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Effect of hyperon bulk viscosity on neutron-star r-modes
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Neutron stars are expected to contain a significant number of hyperons in addition to protons and neutrons
in the highest density portions of their cores. Following the work of Jones, we calculate the coefficient of bulk
viscosity due to nonleptonic weak interactions involving hyperons in neutron-star cores, including new rela-
tivistic and superfluid effects. We evaluate the influence of this new bulk viscosity on the gravitational radiation
driven instability in ther-modes. We find that the instability is completely suppressed in stars with cores cooler
than a few times 109 K, but that stars rotating more rapidly than 10–30% of maximum are unstable for
temperatures around 1010 K. Since neutron-star cores are expected to cool to a few times 109 K within
seconds~much shorter than ther-mode instability growth time! due to direct Urca processes, we conclude that
the gravitational radiation instability will be suppressed in young neutron stars before it can significantly
change the angular momentum of the star.
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I. INTRODUCTION

The r-modes~fluid oscillations whose dynamics is dom
nated by rotation! of neutron stars have received consid
able attention in the past few years because they appear
subject to the Chandrasekhar-Friedman-Schutz gravitati
radiation instability in realistic astrophysical conditions~see
Ref. @1# for a recent review!. If the r-modes are unstable
i.e. if the damping time scales due to viscous processe
neutron-star matter are longer than the gravitational-radia
driving time scale, a rapidly rotating neutron star could em
a significant fraction of its rotational energy and angular m
mentum as gravitational waves. With appropriate data an
sis strategies, these waves could be detectable by interfe
eters comparable to the enhanced Laser Interferom
Gravitational Wave Observatory~LIGO! interferometers.
The r-mode instability might also explain the relatively lon
spin periods observed in young pulsars and of older, acc
ing pulsars in low-mass x-ray binaries.

Recently Jones@2,3# has pointed out that long-neglecte
processes involving hyperons~massive cousins of the nucle
ons! can lead to an extremely high coefficient of bulk vi
cosity in the core of a neutron star. Using simple scal
arguments he suggests that the viscous damping time s
associated with these processes may be short enough to
press ther-mode instability altogether in realistic astrophys
cal circumstances. The purpose of this paper is to investi
this possibility more thoroughly. The hyperons only exist
the central core of a neutron star where the density is s
ciently high. The relevant effects of ther-modes however
vanish asr 6 ~wherer is the distance from the center of th
star!. Thus the overall effect of hyperon induced dissipati
on the r-modes depends very sensitively on the size a
structure of the core of a neutron star. Jones’ initial estima
did not take properly into account either the structure of
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r-mode or the detailed properties of the nuclear matter in
core of a neutron star. We improve on Jones’ analysis
several ways: First we evaluate fully relativistic cross s
tions to determine the reaction rates of the relevant hype
interactions. We find that these cross sections reduce to
results of Jones@2,4# in the low-momentum limit, but can be
about an order of magnitude larger in some regimes
neutron-star matter. Second we derive new expressions
the bulk viscosity coefficient that are appropriate even fo
relativistic fluid such as neutron star matter. Third we co
struct detailed neutron star models based on an equatio
state that includes hyperons and the appropriate interact
among all of the particle species present. Due to superfl
effects the temperature and density dependence of hyp
bulk viscosity turns out to be quite complicated: superfluid
increases the viscosity in some cases while reducing i
others. And fourth, we use a more accurate model of
structure of ther-mode eigenfunction in the cores of the
stars to evaluate the effects of hyperon dissipation.

Our analysis shows that hyperon bulk viscosity co
pletely suppresses the gravitational radiation instability in
r-modes of rotating neutron stars for temperatures belo
few times 109 K. We find that the gravitational radiation
instability acts most strongly at temperatures around 1010 K
where stars rotating more than 10–30% of the maxim
rotation rate~depending on the details of the microphysic!
are driven unstable. Our coefficient of bulk viscosity is ac
ally several hundred times that of Jones@2,3#, who suggested
that the instability was completely suppressed. However,
use of the properr-mode eigenfunction reduces the dissip
tion by several orders of magnitude and we find that ther
a window of instability. How long it lasts is another matter.
the core of the neutron star cools via the standard modi
Urca process, its temperature remains above a few ti
109 K for about a day@5#. This is enough time for an un
©2002 The American Physical Society06-1
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LEE LINDBLOM AND BENJAMIN J. OWEN PHYSICAL REVIEW D65 063006
stabler-mode to grow and radiate away a substantial fract
of the star’s rotational kinetic energy and angular moment
into gravitational waves@6#. However if the core of the sta
cools too quickly the instability might not have enough tim
to grow before being suppressed by the hyperon bulk visc
ity. The time needed for a neutron-star core to cool to a f
times 109 K is reduced to about a second when direct U
processes are able to act@7,8#. Modern equations of stat
have large enough proton densities in the core that di
Urca cooling is now expected to act until the neutrons a
protons condense into a superfluid state, i.e., above a
109 K. The growth time for the gravitational radiation inst
bility in the most rapidly rotating neutron stars is about 40
@9#. Thus we conclude that the core of a neutron star w
probably cool too quickly for ther-mode instability to grow
significantly before being suppressed by the hyperon b
viscosity.

The organization of the rest of this paper is as follows.
Sec. II we provide details of the equation of state which
use, including numerical aspects of the evaluation of vari
thermodynamic variables and derivatives, and the mode
hyperon superfluidity that we employ. In Sec. III we prese
a new derivation of the coefficient of bulk viscosity for rel
tivistic neutron-star matter~including several interacting flu
ids! in terms of the microscopic reaction rates and therm
dynamic derivatives. In Sec. IV, we compute the relev
cross sections in order to evaluate the reaction rates for
perons in a dense medium. In Sec. V we combine the t
modynamic expressions of Sec. III with the microscopic
action rates of Sec. IV to obtain expressions for hyperon b
viscosity as a function of density and temperature in neutr
star matter. In Sec. VI we evaluater-mode damping time
scales for neutron stars containing ordinary fluid and sup
fluid hyperons. Finally, in Sec. VII we discuss the implic
tions of our results for ther-mode instability in real neutron
stars, and we also attempt to estimate how robust these
clusions are.

II. EQUATION OF STATE

A. Thermodynamic equilibrium

Neutron-star matter is a Fermi liquid which at low den
ties is composed primarily of neutronsn, protonsp and elec-
trons e. Charge neutralitynp5ne ~where ni is the number
density of thei th species! and b-equilibrium mn5mp1me

~wherem i is the chemical potential of thei th species! deter-
mine the relative concentrations of these particles at e
density. As the total baryon density increases howeve
becomes energetically favorable for the equilibrium state
include additional particle species: first muonsm, and then a
sequence of hyperonsS2, L, . . . . These additional par
ticles appear as the density exceeds the threshold for
creation of each new species. The relative concentration
the various species are determined at each density by im
ing charge neutrality andb-equilibrium. At the highest den
sities of interest to us these equilibrium constraints are
06300
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np5ne1nm1nS2, ~2.1!

mp5mn2me , ~2.2!

mm5me , ~2.3!

mS25mn1me , ~2.4!

mL5mn . ~2.5!

In order to solve these constraints and determine the e
librium state of neutron-star matter, we need explicit expr
sions for the various chemical potentialsm i as functions of
the particle number densitiesnj . These functions have en
coded within them the details of the interactions between
various particles in a dense Fermi-liquid environment. In t
paper we have adopted the expressions for these chem
potentials as given by Glendenning’s relativistic effecti
mean-field theory@10,11#. Figure 1 illustrates the Fermi mo
menta of the various particle species as a function of the t
energy density of the matter that we obtained with Glend
ning’s ~case 2@10#! expressions for the chemical potentia
Glendenning also gives expressions for the total energy d
sity r and total pressurep as functions of the particle dens
ties ni . These quantities are illustrated and tabulated
Glendenning@10,11#, and we will not reproduce them here
Our numerical code reproduces Glendenning’s numb
quite accurately.

We are also interested here in some less familiar ther
dynamic quantities that are relevant for calculating the b
viscosity in neutron-star matter. These quantities are ea
determined once the full description of the equilibrium sta
is known. In particular the partial derivatives of the chemic
potentials with respect to the various particle number de
ties, a i j []m i /]nj , are needed in the expression for the r
laxation time associated with bulk visocity as defined in E
~3.16!, ~3.24!, and ~3.25! below. Thesea i j are easily deter-
mined numerically~or even analytically in some cases! once
the full equilibrium state is known. Further the thermod
namic function

g`2g0[2
nB

2

p

]p

]nn

dx̃n

dnB
, ~2.6!

FIG. 1. Fermi momenta~in MeV! of the baryons and leptons a
functions of total energy density~in 1015 g/cm3! for Glendinning’s
equation of state.
6-2
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EFFECT OF HYPERON BULK VISCOSITY ON . . . PHYSICAL REVIEW D65 063006
appears as a prefactor in the expression for the bulk vis
ity, Eq. ~3.11!, that we derive below. Here]p/]nn is just the
partial derivative of the pressure with respect to the num
density of neutrons~keeping the other number densitie
fixed!, anddx̃n /dnB is the derivative of the fractional densit
of neutrons in the equilibrium state,x̃n5nn /nB , with respect
to the total baryon densitynB . The left side of Eq.~2.6! has
been re-expressed in terms ofg` the ‘‘fast’’ and g0 the
‘‘slow’’ adiabatic indices defined in Eqs.~3.12! and ~3.13!
below. Figure 2 illustrates this function for the Glendenni
equation of state. For a non-relativistic fluid the pre-fac
p(g`2g0) is identical to a commonly used alternative e
pression involving the sound speeds of the fluid:r(u`

2

2u0
2) @12#. However, this equality is not satisfied in neutro

star matter. Consequently it is important to use the cor
expression given in Eq.~2.6!.

We have solved the relativistic structure equations for
non-rotating stellar models based on this equation of st
Figure 3 illustrates the total energy density as a function
radius for neutron-star models having a range of astroph
cally relevant masses. This figure illustrates that these s
contain large central cores having material at densities
exceed theS2 and L threshold densities. The fact that
becomes energetically favorable to create hyperons~or even
free quarks! above some threshold density is not really ve
controversial. However the expressions for the chemical
tentials as functions of the particle densities are not w

FIG. 2. Thermodynamic prefactorg`2g0 ~the difference be-
tween the ‘‘fast’’ and ‘‘slow’’ adiabatic indices! that appears in our
expression for the bulk viscosity.

FIG. 3. Structure of neutron stars having a range of mas
using Glendinning’s equation of state: total energy density~in units
of 1015 g/cm3) vs distance from the center of the star. Thresh
densities forS2 andL hyperon formation are also plotted. The
equilibrium structures are computed using general relativity.
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known, and so the detailed properties of nuclear matter at
densities where hyperons are likely to occur is not well d
termined at this time. This uncertainty translates then to
uncertainty about the sizes of the hyperon containing co
of real neutron stars. Since the size of this hyperon c
determines the strength of the bulk viscosity effects wh
we evaluate here, the implications for the stability of t
r-modes are correspondingly uncertain as well.

B. Superfluidity

Next, we must consider the possibility that the hypero
in neutron-star matter form Cooper pairs and condense in
superfluid state at sufficiently low temperatures. Various c
culations are given in the literature of theL superfluid gap
function DL @13,14#. The L gap function is constrained b
the experimental data on the energy levels of doubleL hy-
pernuclei such asLL

10Be and LL
13B @14#, however even so it

is probably only known to within a factor of 2 or 3. In
our numerical analysis of the bulk viscosity time sca
discussed in Sec. V we use an analytical fit to the ze
temperature gap functionDL as computed by Balberg an
Barnea@13#. Their calculation produces a gap that depen
on the total baryon densitynB of the nuclear matter and o
the Fermi momentumpF of theL itself. As illustrated in Fig.
4 we find that the empirical fit

DL~pF ,nB!55.1pF
3~1.522pF!3

3@0.7710.043~6.2nB20.88!2#, ~2.7!

matches their calculated values for the zero-temperature
energies fairly well. In this expression the gap energy is m
sured in MeV,pF is measured in fm21, andnB is measured
in fm23.

The S2 superfluid gaps are not as well determined b
cause comparable experimental data on doubleS2 hypernu-
clei do not exist at present. Calculations by Takatsukaet al.
@14# using several models of the nuclear interaction give v
ues ofDS2 in the range:DL&DS2&10DL . We perform two
sets of calculations based on the extremes of this range
either setDS25DL or DS2510DL . By equality here we
mean that the dependence ofDS2 on nB and pF ~up to the
overall factor of 10! is given by Eq.~2.7!. Using these energy
gaps, and the Glendenning equation of state, we can eva

es

FIG. 4. Comparison of the zero-temperature superfluid g
function DL as calculated by Balberg and Barnea~dots! with the
empirical analytical fit in Eq.~2.7! ~curves!. The bottom and top
curves correspond tonB50.4 and 0.8 fm23 respectively.
6-3
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LEE LINDBLOM AND BENJAMIN J. OWEN PHYSICAL REVIEW D65 063006
then the density dependence of the superfluid gap functi
We illustrate these in the form of superfluid critical tempe
turesTc @which are related to the zero-temperature gap fu
tions bykTc50.57D(0)# in Fig. 5.

The superfluid gap depends not only on the density of
superfluid material, as discussed above, but also on its
perature. This temperature dependence will be needed to
termine the temperature dependence of the hyperon bulk
cosity below. The standard BCS model calculation@15# of
the temperature dependence of the gap is illustrated in Fi
This figure compares the results of the exact calculation w
a simple empirical fit to these data:

D~T!5D~0!F12S T

Tc
D 3.4G0.53

. ~2.8!

Since this fit is quite good, we use it whenever the tempe
ture dependence of the gap is needed.

III. BULK VISCOSITY

Bulk viscosity is the dissipative process in which the ma
roscopic compression~or expansion! of a fluid element is
converted to heat. The formalism for calculating the bu
viscosity coefficient in terms of the relaxation times of t
microscopic processes which effect the conversion is w

FIG. 5. Superfluid critical temperatures as functions of the to
energy density~in units of 1014 g/cm3). The solid curve is forL
hyperons, while the dashed curves are forS2 hyperons using eithe
DS25DL ~bottom! or DS2510DL ~top!.

FIG. 6. Temperature dependence of the superfluid gap: e
values ~points! compared to the empirical analytical fit~curve!
given in Eq. ~2.8!. The critical temperatureTc is related to the
zero-temperature gap energy bykTc50.57D(0).
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known—see, e.g., Landau and Lifschitz@12#. However, such
calculations are generally performed for an ordinary flu
like air, in which the microscopic processes~typically in-
volving the transfer of energy between rotational and vib
tional degrees of freedom of the molecules! can be taken to
be independent. In neutron-star matter there are severa
evant microscopic processes~involving weak interactions
between the various particle species!, but they are related by
constraints ~such as conservation of baryon number!—
meaning that we cannot simply use the standard formulas
either a single process or multiple processes. Furt
neutron-star matter is composed of some particles hav
relativistic energies. The standard expressions for bulk
cosity are not correct for such materials. In this section
present a modified and expanded derivation of the equat
of bulk viscosity appropriate for neutron-star matter.

Bulk viscosity is due to an instantaneous difference
tween the total physical pressurep of a fluid element and the
thermodynamic pressurep̃. The thermodynamic pressure
determined only by the equation of state for a fluid elem
of given particle number and entropy densities. It is the va
toward which the microscopic processes are driving
physical pressure at any given time. The coefficient of b
viscosityz defines the proportionality of this pressure diffe
ence to the macroscopic expansion of the fluid:

p2 p̃52z¹W •vW , ~3.1!

wherevW is the velocity of the fluid element.
Consider now a fluid state that is an infinitesimal pert

bation of a time-independent equilibrium state. Letp0 andn0
denote the pressure and number density~functions only of
position! that describe this equilibrium state. To calculatez
in terms of the microscopic reaction rates that drive the s
tem toward equilibrium, we re-express both sides of E
~3.1! in terms of the Lagrangian perturbation of the partic
number densityDn[n2n0. Using the particle conservatio
equation ~and keeping only terms linear in the deviatio
away from equilibrium!, we express the right side of Eq
~3.1! as

2z¹W •dvW 52 i v̂zDn/n, ~3.2!

wheredvW is the Eulerian velocity perturbation, and we a
sume that the perturbation has time dependencee2 i v̂t in the
comoving frame of the fluid.

In order to analyze the left side of Eq.~3.1!, we examine
a fluid variablex that characterizes the microscopic proce
which produces bulk viscosity. For small departures fro
equilibrium, the value ofx in the physical fluid state relaxe
toward its value in thermodynamic equilibrium by

] t x1vW •¹W x52~x2 x̃!/t, ~3.3!

wheret is defined as the relaxation time for this process.
are interested in nearly equilibrium fluid states in which t
physical values of the state variablex ~and hence the ther
modynamic statex̃) oscillate about the background equilib
rium, so that

l

ct
6-4
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~] t1vW •¹W !~x2x0!52 i v̂~x2x0!, ~3.4!

~] t1vW •¹W !~ x̃2x0!52 i v̂~ x̃2x0!. ~3.5!

In such a state it is straightforward to verify that

x2x05
x2 x̃

i v̂t
5

x̃2x0

12 i v̂t
. ~3.6!

Now consider how the fluid variablex̃ changes as the
particle number density of the state is varied slowly from o
equilibrium state to another:

x̃2x05
dx̃

dn
~ ñ2n0!5

dx̃

dn
Dn ~3.7!

~since by definitionñ5n). It follows then that the difference
betweenp̃ andp0 is given by

p̃2p05F S ]p

]nD
x

1S ]p

]x D
n

dx̃

dnGDn. ~3.8!

A similar argument@now using Eq.~3.6! to relatex2x0 and
x̃2x0# gives the following expression forp2p0:

p2p05F S ]p

]nD
x

1
1

12 i v̂t
S ]p

]x D
n

dx̃

dnGDn. ~3.9!

Combining Eqs.~3.8! and ~3.9! gives us an expression fo
the difference in the pressurep2 p̃ that appears on the lef
side of Eq.~3.1!:

p2 p̃5
i v̂t

12 i v̂t
S ]p

]x D
n

dx̃

dn
Dn. ~3.10!

Then equating this expression for the left side of Eq.~3.1!
with the expression for the right side from Eq.~3.2!, we find
the desired formula for the bulk viscosity:

z5
2nt

12 i v̂t
S ]p

]x D
n

dx̃

dn
. ~3.11!

Finally it is convenient to re-express the thermodynam
derivatives that appear in Eq.~3.11! in terms of the more
familiar

g`5
n

p S ]p

]nD
x

, ~3.12!

the ‘‘infinite’’ frequency adiabatic index, and

g05
n

p F S ]p

]nD
x

1S ]p

]x D
n

dx̃

dnG , ~3.13!

the ‘‘zero’’ frequency adiabatic index. In terms of these qua
tities, then the bulk viscosity may be written in the form:
06300
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p~g`2g0!t

12 i v̂t
. ~3.14!

For a fluid composed of particles with non-relativistic ene
gies this expression is equivalent to the conventional
@12# written in terms of the sound speedu, sincepg5ru2

for such fluids. However for a fluid containing particles wi
relativistic energies, the conventional form is wrong and E
~3.14! is the appropriate form to use. Note that this new fo
of the bulk viscosity is needed to describe any fluid conta
ing relativistic internal particle energies, even if the bu
motion of the fluid itself has only non-relativistic velocitie
which are well approximated by Newtonian hydrodynami
We also see that for a fixed-frequency perturbation, the gr
est bulk viscosity comes from processes with relaxat
times t'1/v̂. The importance of this fact will become ap
parent as we examine how the relaxation timet varies inside
a neutron star.

The standard approach@12# to treating multiple reactions
is to repeat the preceding derivation for multiple degre
of freedomxi and relaxation timest i . However, this only
works if ~as in air! the xi can be chosen to be independe
This is not possible in neutron-star matter, since the deg
of freedom~e.g., concentrations of various baryons! are re-
lated to each other even out of thermodynamic equilibri
by constraints such as conservation of baryon number.
reactions of interest to us here are the non-leptonic w
interactions

n1n↔p11S2,

n1p1↔p11L.

Given the microscopic reaction rates for these proces
~which are calculated in Sec. IV!, we can express all of the
perturbed quantities in terms of a single one. Since all
hyperon reactions that contribute to bulk viscosity invol
neutrons, we choose as our primary variable the number d
sity of neutronsnn .

Let xn5nn /nB be the fraction of baryons in a given flui
element that are neutrons. This variable changes only by
ternal reactions, not directly by changing the volume of t
fluid element, and so we can write

~] t1vW •¹W !xn52~xn2 x̃n!/t52Gn /nB . ~3.15!

HereGn is the production rate of neutrons per unit volum
which is proportional to the overall chemical potential im
balancedm[m2m̃ ~see below!. ~We normalizenn andGn to
the baryon number densitynB to remove the oscillating time
dependence of the volume of the fluid element.! Assuming
the reactions described in Sec. IV, the relaxation time is t
given by

1

t
5

GL12GS

dm

dm

nBdxn
, ~3.16!

wheredxn[xn2 x̃n .
We obtaindm/dxn from the following constraints:
6-5
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05dxn1dxL1dxp1dxS , ~3.17!

05dxp2dxS , ~3.18!

05bndxn1bLdxL1bpdxp1bSdxS , ~3.19!

wherexi are the number densities of baryon species norm
ized to the total number density of baryons and theb i are
defined below. The first constraint is conservation of bary
number, obeyed by all reactions.~We note that sincednB

5nB2ñB[0, dxi5dni /nB .) The second constraint is re
lated to conservation of electric charge, but is stricter:
assume that all leptonic~Urca! reaction rates are muc
smaller than those which produce hyperon bulk viscosity
so protons are only produced in reactions that produce aS2.
The third constraint is that the non-leptonic reaction

n1L↔p11S2 ~3.20!

proceeds much faster than the weak interactions which
duce hyperon bulk viscosity since it is mediated by t
strong nuclear interaction. Here we use the shorthand

a i j 5S ]m i

]nj
D

nk ,kÞ j

, ~3.21!

b i5ani1aL i2api2aS i .
~3.22!

Equilibrium with respect to reaction~3.20! ensures that both
processes described in Sec. IV have the same chemica
tential imbalance,

dm[dmn2dmL52dmn2dmp2dmS . ~3.23!

It is straightforward then to expressdm in terms of thedxi ,
and then to eliminate all butdxn using the constraints Eqs
~3.17!–~3.19!. The result

dm

nBdxn
5ann1

~bn2bL!~anp2aLp1anS2aLS!

2bL2bp2bS
2aLn

2
~2bn2bp2bS!~anL2aLL!

2bL2bp2bS
, ~3.24!

then determines via Eq.~3.16! the relaxation time that ap
pears in the bulk viscosity formula Eq.~3.14!. For a certain
range of densities there areS2 hyperons present in Glendin
ning’s equation of state, but noL. In that case the variable
dxL remains zero, and the constraint Eq.~3.19! is no longer
enforced. In this case the chemical potential imbalance
still be expressed in terms ofdxn with the somewhat simple
result

2dm

nBdxn
54ann22~apn1aSn1anp1anS!

1app1aSp1apS1aSS . ~3.25!
06300
l-

n

e

d

o-

o-

n

The equation of state of neutron-star matter is gener
written in a form which gives the thermodynamic variabl
as functions of the various particle species present, e.g.
pressure would be specified asp5p(ni). In order to evaluate
the thermodynamic derivatives (]p/]n)x and (]p/]x)n that
are needed in Eq.~3.11!, we note thatnn5nBxn for our
choice ofx. Thus the partial derivative needed in Eq.~3.11!
is given by (]p/]x)n5nB]p/]nn . Similarly, if needed,
(]p/]n)x5( ixi]p/]ni . The derivativedx̃/dn that also ap-
pears in Eq.~3.11! is determined by constructing a sequen
of complete equilibrium models~e.g. by imposing all of the
necessaryb-equilibrium constraints, etc.! for different total
baryon number densitiesnB . This complete model of the
equilibrium states will include the functionsx̃n(nB), from
which the derivativedx̃n /dnB is easily computed.

Formation of a superfluid~of a given particle species! is
marked by the formation of Cooper pairs and collapse of
pairs into a Bose-Einstein condensate. It is the unpaired
ticles that we are concerned with, since they are the ones
can participate in the bulk-viscosity generating reactio
The free-particle states within the pair-binding energyD of
the Fermi surface are depleted. As a result all phase-sp
factors~and effectively the reaction rates! are decreased by
roughly a factore2D/kT. The effect of superfluidity can be
included in our ordinary-fluid bulk viscosity calculation the
simply by making the substitution

G→e2D/kTG. ~3.26!

Thus when superfluidity is taken into account the equat
for the relaxation time, Eq.~3.16! becomes

1

t
5S GL

dm
e2DL /kT1

2GS

dm
e2DS /kTD dm

nBdxn
. ~3.27!

IV. MICROSCOPIC REACTION RATES

Since theS2 andL hyperons form at the lowest thresh
old densities, we are most interested in the nonleptonic re
tions forming them from neutrons. Following Jones’ earl
work @2,4# we calculate rates for two reactions,

n1n↔p11S2, ~4.1!

n1p1↔p11L, ~4.2!

as tree-level Feynman diagrams involving the exchange
W boson. In his most recent paper@3#, Jones treats the reac
tion

n1n↔n1L, ~4.3!

which is generally the dominant channel forL production in
laboratory experiments on hypernuclei. This process has
simple W-exchange contribution. Several other proces
contribute, but at present the rate cannot be well predic
from theory. Some of these processes surely operate in r
tions ~4.1! and ~4.2! and modify the rates, perhaps signifi
6-6
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EFFECT OF HYPERON BULK VISCOSITY ON . . . PHYSICAL REVIEW D65 063006
cantly. However, our simple calculations should provide
reasonable lower limit on the rates and thus an upper limi
the bulk viscosity.

A. Single reactions

We calculate reaction rates using the standard techniq
of time-dependent perturbation theory in relativistic quant
mechanics. We use the conventions of Griffiths@16#:
spinors are normalized toūu52m, the fifth Dirac matrix
is g55 ig0g1g2g3, the metric has negative trace, and\51.
For a single reaction~4.1! or ~4.2! between particles with
4-momentapi , the differential reaction rate~number per unit
volume per unit time! is

dG5uMu2~2p!4d (4)~p11p22p32p4!S)
i 51

4
d3pi

~2p!32e i

,

~4.4!

where uMu2 is the spinor matrix element~squared and
summed over spin states!, boldfacepi are 3-momenta, ande i
are particle energies. The statistical factorS, which compen-
sates for overcounting momentum states of indistinguisha
particles, is 1/2 for reaction~4.1! and 1 for reaction~4.2!.

First, consider theL reaction~4.2!, which we represen
by a single tree-level diagram. Labeling the particles 1~neu-
tron!, 2 ~ingoing proton!, 3 ~outgoing proton!, 4 (L hy-
peron!, we obtain the matrix element~for a single set of spin
states!

ML5
GF

2A2
sin 2uC@ ū~p3!gm~11gnpg

5!u~p1!ū~p4!

3gm~11gpLg5!u~p2!#. ~4.5!

Here GF is the Fermi coupling constant anduC is the
Cabibbo weak mixing angle. The quantitiesgnp , gnS , and
gpL are axial-vector couplings~normalized to the vector cou
pling! of the weak interaction, whose deviation from21
represents the partial nonconservation of the axial curr
~These quantities are often writtengA or GA /GV in the par-
ticle and nuclear physics literature. We add a label to k
track of which nucleon-hyperon line is which.! We use the
valuesGF51.166310211 MeV22 and sinuC50.222 from
the Particle Data Group@17#. The axial-vector couplings
change with varying momentum transfer and density
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the medium in a way that reflects the internal~strong-
interaction! structure of the baryons and is therefore difficu
to calculate. We use the valuesgnp521.27, gpL520.72,
andgnS50.34 measured inb-decay of baryons at rest@17#.
There are theoretical reasons to believe that all axial-ve
couplings tend to their asymptotically free values of21 in a
dense medium@18#. We provide dissipation numbers in late
sections both for laboratory values and for asymptotic val
of the couplings to give an estimate of the uncertainty in t
calculation.

To obtain the net reaction rateG we sumuMu2 over all
possible initial and final spin states. This is done in the st
dard way by tracing over outer products of spinors:

uM Lu254GF
2 sin2 2uC$2mnmp

2mL~12gnp
2 !~12gpL

2 !

2mnmpp2•p4~12gnp
2 !~11gpL

2 !

2mpmLp1•p3~11gnp
2 !~12gpL

2 !

1p1•p2p3•p4@~11gnp
2 !~11gpL

2 !14gnpgpL#

1p1•p4p2•p3@~11gnp
2 !~11gpL

2 !24gnpgpL#%,

~4.6!

which in the low-momentum limit used by Jones@3# reduces
to

uM Lu258GF
2 sin2 2uCmnmp

2mL~113gnp
2 gpL

2 !. ~4.7!

Note that this limit corresponds toGL50.40GF in the nota-
tion of Jones@3#, who obtainsGL51.29GF . The factor of 3
discrepancy is within the uncertainties of modern nucle
matter physics, as we see by, e.g., taking the asymptotic
ues of the axial-vector couplings.

Reaction~4.1! is treated similarly, with particle labels 1
and 2~neutrons!, 3 ~proton!, and 4 (S2 hyperon!. Antisym-
metrizing with respect to the two indistinguishable neutro
the matrix element is

MS5
GF

2A2
sin 2uCū~p3!gm~11gnpg

5!@u~p1!ū~p4!

3gm~11gnSg5!u~p2!2u~p2!ū~p4!gm~11gnSg5!

3u~p1!#. ~4.8!

The squared sum over spins is given by
uM Su254GF
2 sin2 2uC$6mn

2mpmS~12gnp
2 !~12gnS

2 !2mpmSp1•p2~12gnp
2 !~12gnS

2 !22mnmSp1•p3~11gnp
2 !~12gnS

2 !

22mnmpp1•p4~12gnp
2 !~11gnS

2 !22mnmSp2•p3~11gnp
2 !~12gnS

2 !22mnmpp2•p4~12gnp
2 !~11gnS

2 !

2mn
2p3•p4@~11gnp

2 !~11gnS
2 !24gnpgnS#14p1•p2p3•p4@~11gnp

2 !~11gnS
2 !14gnpgnS#1p1•p3p2•p4

3@~11gnp
2 !~11gnS

2 !24gnpgnS#1p1•p4p2•p3@~11gnp
2 !~11gnS

2 !24gnpgnS#%, ~4.9!
6-7
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which in the low-momentum limit reduces to

uM Su258GF
2 sin2 2uCmn

2mpmS~113gnpgnS!2.
~4.10!

This expression agrees with Eq.~7! of Jones’ old paper@4#,
allowing for our different placement of the statistical ove
counting factor and different normalization of the spinors~he
uses ūu51!. However, we find that for this reaction th
low-momentum limit is a very poor approximation to the fu
result: the collision integral computed in the next subsect
can be more than an order of magnitude higher than
~4.10! would suggest. This effectively brings down the coe
ficient of bulk viscosityz by a factor of about 5 at densitie
(5 –6)31014 g/cm3, where there are noL hyperons@19#.

B. Collision integrals

Reactions~4.1! and ~4.2! can be regarded as scatterin
processes wherein the scattered particles change ide
Therefore we can use existing results on collision integral
the literature on superfluidity~e.g., @20#! with some slight
modifications. We now integrate the differential reaction r
~4.4! over momentum space to obtain the total rate

G5
S

4096p8E )
i 51

4
d3pi

e i
uMu2d (3)~p11p22p32p4!

3F~e i !d~e11e22e32e4!. ~4.11!

~From here on we use italicpi to denote the absolute value o
the 3-momenta,pi5Api•pi .! The Pauli blocking factor

F~e i !5 f 1f 2~12 f 3!~12 f 4!2~12 f 1!~12 f 2! f 3f 4 ,

~4.12!

where

f i51/$11exp@~e i2m i !/kT#%, ~4.13!

accounts for the degeneracy of the reactant particles an
stricts the available phase space to those particles w
roughly kT of their Fermi energies.

In the case where all particles are degenerate~which is
true except for a very small region just above the thresh
density for each hyperon species!, the collision integral sepa
rates into angular and energetic parts. The energetic par
be written in the limitdm!kT as

E )
i

de iF~e i !d~e11e22e32e4!

5~kT!2dmE
2`

1` y2dy

~ey21!~12e2y!
, ~4.14!

where the latter integral has the value 2p2/3.
We address the angular integral with the aid of Fig.

With no preferred direction~e.g., strong magnetic field!, the
p1 volume element is 4pp1

2dp1 and thep2 volume element is
p2

2dp2 sinududf, whereu andf are the polar and azimutha
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angles ofp2 with respect top1. Conservation of momentum
demands thatp11p25p31p4, determining a common axis
Let a anda8 be the angles ofp1 andp3 with that axis. The
volume element ofp3 is thenp3 sina8df8, wheref8 is the
angle betweenp13p2 and p33p4, multiplied by the area
element in the plane containingp3 and p4. To separate the
energetic and angular integrals, it is convenient to write t
area element asdp3dp4 /sinu8, whereu8 is the angle be-
tweenp3 and p4. Before leaving Fig. 7, note the following
useful identities:

p1
21p2

212p1p2 cosu5p3
21p4

212p3p4 cosu8,
~4.15!

p1 sina5p2 sin~u2a!, ~4.16!

p3 sina85p4 sin~u82a8!.
~4.17!

We use the differential of the first identity~with pi held
constant! to write our final result for the volume element a

d (3)~p11p22p32p4!)
i 51

4
d3pi

e i
54pp3 sina8du8df8

3df)
i 51

4

de i .

~4.18!

Although f and f8 are free to range from 0 to 2p, the
limits of integration overu8 depend on the relations betwee
the momentapi , which are constrained to be close to th
Fermi momenta.~Therefore from now on we usepi to refer
to the Fermi momenta.! We integrateu8 over the full range 0
to p, which is allowed by momentum conservation for

pn>pp>~pL ,pS!, pn2pp<pp2pL . ~4.19!

In our equation of state these Fermi momentum criteria
satisfied forr,1.031015 g/cm3 ~see Fig. 1!. It turns out
that almost all of the dissipation takes place below this d
sity, and much above this density the baryons are too clo

FIG. 7. Definition of angles used in the collision integral. Th
plane containingp3 andp4 can be rotated out of the page around t
long-dashed common axis by an anglef8 for a givenp1 andp2.
6-8
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EFFECT OF HYPERON BULK VISCOSITY ON . . . PHYSICAL REVIEW D65 063006
packed to maintain their separate identities anyway. Th
fore for our purposes it is sufficient to treat only the ca
~4.19!.

Now consider the case thatuMu2 does not depend on an
of the angles, such as in the limitpi /mi!1. We can integrate
trivially over all the angles, with the exception of

E
0

p

p3 sina8du852p4 , ~4.20!

where p4 is the smallest~i.e., hyperon! Fermi momentum
involved. This motivates us to use Eq.~4.14! to write

G5
S

192p3 ^uMu2&p4~kT!2dm, ~4.21!

where^uMu2& is the angle-averaged value ofuMu2. We write
uMu2 in terms of the integrals

^ p1•p2&5
1

6
~23p1

223p2
213p3

21p4
2!, ~4.22!

^ p1•p3&5
1

6
~23p1

213p2
223p3

21p4
2!,

~4.23!

^ p1•p4&5^ p2•p4&5^ p3•p4&52
1

3
p4

2 ,

~4.24!

^ p2•p3&5
1

6
~3p1

223p2
223p3

21p4
2!,

~4.25!

^ p1•p2 p3•p4&5
1

30
p4

2~5p1
215p2

215p3
22p4

2!,

~4.26!

^ p1•p3 p2•p4&5^p1•p4 p2•p3&

5
p4

2

60~p3
22p4

2!
@5p1

4210p1
2p2

215p2
2

13~5p3
426p3

2p4
21p4

4!#. ~4.27!

~Note that some dot products, e.g.,p1•p3, depend onf8. The
average overf8 is then nontrivial but is easily taken b
symmetry about the common axis.!

The results for the angle averages are
06300
e-
e^uM Lu2&5

GF
2 sin2 2uC

15
„120~12gnp

2 !~12gpL
2 !mnmp

2mL

220~12gnp
2 !~11gpL

2 !mnmp~3epeL2pL
2 !

210~11gnp
2 !~12gpL

2 !mpmL~6enep23pn
2

1pL
2 !12@~11gnp

2 !~11gpL
2 !14gnpgpL#

3@5epeL~6enep13pn
22pL

2 !1pL
2 ~10enep15pn

2

110pp
22pL

2 !#1@~11gnp
2 !~11gpL

2 !24gnpgpL#

3$10eneL~6mp
213pn

21pL
2 !1pL

2 @220ep
2

115pp
223pL

2 15~pn
22pp

2!2/~pp
22pL

2 !#%….

~4.28!

@Note that the denominator in the last term does not dive
while criterion ~4.19! holds.# Similarly, for reaction~4.1!,

^uM Su2&5
2

15
GF

2 sin2 2uC$180~12gnp
2 !~12gnS

2 !mn
2mpmS

240~12gnp
2 !~11gnS

2 !mnmp~3eneS2pS
2 !

220~11gnp
2 !~12gnS

2 !mnmS~6enep23pp
21pS

2 !

25~12gnp
2 !~12gnS

2 !mpmS~6en
216pn

223pp
2

2pS
2 !14@~11gnp

2 !~11gnS
2 !14gnpgnS#

3@10en
2~3epeS1pS

2 !15epeS~6pn
223pp

22pS
2 !

1pS
2 ~10pn

215pp
22pS

2 !#110@~11gnp
2 !~11gnS

2 !

24gnpgnS#@2mn
2~3epeS1pS

2 !1en~6enepeS

22eppS
2 23eSpp

21eSpS
2 !#%. ~4.29!

These angle averages are inserted into Eq.~4.21! to yield the
net reaction rate per unit volume as a function of Fermi m
menta.

V. RELAXATION TIMES

The relaxation time scales for the non-leptonic weak
teractions, Eqs.~4.1! and ~4.2!, can now be determined b
combining the microscopic collision rates determined in S
IV with the thermodynamic quantities evaluated in Secs
and III. At densities above the threshold for the production
S2, but below theL threshold, the final expression for th
relaxation time scalet is

1

t
5

~kT!2

192p3

pS^uM Su2&

eDS /kT

dm

nBdxn
. ~5.1!

Here the collision cross sectionuM Su2 is evaluated from Eq.
~4.29!. The Fermi momenta that appear in this expression
obtained from the complete description of the equilibriu
thermodynamic state as described in Sec. II. This descrip
includes the values of the particle densities~and hence Ferm
6-9
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momenta! of each species as a function of the total bary
density. The thermodynamic quantitydm/nBdxn is given by
Eq. ~3.25! in terms of chemical potentials and their deriv
tives. Once the density increases to the point that bothS2

andL hyperons are present in the equilibrium state, then
expression for the relaxation time scale becomes

1

t
5

~kT!2

192p3F pS^uM Su2&

eDS /kT
1

pL^uM Lu2&

eDL /kT G dm

nBdxn
. ~5.2!

Here the collision cross sections are given by Eqs.~4.28! and
~4.29!, anddm/nBdxn is given by Eq.~3.24! in this case.

We have evaluated this relaxation time scale for neutr
star matter using the equation of state described in Sec
Figure 8 illustrates the density dependence of this time s
for a range of temperatures. In the case of Fig. 8 we h
assumed that theS2 superfluid gap function is given b
DS5DL , while in Fig. 9 we assumeDS510DL . The only
significant difference between these two cases comes a
in the density range where there existS2 but notL. In that
range the time scale is significantly increased in theDS

510DL case by the stronger superfluid effects. All of t
curves in these two figures were evaluated using the ‘‘s
dard’’ b-decay values of the axial-vector coupling constan
gnp521.27, gpL520.72, andgnS50.34 @17# and the ef-
fective masses of all of the baryons when evaluating
scattering cross sections. There are theoretical arguments

FIG. 8. Density dependence~in units of 1015 g/cm3) of the
relaxation time scalet ~in units of s! for a range of temperatures
These curves were constructed using the assumptionDS25DL for
the S2 superfluid gap.

FIG. 9. Density dependence~in units of 1015 g/cm3) of the
relaxation time scalet ~in units of s! for a range of temperatures
These curves were constructed using the assumptionDS2510DL

for the S2 superfluid gap.
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suggest the coupling constants should approach the va
gnp5gpL5gnS521 in a dense medium@18#. We illustrate
the impact this might have on these time scales in Fig.
~dotted curve!. We also illustrate in this figure~dashed curve!
the effect of using the bare masses of the various bary
when computing the scattering cross sections. We see
the overall effect of these changes is to make the time sc
shorter~by up to an order of magnitude!. This tends to de-
crease the bulk viscosity by a similar factor, until the te
perature drops below the superfluid critical values.

Finally, we are in a position now to evaluate the bu
viscosity itself. The real part of the bulk viscosity, the pa
that is responsible for damping the modes of neutron star
given by the expression

Rez5
p~g`2g0!t

11~v̂t!2
. ~5.3!

Figures 11 and 12 illustrate the density and temperature
pendence ofz. ~Here we assume that the frequency cor
sponds to them52 r-mode frequency of a maximally rotat
ing neutron star:v̂5 2

3 Vmax.) These figures illustrate the
complicated temperature dependence of the visocity du
superfluid effects. For temperatures slightly below the sup

FIG. 11. Density dependence~in units of 1015 g/cm3) of the
hyperon bulk viscosity~in units of g/cm s! for a range of tempera-
tures. These curves were constructed using the assumptionDS2

5DL for the S2 superfluid gap.

FIG. 10. Density dependence~in units of 1015 g/cm3) of the
relaxation time scalet ~in units of s! for T51010 K. Solid curve
uses effective masses and theb-equilibrium values of the axial-
vector couplings. Other curves explore various alternate microph
ics assumptions: dashed curve uses bare masses, dotted curv
gB521.
6-10
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EFFECT OF HYPERON BULK VISCOSITY ON . . . PHYSICAL REVIEW D65 063006
fluid critical temperature the values of the bulk viscosity a
increased over their normal values. This is due to an incre
in the time scalet which moves it closer to being in reso
nance with the pulsation period of the mode. Once the te
perature falls well below the superfluid critical temperatu
however, we see that the time scalet becomes even longe
than the pulsation period and so the viscosity becom
smaller again in this case. We note that even for very l
temperatures there exists a small range of densities,
above the hyperon threshold densities, where the bulk
cosity remains rather large. This is due to the moment
dependence of the superfluid gap, Eq.~2.7!. The gapD goes
to zero as the Fermi momentum of the particle goes to z
Thus just above the threshold density the superfluid gap v
ishes~for any finite temperature! so the material in this re
gion will retain the normal-fluid value of the bulk viscosit

Our value ofz is generally much larger than that obtain
recently by Jones@3#: at a total densityr5731014 g/cm3

and temperatureT51010 K, our z is larger than Jones’ by a
factor of 400. Roughly a factor of 8 is due to the relative
weak coupling we calculate for reaction in Eq.~4.2!. ~At this
density theS2 hyperons account for only about 10% of th
bulk viscosity and can be neglected.! We note that using the
asymptotic values of the weak axial-vector couplings wo
erase much of this factor of 8 difference, and thus it is
dicative of the size of the uncertainties inz due to our poor
understanding of nuclear-matter physics. The remaining
tor of 50 is thermodynamic in origin. Jones evaluates vari
partial derivatives of pressure and chemical potentials, e
appearing in Eq.~3.24! of our paper and Eq.~42! of Ref. @3#,
using the values for a gas of noninteracting fermions.
include all the mesonic interaction terms, whose effect is
increase significantly these thermodynamic derivativ
Since the details of the neutron-star equation of state
uncertain, the precise values of the derivatives are co
spondingly uncertain. However, we think it unlikely that th
true physical mesonic terms will cancel precisely enough
bring the derivatives down to their noninteracting values.
summary, we think that the true value ofz is within an order
of magnitude of the value we compute here.

VI. r-MODE DAMPING TIMES

The basic formalism for evaluating the effects of bu
viscosity on the stability of ther-modes is well known

FIG. 12. Density dependence~in units of 1015 g/cm3) of the
hyperon bulk viscosity~in units of g/cm s! for a range of tempera
tures. These curves were constructed using the assumptionDS2

510DL for the S2 superfluid gap.
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@9,21#. The time derivative of the co-rotating frame energyẼ
due to the effects of bulk viscosity is

dẼ

dt
52E Rezu¹W •dvW u2d3x. ~6.1!

This rotating frame energyẼ is ~to lowest order in the angu
lar velocity of the star! given by the integral

Ẽ5
1

2E rudvW u2d3x. ~6.2!

The time scaletB(h) on which hyperon bulk viscosity damp
the mode is then

1

tB(h)
52

1

2Ẽ

dẼ

dt
. ~6.3!

Here we have normalizedtB(h) so that 1/tB(h) is the hyperon
bulk viscosity contribution to the imaginary part of the fr
quency of the mode.

For the case of ther-modes~in slowly rotating stars! the
integrals that determineẼ anddẼ/dt in Eqs.~6.1! and~6.2!
can be reduced to simple one-dimensional integrals. For
case ofẼ this reduction is well known@9#:

Ẽ5
1

2
a2V2R22E

0

R

rr 6dr. ~6.4!

Here a represents the dimensionless amplitude of
r-mode, andV andR are the angular velocity and radius o
the star respectively. The reduction ofdẼ/dt to a one-
dimensional integral is not so straightforward. In general
expansion of the mode¹W •dvW is a complicated function of
radius and angle. To lowest order in slowly rotating stars
bulk viscosityz will depend only on radius. Thus we ma
always convert Eq.~6.1! to a one-dimensional integral b
defining the angle averaged expansion squared^u¹W •dvW u2&:

dẼ

dt
524pE

0

R

Rez^u¹W •dvW u2&r 2dr. ~6.5!

While the angle-averaged expansion is in general a com
cated function, for the case of ther-modes it is rather simple
This function has only been determined numerically@21#,
however the simple analytical expression,

^u¹W •dvW u2&5
a2V2

690 S r

RD 6F110.86S r

RD 2G , ~6.6!

is an excellent fit to those numerical solutions.
Once the structure of the density functionr(r ) in a stellar

model is determined, it is straightforward to evaluate t
integrals in Eqs.~6.4! and~6.5! using Eq.~6.6! to determine
the bulk viscosity damping timetB(h) . The bulk viscosity of
interest to us here is very sensitive to the density of hyper
in the stellar core. Thus we use the relativistic stellar str
6-11
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ture equations to evaluater(r ). This ensures that the size an
structure of the hyperon containing core are sufficiently
curate for our purposes. These functionsr(r ) are illustrated
for a range of stellar masses in Fig. 3 based on the equa
of state discussed in Sec. II. Given these~numerical! expres-
sions forr(r ) it is straightforward then to use the expre
sions for the hyperon bulk viscosityz derived in Sec. V to
obtainz(r ) for any given neutron star temperature. Togeth
r(r ) andz(r ) then determinetB(h) through Eqs.~6.4!, ~6.5!
and ~6.3!. While it is straightforward to evaluate these tim
scales, the result is a rather complicated function of the t
perature, angular velocity, and mass of the stellar model
so we do not attempt to illustrate it directly.

The most important application of the hyperon bulk v
cosity time scaletB(h) is the analysis of the role this type o
dissipation plays in the gravitational radiation driven ins
bility in the r-modes. Gravitational radiation contributes
term to the evolution of the energydẼ/dt that is positive. As
is well known by now, gravitational radiation tends to driv
ther-modes unstable in all rotating stars@22,23#. As has been
discussed in detail elsewhere@9,21# the imaginary part of the
frequency of ther-mode may be written as

1

t r
52

1

tGR
1

1

tB(h)
1

1

tB(u)
. ~6.7!

HeretGR represents the time scale for gravitational radiat
to effect ther-mode,tB(h) is the hyperon bulk viscosity time
scale discussed here, andtB(u) is the modified Urca bulk
viscosity. Detailed expressions for evaluating these ot
terms are discussed elsewhere and will not be repeated
Suffice it to say that each is a function of the temperatu
angular velocity and mass of the neutron star. Since 1/t r is
the imaginary part of the frequency of ther-mode, the mode
is stable whent r.0 and unstable whent r,0. For a star of
given temperature and mass, the critical angular velocityVc
is defined to be the angular velocity where 1/t r50. Stars
rotating more rapidly thanVc are unstable while those rota
ing more slowly are stable.

We have evaluated the critical angular velocitiesVc nu-
merically using the new hyperon bulk viscosities derived
Sec. V. Figure 13 illustrates the temperature dependenc
the critical angular velocities for a range of neutron-s
masses. The more massive neutron stars have larger hyp
cores which suppress ther-mode instability more effectively
The curves in Fig. 13 assume that theS2 superfluid gap
function is given byDS5DL , and that the axial vector cou
pling coefficients have theirb-decay values. In Fig. 14 we
compare the critical angular velocity curves for 1.4M ( stel-
lar models using either theDS5DL ~solid curve! or theDS

510DL ~dash-dot curve! assumption about theS2 super-
fluid gap. The larger value ofDS allows superfluidity to
make the bulk viscosity larger over a wider range of te
peratures, and hence ther-mode instability is less effective
Also illustrated in Fig. 14 are the effects of changing vario
microphysics assumptions. The dotted curve shows the e
of changing the values of the axial vector coupling consta
from their b-decay values to the asymptotic value21. And
the dashed curve shows the effect of using bare masses r
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than the effective masses in the scattering cross secti
These alternative assumptions make the bulk viscosity
effective and ther-mode instability operates over a wide
range of angular velocities in these stars. However, neithe
these effects is as large as that resulting from a change in
superfluid gap.

The hyperons’ primary contribution to the bulk viscosi
of neutron-star matter is through the mechanism discus
above. However, as pointed out by Jones, the presenc
hyperons in the core of a neutron star also makes it poss
for alternate forms of the direct Urca interaction to take pla
and these too contribute to the bulk viscosity of the mater
Jones showed that the contributions to the bulk visco
from this process are given by

Rez5
4.931030T10

24

112.031026v̂2T10
28

, ~6.8!

in cgs units for typical values of neutron star matter, whe
T10 is the temperature measured in units of 1010 K. Using
this expression in theL containing core of the neutron sta
we have evaluated the effects of this hyperon channel di

FIG. 13. Critical angular velocities for neutron stars as a fu
tion of hyperon core temperature. Each curve represents a neu
star of fixed mass, ranging from 1.2M ( to the maximum mass for
this equation of state, 1.79M ( . These curves assumeDS5DL and
use theb-decay values of the weak axial vector coupling coe
cients.

FIG. 14. Critical angular velocities for 1.4M ( neutron stars as
a function of hyperon core temperature. The solid curve assu
that DS5DL while the dot-dash curve assumesDS510DL . Both
curves use theb-decay values of the weak axial vector couplin
coefficients. Dotted curve usesgB521, while dashed curve use
bare masses.
6-12
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Urca bulk viscosity on the stability of ther-modes. These
results are illustrated in Fig. 15. The solid curve in Fig.
includes the effects of the hyperon bulk viscosity discus
above, the hyperon channel direct Urca bulk viscosity of
~6.8!, and the ordinary modified Urca bulk viscosity. F
comparison the dashed curve leaves out the effects of
hyperon channel direct Urca bulk viscosity. We see that
direct Urca bulk viscosity has only a small effect on t
stability of ther-modes for temperatures around 1010 K.

VII. DISCUSSION

We have analyzed here the effects of the bulk visco
due to hyperons on the stability of ther-modes in rotating
neutron stars. Hyperons exist only in the high density core
a neutron star where the influence of ther-mode is quite
small. Thus to evaluate accurately and reliably the imp
tance of this effect, it was necessary to compute detailed
accurate models of the composition and structure of the n
tron star core, and to have an accurate model of the struc
of the r-mode in this region. We use Glendenning’s@10,11#
relativistic mean-field equation of state to evaluate the co
position of the nuclear matter in the stellar core, and so
the relativistic Oppenheimer-Volkoff equations to determ
the stellar structure.

Our evaluation of the hyperon bulk viscosity improves
previous work in several ways. First we generalize in E
~3.11! and~3.14! the standard expression for the bulk visco
ity coefficient so that it applies to relativistic fluids such
neutron star matter. Second we generalize the expressio
Eqs.~3.24! and~3.25! for the thermodynamic quantities tha
relate the microscopic reaction rates to the relaxation t
that appears in the expression for the bulk viscosity by
cluding fully interacting nuclear matter. And third we obta
in Eqs.~4.28! and~4.29! the fully relativistic expressions fo
the relevant hyperon scattering cross sections neede
evaluate the microscopic reaction rates. While our exp
sions for these cross sections reduce to the published
momentum results, we find that the difference of Eq.~4.29!
from the low-momentum limit can be an order of magnitu
or more and reduces the coefficient of bulk viscosity som
what at low densities. Finally we evaluate the effects of t

FIG. 15. Critical angular velocities for 1.4M ( neutron stars as a
function of hyperon core temperature. Solid curve includes the
fects of hyperon bulk viscosity, hyperon channel direct Urca b
viscosity, and modified Urca bulk viscosity. Dashed curve lea
out the effects of the direct Urca hyperon bulk viscosity.
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hyperon bulk viscosity on ther-modes using an accurat
model for the structure of ther-mode in the core of a neutro
star.

Our results show that the hyperon bulk viscosity does
substantially suppress the gravitational radiation instabi
of the r-modes until the temperature of the core of the ne
tron star drops below a few times 109 K. @This is in spite of
the fact that our coefficient of bulk viscosity is actual
higher than that of Jones@2,3#. The expansion of the fluid in
the core of the star as given in Eq.~6.6! is smaller than he
estimated.# Below 109 K the r-mode instability is strongly
suppressed in all of our models over the range ofS2 super-
fluid gap functions and the range of axial vector coupli
constants that we studied. If the core of the neutron star c
according to the standard modified Urca process@5#, then it
would remain hot enough for ther-mode instability to act for
about a day. This is enough time for ther-mode to grow and
radiate away through gravitational waves a substantial fr
tion of the rotational kinetic energy of a rapidly rotating ne
tron star@6#. However if the core of the neutron star coo
substantially faster than this, then it may not be possible
the r-mode to grow rapidly enough to effect the star in
substantial way before the hyperon bulk viscosity stabiliz
it. Cooling by the direct Urca process is significantly fas
than the modified Urca process: cooling the core of a neu
star to a few times 109 K within about a second@7,8#. Cool-
ing by the direct Urca process will occur in neutron-star m
ter whenever the proton/baryon ratio is larger than ab
0.15. Since proton fractions in excess of this are now gen
ally expected in neutron star matter, cooling by the dir
Urca process seems likely at least until the temperature of
core falls below the superfluid transition temperature
neutrons or protons at about 109 K. Thus it appears likely
that ther-mode instability is effectively suppressed by rap
cooling of the neutron star core and the non-leptonic hype
bulk viscosity.

Once a neutron star cools below the transition tempera
for the formation of neutron and proton superfluids, the
laxation time scale for the hyperon interactions will increa
exponentially compared to the expressions derived her
Eqs. ~5.1! and ~5.2!. This sharply reduces via Eq.~5.3! the
bulk viscosity from this process at sufficiently low temper
tures. Further detailed calculations would be needed to de
mine whether the hyperon bulk viscosity has a signific
influence on ther-mode instability at temperatures of a fe
times 108 K, which are expected to exist in the cores
neutron stars in low-mass x-ray binaries. We did not ca
out these calculations in part because solid crust-rela
shear@24,25# and magnetic field@26# effects are quite effec-
tive in suppressing the instability at these low temperatu

How robust is the conclusion that ther-mode instability is
effectively suppressed? Clearly the details of the nucl
physics involving hyperons in neutron star matter are
well understood at this time. However, our conclusion a
plies to the entire expected range of the most poorly kno
properties of this material: the superfluidS2 gap function
and the axial vector coupling coefficients. In order to esca
this conclusion, it would be necessary for neutron star ma
to have very few hyperons present at the densities wh

f-
k
s
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LEE LINDBLOM AND BENJAMIN J. OWEN PHYSICAL REVIEW D65 063006
exist in the cores of real neutron stars. This would require
equation of state to be substantially different from the o
studied here, or the masses of neutron stars to be sig
cantly smaller than 1.4M ( . Rapid rotation also lowers th
central density and consequently the size of the hyperon
in a neutron star. The central density of a maximally rotat
1.4M ( neutron star is about 73% of its non-rotating val
~for the equation of state studied here! @27#. This reduction
almost eliminates the hyperon core for this extreme ang
velocity, but over almost all of the range of angular velo
ties, 1.4M ( stars have substantial hyperon cores. Finally
the dissipation in the core were sufficiently large it might
possible for ther-mode eigenfunction to be clamped to ze
in the core by the dissipative processes while remaining
nite and unstable in the outer parts of the star. The discus
of this possibility in the Appendix shows that the hyper
bulk viscosity is not strong enough to clamp ther-mode in
this way.
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APPENDIX: MODE CLAMPING

Bulk viscosity damps a mode by dissipating energy
cording to the expression

dẼ

dt
52

Ẽ

2tB
. ~A1!

For the case of ther-modes in slowly rotating stars, we ma
express the energy, and its time derivative as simple ra
integrals:
t-
.

,

tt.

e
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Ẽ5E edr, ~A2!

dẼ

dt
52E ėdr, ~A3!

where e and ė are the angle averaged energy and ene
dissipation rate densities respectively as given in Eqs.~6.4!
and ~6.5!.

The mode will be completely suppressed~clamped! lo-
cally if the amount of energy removed from the mode loca
in one oscillation period is comparable to the local ene
density of the mode. Thus we define the local quality fac
of the mode:

q5
v̂e

2pė
. ~A4!

If q&1 the mode will be clamped. For ther-modes we find
that

1

q
'

0.3z

rR2Vmax
S r

RD 2 Vmax

V
. ~A5!

For the 1.4M ( neutron star model considered hereVmax
'4700 rad/s,r*531014 g/cm3 and r &6 km in the re-
gion where hyperons occur, andR'14 km. Thus

1

q
'

z

831031

Vmax

V
~A6!

for this case. Figures 11 and 12 show that the bulk visco
never exceeds about 1031 in the temperature range of intere
to us. Thus, we conclude that the hyperon bulk viscos
represents a small perturbation on the basic hydrodyna
forces of ther-modes. The conditionq,1 is violated only
for relatively slowly rotating stars. In the domain where t
gravitational radiation instability is most likely to be impo
tant, the dissipation by hyperons represents a small pertu
tion on the basic hydrodynamic forces, thus ther-modes will
not be clamped.
tt.
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