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Slice Stretching at the Event Horizon

when Geodesically Slicing the Schwarzschild Spacetime with Excision
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Slice stretching effects are discussed as they arise at the event horizon when geodesically slicing
the extended Schwarzschild black hole spacetime while using singularity excision. In particular,
for Novikov and isotropic spatial coordinates the outward-movement of the event horizon (“slice
sucking”) and the unbounded growth there of the radial metric component (“slice wrapping”) are
analyzed. For the overall slice stretching very similar late time behavior is found when comparing
with maximal slicing. Thus, the intuitive argument that attributes slice stretching to singularity
avoidance is incorrect.
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I. INTRODUCTION

When evolving a spacetime containing a physical sin-
gularity without making use of a shift, the foliation usu-
ally is of pathological nature as so-called “slice stretch-
ing” effects develop [1]. Here “slice sucking” arises in the
form of outward-drifting coordinate locations as the cor-
responding observers are falling toward the singularity.
This infall takes place in a differential manner, leading to
large proper distances in between neighboring observers
with “slice wrapping” showing up in the form of large
gradients in the radial metric function.

In the past, slice stretching effects have been often at-
tributed to the singularity-avoiding behavior of a folia-
tion by the following intuitive argument: For such slices
the lapse collapses to zero in the strongly curved “inte-
rior” region and the evolution of the metric essentially
freezes there, while it marches ahead further “out” in or-
der to evolve a large fraction of the spacetime. Hence
singularity-avoiding slices “wrap up around the singu-
larity” [2] which causes “large amounts of shear in the
coordinate grid” [3].

To study whether the singularity-avoiding property of
a foliation plays a role for the overall slice stretching, I
will in this paper for the extended Schwarzschild space-
time compare slice stretching effects for geodesic and
maximal slicing.

Characterized by unit lapse and vanishing shift,
geodesic slicing represents the “simplest” gauge choice
which, however, does not avoid physical singularities.
In particular, starting with the time-symmetric con-
formally flat Einstein-Rosen bridge [4] of the extended
Schwarzschild spacetime, an observer at the throat is ini-
tially at the event horizon rEH = 2M and falls freely into
the singularity. Hence, if the singularity is part of the
grid, a numerical simulation faces infinite curvature and
has to crash after evolving for the free-fall time given by
πM . This fact can be used for testing numerical codes
as e.g. in [3, 5].

In the following, however, I am only interested in the
portion of the geodesic slices lying in the exterior parts
of the spacetime. From the viewpoint of numerical rela-
tivity, I make use of a code capable of excising the inte-
rior region in between the “left-hand” and “right-hand”
event horizon. For Novikov spatial coordinates this idea
is shown in Fig. 1 of [6]. In the same reference it has
also been demonstrated numerically that geodesic slicing
together with singularity excision can be used to evolve
a single black hole for considerably more than πM .

When studying the late time behavior of the geodesic
slices, I will for simplicity concentrate on the event hori-
zon acting as a “marker” for slice stretching effects. In
particular, the location of the event horizon in terms of
Novikov and isotropic spatial coordinates will be deter-
mined as a function of time together with the behavior
of the radial component of the 3-metric there.

These results will then be compared both analytically
and numerically with statements obtained for maximal
slicing in [7, 8, 9, 10]. Being motivated geometrically
and characterized by the condition that the trace of the
extrinsic curvature vanishes at all times [11], maximal
slices avoid the Schwarzschild singularity by approaching
the limiting slice r = 3M/2 asymptotically [12].

The main result of this comparison is that the over-
all slice stretching at the event horizon for both geodesic
and maximal slicing in leading order is found to be pro-
portional to time. Hence the intuitive argument that
attributes slice stretching to singularity avoidance turns
out to be incorrect.

The paper is organized as follows:

In Sec. II slice stretching effects at the event hori-
zon are discussed, studying in Subsec. II A the cy-
cloidal motion of radial geodesics and focusing in
Subsecs. II B and II C on Novikov and isotropic spatial
coordinates, respectively.

I conclude in Sec. III.
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II. SLICE STRETCHING AT THE EVENT

HORIZON

A. Cycloidal motion of radial geodesics

Geodesic slicing is characterized by unit lapse and van-
ishing shift which define Gaussian normal coordinates.
Those are comoving in the sense that radially freely
falling observers are at rest and the time coordinate mea-
sures proper time. One important property of Gaussian
normal coordinates is that the geodesics defining the co-
ordinates remain orthogonal to all constant time hyper-
surfaces, and transformations between different spatial
coordinates are hence time-independent.

In particular, referring to Schwarzschild coordinates, a
radial geodesic starting at the singularity at r = 0 per-
forms a cycloidal motion out to some maximal radius
r̃ and back as pointed out in more detail in §25.5 and
§31.3 of [13]. In terms of r̃ > 2M , the geometry of the
Schwarzschild spacetime is described by the line element

ds2 = −dτ2 +
1

1− 2M/r̃

(

∂r

∂r̃

)2

dr̃2 + r2 dΩ2. (1)

Here by integrating the geodesic equation one can see
that r = r(τ, r̃) is given implicitly by

τ = r̃

[

√

r

2M

(

1−
r

r̃

)

+

√

r̃

2M
arccos

√

r

r̃

]

. (2)

Furthermore, following [6], it turns out that by implicit
differentiation

∂r

∂r̃
=

3

2

[

1−
r

3r̃
+

√

r̃

r
− 1 arccos

√

r

r̃

]

(3)

is found (but note a missing root in the formula given in
that reference).

Concentrating for a discussion of slice stretching on
the event horizon, r = rEH = 2M , in leading order (to
be denoted by ≃) from (2) one can infer

r̃EH ≃
2M

1
3

π
2
3

τ
2
3 . (4)

Interested in the behavior of the radial component of the
line element (1) there, when using (3) at late times

Gr̃r̃|r̃EH
≃

9π
4
3

16M
2
3

τ
2
3 (5)

is found.
Furthermore, I want to point out that for maximal

slicing in [7] the overall slice stretching has been char-
acterized by integrating metric quantities from the left-
to the right-hand event horizon. Such integrals for “nu-
merically favorable” boundary conditions turned out to

diverge proportional to time, see [7] for details. Note,
however, that one can not carry out such an integration
over the throat for slicings such as geodesic slicing which
do not avoid but hit the singularity. For this reason I
now want to characterize the overall slice stretching at
the event horizon in a weaker sense by the indefinite in-

tegral
∫ r̃EH

√

Gr̃r̃(τ, y) dy. One may then readily verify
that not only for maximal but also for geodesic slicing
this integral is of order O(τ) independently of the choice
of spatial coordinates. This observation clearly is in con-
tradiction to the argument that slice stretching is due to
singularity-avoidance.

In the next subsection I will describe slice stretching
effects at the event horizon in terms of (more familiar)
Novikov coordinates.

B. Novikov coordinates

The Novikov spatial coordinate R∗ [14] is related time-
independently to r̃ by

r̃ = 2M(R∗2 + 1) (6)

where the isometry R∗ ←→ −R∗ is mapping the two
“universes” of the extended Schwarzschild spacetime into
each other. Considering (4), one can then observe that
in terms of R∗ slice stretching takes place in a symmetric
manner as the locations of the left- and right-hand event
horizon at late times are given by

R∗±

EH ≃ ±
1

(πM)
1
3

τ
1
3 . (7)

For the radial component of the metric,

GR∗R∗(τ, R∗) = 16M2(R∗2 + 1)

(

∂r

∂r̃

)2

, (8)

using (3) in leading order at both left- and right-hand
event horizon an unbounded growth like

GR∗R∗ |R∗±

EH

≃ 9(πM)
2
3 τ

4
3 (9)

is found.

I want to emphasize here that slice sucking and slice
wrapping at the event horizon - for Novikov spatial co-
ordinates - takes place in order O(τ1/3) and O(τ4/3),
respectively. In [8] the same late time behavior - but for
isotropic grid coordinates - has been found for maximal
slicing (at the right-hand event horizon in the context of
even or “zgp” boundary conditions).

In order to compare the slice stretching effects for the
same choice of spatial coordinates, in the next subsection
I will geodesically slice puncture data.
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C. Isotropic coordinates

Isotropic spatial coordinates can be introduced again
in a time-independent way by

r̃ = xΨ2(x) (10)

making use of the conformal factor Ψ(x) = 1 + M/2x.
Since the isometry x←→M2/4x is present, with (4) and
(10) one may readily verify

x+
EH =

M2

4x−

EH

≃
2M

1
3

π
2
3

τ
2
3 (11)

and observe that in leading order the location of the
right-hand event horizon grows in order O(τ2/3) whereas
the left-hand event horizon approaches the puncture like
O(τ−2/3). Furthermore, it turns out that the radial com-
ponent of the 3-metric - often rescaled by Ψ4(x) to focus
on the dynamical features in the metric rather than on
the static singularity at x = 0 - is given by

gxx(τ, x) =
Gxx(τ, x)

Ψ4(x)
=

(

∂r

∂r̃

)2

. (12)

When using (3) at the left- and right-hand event horizon
for gxx an unbounded growth of order O(τ2/3) is found,

gxx|x±

EH

≃
9π

4
3

16M
2
3

τ
2
3 , (13)

whereas when including the conformal factor for Gxx a
behavior of order O(τ10/3) and O(τ2/3) is obtained,

Gxx|x−

EH

≃
144

π
4
3 M

10
3

τ
10
3 and Gxx|x+

EH

≃
9π

4
3

16M
2
3

τ
2
3 .

(14)
The geodesic slicing of puncture data has been investi-

gated numerically in [6]. Here I show the corresponding
spacetime diagram in Fig. 1.

Furthermore, by making use of the regularized spher-
ically symmetric code described in [15], I have evolved
Schwarzschild puncture data numerically with geodesic
slicing and, for comparison, maximal slicing. For sim-
ulations using 30, 000 grid points and a resolution of
△x = 0.001M the location of the right-hand event hori-
zon and the value of the radial metric component there,
x+

EH and Gxx|x+

EH

, are shown as a function of time in

Fig. 2.
One should observe in this figure that for geodesic slic-

ing when excising from the puncture up to 0.98 times the
value of x+

EH , the numerically observed slice sucking and
slice wrapping is up to τ = 10M in excellent agreement
with the analytically predicted results. Due to growing
errors at the excision boundary, however, the run fails
shortly afterwards.

Foliations of Schwarzschild puncture data using max-
imal slicing, its lapse arising from the elliptic equation
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FIG. 1: The geodesically sliced Schwarzschild spacetime in
isotropic coordinates is shown, denoting the location of the
left- and right-hand event horizon by down- and upward
pointing triangles, respectively. Note that in numerical prac-
tice one would usually excise from the puncture at x = 0 up
to a “ghost zone” to the left of the right-hand event horizon.
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FIG. 2: Slice sucking and slice wrapping is shown as tak-
ing place for isotropic coordinates at the event horizon. Here
the numerically obtained data for geodesic slicing (shown as
stars) is in excellent agreement with the analytically predicted

line, with both x
+

EH and Gxx|x+

EH

being of order O(τ 2/3).

For maximal slicing these slice stretching effects are of order
O(τ 1/3) and O(τ 4/3), obtaining numerically very similar re-
sults when demanding even or “zgp” boundary conditions (de-
noted by up- or downward pointing triangles, respectively).
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△α = Rα, have been studied both analytically and nu-
merically in [7, 8, 9, 10]. In particular, for runs demand-
ing symmetry with respect to the throat or for the punc-
ture evolution imposing a vanishing gradient of the lapse
at the puncture, i.e. for even or “zgp” boundary condi-
tions, slice sucking and slice wrapping at the right-hand
event horizon have been found to be of order O(τ1/3) and
O(τ4/3), respectively.

III. CONCLUSIONS

I have studied the slice stretching effects which
are present when geodesically slicing the extended
Schwarzschild spacetime while making use of singular-
ity excision. The analysis has been carried out at the
event horizon in terms of Novikov and isotropic spatial
coordinates.

Independently of the coordinate choice, the overall slice
stretching has been found to be proportional to time and
hence to be comparable to the one arising for maximal
slicing. Its “splitting” into slice sucking and slice wrap-

ping, however, for the same choice of spatial coordinates
turned out to be different.

The intuitive argument that attributes slice stretching
to singularity-avoidance has been found to be incorrect.
Instead, for evolutions with vanishing shift, slice sucking
and slice wrapping are caused by the differential infall of
Eulerian observers.

Taking the maximally sliced Schwarzschild spacetime
as an example, it is furthermore of interest to study ana-
lytically whether these effects can be avoided by making
use of a geometrically motivated shift. I will report on
work in this direction in a further paper [16].
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