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Abstract
We extend a coherent network data-analysis strategy developed earlier
for detecting Newtonian waveforms to the case of post-Newtonian (PN)
waveforms. Since the PN waveform depends on the individual masses of
the inspiralling binary, the parameter-space dimension increases by one from
that of the Newtonian case. We obtain the number of templates and estimate
the computational costs for PN waveforms: for a lower mass limit of 1M�, for
LIGO-I noise and with 3% maximum mismatch, the online computational speed
requirement for single detector is a few Gflops; for a two-detector network it is
hundreds of Gflops and for a three-detector network it is tens of Tflops. Apart
from idealistic networks, we obtain results for realistic networks comprising
of LIGO and VIRGO. Finally, we compare costs incurred in a coincidence
detection strategy with those incurred in the coherent strategy detailed above.

PACS numbers: 0480N, 0705K, 9780

1. Introduction

Close compact binaries are among the prime sources of gravitational waves that hold promise
for detection with upcoming laser interferometric detectors such as LIGO, VIRGO, GEO-600,
TAMA, and AIGO. The back reaction of radiated gravitational waves results in an inspiral
with an eventual merger of the two companions of the binary system. This adiabatic inspiral
waveform has been accurately modelled up to 2.5 post-Newtonian order [1]. In an earlier
work [2], we developed a formalism for detecting inspiral waveforms with a network of
detectors. The proposed analysis is of a coherent nature where the network is treated as
a single detector and the data is combined using the phase information optimally. In [2],
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we used the maximum likelihood detection (MLD) technique, which involves correlating
the output of a network of detectors with the family of expected waveforms (or templates)
and selecting the maximum of the network likelihood ratio for decision making [3]. To
reduce the computational costs involved in searching over the space of source parameters,
we succeeded in analytically maximizing over four of these parameters, namely, the overall
amplitude, initial phase and the orientation angles of the binary orbit. The maximization
over the time of arrival (or, alternatively, over the time of final coalescence) of signals was
carried out via Fast Fourier Transforms (FFTs). Estimates of computational costs involved in
searching over the source-direction angles and the chirp mass were obtained for the simplistic
case of Newtonian waveforms. In this work, we extend the coherent network analysis to
the more realistic case of PN waveforms. A restricted PN waveform depends on individual
masses of the companions instead of the combined chirp mass. This increases the number of
parameters by one. We estimate, in general, the costs involved in searching over the masses as
well as the source-direction angles for realistic network configurations. Finally, we describe
a coincidence network detection strategy and compare costs incurred in it with those in the
coherent detection strategy.

2. Restricted post-Newtonian signal at the network

The signal sI(t) at the constituent Ith detector of the network is given by [2]

sI(t) = 2κ � [(
E∗

I S
I
)

eiδc
]
, (1)

where κ is the overall amplitude that depends on the fiducial frequencyfs (which we take to be
the seismic cut-off frequency of the fiducial detector) and the masses of the binaries. δc is the
phase of the waveform at the time of final coalescence. The extended beam-pattern functions
of the Ith detector, EI , depend on the source-direction angles, {θ, φ}, the orbit orientation
angles, {ε,ψ}, the Ith detector orientation,

(
α(I), β(I), γ(I)

)
, and the sensitivity, g(I), of the

detector to the incoming signal. Finally, SI(t) is a normalized complex signal such that in the
stationary-phase approximation (SPA) its Fourier transform (FT) is

S̃I(f ; tc, ξ) = 2

g(I)

√
2

3fs

(
f
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)−7/6

exp
[
i�(I)(f ; fs, tc, ξ)

]
(2)

for positive frequencies. Above, the phase of the 2.5 restricted PN waveform at the Ith detector
is the scalar

�(I)(f ; fs, tc,M, η, n3, n1) = ϑµξ(I)µ(f ; fs), (3)

where the parameters ϑµ consist of the final coalescence time tc, the total mass M, the mass
ratio η

(
:= m1m2/M

2
)

and the source direction described by two components n1 and n3 of
unit vector n̂ pointing to the source. Given below are ϑµ and ξ(I)µ:
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ϑ7 = 2πn1 ξ(I)7 = x(I)

(
f
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)
.

Here, x(I) and z(I) are, respectively, the x and z coordinate values (in units of c/fs) of the
location of the Ith detector in a fiducial reference frame.

3. Number of templates

In this section, we estimate the number of templates required to search over the parameter
space. In [4], we showed that for a given pair of source-direction angles (θ, φ), the network
likelihood ratio, when maximized over the overall amplitude, δc, ε, and ψ , gives the network
detection statistic. Numerical maximization of the statistic over the rest of the parameters,
namely, masses and source-direction angles, is performed using a template bank. We estimate
the number of templates by calculating the volume of the parameter space of interest obtained
by computing the metric on the manifold and dividing by the size of each template. When
the network statistic is dependent on the parameters solely through the difference between the
parameter values of the signal and the template, then the metric on the parameter manifold is
flat and, hence, the template placement is uniform.

It is well known that with PN order > 1, the metric on the manifold is not flat. The
Tanaka–Tagoshi [5] coordinates (X1,X2) provide a convenient and an elegant way to carry
out further analysis. The salient feature of these coordinates is that they allow one to make
the metric Euclidean on a flat manifold, which is an approximation to the actual manifold.
Also the coordinate volume of the parameter space in these coordinates is same as the proper
volume which immediately gives the number of templates as described above.

4. Computational costs

In this section, we estimate the cost involved in numerically searching over the rest of the
parameter space mentioned above. This cost has two important components:

(i) The cost involved in FTs. The MLD technique requires one to cross-correlate the data with
all possible templates in the rest of the parameter space involving mass parameters and the
direction angles. Since information about the direction angles is encoded in time delays,
network correlation vectors for templates differing in direction angles can be constructed
by combining the correlation outputs from different detectors with appropriate time delays
as described in [2]. Thus, the cost involved in FTs is equal to the number of computational
operations required to search over the intrinsic parameters; in our case, the two masses of
the binary.

(ii) The cost involved in scanning the time-delay window. The optimal statistic needs to be
evaluated by combining the correlation vectors with appropriate time delays.

Consider a network of ND detectors. Let N be the number of sampled points in a data
train at each constituent detector. If the templates are stored in memory, then the computing
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cost in FTs is 6NDNnX1−X2 log2 N , where nX1−X2 reflects the number of templates only in
mass parameters. Let ntot be the total number of templates, which includes twice (to account
for the phase δc) those needed to cover the X1 − X2 plane and the source direction angles. The
number of floating point operations to construct a network statistic for one pair of direction
angles is 8ND . Then, the total computational cost is

Ctot = NDN(8ntot + 6nX1−X2 log2 N). (5)

Online data processing requires that the data processing rate should be equal to the data
acquisition rate. Thus the length of the data which is effectively processed is equal to the
length of the zero padding. We obtain the online computational speed by dividing the cost by
the length of the padding interval. We use the analytical fits to the noise curves of LIGO and
VIRGO in table 1. We tabulate the results for various idealistic as well as realistic networks
in table 2. For the case of the real network of two 4 km arm length LIGO detectors and a
VIRGO detector [6] with their respective noises, we estimate the average number of templates
for most of the astrophysical range of ε and ψ to be ntot ∼ few times × 1010 for a lower mass
limit of 0.5M�. We take data trains of length 3000 seconds corresponding to the longest chirp
of ∼900 seconds for VIRGO. Taking a sampling rate of 2 kHz, the data must be processed in
2100 seconds. The online data processing demands a computational speed of a few thousand
Tflops.

Table 1. Analytical fits (for positive frequencies) to noise power spectral densities, 2sh(f ), of the
interferometric detectors studied in this paper [7]. We take sh(f ) to be infinite below the seismic
cut-off frequency fs . We choose the high frequency cut-off, fc(I ), to be 800 Hz for all I. f0 is the
frequency at which the detectors attain their highest sensitivity.

Detector Fit to noise PSD
(

1046 × sh(f )/Hz−1
)

f0 (Hz) fs (Hz)

VIRGO 3.24
[
(6.23f/f0)

−5 + 2(f0/f ) + 1 + (f/f0)
2
]

500 20
LIGO I 9.0

[
(4.49f/f0)

−56 + 0.16(f/f0)
−4.52 + 0.52 + 0.32(f/f0)

2
]

150 30

Here, we note that for networks withND � 3 , the computational cost required to construct
an optimal network statistic while searching over the source-direction angles overshoots the
FT costs. As a result, the computational requirements are beyond the reach of the current
technology for a flat search.

5. Coincident search

To focus on the essential aspects of a coincidence search strategy, we consider the simplistic
case of a network comprising of detectors with identical noises and orientations but with
arbitrary locations. The network detection statistic in such a search is taken to be the minimum
element in {|C1|, . . . , |CND |}, where CI is the single-detector statistic evaluated from the data
of the Ith detector (see [8]). Therefore, unlike a coherent search, a coincident search first
involves establishing threshold crossing by the single-detector detection statistic in each of
the detectors in a network. Furthermore, claiming a detection by the network requires that
the parameters corresponding to the threshold-crossing templates lie within error intervals of
one another, such that they can be consistently ascribed to a single astrophysical event. This
requirement alone immediately implies that, even in this simplistic network, the computational
cost in a coincident search is larger than NDC1, where C1 is the computational cost for a single
detector search.
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Table 2. Number of templates, computational costs and online computing speeds required for a
search using specific networks. The detector networks are labelled as I for a single detector and
I I I for three identical detectors with identical orientations placed on Earth’s equator forming an
equilateral triangle. The detector XD denotes a detector with LIGO-I noise at the location of the
detector D. The letters L, H, V , T and A denote LIGO detector at Louisiana, LIGO detector at
Hanford (of 4 km arm length), VIRGO, TAMA and AIGO sites, respectively. We assume LIGO-I
noise for both the LIGO detectors. We present results for lower mass limits of 0.5M� and 1.0M�.
The maximum length of the 2.5 PN chirp is 96.5 seconds and 306 seconds for minimal mass limits
of 1M� and 0.5M� respectively. We assume fiducial frequency fs = 30 Hz. We consider data
trains of 1100 seconds for 0.5M� and 400 seconds for 1.0M� sampled at 2 kHz so that N ∼ 106.
For the LV network, the length of the longest chirp is ∼284 seconds for 1.0M� and ∼900 seconds
for 0.5M�. The number of points in the data train ∼106−107. The mismatch is taken to be 3%.

Network configuration mass limit (M�) ntot (×107) nX1−X2 (×104) Ctot (×1014) (fl-pt ops) S(×102) (Gflops)

I 0.5 0.0214 10.7 0.3 0.37
1.0 0.0042 2.1 0.02 0.06

LH 0.5 0.64 16 3.1 4.0
1.0 0.12 3.2 0.21 0.71

LXV 0.5 1.7 16 6.9 8.7
1.0 0.33 3.2 0.48 1.6

LXT 0.5 2.1 16 8.2 10.3
1.0 0.39 3.2 0.56 1.8

LXA 0.5 2.6 16 10.3 12.9
1.0 0.5 3.2 0.7 2.31

LV 0.5 6.8 72 83 35.2
1.0 1.3 14 5.8 6.4

III 0.5 1.1 × 103 21.4 6.0 × 103 7500
1.0 2.2 × 102 4.2 4.2 × 102 1400

To ascertain exactly how large this cost is, we first describe our search algorithm for a
network of two identical detectors,which is based upon a powerful search and is not necessarily
the cheapest computationally4:

(i) Filter the data x1(t) and x2(t) from the two detectors, respectively, with a bank of single-
detector templates to draw two separate lists of threshold crossers. Label these ‘candidate
events’ E1

i = E
(
ta1
i ; ϑ1

i

)
and E2

j = E
(
ta2
j ; ϑ2

j

)
, respectively, where ta1

i

(
ta2
i

)
denotes the

time of arrival of event i at detector 1 (2), and i = 1, 2, . . . ,m, j = 1, 2, . . . , n. Note that
in general m �= n. Also, ϑ1

i denotes the template-parameter vector characterizing event i
at detector 1. The above nomenclature is suited to handling the possibility of two or more
templates triggering off simultaneously, say, on the data from detector 1. In such a case,
one will have more than one event with ta1

i−1 = ta1
i = ta1

i+1, but with ϑ1
i−1 �= ϑ1

i �= ϑ1
i+1.

(ii) ‘Time window’ veto: Let detector 1 have a smaller number of candidate events than
detector 2. With each E1

i associate a set W 2
(
ta1
i ; τ 12

cij

)
of candidate events E2

j , such that
tai − τ 12

cij � taj � tai + τ 12
cij . Here, τ 12

cij is the sum of the light-travel time between the
two detectors and the sum of magnitudes of the estimated errors in their arrival times at
detectors 1 and 2. Note that an event E2

j may appear in more than one set. That is, it
may happen that E2

j ∈ W 2
(
ta1
i ; τ 12

cij

) ∩W 2
(
ta1
k ; τ 12

ckj

)
, where i �= k. Discard from the lists

those E2
j that do not belong to any W 2

(
ta1
i ; τ 12

cij

)
.

(iii) ‘Parameter window’ veto: Compute the covariance matrix in the parameter space
around E1

i and around each event in W 2
(
ta1
i ; τ 12

cij

)
from the ambiguity function [3].

4 This algorithm extends the one described in [8].
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Estimate the parameter error, 3ϑ1
i

(
3ϑ2

j

)
, to be the square root of the variance of the

parameter ϑ1
i

(
ϑ2
j

)
derived from this matrix. Discard events in W 2

(
ta1
i ; τ 12

cij

)
that have∣∣ϑ2µ

j − ϑ
1µ
i

∣∣ > ∣∣3ϑ
2µ
j

∣∣ +
∣∣3ϑ

1µ
i

∣∣ for each parameter index µ.

The pairs of candidate events surviving the above vetoes are the ‘detected’ events. A more
sophisticated approach involving further vetoes of the type discussed in [9] will be studied
elsewhere.

The above steps explicate the computational costs, over and above that of NDC1, that are
necessary in a coincidence detection, but are often glossed over: extra costs are involved in
computing parameter errors and implementing vetoes based on them. These costs obviously
scale as the number of the candidate events in each detector (whereas, the cost in a coherent
search is independent of it). These counts, in turn, depend on the value of the detection
threshold and, therefore, on the false-alarm probability. The number of floating point
operations (flop) needed to estimate the error in a parameter, ϑIµ

i , is close to that involved
in taking the second derivative of CI with respect to ϑ

Iµ

i . Using the discrete version of the
second derivative the number of flop involved is ∼10C1. Therefore, in an eight-dimensional
parameter space (based on the independent parameters

(
r, δc, ϑ

0, . . . , ϑ5
)
, the number of flop

required to estimate parameter errors for all candidate events is about 80C1 ×∑ND

I=1 NI , where
NI is the number of candidate events in detector I. Additional operations required to compare
the parameter values across detectors (using the inequality given in step (iii)) and veto events
scales as

∏ND

I=1 NI , which is a small fraction of the total cost for ND = O(1) and NI = O(10).
Thus, neglecting this last contribution, the total number of flop scales as:

NDC1 + 80C1

ND∑
I=1

NI . (6)

For comparison with the coherent search costs, we take NI = 102 in N � 106 data points in
each of the three detectors in a network. For a minimum mass of 0.5M�, table 2 shows that
C1 = 0.3×1014. Thus, for network configuration III , the total number of flop in a coincident
search is about 7.2 × 1017 which is very close to Ctot = 7.7 × 1017 for a coherent search.
One may argue that it is possible to reduce NI in each detector by using additional vetoes of
the type adopted in [9]. Such steps will surely reduce the contribution from the second term
in (6). Nevertheless, the additional costs in implementing such vetoes are also very large and
must be explored in more detail.

It is easy to see that with more events or more detectors, the cost related to (6) can only
rise. Thus, any action, such as a change in the sensitivity of the detectors, that contributes
to a decrease in these numbers could potentially make this type of search more attractive.
Another obvious advantage of a coincident search is the fact that the major part of the
computation, which involves generating a candidate event list for each detector, can be
performed independently at each site. A coherent search,by contrast, requires that the detection
statistic be computed by analysing the data from all the sites simultaneously. The attraction of
a coherent search, nevertheless, is the fact that it yields a better detection efficiency. A more
detailed study of these comparisons will be presented in [10].

6. Conclusion

As shown in table 2, the computational cost in a coherent search rises markedly in going from
ND = 1 to 3. This is expected because the number of parameters and, therefore, the parameter
volume accessible to a search increases from 5 (for ND = 1) to 9 (for ND = 3). Indeed, for
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ND � 3 the cost required to search over source-direction angles overshoots that required for
the FFTs. Beyond ND = 3, the computational cost in a coherent search, however, stabilizes.
This must be contrasted with the cost behaviour in a coincidence search, where it continues
to increase with ND . Specifically, given a network of identical detectors and a false-alarm
probability, for a low enough detection threshold, a coincidence search will cost more than
a coherent search for ND > 1. In either search, the computational costs are very large and,
hence, call for investment in the exploration of more efficient search techniques, such as
hierarchical strategies. This and other related issues will be studied in a future work [11].
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