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Effect of hyperon bulk viscosity on neutron-starr-modes
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Neutron stars are expected to contain a significant number of hyperons in addition to protons and neutrons
in the highest density portions of their cores. Following the work of Jones, we calculate the coefficient of bulk
viscosity due to nonleptonic weak interactions involving hyperons in neutron-star cores, including new rela-
tivistic and superfluid effects. We evaluate the influence of this new bulk viscosity on the gravitational radiation
driven instability in ther-modes. We find that the instability is completely suppressed in stars with cores cooler
than a few times 1D K, but that stars rotating more rapidly than 10-30% of maximum are unstable for
temperatures around ¥0K. Since neutron-star cores are expected to cool to a few tim@sKiithin
secondgmuch shorter than themode instability growth timedue to direct Urca processes, we conclude that
the gravitational radiation instability will be suppressed in young neutron stars before it can significantly
change the angular momentum of the star.
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[. INTRODUCTION r-mode or the detailed properties of the nuclear matter in the
core of a neutron star. We improve on Jones’ analysis in

The r-modes(fluid oscillations whose dynamics is domi- several ways: First we evaluate fully relativistic cross sec-
nated by rotation of neutron stars have received consider-tions to determine the reaction rates of the relevant hyperon
able attention in the past few years because they appear to beeractions. We find that these cross sections reduce to the
subject to the Chandrasekhar-Friedman-Schutz gravitationaésults of Jonef2,4] in the low-momentum limit, but can be
radiation instability in realistic astrophysical conditiofsge = about an order of magnitude larger in some regimes of
Ref. [1] for a recent review If the r-modes are unstable, neutron-star matter. Second we derive new expressions for
i.e. if the damping time scales due to viscous processes ithe bulk viscosity coefficient that are appropriate even for a
neutron-star matter are longer than the gravitational-radiatiorelativistic fluid such as neutron star matter. Third we con-
driving time scale, a rapidly rotating neutron star could emitstruct detailed neutron star models based on an equation of
a significant fraction of its rotational energy and angular mo-state that includes hyperons and the appropriate interactions
mentum as gravitational waves. With appropriate data analyamong all of the particle species present. Due to superfluid
sis strategies, these waves could be detectable by interferoraffects the temperature and density dependence of hyperon
eters comparable to the enhanced Laser Interferometrioulk viscosity turns out to be quite complicated: superfluidity
Gravitational Wave ObservatoryLIGO) interferometers. increases the viscosity in some cases while reducing it in
The r-mode instability might also explain the relatively long others. And fourth, we use a more accurate model of the
spin periods observed in young pulsars and of older, accrestructure of ther-mode eigenfunction in the cores of these
ing pulsars in low-mass x-ray binaries. stars to evaluate the effects of hyperon dissipation.

Recently Jone$2,3] has pointed out that long-neglected  Our analysis shows that hyperon bulk viscosity com-
processes involving hyperorimassive cousins of the nucle- pletely suppresses the gravitational radiation instability in the
ons can lead to an extremely high coefficient of bulk vis- r-modes of rotating neutron stars for temperatures below a
cosity in the core of a neutron star. Using simple scalingfew times 18 K. We find that the gravitational radiation
arguments he suggests that the viscous damping time scalestability acts most strongly at temperatures arount 30
associated with these processes may be short enough to swphere stars rotating more than 10-30% of the maximum
press the-mode instability altogether in realistic astrophysi- rotation rate(depending on the details of the microphysics
cal circumstances. The purpose of this paper is to investigatare driven unstable. Our coefficient of bulk viscosity is actu-
this possibility more thoroughly. The hyperons only exist inally several hundred times that of Jori@s3], who suggested
the central core of a neutron star where the density is suffithat the instability was completely suppressed. However, our
ciently high. The relevant effects of themodes however use of the proper-mode eigenfunction reduces the dissipa-
vanish as® (wherer is the distance from the center of the tion by several orders of magnitude and we find that there is
stap. Thus the overall effect of hyperon induced dissipationa window of instability. How long it lasts is another matter. If
on ther-modes depends very sensitively on the size andhe core of the neutron star cools via the standard modified
structure of the core of a neutron star. Jones’ initial estimateSrca process, its temperature remains above a few times
did not take properly into account either the structure of theld® K for about a day[5]. This is enough time for an un-
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stabler-mode to grow and radiate away a substantial fraction ool ' ' ' ' '
of the star’s rotational kinetic energy and angular momentum

into gravitational wave$6]. However if the core of the star 300k
cools too quickly the instability might not have enough time
to grow before being suppressed by the hyperon bulk viscos-
ity. The time needed for a neutron-star core to cool to a few
times 10 K is reduced to about a second when direct Urca
processes are able to dat,8]. Modern equations of state .
have large enough proton densities in the core that direct 0 05 10 15 20 25

Urca cooling is now expected to act until the neutrons and P1s

protons condense into a superfluid state, i.e., above about |G, 1. Fermi momentéin MeV) of the baryons and leptons as
10° K. The growth time for the gravitational radiation insta- functions of total energy densityn 10'° g/cnt) for Glendinning’s
bility in the most rapidly rotating neutron stars is about 40 sequation of state.

[9]. Thus we conclude that the core of a neutron star will

200

Pe( Mev)

100 |

probably cool too quickly for the-mode instability to grow Np=nNe+n,+nNy-, (2.1
significantly before being suppressed by the hyperon bulk
viscosity. Mop= Hn~ e, (2.2

The organization of the rest of this paper is as follows. In

Sec. Il we provide details of the equation of state which we L= e (2.3
use, including numerical aspects of the evaluation of various a
thermodynamic variables and derivatives, and the model of _ 24
h - Ms—=pnt Me, (2.9
yperon superfluidity that we employ. In Sec. Il we present
a new derivation of the coefficient of bulk viscosity for rela- _
HMA= M - (2.9

tivistic neutron-star mattefincluding several interacting flu-
ids) in terms of the microscopic reaction rates and thermo-

dynamic Qerlvqt|ves. In Sec. IV, we compute the reIev"’lmlibrium state of neutron-star matter, we need explicit expres-
cross sections in order to evaluate the reaction rates for hys -« '¢r the various chemical potentials as functions of
perons in a dense medium. In Sec. V we combine the thefe particle number densitie . These functions have en-
modynamic expressions of Sec. Il with the microscopic re-coged within them the details of the interactions between the
action rates of Sec. IV to obtain expressions for hyperon bulkarioys particles in a dense Fermi-liquid environment. In this
viscosity as a function of density and temperature in neutronpaper we have adopted the expressions for these chemical
star matter. In Sec. VI we evaluatemode damping time potentials as given by Glendenning’s relativistic effective
scales for neutron stars containing ordinary fluid and supermean-field theory10,11]. Figure 1 illustrates the Fermi mo-
fluid hyperons. Finally, in Sec. VIl we discuss the implica- menta of the various particle species as a function of the total
tions of our results for the-mode instability in real neutron energy density of the matter that we obtained with Glenden-
stars, and we also attempt to estimate how robust these coning’s (case 210]) expressions for the chemical potentials.
clusions are. Glendenning also gives expressions for the total energy den-
sity p and total pressurp as functions of the particle densi-
ties n;. These quantities are illustrated and tabulated by

In order to solve these constraints and determine the equi-

Il. EQUATION OF STATE Glendenning 10,11, and we will not reproduce them here.
Our numerical code reproduces Glendenning’s numbers
A. Thermodynamic equilibrium quite accurately.

Neutron-star matter is a Fermi ||qu|d which at low densi- We are also interested here in some less familiar thermo-

trons e. Charge neutralin, =n, (wheren; is the number ~ViSCOSity in neutron-star matter. These quantities are easily
density of theith species and g—equilibriulm o= o+,  determined once the full description of the equilibrium state
n p e

(where ; is the chemical potential of thigh speciesdeter- is known. In particular the partial derivatives of the chemical
I

mine the relative concentrations of these particles at eac _otent|a_ls with respect to the various particle _number densi-
les, ajj=du;/dn;, are needed in the expression for the re-
axation time associated with bulk visocity as defined in Egs.

%.16), (3.24), and(3.29 below. Thesen;; are easily deter-

density. As the total baryon density increases however, i
becomes energetically favorable for the equilibrium state t

include additional particle species: first muqusand then a mined numericallyor even analytically in some casamce

sequence of hyperors~, A, ... . These additional par- e g equilibrium state is known. Further the thermody-
ticles appear as the density exceeds the threshold for thesmic function

creation of each new species. The relative concentrations of

the various species are determined at each density by impos- n2 oo dx
ing charge neutrality ang-equilibrium. At the highest den- Ye— Yo=— s 9P 1 (2.6
sities of interest to us these equilibrium constraints are p an, dng
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FIG. 4. Comparison of the zero-temperature superfluid gap
function A, as calculated by Balberg and Barn@ts with the
empirical analytical fit in Eq(2.7) (curves. The bottom and top
curves correspond tog=0.4 and 0.8 fm* respectively.

FIG. 2. Thermodynamic prefactoy,.— y, (the difference be-
tween the “fast” and “slow” adiabatic indicesthat appears in our
expression for the bulk viscosity.

appears as a prefactor in the expression for the bulk viscoknown, and so the detailed properties of nuclear matter at the

ity, Eq. (3.1, that we derive below. Herep/dn,, is just the densities where hyperons are likely to occur is not well de-
1 . . ) . n . . . . .

partial derivative of the pressure with respect to the numbef€rmined at this time. This uncertainty translates then to an
density of neutrons(keeping the other number densities uncertainty about the sizes of the hyperon containing cores

. ~ . . ) .. of real neutron stars. Since the size of this hyperon core
fixed), anddx, /dng is the derivative of the fractional density determines the strength of the bulk viscosity effects which

of neutrons in the equilibrium state,=n,/ng, with respect e evaluate here, the implications for the stability of the
to the total baryon densityg . The left side of Eq(2.6) has  r-modes are correspondingly uncertain as well.
been re-expressed in terms ¢f, the “fast” and vy, the

“slow” adiabatic indices defined in Eq93.12 and (3.13
below. Figure 2 illustrates this function for the Glendenning
equation of state. For a non-relativistic fluid the pre-factor Next, we must consider the possibility that the hyperons
P(7-— o) is identical to a commonly used alternative ex- in neutron-star matter fo.rm Cooper pairs and condense into a
pression involving the sound speeds of the fluju?  Superfluid state at sufficiently low temperatures. Various cal-
—uﬁ) [12]. However, this equality is not satisfied in neutron- culations are given in the literature of the superfluid gap

star matter. Consequently it is important to use the corredunction A_A [13,14. The A gap function is constrained by
expression given in Eq2.6). the experimental data on the energy levels of doublby-

We have solved the relativistic structure equations for thePernuclei such as’{Be and B [14], however even so it
non-rotating stellar models based on this equation of statdS Probably only known to within a factor of 2 or 3. In
Figure 3 illustrates the total energy density as a function ofUr numerical analysis of the bulk viscosity time scales
radius for neutron-star models having a range of astrophysfiscussed in Sec. V we use an analytical fit to the zero-
cally relevant masses. This figure illustrates that these staf§mperature gap functioa, as computed by Balberg and
contain large central cores having material at densities thd¢arnea[13]. Their calculation produces a gap that depends
exceed theX ™ and A threshold densities. The fact that it On the total baryon densityg of the nuclear matter and on
becomes energetically favorable to create hypefongven the Fermi momenturpe of the A itself. As illustrated in Fig.
free quarks above some threshold density is not really very4 We find that the empirical fit
controversial. However the expressions for the chemical po-
tentials as functions of the particle densities are not well AA(pF,nB)=5.1pE(1.52— Pe)?

X[0.77+0.0436.2n;—0.882], (2.7)

B. Superfluidity

2.5 T T
20k _ matches their calculated values for the zero-temperature gap
179 M, energies fairly well. In this expression the gap energy is mea-
o 19T ] sured in MeV,pg is measured in fm?, andng is measured
15 16 M, in fm 3
10F - :
14M, PA The X~ superfluid gaps are not as well determined be-
0.5 priss b cause comparable experimental data on doliblenypernu-
h el z . . .
0 , , clei do not exist at present. Calculations by Takatseikal.
0 5 15 [14] using several models of the nuclear interaction give val-

ues ofAy - inthe rangeA <Ay -=<10A, . We perform two

FIG. 3. Structure of neutron stars having a range of masse§€ts of calculations based on the extremes of this range. We
using Glendinning’s equation of state: total energy dertgitynits ~ €ither setAs-=A, or Ay-=10A,. By equality here we
of 10 g/cn®) vs distance from the center of the star. Thresholdmean that the dependence &f- on ng andpg (up to the
densities fors,~ and A hyperon formation are also plotted. These overall factor of 1Qis given by Eq(2.7). Using these energy
equilibrium structures are computed using general relativity. gaps, and the Glendenning equation of state, we can evaluate
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10" . . . — known—see, e.g., Landau and Lifschiifi2]. However, such
] calculations are generally performed for an ordinary fluid

like air, in which the microscopic procességpically in-
volving the transfer of energy between rotational and vibra-
tional degrees of freedom of the molecylean be taken to
be independent. In neutron-star matter there are several rel-
evant microscopic processémvolving weak interactions
between the various particle spegidsut they are related by
constraints (such as conservation of baryon number
meaning that we cannot simply use the standard formulas for
either a single process or multiple processes. Further,
neutron-star matter is composed of some particles having
relativistic energies. The standard expressions for bulk vis-
cosity are not correct for such materials. In this section we
present a modified and expanded derivation of the equations
of bulk viscosity appropriate for neutron-star matter.

Bulk viscosity is due to an instantaneous difference be-

then the density dependence of the superfluid gap function&Veen the tota.I phyS|caI~preSSLpe)f a fluid element and th?

We illustrate these in the form of superfluid critical tempera-thermodynamic pressure. The thermodynamic pressure is

turesT, [which are related to the zero-temperature gap funcdetermined only by the equation of state for a fluid element

tions bykT.=0.57A(0)] in Fig. 5. of given pa_rtlcle numb_er and entropy densities. It is fch_e value
The ‘superfluid gap depends not only on the density of thé®ward which the microscopic processes are driving the

superfluid material, as discussed above, but also on its tenllysical pressure at any given time. The coefficient of bulk

perature. This temperature dependence will be needed to d¥iScosity ¢ defines the proportionality of this pressure differ-

termine the temperature dependence of the hyperon bulk vi€nce to the macroscopic expansion of the fluid:

cosity below. The standard BCS model calculatja5s] of ~ .-

the temperature dependence of the gap is illustrated in Fig. 6. p—p=-¢Veu, 3.

This figure compares the results of the exact calculation with > ) )
a simple empirical fit to these data: wherev is the velocity of the fluid element.

Consider now a fluid state that is an infinitesimal pertur-
T\ 3470.53 bation of a time-independent equilibrium state. pgtandng
1—(T— } (2.9 denote the pressure and number denéfiyctions only of
Cc
Since this fit is quite good, we use it whenever the temper
ture dependence of the gap is needed.

T(K)

FIG. 5. Superfluid critical temperatures as functions of the total
energy densityin units of 134 g/cn?). The solid curve is forA
hyperons, while the dashed curves areXor hyperons using either
As-=A, (bottom or As-=10A, (top).

A(T)=A(0)

position that describe this equilibrium state. To calculgte
in terms of the microscopic reaction rates that drive the sys-
atem toward equilibrium, we re-express both sides of Eq.
(3.1) in terms of the Lagrangian perturbation of the particle
number densitAn=n—nq. Using the particle conservation
IIl. BULK VISCOSITY equation (and keeping only terms linear in the deviation
Bulk viscosity is the dissipative process in which the mac-2Way from equilibrium, we express the right side of Eq.
roscopic compressiofor expansiop of a fluid element is D as
converted to heat. The formalism for calculating the bulk
viscosity coefficient in terms of the relaxation times of the

microscopic processes which effect the conversion is well- -, . . .
where év is the Eulerian velocity perturbation, and we as-

sume that the perturbation has time dependence' in the
comoving frame of the fluid.

] In order to analyze the left side of E.1), we examine

a fluid variablex that characterizes the microscopic process
which produces bulk viscosity. For small departures from
. equilibrium, the value ok in the physical fluid state relaxes
toward its value in thermodynamic equilibrium by

—¢V-Sv=—iwlAn/n, (3.2

ATY/AQ)

1 1 ! 1 9: X+ _)~V->X=— X_’)‘Z/ , 33
%02 02 06 08 1 X+ (x=x)/7 (3.3

c wherer is defined as the relaxation time for this process. We

FIG. 6. Temperature dependence of the superfluid gap: exa@'® interested in nearly equilibrium fluid states in which the
values (point§ compared to the empirical analytical fiturve ~ Physical values of the state variabteand hence the ther-
given in Eq.(2.8). The critical temperaturd, is related to the ~modynamic state) oscillate about the background equilib-
zero-temperature gap energy ky.=0.57A(0). rium, so that
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(8+v-V)(X—Xo) = —i @(X—Xq), (3.4)
(940 - V)(X—Xo) = —i 0(X—Xp). (3.5

In such a state it is straightforward to verify that
x—x0=x_X = X—>fo . (3.6

iwr l1-iwT

Now consider how the fluid variabig changes as the

PHYSICAL REVIEW B5 063006

P(¥—7Y0) T

= = 3.1
¢ l-iwT .19

For a fluid composed of particles with non-relativistic ener-
gies this expression is equivalent to the conventional one
[12] written in terms of the sound speex since py=pu?

for such fluids. However for a fluid containing particles with
relativistic energies, the conventional form is wrong and Eq.
(3.149) is the appropriate form to use. Note that this new form
of the bulk viscosity is needed to describe any fluid contain-

particle number density of the state is varied slowly from oneNg relativistic internal particle energies, even if the bulk

equilibrium state to another:

~ ax - dx
x—xozﬁ(n—no)z %An

3.7

(since by definitiom=n). It follows then that the difference
betweenp andp, is given by

ap) (ap) dx
—_ + —_ —_
an ox/) dn
X n

pP—pPo= An. (3.9

A similar argumenfnow using Eq(3.6) to relatex—x, and
X—Xo] gives the following expression fqr— py:

1 (ap) dx
+——| 2| Z|an.
« l—iwr\0x/ dn

n (3.9

P—Po=

(&p

Combining Egs.(3.8) and (3.9) gives us an expression for
the difference in the pressupe-p that appears on the left

side of Eq.(3.1):

d&A
ﬁ n.
n

P (3.10

~ ior [ap
p—p=

1-iwr
Then equating this expression for the left side of E3]l)
with the expression for the right side from E§.2), we find
the desired formula for the bulk viscosity:

i -nr (ap) dx (3.1
C1-jerlox/ dn’ '

Finally it is convenient to re-express the thermodynamic

derivatives that appear in E¢3.11) in terms of the more

familiar
n(ap
=3lial, 342
the “infinite” frequency adiabatic index, and
_n|[ap ap| dx
Y=g <% Hox) anl (3.13

motion of the fluid itself has only non-relativistic velocities
which are well approximated by Newtonian hydrodynamics.
We also see that for a fixed-frequency perturbation, the great-
est bulk viscosity comes from processes with relaxation

times 7~ 1/w. The importance of this fact will become ap-
parent as we examine how the relaxation timearies inside
a neutron star.

The standard approag¢h?] to treating multiple reactions
is to repeat the preceding derivation for multiple degrees
of freedomx; and relaxation times;. However, this only
works if (as in aiy the x; can be chosen to be independent.
This is not possible in neutron-star matter, since the degrees
of freedom(e.g., concentrations of various baryprse re-
lated to each other even out of thermodynamic equilibrium
by constraints such as conservation of baryon number. The
reactions of interest to us here are the non-leptonic weak
interactions

n+nept+37,
n+prept+A.

Given the microscopic reaction rates for these processes
(which are calculated in Sec. )Ywe can express all of the
perturbed quantities in terms of a single one. Since all the
hyperon reactions that contribute to bulk viscosity involve
neutrons, we choose as our primary variable the number den-
sity of neutrons,,.

Let x,=n,/ng be the fraction of baryons in a given fluid
element that are neutrons. This variable changes only by in-
ternal reactions, not directly by changing the volume of the
fluid element, and so we can write
(3+0-V)Xy=— (X=X 7=—T,/ng.  (3.19
HereT |, is the production rate of neutrons per unit volume,
which is proportional to the overall chemical potential im-
balancesu= 1 — 1 (see below (We normalizen, andT",, to
the baryon number densitys to remove the oscillating time
dependence of the volume of the fluid elemeAissuming
the reactions described in Sec. 1V, the relaxation time is then
given by

1 T+2lsy u
T o ngoxy

- o (3.19

the “zero” frequency adiabatic index. In terms of these quan-where 6x,=X,— X, .

tities, then the bulk viscosity may be written in the form:

We obtainsu/ 6x, from the following constraints:
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0=6X,+ ox, + 5xp+5xz, (3.19
0=5Xp—5xz, (3.18
OZBn5Xn+ﬁA5XA+:8p5Xp+325XEv (3.19

ized to the total number density of baryons and fheare

PHYSICAL REVIEW D65 063006

The equation of state of neutron-star matter is generally
written in a form which gives the thermodynamic variables
as functions of the various particle species present, e.g. the
pressure would be specified s p(n;). In order to evaluate
the thermodynamic derivativeg§/dn), and (@p/dx), that
are needed in Eq(3.11), we note thatn,=ngx, for our

wherex; are the number densities of baryon species normalcheice ofx. Thus the partial derivative needed in E§.11)

is given by @p/dx),=ngdp/dn,. Similarly, if needed,

defined below. The first constraint is conservation of baryor{dp/dn)x=Zix;dp/dn; . The derivativedx/dn that also ap-

number, obeyed by all reaction8Me note that sinceSng

=ng—Nng=0, &x;=4n;/ng.) The second constraint is re-
lated to conservation of electric charge, but is stricter:

pears in Eq(3 11) is determined by constructing a sequence
of complete equilibrium model&.g. by imposing all of the

wdrecessang-equilibrium constraints, etcfor different total

assume that all leptoni¢Urca) reaction rates are much Paryon number densitiesg. This complete model of the
smaller than those which produce hyperon bulk viscosity an@quilibrium states will include the functions,(ng), from

so protons are only produced in reactions that produte a
The third constraint is that the non-leptonic reaction

(3.20

nN+A—pr+3~

which the derivativedx,/dng is easily computed.

Formation of a superfluidof a given particle specigss
marked by the formation of Cooper pairs and collapse of the
pairs into a Bose-Einstein condensate. It is the unpaired par-
ticles that we are concerned with, since they are the ones that

proceeds much faster than the weak interactions which prazcan participate in the bulk-viscosity generating reactions.
duce hyperon bulk viscosity since it is mediated by theThe free-particle states within the pair-binding energyf

strong nuclear interaction. Here we use the shorthand

I
;= , (3.2)
ij ((9“] e
Bi=anitayi—api—as;.
(3.22

Equilibrium with respect to reactio8.20 ensures that both

processes described in Sec. IV have the same chemical po-

tential imbalance,

Op=0Opn= OuN=20pn— Opp—Ous . (3.23
It is straightforward then to expregi. in terms of thedx; ,
and then to eliminate all bufx,, using the constraints Egs.

(3.17—(3.19. The result

om —a +(ﬁn_:8A)(a'np_aAp+an2_aA2)_a
NgdXy " 2Br—Bp—Bs An
_ (Zﬂn_ﬁp_BZ)(anA_aAA)
BBy B 29

then determines via Eq3.16 the relaxation time that ap-
pears in the bulk viscosity formula E(B.14). For a certain
range of densities there ake hyperons present in Glendin-
ning’s equation of state, but nd. In that case the variable
X, remains zero, and the constraint £§.19 is no longer

enforced. In this case the chemical potential imbalance can

still be expressed in terms @k, with the somewhat simpler
result

26
r185)(n

=4an,—2(apptasntanpt any)

(3.2

+ app-l- a’zp‘F a'pz‘l‘ ass .

the Fermi surface are depleted. As a result all phase-space
factors(and effectively the reaction rafeare decreased by
roughly a factore™2’XT. The effect of superfluidity can be
included in our ordinary-fluid bulk viscosity calculation then
simply by making the substitution

I—e 4T

(3.26
Thus when superfluidity is taken into account the equation
for the relaxation time, Eq.3.16 becomes

2 oAy kT Sp

o A ea kT 2 2r
NgoXp

1 r
S (3.27
T \Ou o

IV. MICROSCOPIC REACTION RATES

Since theX~ and A hyperons form at the lowest thresh-
old densities, we are most interested in the nonleptonic reac-
tions forming them from neutrons. Following Jones’ earlier
work [2,4] we calculate rates for two reactions,

n+nept+37, 4.1

n+prept+A, (4.2

as tree-level Feynman diagrams involving the exchange of a
W boson. In his most recent pagé&], Jones treats the reac-
tion

n+nen+A, (4.3
which is generally the dominant channel forproduction in
laboratory experiments on hypernuclei. This process has no
simple W-exchange contribution. Several other processes
contribute, but at present the rate cannot be well predicted
from theory. Some of these processes surely operate in reac-
tions (4.1) and (4.2) and modify the rates, perhaps signifi-
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cantly. However, our simple calculations should provide athe medium in a way that reflects the intern@trong-
reasonable lower limit on the rates and thus an upper limit ofinteraction structure of the baryons and is therefore difficult
the bulk viscosity. to calculate. We use the valueg,= —1.27, g,y = —0.72,
andg,s =0.34 measured iB-decay of baryons at reft7].
A. Single reactions There are theoretical reasons to believe that all axial-vector
. couplings tend to their asymptotically free values-of in a
. . . S Sense medium18]. We provide dissipation numbers in later
of tlme-erendent perturbation theory In reIat|V|s.t|9 qua_mumsections both for laboratory values and for asymptotic values
mechanics. We use the conventions of Griffiths6]:  ¢yne couplings to give an estimate of the uncertainty in this
spinors are normalized tau=2m, the fifth Dirac matrix  ¢gjculation.
is y°=iy°y*y?y®, the metric has negative trace, aie- 1. To obtain the net reaction rafé we sum|M|? over all
For a single reactiori4.1) or (4.2 between particles with possible initial and final spin states. This is done in the stan-

4-momentep; , the differential reaction ratewumber per unit  gard way by tracing over outer products of spinors:
volume per unit timgis

| M A|2=4GE sir? 20c{2m,m5m, (1-g5 ) (1-g3,)

4
d3p,
dr'=|M|?(2m)*5(py+ P2~ pa—pa)SIL ﬁ —MyMyP2- Pa(1—gan)(1+gg,)
i= T)°2€j
(4.2 —mpM,p;-Pa(1+g5,) (1 g34)
where |[M|? is t'he spinor matrix elementsquared and +p1~p2p3~p4[(1+gﬁp)(1+ggA)+4gnpgpA]
summed over spin statedoldfacep; are 3-momenta, ang
i i st i +P1 a2 Pal (14 97p) (1+050) ~ 40npGpa 1}
are particle energies. The statistical facgrvhich compen- P1-PaP2-P3 np Opa Inp9palss
sates for overcounting momentum states of indistinguishable (4.6)

particles, is 1/2 for reactiod.1) and 1 for reaction(4.2).
First, consider the\ reaction(4.2), which we represent Which in the low-momentum limit used by Jong& reduces
by a single tree-level diagram. Labeling the particlgmdu- 10
tron), 2 (ingoing proton, 3 (outgoing protoin 4 (A hy-
peron, we obtain the matrix eleme(for a single set of spin | M \|?=8GE sin? 26cm,mim, (1+3g5,95,)- (4.7)

state S .
> Note that this limit corresponds @, = 0.40G¢ in the nota-

tion of Joneg 3], who obtainsG,=1.29G . The factor of 3

Gg — 5 — discrepancy is within the uncertainties of modern nuclear-
M= 202 sin26c[u(ps) ¥*(1+ gnpy)U(P1)U(Ps) matter physics, as we see by, e.g., taking the asymptotic val-
ues of the axial-vector couplings.
Xyﬂ(1+gpAy5)u(p2)]. (4.5 Reaction(4.1) is treated similarly, with particle labels 1

] . ] . and 2(neutrong, 3 (proton, and 4 &~ hyperor). Antisym-
Here G is the Fermi coupling constant anéc is the  metrizing with respect to the two indistinguishable neutrons,
Cabibbo weak mixing angle. The quantities,, dns, and  the matrix element is

dpa are axial-vector couplingsiormalized to the vector cou-

pling) of the weak interaction, whose deviation froml G

represents the partial nonconservation of the axial current.ME:_F sin 29ca(p3)7“(1+gnpys)[u(pl)a(m)
(These quantities are often writteg or G5 /Gy in the par- 242

ticle and nuclear physics literature. We add a label to keep c — s
track of which nucleon-hyperon line is whighie use the XY (14+9ns Y)U(P2) —U(P2)U(P4) Yu(1+Gns ¥7)
values Gp=1.166x 10 ' MeV~2 and sind.=0.222 from xu(py)] 4.9
the Particle Data Groupl7]. The axial-vector couplings v '
change with varying momentum transfer and density ofThe squared sum over spins is given by

| M s|?=4GE sir? 26c{6mimymy (1—g2,)(1—ghs) —MyMs P Po(1—g3,) (1— i) — 2Mymsps - Pa(1+93,) (1—g3s)
—2MyMyPs - Pa(1—05,) (1+hs) — 2Mams o+ Pa(1+93.) (1—g5s) — 2mymypy- pa(1—93) (1+95s)
—mM2pz- Pal (1495 (1+Ghs) = 4GnpOns 1+ 4P1- P2P3- Pl (1495, (1+Ghs) +4GnpGns 1+ P1- P3Pz Pa
X[(1+95,)(1+05s) ~4GneGns ]+ P1- PaP2- PaL(1+95) (1+hs) — 40npOns 1} 4.9
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which in the low-momentum limit reduces to

| M s|2=8GE sir? 20cmim,ms (1+ 37,,9ns ). w10
4.1

This expression agrees with E() of Jones’ old papef4],
allowing for our different placement of the statistical over-
counting factor and different normalization of the spingrs
usesuu=1). However, we find that for this reaction the
low-momentum limit is a very poor approximation to the full
result: the collision integral computed in the next subsection
can be more than an order of magnitude higher than Eq.
(.4'.10) would Suggest.. This effectively brings down the F?ef' FIG. 7. Definition of angles used in the collision integral. The
ficient of btilk viscosityl by a factor of about 5 at densities plane containing; andp, can be rotated out of the page around the
(5-6)x 10" g/cn, where there are nd hyperong19]. long-dashed common axis by an angjé for a givenp, andp,.

B. Collision integrals angles ofp, with respect top;. Conservation of momentum

Reactions(4.1) and (4.2) can be regarded as scattering demands thap; +p,=ps+p,, determining a common axis.
processes wherein the scattered particles change identifyet @ anda’ be the angles of, andp; with that axis. The
Therefore we can use existing results on collision integrals irvolume element op; is thenpz sina’d¢’, where¢' is the
the literature on superfluiditye.g., [20]) with some slight angle betweerp,;Xp, and p;X<p,, multiplied by the area
modifications. We now integrate the differential reaction rateelement in the plane containing and p,. To separate the
(4.4) over momentum space to obtain the total rate energetic and angular integrals, it is convenient to write this

area element adpsdp,/siné’, where 8’ is the angle be-
tweenp; and p,. Before leaving Fig. 7, note the following

4096778 H |M|2 ®(py+po—ps—pa) useful identities:
XF(€)d(€1+ €~ €3~ €4). (4.1 pi+p5+2p;p, COSH=p3+ ps+2paps cose’, wis
4.1
(From here on we use italjg; to denote the absolute value of
the 3-momentap;= p;- p;.) The Pauli blocking factor piSina=p,sin(0—«), (4.16
Fle)=1f1f2(1—1f3)(1—1f,)—(1—f1)(1—fr)fsf4, pssina’ =p,sin(@’ —a').
(4.12 (4.17)
where We use the differential of the first identitgwith p;, held
f= 101+ exd (& — u)/KTT}, 413 constank to write our final result for the volume element as
4 43
accounts for the degeneracy of the reactant particles and re- 501+ Dy — Dae _pi:4 ina'do’ do’
stricts the available phase space to those particles within (P P2~ Ps p4)i1:[1 € mpssina’do’de
roughly kT of their Fermi energies.
In the case where all particles are degenefateich is
true except for a very small region just above the threshold ><d¢H de; .
density for each hyperon speciegthe collision integral sepa- =1
rates into angular and energetic parts. The energetic part can (4.18

be written in the limitou <kT as Although ¢ and ¢’ are free to range from 0 to72 the

limits of integration over®’ depend on the relations between
f H deiF(€) (€14 €2— €3— €4) the momentap;, which are constrained to be close to the
! Fermi momenta(Therefore from now on we usg to refer
N 2 to the Fermi momentaWe integrated’ over the full range 0
0 ydy S )
=(kT)25Mf _ (4.14 to ar, which is allowed by momentum conservation for
(eV=1)(1—e™Y)
_ Pn=Pp=(Pr.Ps); Pn—Pp<Pp=—Px. (419
where the latter integral has the value%3.

We address the angular integral with the aid of Fig. 7.In our equation of state these Fermi momentum criteria are

With no preferred directiorie.g., strong magnetic fieldthe  satisfied forp<1.0x 10'° g/cn? (see Fig. L It turns out
p, volume element is #p3dp, and thep, volume elementis  that almost all of the dissipation takes place below this den-
p5dp, sin édéde, whered and ¢ are the polar and azimuthal sity, and much above this density the baryons are too closely
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packed to maintain their separate identities anyway. There- 2 gj

fore for our purposes it is sufficient to treat only the case(|M ,|?)=

(4.19.

Now consider the case that1|? does not depend on any
of the angles, such as in the lingf/m;<<1. We can integrate

trivially over all the angles, with the exception of

J pssina’dé’ =2p,,
0

where p, is the smallesfi.e., hyperon Fermi momentum

involved. This motivates us to use Ed.14) to write

P= (| M2pa(kT)%5
19273 4 Ko

(4.20

(4.2

where(| M|?) is the angle-averaged value|a¥1|2. We write

|M|? in terms of the integrals

1
(P1-P2)= 5 (—3pi—3p3+3p3+py).
1 2 2 2 2
(Pp1-p3)= 6(_3p1+3p2_3p3+p4),

1
(PrPa)=(P2-Pa)=(Ps-Ps)= — 3 p3,

1
(P2 ps)= 5 (3p1~3p3—3p5+p)),

1
(P1- P2 Pa-Pa) = 7=P3(5p2+5p3+5p5—p3),
30

( P1-P3 P2 Pa) ={P1-PaP2-P3)
_ P

60(p5— p3)
+3(5p3—6p3p5+pL)].

[5p1—10p7p3+5p3

(Note that some dot products, e.g;; ps, depend onp’. The
average overg' is then nontrivial but is easily taken by

symmetry about the common axis.
The results for the angle averages are

(4.22

(4.23

(4.29

(4.25

(4.2

(4.27)

GE s 26
—5 (1201 gy (1-gg) mymymy

—20(1—g3,) (1+05,)Mympy(3€pex—P3)
—10(1+g3,)(1—g5,)mpm, (66,65~ 3P3
+pR) +2[(1+95) (1+950) +49npGpa]
X[5eper(Benep+3pa—p3)+Ppi(10e,e,+5p3
+ 10p§_ pjz\)]+[(1+gﬁp)(1+g,2)A)_4gnpgpA]
X{10€,€,(6m2+3p;+p3) + p3[ —20€,
+15p3—3p +5(pa—p5) 4 (p5— PR 1.

(4.28

[Note that the denominator in the last term does not diverge
while criterion(4.19 holds] Similarly, for reaction(4.1),

2 .
(IM5|)= 12 GF sir 26c{180(1— g7,) (1~ gy ) mimyms

—40(1—g5,)(1+ 055 )Mymy(3€pes —pi)
—20(1+05,)(1— i) myms (6€,e,— 3p5+p3)
—5(1—gap) (1~ gis) MMy (6€5+6pa—3p5
—p%) +4[(1+05,)(1+g7s) +40np0ns ]

X[ 10€5(3€pes + pi) +5epes (6p5—3pa—ps)
+p3(10p5+5p5—p3)]+ 10 (1+75,)(1+95s)
—40npOns [ —MA(3€pes +p3) + en(Benepes
—2€,ps—3expatespi)]}. (4.29

These angle averages are inserted into(EQ.) to yield the
net reaction rate per unit volume as a function of Fermi mo-
menta.

V. RELAXATION TIMES

The relaxation time scales for the non-leptonic weak in-
teractions, Eqs(4.1) and (4.2), can now be determined by
combining the microscopic collision rates determined in Sec.
IV with the thermodynamic quantities evaluated in Secs. |l
and lll. At densities above the threshold for the production of
>, but below theA threshold, the final expression for the
relaxation time scale is

1_ (kD2 py(IMs?)  op 5.2
T 1927r°  GAs/kT  ngdX,’ '

Here the collision cross sectigiM s|? is evaluated from Eq.
(4.29. The Fermi momenta that appear in this expression are
obtained from the complete description of the equilibrium
thermodynamic state as described in Sec. II. This description
includes the values of the particle densitiead hence Fermi
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1k 1 10’ T T
-2
10°T ]
= ~10°F [\ 1
- 4| T=10°K i @ \
e 10 — ~ E
10°°K e Se
o : 1 _ i .
1 wlh |
108} 10" K .
0.4 0.8 12 1.6 1077 08 12 1.6
p15 ’ ) p15 ' ’
FIG. 8. Density dependenc@n units of 1d° g/cn?) of the FIG. 10. Density dependendi units of 165 g/cn?) of the

[rehlaxatlon time scaler (in units (;)f S.for a range of tgmpzratfures. relaxation time scale (in units of § for T=10'° K. Solid curve
h e;‘? curvesﬂvx_/gre constructed using the assumption= A, for uses effective masses and tBeequilibrium values of the axial-
the 2~ superfluid gap. vector couplings. Other curves explore various alternate microphys-

. . ics assumptions: dashed curve uses bare masses, dotted curve uses
momenta of each species as a function of the total baryongB: 1

density. The thermodynamic quantif/ngox, is given by
Eq. (329 in terms of chemical potentials and their deriva- 5 g qest the coupling constants should approach the values
tives. Once the density increases to t'h.e pomt that Both 2p=0pr=0ns=—1 in a dense mediurfiL8]. We illustrate
andA hyperons are present m_the equilibrium state, then the, o impact this might have on these time scales in Fig. 10
expression for the relaxation time scale becomes (dotted curve We also illustrate in this figuredashed curve
) ) ) the effect of using the bare masses of the various baryons
1 (kT [p2(|M s >+ PAIMAL) | Op (5.7  When computing the scattering cross sections. We see that
T 192773{ efs /kT e /KT Ingéx, the overall effect of these changes is to make the time scales
shorter(by up to an order of magnitugleThis tends to de-
Here the collision cross sections are given by E48 and  crease the bulk viscosity by a similar factor, until the tem-
(4.29, and Su/ngdx, is given by Eq.(3.24 in this case. perature drops below the superfluid critical values.

We have evaluated this relaxation time scale for neutron- Finally, we are in a position now to evaluate the bulk
star matter using the equation of state described in Sec. Iviscosity itself. The real part of the bulk viscosity, the part
Figure 8 illustrates the density dependence of this time scalthat is responsible for damping the modes of neutron stars, is
for a range of temperatures. In the case of Fig. 8 we hav@iven by the expression
assumed that th& ~ superfluid gap function is given by
As=A,, while in Fig. 9 we assumay=10A, . The only P(Ve—Y0) T
significant difference between these two cases comes about el= T
in the density range where there exst but notA. In that (@)

range the time scale is significantly increased in the Figures 11 and 12 illustrate the density and temperature de-

=10A, case by the stronger superfluid effects. All of the pendence of. (Here we assume that the frequency corre-

curves in these two figures were evaluated using the Stanéponds to then=2 r-mode frequency of a maximally rotat-

dard” B-decay values of the axial-vector coupling constants: -~ _ _
Onp=—1.27, gy = —0.72, andg,s =0.34[17] and the ef- ing ne_utron starw=5Q,ax.) These figures |Ilqstrgte the
fective masses of all of the baryons when evaluating th&omplicated temperature dependence of the visocity due to

scattering cross sections. There are theoretical arguments triyPerfluid effects. For temperatures slightly below the super-

(5.3

32

;l i T T 10 T T
100} :I PSo ) .
il —_
—_ 1071 A . »
%) e g
T 10t S
LN
10°F
10°}F
0.4 0.8 1.2 1.6
Pys
FIG. 9. Density dependencgn units of 13° g/cn?) of the FIG. 11. Density dependendé units of 13° g/cn?) of the

relaxation time scale (in units of 9 for a range of temperatures. hyperon bulk viscosityin units of g/cm $ for a range of tempera-
These curves were constructed using the assumpgtiorn= 10A tures. These curves were constructed using the assumfjition
for the X~ superfluid gap. =A, for theX™ superfluid gap.
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32

10 - [9,21]. The time derivative of the co-rotating frame enekgy
; ' due to the effects of bulk viscosity is
30 |
" 10 JE
£ bl 5 0”243
S 03t T i Rel|V - v|*d°x. (6.0
s
10°F This rotating frame energl is (to lowest order in the angu-
: lar velocity of the stargiven by the integral
24 B I
1004 08 1.2

P1s E= %i p| 60 |2d3x. (6.2
FIG. 12. Density dependendi units of 13° g/cn?) of the
hyperon bulk viscosityin units of g/cm $ for a range of tempera- - The time scalerg(,) on which hyperon bulk viscosity damps
tures. These curves were constructed using the assumfiion  the mode is then
=10A, for the 3~ superfluid gap.

fluid critical temperature the values of the bulk viscosity are 1 1dE 6.3

increased over their normal values. This is due to an increase T8(h) - oE dt’

in the time scaler which moves it closer to being in reso-

nance with the pulsation period of the mode. Once the temrere we have norma|izefi3(h) so that ]J'B(h) is the hyperon
perature falls well below the Supel’fluid critical temperaturebuik Viscosity contribution to the imaginary part of the fre-
however, we see that the time scaldecomes even longer quency of the mode.

than the pulsation period and so the viscosity becomes po'the case of the-modes(in slowly rotating starsthe

smaller again in this case. We note that even for very low L~ ~ .
temperatures there exists a small range of densities, jug?tegrals that determink anddE/dt in Egs.(6.1) and (6.9

above the hyperon threshold densities, where the bulk visc@n be reduced to simple one-dimensional integrals. For the

cosity remains rather large. This is due to the momentungase ofE this reduction is well know9]:

dependence of the superfluid gap, E2}7). The gapA goes

to zero as the Fermi momentum of the particle goes to zero. BE_ E ZQZR’ZJR 6q

Thus just above the threshold density the superfluid gap van- —2¢ ,Prar

ishes(for any finite temperatujeso the material in this re-

gion will retain the normal-fluid value of the bulk viscosity. Here « represents the dimensionless amplitude of the
Our value off is generally much larger than that obtained r-mode, and? andR are the angular velocity and radius of

recently by Jone$3]: at a total densitp=7x10* g/en? the star respectively. The reduction df/dt to a one-

and temperatur=10" K, our { is larger than Jones'by a dimensional integral is not so straightforward. In general the
factor of 400. Roughly a factor of 8 is due to the relatively 9 9 -1ng

weak coupling we calculate for reaction in Eg.2). (At this ~ €xpansion of the mod¥ - év is a complicated function of
density theS ~ hyperons account for only about 10% of the radius and angle. To lowest order in slowly rotating stars the
bulk viscosity and can be neglectgtiVe note that using the bulk viscosity £ will depend only on radius. Thus we may
asymptotic values of the weak axial-vector couplings wouldalways convert Eq(6.1) to a one-dimensional integral by
erase much of this factor of 8 difference, and thus it is in-defining the angle averaged expansion squzﬁkﬁd 5J|2>;
dicative of the size of the uncertainties jndue to our poor
understanding of nuclear-matter physics. The remaining fac- dE R .

tor of 50 is thermodynamic in origin. Jones evaluates various q —477i0 Re{(|V- sv[*)rdr. (6.5
partial derivatives of pressure and chemical potentials, e.g.,

appearing in Eq(3.24 of our paper and Eq42) of Ref.[3],

(6.9

. (6.6

using the values for a gas of noninteracting fermions. WWhile the angle-averaged expansion is in general a compli-
increase significantly these thermodynamic derivativeshowever the simple analytical expression,
spondingly uncertain. However, we think it unlikely that the (V- 6v]?) = 590 | R
summary, we think that the true value ofs within an order Once the structure of the density functip(r) in a stellar
VI. -MODE DAMPING TIMES the bulk viscosity damping timeg,) . The bulk viscosity of

include all th o int fion t h foct | t‘%:ated function, for the case of thhenodes it is rather simple.
Include afl the mesonic Interaction terms, wWnose €lect IS ©Orpis nction has only been determined numericdmy],
Since the details of the neutron-star equation of state are
uncertain, the precise values of the derivatives are corre- 202/ \6 r\2
) Trrosd )
: . . . R
true physical mesonic terms will cancel precisely enough to
bring the derivatives down to their noninteracting values. Ing o axcellent fit to those numerical solutions.
of magnitude of the value we compute here. model is determined, it is straightforward to evaluate the
integrals in Egs(6.4) and (6.5 using Eq.(6.6) to determine
The basic formalism for evaluating the effects of bulk interest to us here is very sensitive to the density of hyperons
viscosity on the stability of the-modes is well known in the stellar core. Thus we use the relativistic stellar struc-
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ture equations to evaluap€r). This ensures that the size and
structure of the hyperon containing core are sufficiently ac-
curate for our purposes. These functigr(s) are illustrated

for a range of stellar masses in Fig. 3 based on the equation
of state discussed in Sec. Il. Given thésamerical expres-
sions forp(r) it is straightforward then to use the expres-
sions for the hyperon bulk viscosit§ derived in Sec. V to
obtain(r) for any given neutron star temperature. Together
p(r) and{(r) then determinerg,y through Eqs(6.4), (6.5

and (6.3). While it is straightforward to evaluate these time
scales, the result is a rather complicated function of the tem-
perature, angular velocity, and mass of the stellar model and
so we do not attempt to illustrate it directly.

The most important application of the hyperon bulk vis-
cosity time scalerg(y is the analysis of the role this type of
dissipation plays in the gravitational radiation driven insta-
bility in the r-modes. Gravitational radiation contributes a
term to the evolution of the energiE/dt that is positive. As
is well known by now, gravitational radiation tends to drive than the effective masses in the scattering cross sections.
ther-modes unstable in all rotating std@2,23. As has been  These alternative assumptions make the bulk viscosity less
discussed in detail elsewh€i®21] the imaginary part of the effective and ther-mode instability operates over a wider
frequency of the-mode may be written as range of angular velocities in these stars. However, neither of

these effects is as large as that resulting from a change in the
iz — i+ 1 + L _ (6.7) superfluid gap. _ o . -
Tr TGR 7B(h) TB(u) The hyperons’ primary contribution to the bulk viscosity
) o _ . of neutron-star matter is through the mechanism discussed
Here 7 represents the time scale for gravitational radiation,p e However, as pointed out by Jones, the presence of
to effect ther-mode, 7g,) is the hyperon bulk viscosity time 1,y herons in the core of a neutron star also makes it possible
scale discussed here, ang,,) is the modified Urca bulk {41 aiternate forms of the direct Urca interaction to take place
viscosity. Detailed expressions for evaluating these otheg,q these too contribute to the bulk viscosity of the material.

terms are discussed elsewhere and will not be repeated hergyne5 showed that the contributions to the bulk viscosity
Suffice it to say that each is a function of the temperatures;om this process are given by

angular velocity and mass of the neutron star. Sineg i%/

Qc/Qmax

FIG. 13. Critical angular velocities for neutron stars as a func-
tion of hyperon core temperature. Each curve represents a neutron
star of fixed mass, ranging from 1.® 5 to the maximum mass for
this equation of state, 1.78, . These curves assumg =A , and
use theB-decay values of the weak axial vector coupling coeffi-
cients.

the imaginary part of the frequency of thenode, the mode 4.9% 1030TIo4
is stable whenr,>0 and unstable when,<0. For a star of Rel= ——§" (6.9
given temperature and mass, the critical angular veld@ity 1+2.0x10 0 Ty,

is defined to be the angular velocity wherer,#0. Stars
rotating more rapidly thafi . are unstable while those rotat-
ing more slowly are stable.

We have evaluated the critical angular velocitiés nu-
merically using the new hyperon bulk viscosities derived in
Sec. V. Figure 13 illustrates the temperature dependence of
the critical angular velocities for a range of neutron-star Iy
masses. The more massive neutron stars have larger hyperon Ry
cores which suppress themode instability more effectively. 4 ; ‘\
The curves in Fig. 13 assume that tBe superfluid gap
function is given byAs=A, , and that the axial vector cou-
pling coefficients have theiB-decay values. In Fig. 14 we
compare the critical angular velocity curves for .4 stel- L ONIF
lar models using either th&s =A, (solid curve or the Ay T
=10A, (dash-dot curveassumption about th& ~ super- 00% :
fluid gap. The larger value oAy allows superfluidity to 10 10 10
make the bulk viscosity larger over a wider range of tem-
peratures, and hence thenode instability is less effective. FIG. 14. Critical angular velocities for 1.M o neutron stars as
Also illustrated in Fig. 14 are the effects of changing various, function of hyperon core temperature. The solid curve assumes
microphysics assumptions. The dotted curve shows the effe@iat A=A, while the dot-dash curve assumas=10A, . Both
of changing the values of the axial vector coupling constantgurves use the-decay values of the weak axial vector coupling
from their B-decay values to the asymptotic valtel. And  coefficients. Dotted curve useg=—1, while dashed curve uses
the dashed curve shows the effect of using bare masses ratheire masses.

in cgs units for typical values of neutron star matter, where
T, is the temperature measured in units of%&. Using

this expression in thé containing core of the neutron star,
we have evaluated the effects of this hyperon channel direct

1.0

T
Hn}
L

Qc/Qmax

0.5F i\

063006-12



EFFECT OF HYPERON BULK VISCOSITY ON . .. PHYSICAL REVIEW B5 063006

1.0

hyperon bulk viscosity on the-modes using an accurate
model for the structure of themode in the core of a neutron
star.

Our results show that the hyperon bulk viscosity does not
8 substantially suppress the gravitational radiation instability
of the r-modes until the temperature of the core of the neu-
tron star drops below a few times L. [This is in spite of
the fact that our coefficient of bulk viscosity is actually
0.0 ! higher than that of Jond®,3]. The expansion of the fluid in

10° 10 10 the core of the star as given in E@.6) is smaller than he

T(K) estimated. Below 1¢ K the r-mode instability is strongly

FIG. 15. Critical angular velocities for 1M, neutron stars as a suppressed n _aII of our models over the_rang@ ofsuper-_
function of hyperon core temperature. Solid curve includes the efﬂu'd gap functions an_d the range of axial vector coupling
fects of hyperon bulk viscosity, hyperon channel direct Urca bulkconStantS that we studied. If the_ Fore of the neutron Star_ cools
viscosity, and modified Urca bulk viscosity. Dashed curve Ieavesaccord'ng tQ the standard modified Ur,Ca prqc_[ﬁsthen it
out the effects of the direct Urca hyperon bulk viscosity. would remain hot enough for tiremode instability to act for

about a day. This is enough time for thenode to grow and

Urca bulk viscosity on the stability of themodes. These radiate away through gravitational waves a substantial frac-
results are illustrated in Fig. 15. The solid curve in Fig. 15tion of the rotational kinetic energy of a rapidly rotating neu-
includes the effects of the hyperon bulk viscosity discussedron star[6]. However if the core of the neutron star cools
(6.9), and the ordinary modified Urca bulk viscosity. For the r-mode to grow rapidly enough to effect the star in a
comparison the dashed curve leaves out the effects of th@bstantial way before the hyperon bulk viscosity stabilizes
hyperon channel direct Urca bulk viscosity. We see that thidl- Cooling by the direct Urca process is significantly faster
direct Urca bulk viscosity has only a small effect on thethan the modlfled Urca process: cooling the core of a neutron
stability of ther-modes for temperatures around4.(<. star to a few times 10 K within about a secon(f7,8]. Cool-
ing by the direct Urca process will occur in neutron-star mat-
ter whenever the proton/baryon ratio is larger than about
0.15. Since proton fractions in excess of this are now gener-
We have analyzed here the effects of the bulk viscosityally expected in neutron star matter, cooling by the direct
due to hyperons on the stability of tltemodes in rotating Urca process seems likely at least until the temperature of the
neutron stars. Hyperons exist only in the high density core otore falls below the superfluid transition temperature for
a neutron star where the influence of thenode is quite neutrons or protons at about®®. Thus it appears likely
small. Thus to evaluate accurately and reliably the importhat ther-mode instability is effectively suppressed by rapid
tance of this effect, it was necessary to compute detailed ancboling of the neutron star core and the non-leptonic hyperon
accurate models of the composition and structure of the nelulk viscosity.
tron star core, and to have an accurate model of the structure Once a neutron star cools below the transition temperature
of the r-mode in this region. We use Glendenninffl®,11]  for the formation of neutron and proton superfluids, the re-
relativistic mean-field equation of state to evaluate the comlaxation time scale for the hyperon interactions will increase
position of the nuclear matter in the stellar core, and solvexponentially compared to the expressions derived here in
the relativistic Oppenheimer-Volkoff equations to determineEgs. (5.1) and (5.2). This sharply reduces via E¢5.3) the
the stellar structure. bulk viscosity from this process at sufficiently low tempera-
Our evaluation of the hyperon bulk viscosity improves ontures. Further detailed calculations would be needed to deter-
previous work in several ways. First we generalize in Eqsmine whether the hyperon bulk viscosity has a significant
(3.11) and(3.14) the standard expression for the bulk viscos-influence on the-mode instability at temperatures of a few
ity coefficient so that it applies to relativistic fluids such astimes 16 K, which are expected to exist in the cores of
neutron star matter. Second we generalize the expressions meutron stars in low-mass x-ray binaries. We did not carry
Egs.(3.24) and(3.25 for the thermodynamic quantities that out these calculations in part because solid crust-related
relate the microscopic reaction rates to the relaxation timehear 24,25 and magnetic field26] effects are quite effec-
that appears in the expression for the bulk viscosity by intive in suppressing the instability at these low temperatures.
cluding fully interacting nuclear matter. And third we obtain ~ How robust is the conclusion that thenode instability is
in Egs.(4.28 and(4.29 the fully relativistic expressions for effectively suppressed? Clearly the details of the nuclear
the relevant hyperon scattering cross sections needed fhysics involving hyperons in neutron star matter are not
evaluate the microscopic reaction rates. While our expreswell understood at this time. However, our conclusion ap-
sions for these cross sections reduce to the published lovplies to the entire expected range of the most poorly known
momentum results, we find that the difference of 429 properties of this material: the superfluli~ gap function
from the low-momentum limit can be an order of magnitudeand the axial vector coupling coefficients. In order to escape
or more and reduces the coefficient of bulk viscosity somethis conclusion, it would be necessary for neutron star matter
what at low densities. Finally we evaluate the effects of thisto have very few hyperons present at the densities which
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Qc/Qmax

VIl. DISCUSSION
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exist in the cores of real neutron stars. This would require the ~

equation of state to be substantially different from the one EZJ edr, (A2)
studied here, or the masses of neutron stars to be signifi-

cantly smaller than 1M . Rapid rotation also lowers the dE _

central density and consequently the size of the hyperon core rTi J edr, (A3)

in a neutron star. The central density of a maximally rotating
1.AM s neutron star is about 73% of its non-rotating value

(for the equation of state studied hef@7]. This reduction i o " . . .
almost eliminates the hyperon core for this extreme angulaglrfj L%a;on rate densities respectively as given in &6}

;{elocit)ii\/lbut (t)verr?lmost ?)Iltof th? ;]ange of angulalr:_vellcl)m_—f The mode will be completely suppressédamped lo-
tlr?S, o Y Ot's ars thave substantia ff_ypert(l)nlcores_i I'n?qtybl cally if the amount of energy removed from the mode locally
€ dissipation in the core were sutnciently large it mght b&, 4,0 ggcillation period is comparable to the local energy

possible for ther-mode Qige_nfunction to be cl_amped tp .Zero.density of the mode. Thus we define the local quality factor
in the core by the dissipative processes while remaining fi-

nite and unstable in the outer parts of the star. The discussiocHc the mode:
of this possibility in the Appendix shows that the hyperon we
bulk viscosity is not strong enough to clamp thenode in g=—-+ (A4)

this way. 2me

where e and € are the angle averaged energy and energy

If g=<1 the mode will be clamped. For thiemodes we find
ACKNOWLEDGMENTS that

We thank P. B. Jones for raising the issue of hyperon bulk
viscosity, for communicating his unpublished work to us, and T~
for giving us helpful comments on our work. We also thank 4  pR%Qmax
S. Balberg, D. Chernoff, J. Friedman, N. Glendinning, P. .
Goldreich, J. Lattimer, G. Mendell, J. Miller, E. S. Phinney, For the 1.M¢ neutron star model considered hefg .,
M. Prakash, R. Sawyer, and K. Thorne for helpful discus-~4700 rad/s, p=5x10"* g/cn? andr=<6 km in the re-
sions. This work was supported by NSF Grant Nos. PHY-ion where hyperons occur, afi~14 km. Thus
9796079, PHY-0071028, PHY-0079683, and PHY-0099568,
and NASA Grant Nos. NAG5-4093 and NAG5-10707. 1% Oma (A6)

qa 8xi10t O

for this case. Figures 11 and 12 show that the bulk viscosity
Bulk viscosity damps a mode by dissipating energy acnever exceeds about¥an the temperature range of interest

2
1 0.3 (r) Qmax. A5)

R/ Q

APPENDIX: MODE CLAMPING

cording to the expression to us. Thus, we conclude that the hyperon bulk viscosity
_ 5 represents a small perturbation on the basic hydrodynamic
dE E forces of ther-modes. The conditiog<1 is violated only
at 275 (AL for relatively slowly rotating stars. In the domain where the

gravitational radiation instability is most likely to be impor-
For the case of the-modes in slowly rotating stars, we may tant, the dissipation by hyperons represents a small perturba-
express the energy, and its time derivative as simple radidlon on the basic hydrodynamic forces, thus thmodes will

integrals: not be clamped.
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