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Abstract

We show a global existence theorem for Einstein-matter equations of T
3-Gowdy sym-

metric spacetimes with stringy matter. The areal time coordinate is used. It is shown

that this spacetime has a crushing singularity into the past. From these results we

can show that the spacetime is foliated by compact hypersurfaces of constant mean

curvature.
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1 Introduction

The singularity theorem states that generic spacetimes have a singularity (spacetimes with incomplete
geodesics). If the singularity can be seen, i.e. there exists a naked singularity, the predictability is
violated. Thus, the strong cosmic censorship conjecture proposed by Penrose is the most important (and
an unsolved) problem in classical general relativity. Roughly speaking, the conjecture states that naked
singularities should not evolve from regular initial data. However, this statement remains elusive. Then,
a sharp formulation that seems provable is given as follows:

Conjecture 1 [AL99, CD, KN, ME] Let M be a partial Cauchy surface and Φi are matter fields on M .
Then for generic data sets (M, h, k, Φi), where h and k are the first and second fundamental forms of M ,
the maximal Cauchy development of (M, h, k, Φi) is equal to the maximal extension of (M, h, k, Φi). 2

To answer this problem we must prove (1) a global existence theorem for the Einstein-matter equations
with a suitable time coordinate and (2) inextendibility of the maximal Cauchy development of initial
data. This paper is mainly related to the above problem (1). It is very difficult to answer the conjecture
in general by using present mathematical techniques. Then, it is necessary to make some simplifications,
which are symmetry assumptions or restriction on initial data.

For the case of small initial data without symmetry assumptions, partial results for this problem are
provided by Christodoulou-Klainerman theorem which states that any asymptotically flat initial data
set which is sufficiently close to the trivial one has a complete maximal future development [CK, KN].
Recently, Andersson and Moncrief have shown that for a vacuum data set which is sufficiently close to the
data in a spatially compact (local) open Friedmann-Robertson-Walker spacetime, the maximal Cauchy
development is causally geodesically complete in the expanding direction [AL99] (see also Ref. [R02]).

For the case of large initial data with symmetry assumptions, some results have been obtained.
(Hereafter, models we consider are restricted to spatially compact spacetimes.) The first result for
inhomogeneous cosmological spacetimes was proved by Moncrief [M81]. He proved a global existence
theorem for T 3-Gowdy spacetimes (which are vacuum spacetimes with U(1)×U(1) symmetry and whose
spatial topology is T 3) in the areal coordinate (defined in section 2). This result has been generalized to
the case with non-vanishing twist [BCIM] or with Vlasov matter [AH]. A result on global existence in
the areal time has also been obtained for hyperbolic symmetric spacetimes with Vlasov matter [ARR].

Although the areal time coordinate is well-chosen one in the sense that it is geometrically defined, this
coordinate choice strongly depends on spacetime symmetry. The most attractive (and independent on
spacetime symmetry) time coordinate is the constant mean curvature (CMC) one. CMC foliations can
avoid a crushing singularity which is one where there is a foliation on a neighborhood of the singularity
whose mean curvature tends uniformly to infinity as the singularity is approaches [ES]. It was shown from
Hawking’s singularity theorem that the crushing singularity is either a true singularity or a boundary of
maximal Cauchy development, i.e., a Cauchy horizon. Thus, the existence of CMC foliations is closely
related to conjecture 1. Indeed, it has been conjectured as follows:

Conjecture 2 [ME] Every maximally extended, globally hyperbolic spacetime can be foliated by CMC
hypersurfaces. 2

A global existence theorem in the CMC time coordinate for T 3-Gowdy spacetimes was proved in Ref. [IM].
Recently, this result has been generalized to the case of local U(1) × U(1) symmetric spacetimes with
Vlasov or wave-map matter [R97, H02b]. Results on global existence in the CMC time have been shown
for hyperbolic symmetric spacetimes with Maxwell field or Vlasov matter [H02a, ARR].

Note that the choice of matter models is serious. For some matter models (Vlasov matter, Maxwell
field and wave map), there are global existence theorems as above. Contrary, a global non-existence result
have been obtained for the Einstein-dust system [IR]. Therefore, it would be worth to investigate global
existence problems for several matter models, in particular, systems of nonlinear and fundamental fields
equations.

The purpose of the present paper is generalization of the above results, that is, to show global existence
theorems for the T 3-Gowdy symmetric spacetimes with stringy matter fields. From the unified theoretical
point of view, there are many reasons to believe that the distinction between fundamental fields (i. e.
gravitational and matter fields) interactions is impossible in asymptotic regions (e. g. near singularities)
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of spacetimes and the most consistent theory along these line is superstring/M-theory. Therefore, the
matter fields we will consider are Maxwell-dilaton-axion fields which arise naturally from low-energy
effective superstring theory [ON]. This system is nonlinear even if the background spacetime is flat since
there is a dilaton coupling. One of the main results of this paper is a global existence theorem for such
system in the areal time coordinate (Theorem 1) and another of them is one in the CMC time coordinate
(Theorem 2).

In section 2, we will review T 3-Gowdy symmetric spacetimes in the Einstein-Maxwell-dilaton-axion
(EMDA) system and derive the Einstein-matter equations. In section 3, we shall show a global existence
theorem for the system in the areal time coordinate. In section 4, it is shown that a global existence
theorem for the system in the CMC time coordinate. In section 5, we discuss on inextendibility of the
spacetime.

2 T 3-Gowdy symmetric spacetimes in the Einstein-Maxwell-

dilaton-axion system

The action of the EMDA theory [STW] is

S = SG + SM , (1)

SG =

∫

d4x
√−g

[

− (4)R
]

, (2)

SM :=

∫

d4x
√
−g

[

e−2aMφF 2 + 2 (∇φ)
2
+

1

3
e−4aAφH2

]

=

∫

d4xLM , (3)

where g is the determinant of a 4-dimensional spacetime metric gab,
(4)R is the Ricci scalar for gab, F is

the Maxwell field, φ is the dilaton field, H = dB ≡ − 1
2e4aφ ∗ dκ is the three-index antisymmetric tensor

field dual to the axion field κ, and aM and aA are coupling constants. For simplicity, the Chern-Simon
term is neglected. Varying the action (1) with respect to the functions, we get the Einstein-matter
equations.

The metric of Gowdy symmetric spacetimes [GR] is given by

ds2 = eλ(t,θ)/2t−1/2(−dt2 + dθ2) + R(t, θ)
[

e−Z(t,θ) (dy + X(t, θ)dz)
2
+ eZ(t,θ)dz2

]

. (4)

Gowdy symmetric spacetimes have two twist free spacelike Killing vectors ∂/∂y and ∂/∂z. Properties
of the metric (4) depend on whether ∇R is timelike, spacelike or null. When the metric (4) describes a
cosmological model, i.e. ∇R is globally timelike and the spatial topology is T 3 (periodic in θ), one can
take the function R(t, θ) = t without loss of generality by Gowdy’s corner theorem if the spacetime is
vacuum [GR, M81]. This fact be seen from Einstein’s equations,

Gtt − Gθθ = R̈ − R′′ = 0, (5)

where dot and prime denote t and θ derivatives, respectively. In the EMDA system, equation (5) is not
satisfied generically. However, in the case that the Maxwell field strength Fµν = ∂µAν − ∂νAµ has only
the following components [MP],

Fty = ω̇(t, θ), Fθy = ω′(t, θ), Ftz = χ̇(t, θ), Fθz = χ′(t, θ),

and φ = φ(t, θ) and κ = κ(t, θ), equation (5) is satisfied. As similar as the T 3-vacuum case, one can take
the function R(t, θ) = t without loss of generality. In this gauge choice, the spacetimes have spacelike
singularities at t = 0. We call this gauge the areal time coordinate since R is proportional to the geometric
area function of the orbit of the isometry group.

We should mention on another important choice for the Maxwell field. In [WIB], it was taken that ω
and χ are zero but one of the other components of the Maxwell field is non-zero. This spacetime is called
“magnetic Gowdy spacetime” and concerns the complementary case with ours.
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In this coordinate we obtain the Einstein-matter equations as follows:

λ̇ − t[Ż2 + Z ′2 + e−2Z(Ẋ2 + X ′2)] = 4tTtt, (6)

where

Ttt = (φ̇2 + φ′2) +
1

4
e4aAφ(κ̇2 + κ′2) (7)

+
1

t
e−2aM φ[e−Z{(Xω̇ − χ̇)2 + (Xω′ − χ′)2} + eZ(ω̇2 + ω′2)]

= Tθθ,

λ′ − 2t[ŻZ ′ + e−2ZẊX ′] = 8tTtθ, (8)

where

Ttθ = φ̇φ′ +
1

4
e4aAφκ̇κ′ +

1

t
e−2aM φ{e−Z(Xω̇ − χ̇)(Xω′ − χ′) + eZ ω̇ω′}, (9)

t2Z̈ + tŻ − t2Z ′′ + t2e−2Z(Ẋ2 − X ′2)

− 2te−2aMφ[−e−Z{(Xω̇ − χ̇)2 − (Xω′ − χ′)2} + eZ(ω̇2 − ω′2)] = 0, (10)

t2Ẍ + tẊ − t2X ′′ − 2t2(ẊŻ − X ′Z ′) − 4te−2aMφeZ [(ω̇2 − ω′2)X − (ω̇χ̇ − ω′χ′)] = 0, (11)

t2φ̈ + tφ̇ − t2φ′′ − aA

2
t2e4aAφ(κ̇2 − κ′2)

+ aM te−2aM φ[e−Z{(Xω̇ − χ̇)2 − (Xω′ − χ′)2} + eZ(ω̇2 − ω′2)] = 0, (12)

t2κ̈ + tκ̇ − t2κ′′ + 4aAt2(φ̇κ̇ − φ′κ′) = 0, (13)

χ̈ − χ′′ − (Ż + 2aM φ̇)χ̇ + (Z ′ + 2aMφ′)χ′ + (2XŻ − Ẋ)ω̇ − (2XZ ′ − X ′)ω′

+ e−2ZX{Ẋ(Xω̇ − χ̇) + X ′(Xω′ − χ′)} = 0, (14)

ω̈ − ω′′ + (Ż − 2aM φ̇)ω̇ − (Z ′ − 2aMφ′)ω′ + e−2Z{Ẋ(Xω̇ − χ̇) + X ′(Xω′ − χ′)} = 0, (15)

where T ab := 2√
−g

δLM

δgab
is the energy-momentum tensor. Hereafter, we call the above system the T 3-

Gowdy symmetric EMDA system.
Note that the metric function λ is decoupled with other functions. The function appears only in

the Hamiltonian and momentum constraints (6) and (8). Then, we can calculate the metric function
λ by evaluating the integral of λ′ from −π to −π after obtaining other functions from the evolution
equations (10)-(15).

3 Global existence theorem in the areal coordinate

For simplicity, we will assume that the initial data are C∞ on T 3. In this circumstance we can show the
following global existence theorem.

Theorem 1 Let (M, g, φ, κ, A) be the maximal globally hyperbolic development of the initial data for the
Gowdy symmetric EMDA system. Then, M can be foliated by areal coordinate with t ∈ (0,∞).
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Proof of Theorem 1: The local existence and uniqueness of smooth solutions of the partial differential
equation system (10)-(15) follows from standard results for hyperbolic system [AS, CBG, FR, HL]. Then,
it is sufficient to verify that for any globally hyperbolic subset of the (t, θ) cylinder on which they exist as
a solution to (10)-(15), the functions (Z, X, φ, κ, χ, ω) and their first and second derivatives are uniformly
bounded [MA]. To do this, we will use light cone estimate [AH, BCIM, M81, M97].

Let us now define the quadratic forms G and H by

G :=
1

2
t
[

Ż2 + Z ′2 + e−2Z
(

Ẋ2 + X ′2
)]

+2e−2aMφ
[

e−Z{(Xω̇ − χ̇)2 + (Xω′ − χ′)2} + eZ(ω̇2 + ω′2)
]

+2t
(

φ̇2 + φ′2
)

+
1

2
e4aAφt

(

κ̇2 + κ′2) , (16)

and

H := t
[

ŻZ ′ + e−2ZẊX ′
]

+ 4e−2aMφ{e−Z(Xω̇ − χ̇)(Xω′ − χ′) + eZ ω̇ω′} + 4tφ̇φ′ + te4aAφκ̇κ′. (17)

Deriving G and H with respect to t and θ and using the evolution equations (10)-(15), after long calcu-
lation, we have the following inequalities.

√
2∂η(G + H) =

1

2

[

−Ż2 + Z ′2 + e−2Z(−Ẋ2 + X ′2)
]

+ 2

[

−φ̇2 + φ′2 +
1

4
e4aAφ(−κ̇2 + κ′2)

]

:= J ≤ 1

t
G, (18)

and

√
2∂ξ(G −H) =

1

2

[

−Ż2 + Z ′2 + e−2Z(−Ẋ2 + X ′2)
]

+ 2

[

−φ̇2 + φ′2 +
1

4
e4aAφ(−κ̇2 + κ′2)

]

:= L ≤ 1

t
G, (19)

where ∂ξ := 1√
2
(∂t + ∂θ) and ∂η := 1√

2
(∂t − ∂θ).

At first, let us consider the future (expanding) direction. Integrating these equations (18) and (19)

along null paths starting at (θ̂, t̂) and ending at the initial t0-surface (i.e. from the future into the past)
and adding them we have

G(θ̂, t̂) = G(θ̂ + t0 − t̂, t0) + G(θ̂ − t0 + t̂, t0)

+ H(θ̂ + t0 − t̂, t0) −H(θ̂ − t0 + t̂, t0)

+

∫ t̂

t0

[J(θ̂ + s − t̂, s) + L(θ̂ − s + t̂, s)]ds. (20)

Next, we take supremums over all values of θ on the both sides of the equation (20). Then, we have

sup
θ

G(θ, t̂) ≤ 2 sup
θ

G(θ, t0) + 2 sup
θ

H(θ, t0)

+

∫ t̂

t0

1

s
sup

θ
G(θ, s)ds, (21)

where we used the estimates (18) and (19). We can apply the following lemma to (21).

Lemma 1 (Gronwall’s lemma [HL]) Suppose that φ(t), a(t), b(t) ≥ 0. If

φ(t) ≤ a(t) +

∫ t

t0

b(s)φ(s)ds,

then,

φ(t) ≤ a(t) +

∫ t

t0

a(r)b(r) exp

∫ t

r

b(s)dsdr.

2
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By Lemma 1, we get the following inequality

sup
θ

G(θ, t̂) ≤ 2[sup
θ

G(θ, t0) + sup
θ

H(θ, t0)] exp(

∫ t̂

t0

1

s
ds). (22)

From equation (22), since exp(
∫ t̂

t0
1
sds) is bounded, we get the desired bound on | Ż |, | Z ′ |, | e−ZẊ |,

| e−ZX ′ |, | e−aM φ− 1

2
Z(Xω̇ − χ̇) |, | e−aM φ− 1

2
Z(Xω′ − χ′) |, | e−aMφ+ 1

2
Z ω̇ |, | e−aM φ+ 1

2
Zω′ |, | φ̇ |, | φ′ |,

| e2aAφκ̇ | and | e2aAφκ′ | for all t ∈ (t0,∞).
Once we have bounds on the first derivatives of Z and φ, it follows that Z and φ are bounded for all

t ∈ (t0,∞) as well since

u(t, x) = u(t0, x) +

∫ t

t0

∂su(s, x)ds,

where u(t, x) is a function. Then, we have bounds on Ẋ , X ′, Xω̇ − χ̇, Xω′ − χ′, ω̇, ω′, κ̇ and κ′.
Consequently, we obtain bounds on X , ω and κ and furthermore, we have bounds on χ̇ and χ′. Finally,
we have bounds on χ. Thus, it has shown the boundedness of the zeroth and first derivatives of all the
function except for λ.

Next, we must show bounds on the second derivatives of the functions. There is a well-known general
fact that in order to ensure the continued existence of a solution of a system of semilinear wave equations
it is enough to bound the first derivative pointwise (see Theorem 1.1 of Chapter III and page 42 of
Ref. [AS]). Our system is a special case of that. Then, we have boundedness of the higher derivatives.

The same argument can be applied into the past (contracting) direction. By the constraint equa-
tions (6) and (8), boundedness for the function λ is also shown. Indeed, we have the following equations:

λ̇ = P and λ′ = Q. (23)

Since P and Q are bounded as we have already seen, λ̇ and λ′ are bounded. Then, we have shown that
the first derivatives of λ must be bounded uniformly for all 0 < t < ∞. Consequently, λ itself also is
bounded. Concerning the second derivative of λ, we can apply the argument of Alinhac [AS] again. Then,
we have uniform C2 bounds on all of the functions for all t ∈ (0,∞).

Finally, we must demand that the function λ is compatible with the periodicity in θ. The following
argument is similar with Moncrief’s one [M81]. This is true if λ(t,−π) = λ(t, π) over the interval of
existence. Integrating equation (8) for the interval θ ∈ [−π, π], we have a constraint

∫ π

−π

dθ{t[ŻZ ′ + e−2ZẊX ′] − 4tTtθ} = 0. (24)

This constraint condition need only be imposed on the initial Cauchy surface since this integral is con-
servation on any time interval if all other functions satisfy the periodicity condition. This fact follows
from the constraint equations (6) and (8):

∂

∂t
{t[ŻZ ′ + e−2ZẊX ′] − 4tTtθ} =

∂

∂θ
{ t

2
[Ż2 + Z ′2 + e−2Z(Ẋ2 + X ′2)] − 2tTtt}. (25)

Thus, we have completed the proof of Theorem 1. 2

4 Existence of constant mean curvature foliations

For vacuum T 3-Gowdy spacetimes it has been proved that conjecture 2 is valid [IM]. In that paper, the
important idea is that one can apply the estimates for the functions in the areal time coordinate to show
the existence of CMC foliations. Using the same argument with Ref. [IM], we can show a global existence
theorem in the CMC time coordinate for the T 3-Gowdy symmetric EMDA system.

For the Gowdy symmetric spacetime the Einstein-matter equations imply that

−trK(t) = e−
λ
4 t

1

4

[

1

4
λ̇ +

3

4t

]

= e−
λ
4 t

1

4Bt, (26)
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where −trK(t) is mean curvature of a compact Cauchy surface St and

Bt :=
3

4t
+

t

4

[

Ż2 + Z ′2 + e−2Z(Ẋ2 + X ′2)
]

+ tTtt. (27)

From the positivity (see equation (7)) and bounds on the functions of right-hand-side of equation (27),
we have the following estimate.

inf
St

(−trK(t)) ≥ Ct−
3

4 , (28)

for some constant C and for all 0 < t < t0. This means that the spacetime has a crushing singularity as
t → 0 since the mean curvature goes to infinity uniformly [ME, M81].

Cosmological spacetimes imply that spatially compact, globally hyperbolic spacetimes satisfying the
strong energy condition [BR]. Gerhardt has shown that in cosmological spacetimes if there exists a folia-
tion whose mean curvature tends uniformly to infinity, there is a CMC foliation with same property [GC].
Then, the past region of the initial hypersurface St0 , D−(St0), is covered by CMC hypersurfaces.

Next, we must show that D+(St0) also can be covered by CMC hypersurfaces. To do this the following
lemma is useful. Note that, from the previous argument, we have one initial CMC hypersurface Στ0

in
D−(St0).

Lemma 2 Suppose that (D+(Στ0
), g, φ, κ, χ) be a maximally extended, globally hyperbolic development of

the initial data Στ0
of T 3-Gowdy symmetric spacetime in the EMDA system. Then, (D+(Στ0

), g, φ, κ, χ)
admit a unique, monotonic CMC foliation iτ which covers (D+(Στ0

), g, φ, κ, χ).

Proof of Lemma 2: The argument is very similar with one of the proof of Lemma 1 of Ref. [IM]. It
is well known that there is a unique, monotonic, local CMC foliation of (D+(Στ0

), g, φ, κ, χ) defined
near the initial hypersurface Στ0

[MT] and that the spacelike Killing fields must be tangent to CMC
hypersurfaces [AL99].

First, we shall show that this foliation is uniformly spacelike. If Στ = iτ (T 3) is a CMC hypersurface
in the local foliation, there is a smooth function hτ : S1 → R+ such that Στ is defined in the coordinates
(t, θ, y, z) by t = hτ (θ) ∈ [t0, t1] and hτ satisfies the following equation:

− d

dθ

[

e
λ
4 t−

1

4 hτh′
τ

(1 − (h′2
τ ))1/2

]

= e
λ
4 t−

1

4 hτ

[

(1 − (h′2
τ ))1/2(

1

4
λ̇ +

3

4t
) + trKe

λ
4 t−

1

4

]

∣

∣

∣

t=hτ (θ)
, (29)

where h′
τ := dhτ

dθ , λ = λ(hτ (θ), θ) and −trK is the (constant) mean curvature of the embedded hypersur-
face. If | h′

τ |< 1, Στ is spacelike since the induce metric γτ on Στ is

γτ = e
λ
2 t−

1

2 (1 − (h′2
τ ))dθ2 + t

[

e−Z(t,θ) (dy + X(t, θ)dz)
2

+ eZ(t,θ)dz2
]

. (30)

Integrating equation (29) from θ0 to θ1, we get

∣

∣

∣

e
λ
4 t−

1

4 hτh′
τ

(1 − (h′2
τ ))1/2

∣

∣

∣

∣

∣

∣

θ=θ1

≤
∫ 2π

0

dθ
[

e
λ
4 t−

1

4 hτ

[

(1 − (h′2
τ ))1/2Bt+ | trK | e

λ
4 t−

1

4

]] ∣

∣

∣

t=hτ (θ)
, (31)

where θ1 is arbitrary and we can choose that h′
τ (θ0) = 0. From the boundedness of the right-hand-side

of equation (31) and the fact that hτ (θ) ∈ [t0, t1] ⊂ (0,∞), we have that
h′

τ

(1−(h′2
τ ))1/2

is bounded by a

constant and then, the estimate | h′
τ |< 1 is obtained. Thus, the CMC hypersurfaces are uniformly

spacelike.
The above argument holds for any [t0, t1] ⊂ (0,∞). Then, the local foliation iτ can be extended to

t → ∞. Next, we shall show that the leaves Στ cannot approach the boundary at t → ∞ without foliating
a full neighborhood of the boundary. Since θ ∈ [0, 2π) and | h′

τ |< 1, we have

0 ≤ sup
iτ (T 3)

(t) − inf
iτ (T 3)

(t) ≤ 2π.

7



Then, the hypersurface iτ (T 3) cannot approach the boundary at t → ∞ without foliating a full neigh-
borhood of the boundary. (See also the proof of theorem 6.2 of [ARR].) 2

Lemma 2 states that future Cauchy development of the initial Cauchy surface is cover by CMC
foliations. Combining the result from Gerhardt’s theorem, which states that past Cauchy development
of the initial Cauchy surface is cover by CMC foliations, we have the following theorem which supports
the validity of conjecture 2.

Theorem 2 The spacetime can be covered by hypersurfaces of CMC, −trK(t) ∈ (0,∞). 2

5 Discussion

The remaining open question to prove the conjecture 1 is to prove the inextendibility of the spacetime.
This can be divided two questions which are: (1) Does the Kretschmann scalar of the spacetime blow up
tend to singularities? (2) Is the spacetime geodesic complete into the future?

For question (1), we have a very useful tool to analyze the nature of singularities, that is, the Fuchsian
algorithm developed by Kichenassamy and Rendall [KR]. It has been shown that T 3-Gowdy spacetimes
have an asymptotically velocity-terms dominated (AVTD) singularity in general in the sense that a
family of solutions depends on the maximal number of arbitrary functions. Recently this result has been
generalized to the case of the Einstein-scalar system without symmetry assumptions [AR], of the EMDA
system with Gowdy symmetry [NTM] and of the D-dimensional Einstein-dilaton-p-form system without
symmetry assumptions [DHRW]. These spacetimes are inextendible beyond the singularity since the
Kretschmann scalar blows up there. We can conclude the inextendibility in general if we can answer the
following question: Is there an open set of initial data on a regular Cauchy surface whose singularity is
AVTD? For the last question, we have only result for vacuum Gowdy spacetimes [CIM, RH]. We may
extend the technique in their paper to our case.

Concerning question (2), Rein has obtained a related result for the Einstein-Vlasov system with
hyperbolic symmetry [RG]. The spacetimes are shown to be causally geodesically complete in the future
(expanding) direction if the data satisfy a certain size restriction.

If all of the above were proved, we would complete a proof of the strong cosmic censorship conjecture
in the T 3-Gowdy symmetric EMDA system.
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