot be

removed, using standard regularisation procedures such as zeta-function regularisation as

they contain logarithmic divergences. The origin of this divergence is the irregular depen-

dence on k of the resummed expression (2.9).

In order to ascertain what kind of function we are summing, it is useful to numeri-

cally plot the summands. This is done in figure 4 for various, mainly large, values of k.

Solving (B.2) in the limit n ∼ |k| → ∞ we find, up to O(1/k2) corrections

ωn 1,2 = n ± 2|k| ± 1

|k|

[

mJ +
n ± 2|k|
n ± |k|

(J + m)2

2

]

, (D.1)

ωn 3,4 = −n − (J + m)n

2|k|(n2 − k2)

[

(J + m)|k| ±
√

(J − m)2n2 + 4mJ k2
]

. (D.2)

These expressions approximate the frequencies well enough in the entire range of n, except

for n − |k| = O(1), where 1/k corrections to ω2 and ω3 blow up. Solving (B.2) in that

region we find

ω1 = 3|k| , (D.3)

ω4 = −n , (D.4)

ω± = −|k| ±
√

(n − |k|)2 + (J + m)2 . (D.5)
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Comparing (D.5) to (D.1), (D.2) we see that ω+ asymptotes ω2 at n À |k| and ω3 at n ¿ |k|,
while ω− asymptotes ω3 at n À |k| and ω2 at n ¿ |k|. Thus ω2 and ω3 interchange at

n = |k| by passing through the singularity.

Computing the sign factors from (2.6) we get

n < |k| : sign C
(n)
1 = 1, sign C

(n)
2 = −1, sign C

(n)
3 = 1, sign C

(n)
4 = −1,

n > |k| : sign C
(n)
1 = 1, sign C

(n)
2 = 1, sign C

(n)
3 = −1, sign C

(n)
4 = −1,

n − |k| ∼ 1 : sign C
(n)
1 = 1, sign C

(n)
4 = −1, sign C

(n)
± = ±1 . (D.6)

We are now ready to compute the sum over modes. To do that we divide the range of

summation into three parts

(I) 1 ≤ n ≤ |k| − s − 1

(II) |k| − s ≤ n ≤ |k| + s

(III) |k| + s + 1 ≤ n , (D.7)

where 1 ¿ s ¿ |k|. In the regions (I) and (III) the summation of O(1/k) terms can be

replaced by an integration over x = n/|k|
∞
∑

n=1

4
∑

I=1

(

sign C
(n)
I ωn,I − n − κ2

2n

)

=

= 4

|k|−s−1
∑

n=1

(|k| − n) − 2(J + m)2
|k|−s−1

∑

n=1

1

n
+

+

∫ 1−s/|k|

0
dx

[

2mJ + (J + m)
(2 − x2)(J + m) + x

√

(J − m)2x2 + 4mJ
1 − x2

]

+

+
s

∑

l=−s

[

2
√

l2 + (J + m)2 − 3l
]

+ 2(J + m)2
∫ ∞

1−s/|k|
dx

(

x

x2 − 1
− 1

x

)

(D.8)

= 2

[

k2 − |k| + (J + m)
√

mJ + mJ + F (0,J + m) + (J + m)2 ln

√
J + m√
J +

√
m

]

.

Combining this with the expansion of the zero modes

δE(0) = − |k|
J + m

+

(

1 + 2

√

J − m

J + m

)

− 7J 2 + 10Jm + m2

2 |k|(J + m)
+ O

(

1

k2

)

, (D.9)

and (2.9) we obtain

δE =
k2− 4γ2+ mJ + 2F

(

0,
√
J 2− m2

)

+ 2F (0,J + m) − 4F
(

{|k|/2},
√

J (J + m)
)

J + m
+

+
√

mJ + (J + m) ln

√
J + m√

J +
√

m
. (D.10)

Since γ = |k|/2 + O(1/k), this expression has a finite k → ∞ limit, as was observed

numerically. In order to determine the asymptotic values of the constant one needs the
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expression for γ with an O(1/k) accuracy

γ =
|k|
2

+
m(2J + m)

4|k| + O

(

1

k3

)

, (D.11)

which implies

δE =
2F

(

0,
√
J 2 − m2

)

+ 2F (0,J + m) − 4F
(

{|k|/2},
√

J (J + m)
)

J + m
+

+
√

mJ + (J + m) ln

√
J + m√
J +

√
m

− m . (D.12)

For large enough α, the function F (α, β) can be approximated as in (2.10), and thus the

previous sum can be further simplified to

δE = −1

2
(J + m) ln(J + m) − (J − m) ln(J − m) + 2J lnJ +

+
√

mJ − (J + m) ln(
√
J +

√
m) − m + O

(

1

α

)

. (D.13)
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