
ar
X

iv
:g

r-
qc

/0
20

50
43

 v
2 

  2
9 

A
ug

 2
00

2
Computing the gravitational self-force on a compact object plunging into a

Schwarzschild black hole
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We compute the gravitational self-force (or “radiation reaction” force) acting on a particle falling
radially into a Schwarzschild black hole. Our calculation is based on the “mode-sum” method, in
which one first calculates the individual ℓ-multipole contributions to the self-force (by numerically
integrating the decoupled perturbation equations) and then regularizes the sum over modes by
applying a certain analytic procedure. We demonstrate the equivalence of this method with the
ζ−function scheme. The convergence rate of the mode-sum series is considerably improved here
(thus reducing computational requirements) by employing an analytic approximation at large ℓ.

PACS numbers: 04.25.Nx, 04.30.Db, 04.70.Bw

The space-based gravitational wave detector LISA
(Laser Interferometer Space Antenna), scheduled for
launch around 2011 [1], will open up a window for the low
frequency band below 1Hz, allowing access to a variety
of black hole sources. A main target for LISA would be
the outburst of gravitational radiation emitted during the
capture of a compact star by a supermassive black hole—
a 105−7 solar masses black hole of the kind now believed
to reside in the cores of many galaxies, including our own
[2]. By LISA’s launch time, a sufficient theoretical under-
standing of the orbital evolution of such systems, includ-
ing radiation reaction effects, must be at hand, to allow
design of accurate templates necessary for detection and
interpretation of the gravitational waveforms. Due to the
extreme mass-ratio typical to the binary systems of in-
terest, the entire problem can be conveniently treated in
the context of perturbation theory, being a relatively ma-
ture branch of gravitational physics: the compact stellar
object is thus modeled by a point-like particle, and its
field treated as a perturbation over the fixed Kerr geom-
etry of the large black hole. To leading order in the mass
ratio, such a particle then traces a geodesic of the back-
ground spacetime, and one asks about radiation-reaction
induced corrections to this geodesic.

The “traditional” approach to this problem relies on
energy-momentum balance considerations [3]: By calcu-
lating the fluxes of energy and angular momentum to in-
finity and across the event horizon, one attempts to infer
the temporal rate of change of the particle’s “constants”
of motion. This technique is applicable only in adiabatic
scenarios, in which the time scale for radiation reaction
effect is much larger than the dynamic time-scale of the
system; it is not clear yet whether this approximation
is valid for the entire range of relevant LISA parame-
ters [3]. Moreover, this approach seems insufficient for
tackling generic orbits in Kerr spacetime (i.e., ones both
eccentric and inclined) even under the adiabatic approx-
imation. This has led many researches, particularly over
the last five years, to turn to the useful notion of the local

self-force (SF).
Consider a point-like particle of mass µ moving freely

around a black hole with mass M ≫ µ; and treat the
particle’s gravitational field, hαβ ∝ O(µ), as a linear per-
turbation over the background metric gαβ . In the “SF
picture”, this particle’s equation of motion is written as

µuα
;βu

β = Fα
self , (1)

where uα is the particle’s four-velocity, a semicolon de-
notes covariant differentiation with respect to gαβ , and
Fα

self ∝ O(µ2) describes the leading-order SF effect. Since
the perturbation hαβ obviously diverges at the particle’s
location, the problem of obtaining Fα

self involves the in-
troduction of a reliable regularization scheme. A well
established formal prescription for constructing Fα

self , re-
lying on a physically consistent regularization method,
became available recently with the work of Mino, Sasaki
and Tanaka (MST) [4]. The same formal prescription
was introduced independently by Quinn and Wald (QW)
[5], based on an axiomatic approach. To allow a practi-
cal implementation of the MST/QW formal prescription
in actual calculations, a “mode-sum” scheme was later
devised in Refs. [6, 7, 8], based on the MST/QW re-
sult. An alternative regularization approach, based on
the ζ−function technique, was introduced in Ref. [9].

The main objective of this paper is to report on a
first actual calculation of the gravitational SF, based
on the mode-sum prescription. Focusing, as a test-case,
on radial trajectories in a Schwarzschild background, we
demonstrate the applicability of this approach, and push
forward some analytic and numerical techniques which
may later be applied to more general orbits. Among
the new results presented here: (i) Two different deriva-
tions of the “regularization parameters”, independent
of each other and of the derivation of [8]; (ii) Consis-
tency of the MST/QW regularization with the ζ-function
method; (iii) A first explicit example of the gauge-
invariance feature of the regularization parameters pre-
dicted in Ref. [10]; (iv) An improved numerical method
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for integrating the decoupled field equations to fourth or-
der accuracy; (v) An analytic approximation developed
for improving the convergence rate of the mode-sum se-
ries (see below). Full details of our analysis shall be pro-
vided elsewhere [11].

Throughout this paper we use “geometrized” units
G = c = 1, metric signature −+++, and the standard
Schwarzschild coordinates t, r, θ, ϕ. We consider a parti-
cle falling radially into a Schwarzschild black hole with
mass M , starting at rest at r = r0, and let rp denote the
value of r at the SF evaluation point. In the lack of SF,
the particle traces a geodesic characterized by the (con-
served) specific energy E ≡ (1 − 2M/r0)

1/2. By virtue
of the symmetry of the above setup, we obviously have
F θ

self = Fϕ
self = 0; we hereafter thus focus on the r, t com-

ponents of the SF.
Let us start by briefly reviewing the mode-sum method

for constructing the gravitational SF: First, one has to
calculate the multipole modes of the metric perturba-
tion hαβ in the harmonic gauge, denoted here by hℓ

αβ

(this refers to the quantity obtained by summing over all
azimuthal numbers m and over all ten tensor harmon-
ics for a given multipole number ℓ). This calculation
is done through a numerical integration of the decou-
pled linearized Einstein equations. Then, one constructs
the ℓ-mode contribution to the “full” force, denoted here
by Fαℓ, through a certain operation involving 1st-order
derivatives of hℓ

αβ [see Eq. (15) of Ref. [8]]. In the radial
motion case, this operation reduces to

Fαℓ
± = µkαβγδh̄ℓ

βγ;δ (2)

(evaluated at the particle’s location), where h̄ℓ
αβ ≡

hℓ
αβ − 1

2
gαβg

µνhℓ
µν , kαβγδ ≡ uβuγgαδ/2 + gβγgαδ/4 +

uαgβγuδ/4−gαβuγuδ −uαuβuγuδ/2, and the ± sign cor-
responds to taking the derivative from r → r±p , respec-
tively. (Note that these force-modes satisfy the normal-
ization condition uαF

αℓ
± = 0.) While the perturbation

itself diverges at the particle’s location, the individual
modes hℓ

αβ are continuous everywhere [9]—an important
benefit of the mode-sum approach (this holds in the har-
monic gauge or in any other gauge related to it by a
regular gauge transformation). Typically, however, the
derivatives of hℓ

αβ are found to have a finite discontinu-
ity through the particle’s location, yielding two different
finite values Fαℓ

± . According to the mode-sum method,
the gravitational SF is then constructed through [7]

Fα
self =

∞
∑

ℓ=0

[

Fαℓ
± −Aα

±L−Bα − Cα/L
]

−Dα, (3)

where L ≡ ℓ + 1/2 and the (ℓ-independent) quantities
Aα, Bα, Cα, and Dα are the so-called “regularization
parameters”, whose values depend on the orbit under
consideration. Roughly speaking, the expression Aα

±L +
Bα + Cα/L reflects the asymptotic form of Fαℓ

± at large

ℓ [ensuring convergence of the sum in Eq. (3)], while the
parameter Dα is a certain residual quantity that arises in
the summation over ℓ. (See [7, 8] for an exact definition
of these parameters.)

Incorporating a systematic perturbation expansion of
the ℓ−mode Green’s function associated with the pertur-
bation equations in the harmonic gauge—an implementa-
tion of the technique developed in [7]—we have obtained
for radial trajectories [11],

Ar
± = ∓

µ2

r2p
E, At

± = ∓
µ2

r2p

ṙp
f
, (4a)

Br = −
µ2

2r2p
E2, Bt = −

µ2

2r2p

Eṙp
f
, (4b)

Cα = Dα = 0, (4c)

where f ≡ 1 − 2M/rp and ṙp = −(E2 − f)1/2. These
values agree with those derived (for generic orbits) in
Ref. [8] using a different method. Note that whereas the
values of Aα

±, Bα, and Cα can be verified numerically by
examining the behavior of the modes Fαℓ

± at large ℓ (see
below), the value of Dα cannot be so verified; hence the
importance of our independent derivation of Dα.

The above prescription requires one to tackle the per-
turbation equations in the harmonic gauge. These equa-
tions are separable with respect to ℓ,m [7], but it is not
clear how, or whether at all, one could avoid, the cou-
pling occurring between different elements of the tensor-
harmonic basis. A more practical derivation of hℓ

αβ (and,

consequently, of Fα ℓ
± ) is possible in the Regge-Wheeler

(RW) gauge [12, 13]: Here, a well developed formal-
ism [15] allows one to derive all hℓ

αβ components from
two scalar generating functions, by mere differentiation
[9, 11]. These two waveforms satisfy a scalar-like wave
equation which is easily accessible to numerical treat-
ment. Now, it has been shown [10] that the mode-sum
formula (3) is valid, with the same parameter values, for
any gauge related to the harmonic gauge through a regu-
lar gauge transformation. The RW gauge belongs to this
regular family of gauges so long as radial trajectories are
considered [10]—as in our current work. This shall allow
us to work here entirely within the convenient RW gauge.

Using a variant of the Green’s function expansion tech-
nique mentioned above—this time applied to the pertur-
bation equations in the RW gauge—we have been able
to directly obtain the values of Aα, Bα, and Cα associ-
ated with the RW-gauge modes F ℓ±

α . (The details of this
derivation shall be given in [11].) The RW-gauge param-
eters thus obtained were found to have, in the head-on
case considered here, precisely the same values as in the
harmonic gauge. This serves as a first explicit demonstra-
tion of the regularization parameters’ gauge-invariance
property predicted in [10].
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It should be noted that the mode-sum prescription (3),
stemming from the standard MST/QW regularization
scheme, completely conforms with the ζ-function regu-
larization approach introduced in Ref. [9]: In the latter
too, the SF is brought to the form (3), with the param-
eter Dα shown [9, 14] to be ∝ ζ(0, 1/2) = 0 (where ζ is
Riemann’s generalized zeta function).

Incorporating the parameter values (4) in Eq. (3)
(noticing that Aα

+ = −Aα
−), we next write the mode-sum

formula in the compact form

Fα
self =

∞
∑

ℓ=0

(

F̄αℓ −Bα
)

≡

∞
∑

ℓ=0

Fαℓ
reg, (5)

where F̄αℓ ≡ (Fαℓ
+ + Fαℓ

− )/2, and Fαℓ
reg[∝ O(ℓ−2)] are

the “regularized” modes. Note that Bα(rp) describes the
asymptotic form of F̄αℓ at ℓ→ ∞.

We now turn to the actual implementation of the pre-
scription (5), beginning with the numerical calculation
of F̄αℓ. As already mentioned, our calculation was car-
ried out within the RW gauge. All tensorial components
of the ℓ-mode metric perturbations in the RW gauge (in
fact, only the even-parity part of hαβ plays role in our
head-on case) are conveniently constructed from a single
scalar generating function—Moncrief’s gauge-invariant
waveform ψℓ [15]. This construction, prescribed in [9], in-
volves twice differentiating ψℓ. Then, the desired modes
Fαℓ are obtained using Eq. (2). Thus, the numerical task
reduces to integrating the (inhomogeneous) hyperbolic
wave equation satisfied by ψℓ [16], with the appropriate
source term associated with the point-like particle, and
with a proper choice of initial data. This numerical prob-
lem has been formalized and worked out previously in
Ref. [16]. We have developed an improved version of the
above numerical scheme, which ensures fourth-order nu-
merical convergence. (This is essential for our purpose,
as the construction of Fαℓ involves three derivatives of
the numerical-integration variable ψℓ.)

Typical results from applying the above numerical pre-
scription are presented in Fig. 1, showing the first few
(averaged) modes F̄ rℓ as a function of rp for the sample
value r0 = 14M (E ∼= 0.926), and demonstrating the an-
ticipated ∝ ℓ−2 behavior of F rℓ

reg. The above construction

of F̄αℓ is only applicable to the “radiative” modes ℓ ≥ 2.
The modes l = 0, 1, although merely reflecting a residual
gauge freedom [12], must also be taken into account in
the mode sum (5). As shown in [13], the l = 1 even-
parity perturbation is completely removable by a gauge
transformation (interpreted as a translation to the cen-
ter of mass system), and we may take F̄ l=1

α = 0. The
l = 0 perturbation mode (interpreted as a variation in
the mass M) is constructed analytically in [11]—the re-
sultant contribution F̄ l=0

α is also plotted in Fig. 1. [17]
Since Fαℓ

reg ∝ O(ℓ−2), the mode sum in (5) admits the
slow convergence rate ∝ 1/ℓ. This means that achieving
even a modest accuracy requires one to sum over many
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FIG. 1: Upper figure: The “full” modes F̄ rℓ(rp) at ℓ =
0, . . . , 8, for a particle released from rest at r0 = 14M .
Note how a limiting curve [given analytically by Br(r)] is
approached at large ℓ. The wavy feature near rp = 14M is
due to the radiation content of the initial data (chosen here
as conformally flat). This “spureous” feature damps down by
the time the particle reaches rp ∼ 10M , exposing the inherent
self force effect. The bottom figure demonstrates the antici-
pated ∝ ℓ−2 convergence of the difference F rℓ

reg ≡ F̄ rℓ
− Br.

modes, which is numerically very demanding (numerical
integration of the decoupled field equations becomes in-
creasingly difficult at growing ℓ). To improve the conver-
gence rate of the mode-sum series, we have obtained [11]
an analytic approximation for Fαℓ

reg at large ℓ: By extend-
ing the local analysis of the ℓ−mode Green’s function one
order beyond the calculation of the three parameters Aα,
Bα, and Cα, we have obtained an analytic expression for
the O(L−2) term of Fαℓ. This significantly improves the
mode-sum convergence, especially by virtue of the fact
that the next, O(L−3) term in the mode-sum is expected
to vanish (this can be shown for any positive odd power
of 1/L in the mode sum using straightforward parity ar-
guments [14], and is further supported by our numerical
results—see Fig. 2). We have found [11]

F rℓ
reg =−

15

16
µ2E

2

r2p

(

E2 +
4M

rp
− 1

)

L−2+O(L−4), (6a)

F ℓ
t reg = −

15

16
µ2E

d

dτ

(

ṙ2p
rp

)

L−2 +O(L−4), (6b)
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where τ is the particle’s proper time (the two expressions
are negative definite for all r < r0). These expressions
are in perfect agreement with the numerical results, as
demonstrated in Fig. 2. The contribution of the O(L−2)
expansion term to the overall SF is now easily obtained
analytically, using

∑∞

l=2 L
−2 ∼= 0.49. The remainder of

the mode sum now converges as ∝ ℓ−3. By calculating
numerically only the first 10 modes (say), one now ob-
tains the SF to within a mere relative error of ∼ 10−3

(compare this with a ∼ 10−1 error when not using the
analytic approximation).
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FIG. 2: Analytic approximation vs. numerical results: The
plot shows the numerically calculated (regularized) modes
F rℓ

reg along with their large-ℓ analytic approximation, F rℓ
analytic,

as given by the O(L−2) term in Eq. (6a). Shown are the
modes ℓ = 0, 1, 2, 3, 4 for r0 = 14M [times L2 for the sake of
comparison]. The inset shows the reminder F rℓ

reg −F rℓ
analytic at

rp = 6M , demonstrating its anticipated ∝ ℓ−4 behavior. The
wavy feature at the onset of the plunge is associated with the
“spurious” radiation content of the initial data; the inherent
SF is exposed only after these waves are dissipated away.

Figure 3 shows both r and t components of the overall
SF resulting from summing up all individual mode contri-
butions. The modes ℓ = 2, . . . , 8 were obtained numeri-
cally, while for ℓ > 8 we used the analytic approximation
(6) (for ℓ = 0, 1 we used the exact solutions mentioned
above). The radial component of the SF is found to point
inward (i.e., toward the black hole) throughout the entire
plunge. This seems to be a universal feature which does
not depend on the starting point r0. Consequently, the
work done by the SF on the particle is positive, resulting
in that the energy parameter E increases throughout the
plunge. The instantaneous rate of change of E is given
by [18] µ(dE/dτ) = −Ft (≥ 0), and the total change of
E is obtained by integrating this expression along the
worldline from τ(r0) to τ(r = 2M). It is important to
stress, however, that this result will be attached to our
specific choice of gauge (as opposed to the energy flux at
infinity, which is gauge invariant) [19].

In summary, the mode-sum approach for calculating
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FIG. 3: The upper and bottom panels show, respectively,
the r and t components of the overall SF on a particle start-
ing at rest at r0 = 14M . The plots labeled as “numerical”
are produced by summing up the numerically calculated (reg-
ularized) modes up to ℓ = 8, and then incorporating our an-
alytic approximation at ℓ > 8 (these higher modes contribute
up to ∼ 20% of the total force). Also given, for compari-
son, is a curve based entirely on the analytic approximation
(6) (summed over ℓ = 2, . . . ,∞ plus the exact solutions for
l = 0, 1); and a curve showing the mere ℓ = 2 contribution.
The latter serves to illustrate the importance of higher ℓ con-
tributions. All curves reach a finite value at the horizon.

the gravitational SF was successfully applied here in
the test case of radial motion in Schwarzschild space-
time. We have also demonstrated the feasibility of apply-
ing an analytic approximation for improving the mode-
sum convergence and even providing a rough estimate
to the SF. This marks a significant milestone in our
(still long) way toward being able to compute the or-
bital evolution of generic orbits in Kerr spacetime. The
next step along this way, already being considered, is the
implementation of the mode-sum prescription to more
general orbits in Schwarzschild background. This will
provide a first opportunity for validating the SF ap-
proach against available calculations based on the stan-
dard energy-momentum balance approach.
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