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Abstract

This report tries to give a practical overview about the estimation of power spectra/power
spectral densities using the DFT/FFT. One point that is emphasized is the relationship be-
tween estimates of power spectra and power spectral densities which is given by the effective
noise bandwidth (ENBW). Included is a detailed list of common and useful window func-
tions, among them the often neglected flat-top windows. Special highlights are a procedure
to test new programs, a table of comprehensive graphs for each window and the introduction
of a whole family of new flat-top windows that feature sidelobe suppression levels of up
to −248dB, as compared with −90dB of the best flat-top windows available until now.
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1 Abbreviations and symbols

The following list contains those symbols and abbreviations that appear in more than one place
in the text.

a(f) Fourier transform (‘transfer function’) of a window in the frequency domain,
see Section 8.2 and Appendix B

ck coefficients of cosine terms in definition of window function
emax maximal amplitude error in one bin (−0.5 ≤ f ≤ 0.5)
fres frequency resolution (width of one frequency bin), see Section 7
fs sampling frequency, see Section 7
n number of bits of an ADC
N Length of the DFT/FFT
S1 sum of window values used for normalization, see Equation (19)
S2 sum of squared window values used for normalization, see Equation (20)
ULSB smallest voltage step of an ADC, corresponding to one ‘least significant bit’
wj j-th member of the window function vector
xj digitized time series; input to DFT in time domain
ym raw output of DFT in frequency domain
ADC Analog-to-Digital Converter
AF Amplitude Flatness, see Section 10
BW BandWidth
dB deciBel, see Section 6
DC ‘Direct Current’, constant component of a signal
DFT Discrete Fourier Transform
ENBW Effective Noise BandWidth, see Equation (22)
FFT Fast Fourier Transform
FFTW A software package that implements the FFT
GPL Gnu Public License
LS Linear (amplitude) Spectrum
LSB Least Significant Bit
LSD Linear Spectral Density
MATLAB – Commercial software package –
NENBW Normalized Equivalent Noise BandWidth, see Equation (21)
OC Overlap Correlation, see Section 10
PF Power Flatness, see Section 10
PS Power Spectrum
PSD Power Spectral Density
PSLL Peak SideLobe Level
rms root mean square, see Section 6
ROV Recommended OVerlap, see Section 10
SLDR SideLobe Drop Rate
WOSA Welch’s Overlapped Segmented Average

4



2 Preface

The definition and usage of the Fourier transform as it is widely used, e.g., in theoretical physics
considerably differs from the practical application of the Discrete Fourier Transform (DFT) in
data analysis.

The subject of this report is the estimation of spectra and spectral densities using the DFT. While
many methods for spectrum estimation are discussed in the statistical literature, we present
here only the one method that has found the widest application in engineering and experimental
physics: the ‘overlapped segmented averaging of modified periodograms’. A periodogram here
means the discrete Fourier transform (DFT) of one segment of the time series, while modified
refers to the application of a time-domain window function and averaging is used to reduce the
variance of the spectral estimates. All these points will be discussed in the following sections.
This method is attributed to Welch[1] and is also known under various acronyms such as WOSA

(for ‘Welch’s overlapped segmented average’) etc. While rather straightforward in theory, the
practical implementation involves a number of nontrivial details that are often neglected. This
report tries to clarify some of these problems from a practical point of view. It was written for
the needs of the data analysis of the laser-interferometric gravitational wave detector GEO 600,
but is expected to be useful for many other applications as well.

It only treats the computation of a spectrum or spectral density, starting from a digitized time
series, typically measured in Volts at the input of the A/D-converter. The conversion of the
resulting spectrum into other units (such as meters) and related problems such as un-doing the
effect of whitening filters are not treated here.

This report is organized as follows: In Sections 3 to 11, individual problems such as scaling,
windowing, averaging etc. are discussed. An overview of how to combine all these details into
a working algorithm is given in Section 12. Two somewhat more specialized topics are treated
in Appendices A and B. The Appendices C and D describe in detail many common and useful
window functions, including several new high-performance functions recently developed by one
of the authors (G.H.). An overview of all window functions in tabular form is given on page 29.
The final part of this report, Appendix F starting on page 50, consists of graphs showing the
most important characteristics of each window function.

3 Introduction

As an example, we consider a signal x(t) that contains a sinusoid at 1234 Hz with an amplitude
of 2Vrms. Furthermore it contains white noise with a density of 10 mVrms/

√
Hz, band-limited

to the range between 50 Hz and 2000 Hz. The spectrum of that signal is sketched in Figure 1,
with the unit of the y-axis intentionally not yet well defined.

Such a signal is quite realistic. It can easily be produced by electronic circuits and it is not
untypical for the signals that we might expect in the data analysis of laser-interferometric grav-
itational wave detectors such as GEO 600, just simpler.

Let us further assume that this signal is sampled by an A/D-converter with a constant sampling
frequency fs of, e.g., 10 kHz. We thus have a time-series of equidistant samples from the A/D-
converter as input to our data processing task.

The desired output is a graph resembling Figure 1 which allows us to determine both the
amplitude of the peak (2 Vrms) and the level of the noise floor (10 mVrms/

√
Hz). As can already

be seen from the different units (V vs. V/
√

Hz) we will need different scalings of the y-axis for
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Figure 1 Sketch of the example spectrum to be discussed in the text. Both axes are
plotted logarithmically. The unit of the y-axis is intentionally not yet well defined.

the two cases. It will turn out that the ratio between the two different scaling factors (the square
root of the effective noise bandwidth) depends on internals of the algorithm that is used and
must thus be transparent in the final result. Hence the desired output are in fact two graphs,
one scaled in V and another one in V/

√
Hz. We will call the former one a (linear) spectrum

and the latter a (linear) spectral density.

The power spectral density describes how the power of a time series is distributed with frequency.
Mathematically, it is defined as the Fourier transform of the autocorrelation sequence of the time
series.

The linear spectral density is simply the square root of the power spectral density, and similarly
for the spectrum. In GEO 600 the linear spectral density, which has a unit such as V/

√
Hz, is

used very often. It is usually indicated by placing a tilde ( ˜) over the symbol for the quantity in
question, i.e. the linear spectral density corresponding to a voltage Usomething(t) is represented

by the symbol Ũsomething(f). One practically important relation for a linear spectral density

Ũ(f) is its relation to the rms fluctuation of the quantity U , assumed to be band-limited to the
frequency range f1 ≤ f ≤ f2:

Urms =

√√√√√
f2∫

f1

[
Ũ(f)

]2
df , (1)

Table 1 summarizes the 4 different ways to express the result of the DFT, assuming the input
time series is measured in Volts.

The relationship between continuous and discrete Fourier transforms, the difference between
one-sided and two-sided spectra etc. are beyond the scope of this report, but are discussed in
many books (see also Reference [Schutz]). However, we don’t need these concepts for the rest
of this report, where we are concerned with the practical computation only.

Experimentalists often prefer the linear versions because they can be directly related to the
parameters of the experiment. For example, if a signal generator that produces a sine wave with
an amplitude of 2Vrms at 1234 Hz is connected to the A/D converter, we expect in the resulting
linear spectrum a peak at the right frequency, the height of which directly corresponds to the
amplitude that we had set on the signal generator. This requirement alone already establishes
the only correct scaling for linear spectra from an experimentalist’s point of view.

The relationship between a spectrum and a spectral density is given by the effective noise
bandwidth and can easily be determined at the time when the DFT is computed. However, it
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Abbrev. Name Relation Unit

PSD power spectral density V2/Hz

PS power spectrum PS = PSD × ENBW V2

LSD linear spectral density
amplitude spectral density

LSD =
√

PSD V/
√

Hz

LS linear spectrum
amplitude spectrum

LS =
√

PS = LSD ×
√

ENBW V

Table 1 Naming convention for DFT outputs. ENBW is the equivalent noise band-
width, defined in Equation (22)

cannot normally be reproduced from either of the two graphs without additional
information.

4 Scaling bits to Volts

Since the data that we want to analyze are measured in Volts at the input of the A/D-converter
(ADC) and have already been converted into binary bits when we get them, the first scaling
factor that usually must be applied to the raw data is the conversion from bits back to Volts.
This is usually straightforward: if the data arrive as binary signed integers, they are converted
to floating-point numbers by multiplication with the factor

ULSB =
Umax − Umin

2n
, (2)

where ULSB is the voltage corresponding to a least significant bit and n the number of bits of
the A/D-converter. Gain and offset of any preamplifiers used directly before the A/D-converter
can also be applied at this stage.

Umax and Umin are not the outer limits of the input voltage range, but rather two common

points of the highest and lowest voltage bin, i.e. either their centers, or their maxima or their

minima. This detail is unimportant for big n.

5 Discrete Fourier Transformation (DFT)

The discrete Fourier transform in general takes a vector of N complex numbers xk, k=0 . . . N−1,
and transforms it into a vector of N complex numbers ym, m = 0 . . . N − 1.

There are three different common definitions for the DFT, differing only in their normalization
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factors:

y(1)
m =

N−1∑

k=0

xk exp

(
−2π i

mk

N

)
, m = 0 . . . N − 1, (3)

y(2)
m =

1√
N

y(1)
m , (4)

y(3)
m =

1

N
y(1)

m . (5)

This transformation is called the ‘forward’ DFT, with its inverse, the ‘backward’ DFT, differing
in the sign of the exponent (+2π i mk

N instead of −2π i mk
N ).

The practical implementation of the DFT on a computer nearly always uses the Fast Fourier
Transform (FFT) algorithm, and the terms DFT and FFT are used interchangeably in this report.
Most FFT subroutine packages (e.g. [FFTW]), compute y(1).

The Fourier function of Mathematica computes y(2), which incidentally is the only ‘symmet-
rical’ way to define forward and backward DFT such that successively applying both the forward
and then the backward DFT reproduces the original data.

For the simplest computation of the spectrum, however, we need y(3). That can be directly
seen if we consider the sinusoidal signal again. If we increase N , y (1) will pick up more and
more of the signal and the result in the adequate frequency bin will increase proportionally to
N , while our desired result, the amplitude, obviously must not depend on N . If, as is usual,
window functions are being used, the window-related normalization will take care of this factor
(see Section 9). Nevertheless, when an FFT algorithm is used for the first time, care should be
taken to determine which of (3), (4) or (5) it actually computes.

While the xk are complex numbers in the general definition of the DFT, the time series of the
digitized input signal is always real. As a consequence, the output array ym obeys the following
relationship:

yN−m = y∗m , (6)

where ∗ denotes complex conjugation. In particular, if N is even, y0 and yN/2 are real. From
now on we will assume that N is even. The upper half of the array, yN/2+1 . . . yN−1 is thus
redundant and never computed by efficient FFT packages. The results are typically returned in
some ‘packed’ format. For the case of the FFTW package (see Reference [FFTW]), the result is
a real vector zi, i = 0 . . . N − 1 with

zi = <{yi}, 0 ≤ i ≤ N/2, (7)

zN−i = ={yi}, 0 < i < N/2. (8)

If only a complex-to-complex FFT subroutine is available, Section 12.3 of Reference [Press]
describes two ways of using it to compute real-to-complex transforms with moderate efficiency.

Because of the above relationship it is convenient to have N even, as we do assume throughout
this report. Some subroutine packages even demand that N be a power of 2. That is, however,
an unnecessarily stringent limitation in many situations. The FFTW package, for example, will
compute the DFT for any positive integer N , and with high efficiency for integers of the form

N = 2a3b5c7d11e13f , (9)

where e + f is either 0 or 1 and the other exponents are arbitrary. This gives more flexibility
in the choice of the frequency resolution fres, see Sections 7 and 12 below. Furthermore, it can
also be configured to efficiently compute the FFT for other integers, if necessary.
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6 Some common units

6.1 peak, peak-peak and rms

The next simple scaling factor concerns the units of the amplitude (Volts in this example). This
matter equally concerns both the spectra and the spectral densities. Three different units are
in common usage (see Figure 2):

U

t
V

pk

V
pk

−p
k

V
rm

s
Figure 2 Three ways to measure an amplitude.

Vpk ‘Volts peak’ is the most obvious measurement of an amplitude, it is the height of the peak
measured from the average value (i.e. from zero if there is no DC component).

Vpk−pk ‘Volts peak-to-peak’. This measurement is exactly two times bigger than ‘Volts peak’
and popular with experimentalists because it can easily be read directly from an oscillo-
scope (regardless of any DC offsets).

Vrms ‘Volts rms’ or ‘Volts root-mean-square’. This measurement is defined as the DC voltage
that has the same power as the signal in question. For sinusoidal signals (all signals at the
output end of a DFT are sinusoidal) the relationship is1

Vrms =
Vpk√

2
. (10)

In the following we will use Vrms as primary unit for all DFT results. If necessary they can be
converted to the other units as described above.

While the output of the DFT at a certain frequency will be a complex number, the amplitude
is defined as the absolute value of that complex number, i.e. amplitudes are non-negative real
numbers.

1While in general Vrms is defined via an integral and the result depends on the precise limits of that integral,
in this context (as an amplitude measurement for sinusoidal signals) it is always assumed that an integer number
of cycles is averaged.
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6.2 decibel

To complicate matters even further, all of the above three measurements can be expressed in
‘decibel’. The general definition of decibel (dB) is:

ratio[dB] = 10 log10

(
signal power

reference power

)
= 20 log10

(
signal amplitude

reference amplitude

)
. (11)

Any value given in ‘dB’ hence expresses a ratio and not an absolute amplitude. The reference
amplitude is often expressed after the symbol ‘dB’, e.g. ‘dBV’ or ‘dBµV’ which refer to a reference
amplitude of 1 V or 1µV, respectively.

In high-frequency electronics the most common measurement of powers and amplitudes is called
‘dBm’. The reference here is 1 mW of power delivered into the nominal load impedance, usually
50 Ω.

The conversion of an amplitude x given in dBm to the amplitude voltage U expressed in Vrms
is given by:

Urms =
√

P × 50Ω , (12)

where the power P is computed by

1W × 10{−3 + 0.1 × x

1 dBm} (13)

As an example, the amplitude of the 1234 Hz component of our test signal could be expressed
as

2Vrms = 2.828Vpk = 5.657Vpk−pk = 6.02 dBVrms = 126.02 dBµVrms = 19.03 dBm. (14)

7 Sampling time, frequency bins etc.

While the DFT transforms N numbers into N new numbers and does not care about sampling
times, frequency bins etc., these notions are essential for a correct interpretation of its results.

Assume the sampling frequency fs to be fixed. From the Nyquist theorem it follows that the
maximal useful frequency is fNy = fs/2. Then the only degree of freedom that we have left in
the data processing is the length N of the DFT.

The width of a frequency bin (also called frequency resolution) is given by

fres =
fs

N
. (15)

Note that the ability to separate two nearby peaks in the spectrum is also sometimes called
frequency resolution, but not in this report. It depends strongly on the window function that
was chosen (in particular on the bandwidth of the window, see Section 8 below). The minimal
separation of two signals that can just be separated also depends on the ratio between the two
amplitudes and is typically a few times larger than our fres, see for example the last Section of
Reference [Harris78].

As we have seen above, the DFT will produce only N/2 + 1 distinct complex numbers. These
correspond to the frequencies

fm = mfres, m = 0 . . . N/2 . (16)
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The first element, y0, corresponds to the DC average of the signal and accordingly has no imag-
inary part. The last element, yN/2, corresponds to the Nyquist frequency fN/2 = (N/2) fres =
fs/2 = fNy and also has no imaginary part2 because of the complex-conjugate symmetry of
the output array. The first and last frequency bins are usually not very useful anyway (see
Section 9).

Hence in a practical approximation we can say that we obtain N/2 frequency bins of the width
fs/N in the output. The apparent loss of information is explained by the fact that the output
consists of complex numbers while the input was real.

The phase given by the complex numbers in the result is random for those frequency bins

that are dominated by stochastic noise; it may be meaningful for frequency bins that are

dominated by a sinusoidal signal. In that case, it is typically used by processing a reference

sinusoidal signal of the same frequency with the same algorithm and subtract the two result-

ing phases to obtain the relative phase between the two sinusoidal signals while canceling any

phase offset due to the algorithm. In most applications, however, the phases resulting from

the DFT are ignored by immediately taking the absolute values, such as in Equations (23)

or (24).

8 Window functions

If we simply take a stretch of length N out of a time series containing a sinusoidal signal and
perform a DFT, we will most likely find that the sinusoidal signal which we might naively expect
to result in a sharp peak in only one frequency bin, will instead show up as something ugly like
shown in Figure 3.

The reason is that the DFT implicitly assumes that the signal is periodic, i.e. that the time series
of length N repeats itself infinitely in a cyclic manner. If the frequency of the sinusoidal input
signal is not an exact multiple of the frequency resolution fres, i.e. does not fall in the exact
center of a frequency bin, this assumption is not true, and the DFT will ‘see’ a discontinuity
between the last sample and the first sample due to the cyclic continuation. That discontinuity
spreads power all across the spectrum.

The remedy is to multiply the time series with a ‘window function’ in the time domain before
applying the DFT. This window function starts near or at zero, then increases to a maximum
at the center of the time series and decreases again. Thus the discontinuity is removed. Many
window functions have been defined and given names. They usually involve some compromise
between the width of the resulting peak in the frequency domain, the amplitude accuracy and
the rate of decrease of the spectral leakage into other frequency bins.

8.1 The Hanning window as an example

This section discusses the general properties of window functions, using the simple but use-
ful Hanning window as an example. Other window functions, including flat-top windows, are
discussed in the Appendices C and D.

A window function to be used with a DFT of length N is defined by a vector of real numbers
{wj}, j = 0 . . . N − 1. It is used by multiplying the time series xj with the window before
performing the DFT, i.e. using x′

j = xj · wj as input to the DFT.

2If N is even as we assume here.
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Figure 3 The spectral response of a rectangular window.

The Hanning window, our example in this Section, is defined as follows:

wj =
1

2

[
1 − cos

(
2π · j

N

)]
; j = 0 . . . N − 1, (17)

and is shown in Figure 4.

All windows studied here have the following symmetry:

wj = wN−j . (18)

This implies for even lengths N that w0 and wN/2 appear only once, while all other coefficients
appear twice. Hence only the N/2+1 coefficients w0, . . . , wN/2 need to be computed and stored.

Note also that this symmetry implies that the N -element vector {wj}, j = 0 . . . N − 1 is not
as symmetric as Figure 4 might suggest, i.e. in general we have w0 6= wN−1. The symmetry
relation given in Equation (18) is illustrated in Figure 5 for N = 8.

We define the following two sums for normalization purposes:

S1 =
N−1∑

j=0

wj , (19)

S2 =

N−1∑

j=0

w2
j . (20)

Because we will use S1 and S2 in the normalization of our final results, we can multiply the
window values wj with any convenient constant factor.
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8.2 The window function in the frequency domain

The transfer function a(f) of a window expresses the response of the window to a sinusoidal
signal at an offset of f frequency bins. It can be computed from the window values wj according
to the formulae given in Appendix B.

The transfer function a(f) of the Hanning window is shown in Figure 6. Apart from the central
peak (which we want) there are many more peaks at regular intervals. They are called ‘sidelobes’
and are undesirable. One aim in designing window functions is to reduce the height of these
sidelobes. Note the different y-axes in Figures 3 and 6; at a frequency offset of 20 bins the
sidelobes of the rectangular window are at −36 dB, while those of the Hanning window are at
−88 dB.
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Figure 6 The Hanning window in the frequency domain.

The 3 dB bandwidth W3 dB that is listed in Appendix C for each window is computed from
Equation (42) by numerically solving the equation a(f) = −3 dB for f . For the Hanning window
it is W3 dB = 1.44 bins. Of course one wants this bandwidth not to be unnecessarily wide. It
turns out, however, that reducing the level of the sidelobes increases the bandwidth, such that
a compromise must be found.

The normalized equivalent noise bandwidth NENBW of the window, expressed in frequency bins,
is given by

NENBW = N
S2

(S1)2
. (21)

The effective noise bandwidth ENBW is given by

ENBW = NENBW · fres = NENBW · fs

N
= fs

S2

(S1)2
, (22)
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where fs is the sampling frequency and fres the width of one frequency bin. For the Hanning
window we have NENBW = 1.5 bins. This equivalent noise bandwidth is required when the
resulting spectrum is to be expressed as spectral density (such as for noise measurements). It
can be understood by considering white noise as input to our algorithm. Due to the width
of the window in the frequency domain, each frequency bin collects not only the noise in that
frequency bin, but also from adjacent bins. Dividing the result by the effective noise bandwidth
corrects for this phenomenon.

Another important characteristic is the maximum amplitude error emax, which is the deviation of
a(f) from 0 dB within the range −0.5 ≤ f ≤ 0.5. It expresses the maximal possible error in the
estimation of the amplitude of a sinusoidal signal that may fall anywhere within one frequency
bin. For the Hanning window we find emax = −1.42 dB. The so-called ‘flat-top’ windows
(discussed in Appendix D) have a much lower emax at the expense of wider bandwidth, and are
hence preferable if the amplitude of sinusoidal signals must be estimated from the results.

It can be shown that the ultimate roll-off rate of the sidelobes is related to the differentiability
of the window function at its boundary (where the function is extended by zero on both sides).
A window function with a step discontinuity drops as 1/f , a continuous function with a discon-
tinuous first derivative as 1/f 2, a window function with a continuous first derivative as 1/f 3 etc.
For the Hanning window, both the function itself and its first derivative are continuous at the
boundary, and the sidelobes hence drop as 1/f 3. For the case of window functions defined as
sum of cosine terms, this relationship is further discussed in Section C.7. This ‘sidelobe dropping
rate’ will be abbreviated SLDR in the tables below.

9 Scaling the results

Now we come back to the problem of normalizing the results of the FFT. Assume we have
an input time series xj of length N that has been converted to Volts by Equation (2). After
multiplication with the chosen window function, it is subjected to a real-to-complex FFT as
defined by Equation (3). We will also need the ‘window sums’ S1 and S2 from Equations (19)
and (20). The result of the FFT is a complex vector ym of length N/2 + 1 as described in
Section 5. We interpret it as a power spectrum, expressed as V2

rms, as follows:

PSrms(fm = m · fres) =
2 · |ym|2

S2
1

; m = 0 . . . N/2 , (23)

The factor S1 takes the role of N that we had found to be necessary in Section 5. It takes into
account both the length N of the DFT and the gain of the window function, plus any constant
factor that was used in the computation of the window values wj .

The factor 2 originates from the fact that we presumably use an efficient FFT algorithm that
does not compute the redundant results for negative frequencies. Strictly speaking, that factor
should not be applied for the first frequency bin (m = 0). We do, however, ignore this distinction
and treat the first frequency bin identically to the other bins for the following reasons:

• The result in the first bin corresponds to zero frequency (i.e. DC), and is simply the average
of the time series. If that average is of interest, the DFT methods discussed in this paper
are quite unsuitable to determine it. Simple averaging or, even better, digital low-pass
filtering of the time series are better procedures to determine the DC average of the time
series.
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• If window functions are used (as will usually be the case), there is no consistent way of
normalizing the results for m = 0. Due to the width of the window in the frequency
domain, there will be leakage of the DC average from the m = 0 bin into neighboring
bins. In the case of flat-top windows, for example, the m = 1 bin will get almost the
same contribution as the m = 0 bin. If the m = 0 bin were treated differently, the m = 1
bin would show 3 dB more power than the m = 0 bin due to the DC average, clearly an
inconsistent result.

• The relationship (10) between peak amplitude and rms value does not hold for zero fre-
quency, which further complicates the normalization problem.

• The DC average of the time series will often have been removed from the time series
anyway before the FFT is performed (see Section 11).

Similarly, the last frequency bin (m = N/2), which corresponds to the Nyquist frequency fs/2,
should be treated specially in principle because it has no imaginary part if N is even. In practice
this can usually be ignored also, because proper anti-aliasing filters before the A/D-converter
will have removed that frequency before A/D-conversion anyway.

We now return to the scaling of the ‘normal’ results. If the desired result is a power spectral
density (PSD) expressed in V2/Hz, it is obtained by dividing the power spectrum (PS) by the
effective noise-equivalent bandwidth ENBW (see Equation (22)):

PSDrms(fm = m · fres) =
PSrms(fm)

ENBW
=

2 · |ym|2
fs · S2

; m = 0 . . . N/2 , (24)

This relationship has very important consequences. Consider the signal of the example shown
in Figure 1 and let the length N of the DFT vary. The frequency resolution fres and noise
bandwidth ENBW both vary inversely proportional to N . In a spectrum normalized according
to Equation (23), the amplitude of the peak at 1234 Hz will remain constant as expected. If we
increase N and thus reduce fres, the level of the noise plateau between 50 Hz and 2000 Hz, will,
however, decrease in the spectrum. That is because the width of one frequency bin is reduced
and consequently less and less of the equally distributed noise power falls into one frequency
bin.

Computing a spectral density by normalizing according to Equation (24) compensates this effect
and yields a constant level of the noise plateau independent of N , as it should be. In this
normalization, however, the height of the 1234 Hz peak will increase with N .

Since the ratio between the peak and the noise plateau in the FFT output depends on N , we need
to distinguish carefully between spectra and spectral densities. The magic number mentioned in
Section 3 to convert them into each other is the effective noise bandwidth ENBW, which
should hence always be recorded when a spectrum or spectral density is computed,
such that the result can be converted to the other form at a later stage, when the information
about the frequency resolution fres and the window that was used is normally not easily available
any more.

Further processing of the output is straightforward: If the desired result is a linear spectrum

(expressed in V) or a linear spectral density (expressed in V/
√

Hz), simply take the square root
of the corresponding power spectrum or spectral density:

LSD =
√

PSD, (25)

LS =
√

PS. (26)
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Note, however, that if several spectra/spectral densities are averaged (see Section 10), this
averaging must be performed with the power spectra/spectral densities, and the square root, if
desired, must be taken only at the end.

Finally the result can be converted into other units (such as Vpk or dB) according to Section 6.

10 Averaging and overlap

If we compute one estimate of a spectrum with the methods described so far (i.e. multiplying one
segment of the time series with a suitable window function, performing a DFT and scaling the
results), we will typically find the result to be rather ‘noisy’. The theory confirms this practical
observation: The standard deviation of the spectrum estimate in one frequency bin is equal to
the estimate itself, i.e. 100%, if the signal in that bin is stochastic. It does not help the increase
the length N of the DFT; that only reduces the width of one frequency bin without improving
the variance.

The usual remedy is to take the average of M estimates and hence reduce the standard deviation
of the averaged result by a factor of 1/

√
M . However, the properties of the signal must remain

stationary during the averaging. Note that the averaging must be done with the power spectrum
(PS) or the power spectral density (PSD), not with their square roots LS or LSD. If the square
roots are desired as result, they must be computed at the end after the averaging is finished. In
conjunction with the use of window functions, this method of averaging several spectra is also
known under names such as “Welch’s method of averaging modified periodogramms”, “Welch’s
overlapped Segmented average” etc.

When the spectra are averaged, the variance/standard deviation of the estimate can be

computed at the same time with little extra effort. The ratio of the standard deviation

to the averaged estimate itself gives some indication of the ‘randomness’ of the signal that

dominates the frequency bin under consideration: It is near unity for stochastic signals such

as noise, and much smaller for coherent signals such as sinusoidal peaks.

If a long continuous data stream is simply split into several non-overlapping segments of length
N and each segment is processed by a DFT with a window function, we have a situation as
illustrated in Figure 7.

N NN

W
in

do
w

Figure 7 Segmented data stream with window and without overlap.

Due to the fact that the window function is typically very small or zero near its boundaries, a
significant portion of the data stream is effectively ignored in the analysis. This is clearly not
optimal in those situations where the data stream was produced at great expense, and maximal
possible information is to be extracted from it.3 The situation can be improved by letting the
segments overlap, as illustrated in Figure 8.

3Sometimes also the opposite case occurs: when raw data are cheaply available in nearly unlimited amounts,
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W
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w

N

Figure 8 Segmented data stream with window and overlap.

How much should the segments overlap? That depends on the window function, and also a
little on the requirements. For windows that are relatively wide in the time domain (such as
Hanning), 50 % is a commonly used value for the overlap. For narrower window functions (in
particular flat-top windows), a higher overlap (up to 84 %) may be appropriate.

In choosing the optimal amount of overlap, a compromise must be found between the resulting
‘flatness’ of the data weighting and the computational effort. The description of each window
function in Appendix C includes a graph showing three curves that can help in choosing an
appropriate overlap. Figure 9 shows these three curves for the Hanning window:
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Figure 9 Overlap characteristics of the Hanning window.

Amplitude Flatness (AF): When several overlapping window functions are applied to the
data stream, each data point is sampled several times with different weights. One possible
measure of the total weight of each data point is the sum of all window values that are
applied to that particular data point. Figure 10 illustrates this situation for a Hanning
window with 33 % overlap (33 % is smaller than the optimum, 50 %, and was chosen in
this figure for illustrative purposes). If we assume that all our data points have the same
validity, we want that sum to remain fairly constant for all data points. The Amplitude
Flatness (AF) is the ratio of the minimal total weight that may be applied to any data

and the computational effort to process the data is the limiting factor in the analysis. If the properties of the
raw data are truly stationary, overlapping can be omitted, but it does not hurt, either, as long as the overlap
correlation (see Equation (27)) remains small.
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point to the maximal total weight, evaluated for one certain value of the overlap. In the
example shown in Figure 10, it is 0.5. For the Hanning window, the curve of summed
window values becomes exactly flat for 50 % overlap, such that Amplitude Flatness (AF)
reaches its perfect value of 1.0 in this case. For most other window functions, there is no
such singular point, but the amplitude flatness nevertheless approaches 1.0 very quickly
with increasing amounts of overlap.
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Figure 10 Amplitude flatness of a Hanning window with 33 % overlap.

Power Flatness (PF): While the linear summing of window values (as done in the definition of
amplitude flatness above) is appropriate for the amplitude of sinusoidal signals, incoherent
signals such as noise must be added quadratically. Hence we define the Power Flatness (PF)
similarly as the amplitude flatness above, but with the window values from the different
instances of the window function being added quadratically. The notions of Amplitude
and Power Flatness were motivated by a similar discussion in [Trethewey2000].

Overlap Correlation (OC): If the overlap becomes too big, the spectrum estimates from
subsequent stretches become strongly correlated, even if the signal is random. A high
correlation means wasted computational effort. The Overlap Correlation (OC) for an
overlap r is computed as (see [Harris78]):

OC(r) =

rN−1∑
j=0

wjwj+(1−r)N

N−1∑
j=0

w2
j

(27)

When choosing a value for the overlap, we will want a ‘flatness’ as high as possible, in order to
give equal weight to all data. On the other hand, we want the overlap correlation to be small,
such as not to waste computational effort by repeatedly computing highly correlated results.
In order to get an idea of a suitable overlap, we somewhat arbitrarily define the ‘recommended
overlap’ (ROV) as that value of the overlap where the distance between the amplitude flatness
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(AF) and the overlap correlation (OC) reaches its maximum (see Figure 9). For the Hanning
window, this maximum is reached at an overlap of 50 %. This definition4 happens to yield
reasonable results for all the windows considered in this paper.

11 Preprocessing of the data: DC and trend removal

Often the time series we use as input for our algorithm will have a non-zero DC average, which
may even slowly change over time. Such a DC average will show up in the first frequency bin
(m = 0) of the resulting spectrum. If a window function is used or the average changes over
time, it will also leak into adjacent frequency bins, possibly masking low-frequency signals.

The DC average is not usually of interest as a result of the DFT processing, due to calibration
problems (see Section 9) and because there are simpler and better methods to determine it (i.e.
simple averaging or digital low-pass filtering).

Hence we normally want to remove it from the data before starting the DFT processing. There
are several ways to accomplish this, in (roughly) increasing order of perfection:

1. Compute the average of the whole time series (before splitting it into segments) and
subtract that average from all data points.

2. Compute a straight line between the first and last data point of the whole time series
(before splitting it into segments) and subtract that line from all data points.

3. Compute an average trend via linear regression of the whole time series (before splitting
it into segments) and subtract that line from all data points.

4. Compute the average of each segment (before applying the window function) and subtract
that average from the data points.

5. Compute a straight line between the first and last data point of each segment (before
applying the window function) and subtract that line from the data points.

6. Compute an average trend via linear regression of each segment (before applying the
window function) and subtract that line from the data points.

7. Pass the input time series through a digital high-pass filter.

Whether such a procedure should be applied depends on the situation. If the DC average
is known to be negligible (e.g. because of AC coupling) and/or the low frequency bins are
uninteresting anyway, it can be omitted. On the other hand, in some cases (e.g. small fluctuations
of huge numbers such as variations in the Hz range of a beat frequency in the GHz range) it is
even essential to prevent numerical collapse of the FFT algorithm.

For a general-purpose algorithm where the properties of the input data are unknown, it is
recommended to apply at least a simple version of the above procedures since they are cheap
compared with the rest of the processing, increase the usefulness of the lowest frequency bins
and may prevent garbage results.

4The alternative of taking the point where the distance between PF and OC reaches a maximum yields too
small overlaps for some windows.
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12 Putting it all together

Here is one suggestion how all the details mentioned in this report can be put together to a
working algorithm. It is, of course, not the only possibility, neither is it necessarily the best.
Some of the individual steps below might be omitted, or their order might be interchanged as
fits the situation at hand.

Input data: We assume to have a long stream of input data that has already been converted
to floating point numbers (corresponding to ‘Volts’ at the input of the A/D converter)
according to Section 4 on page 7. We also assume that the sampling frequency fs is known
and fixed.

Frequency resolution and length of DFT: Now choose a frequency resolution fres. Typ-
ical values range between fs/100 and fs/100 000. Find the corresponding length N of
the DFT, according to N = fs/fres (Equation (15)). Round N to the next convenient
value (e.g. according to Equation (9) if FFTW is used), and re-compute the final frequency
resolution fres = fs/N .

Window function: At this point a window function can be chosen and computed. The first
decision to be made is whether a flat-top window is necessary. That will always be the case
if the amplitude of sinusoidal peaks is to be determined from the spectrum. Otherwise,
the other (i.e. non-flat-top) windows are preferable because of their smaller bandwidths.
As a general rule, try to choose a window with a sidelobe suppression not less than the
intrinsic signal-to-noise ratio of the input signal. If this signal-to-noise ratio is unknown,
one can start with, e.g., a Hanning window and determine from the resulting spectrum
how much the highest peak sticks out of the background noise. With this information,
choose a suitable window from Table 2 on page 29. Good choices are the Kaiser window
(see also Table 4 on page 37) and the new flat-top windows HFTxx.

Since N is already known, the window values wj can now be computed. At the same time,
compute the ‘window sums’ S1 and S2 (Equation (19)). If overlapping is desired, select a
suitable value for the overlap, e.g. from Table 2 or the description of the selected window.
Record fres, NENBW and ENBW (Equations (21) and (22)).

Splitting of the data stream: Identify continuous stretches of useful data (i.e. without
glitches, pulses, missing periods etc.). Split these periods into segments of length N , over-
lapping as desired. Remove the DC and/or trend of each segment according to Section 11,
if desired.

FFT: Multiply each segment with the pre-computed window values wj . Put the product through
the real-to-complex FFT algorithm. Unpack the result, compute the squared magnitude,
and average it (separately for each frequency bin).

scaling: After all segments have been processed, scale the average according to Section 9 using
Equation (23) or (24). If the linear spectrum/spectral density is required, apply Equa-
tion (25) or (26). Finally, convert to other units according to Section 6, if necessary.

13 Testing the algorithm

Once all the procedures described in the previous Section have been put together into one
program, it is important to test that program. The easiest way to achieve this is to use artificial

21



test data. Such data should include one or several sinusoidal signals with know amplitude
(yielding sharp peaks in the spectrum) as well as a noise background with known spectral
density. While it is straightforward to generate a sine function, it is not so obvious how to
generate noise with a known spectral density. The easiest way is to make use of the digitizing
noise (further discussed in Appendix A.2 and Reference [Lyons, Section 9.3]). By rounding the
simulated time-series data to integer multiples of a suitably chosen unit ULSB, a noise floor with
the density

Ũdig =
ULSB√
6 · fs

(28)

is introduced in the spectrum. If, however, the signal consists of only one sine wave with a
frequency that is harmonically related to the sampling frequency, the deviations between the
ideal sine wave and its rounded samples that cause the noise floor are repetitive and hence do
not have a white spectrum. By using two sine waves with at least one frequency that is not
harmonically related the sampling frequency, this effect is avoided and the noise floor can be
treated as white noise. The following C program illustrates these ideas:

#include <stdio.h>

#include <math.h>

#define TWOPI 6.28318530717959

int main (void)

{

double fs = 10000; /* sampling frequency [Hz] */

double f1 = 1234; /* first signal frequency [Hz] */

double amp1 = 2.82842712474619; /* 2 Vrms */

double f2 = 2500.2157; /* second signal frequency [Hz] */

double amp2 = 1; /* 0.707 Vrms */

double ulsb = 1e-3; /* Value of 1 LSB in Volt */

int i;

double t, u, ur;

for (i = 0; i < 1000000; i++)

{

t = (double) i / fs;

u = amp1 * sin (TWOPI * f1 * t) + amp2 * sin (TWOPI * f2 * t);

ur = floor (u / ulsb + 0.5) * ulsb; /* Rounding */

printf ("%10.6f %8.5f\n", t, ur); /* ASCII output */

fwrite (&ur, sizeof (double), 1, stdout); /* alternative binary output */

}

return 0;

}

In this example, the signal consists of two sinusoidal components at 1234 Hz (amplitude 2Vrms =
2.828Vpk) and 2500.2157 Hz (amplitude 0.707Vrms = 1Vpk). The output samples were rounded
to integer multiples of ULSB = 1mV, yielding a noise background of

Ũdig =
ULSB√
6 · fs

=
1mV√

6 · 10 kHz
≈ 4.08µV/

√
Hz . (29)
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Figure 11 Results of the analysis of the test signal generated by the example
C program. Both the spectral density (left curve) and the spectrum (right curve)
can be obtained with one single FFT analysis of the time series; they are related by
the factor

√
ENBW =

√
12.618Hz = 3.552

√
Hz.

Its output was analyzed by a procedure as described in Section 12. The result is shown in
Figure 11, both as linear spectrum and as linear spectral density.

The data were generated for a sampling frequency of fs = 10 kHz. For the analysis, the desired
frequency resolution was chosen to be fres = 3Hz, resulting in a desired FFT length N = 3333.
That number was rounded to the next convenient value according to Equation (9), yielding
N = 3328 = 13 · 28. This in turn gave the final frequency resolution fres = 3.0048Hz. Since the
amplitude of the sinusoidal signals was to be determined with high accuracy, and the dynamic
range of the spectrum was a little more than 100 dB, the flat-top window HFT116D was chosen
for the analysis. In order to obtain a smooth spectrum that allows an accurate determination
of the noise floor, 599 spectra were averaged. The numerical results (plotted in Figure 11) show
that both the amplitude of the sinusoidal components and the level of the noise background
were determined correctly.

14 MATLAB pwelch function

Since many people involved in the data analysis of GEO 600 use MATLAB, which includes a
function that implements Welch’s method (called ‘pwelch’ in the ‘Signal Processing Toolbox’),
this function is briefly discussed here in relation to the conventions presented in the main text.

The function in its most detailed invocation is called as

[Pxx,f] = pwelch(x,nwin,noverlap,nfft,fs)

Here x is a vector with the time series, nwin either an integer (then a Hamming window of that
length is used), or a vector holding the window weights wj , noverlap an integer (a fraction of
the FFT length) that indicates the desired overlap, nfft an integer giving the length N of the
FFT (nfft should be the same as the length of the window vector nwin; this is not clear from the
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help text), and fs the sampling frequency (according to the help text ‘an integer’, apparently a
typo).

The results are Pxx, a vector with the power spectral density (PSD), and f, a vector with the
corresponding frequencies. If y is the unit of the input time series, the output Pxx has the
unit y2/Hz.

If we compare the functionality of pwelch with what we have listed in Section 12 above, we find
that

• pwelch nearly does what we want, except removing DC average and trend.

• If you want fancy window functions, you have to compute them yourself and pass them as
vector nwin.

• MATLAB uses the FFTW package which means that we have the same flexibility in choosing
N as given in Equation (9).

• The main deficiency of pwelch is that it only computes power spectral densities (PSD) and
has no default way of computing power spectra (PS) or the missing factor between PSD and
PS, namely the equivalent noise bandwidth (ENBW). If you compute your own window
function (recommended), this can, however, easily be remedied by using Equation (22).

Note for readers in the GEO 600 project: Karsten Kötter (e-mail: ksk@aei.mpg.de) has written
a MATLAB script that implements the same functionality as pwelch and also computes the
equivalent noise bandwidth (ENBW).
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Appendices

A Maximal dynamic range of real signals

Since the selection of a window function involves a trade-off between spectral leakage (i.e. how
well the sidelobes are suppressed compared with the main peak) and bandwidth, it is interesting
to investigate what maximal dynamic range we can expect from real signals. We consider here
two common noise sources that limit the dynamic range: electronic noise and digitizing noise.
The aim is to use window functions that do not deteriorate the noise floor originating from these
inevitable noise sources, i.e. the spectral leakage of the window transfer function at a reasonable
frequency separation should be considerably lower (e.g. at least 6 dB) than the inherent dynamic
range of the input signal. This requirement is, of course, rather vague, and the answer depends
on the characteristics of the particular input signal in question.

A.1 Electronic noise

All signals fed to an A/D converter must first pass through various electronic circuits which have
a certain noise level. To find a lower limit for that noise, we consider as example an ultra-low-
noise operational amplifier (such as AD797 or LT1028). These amplifiers typically have a useful
signal range of approximately ±12V, and an input noise level5 of approximately 2 nV/

√
Hz. In

order to compute the dynamic range we compare the maximal amplitude of a sinusoidal signal

Umax = 12Vpk ≈ 8.5Vrms , (30)

with the noise accumulated in one frequency bin

Unoise = 2
nVrms√

Hz
·
√

ENBW . (31)

For the comparison we have to specify the noise bandwidth ENBW given by

ENBW = NENBW · fres , (32)

where fres is the width of one frequency bin, and NENBW is in the range 1. . . 4, depending
on the window function (see Equation (22)). The comparison is shown in Figure 12. If the
dynamic range were limited by electronic noise alone, the requirements on the dynamic range
of the window function would be rather stringent.

A.2 Digitizing noise

The noise source that usually limits the dynamic range of spectrum measurements is caused by
the digitizing process introducing a noise linear spectral density given by

Ũdig =
ULSB√
6 · fs

, (33)

5The input voltage noise of these amplifiers is approximately 1 nV/
√

Hz, but in any real application we have
additional noise contributions from the thermal noise of the input impedance and the input current noise.
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Figure 12 Maximal dynamic range of electronic signals, assuming a range of ±12V
and an input noise level of 2 nV/

√
Hz.

where ULSB is the voltage corresponding to one least significant bit and fs the sampling fre-
quency (see e.g. Reference [Lyons, Section 9.3]). We assume using an A/D converter with an
effective resolution6 of n bits. The maximal amplitude of a sinusoidal signal is then given by

Umax, pk = 2n−1 · ULSB , (34)

Umax, rms =
2n−1

√
2

ULSB , (35)

which we have to compare with the noise accumulated in one frequency bin

Unoise, rms = Ũdig ·
√

ENBW (36)

=
ULSB√
6 · fs

·
√

NENBW · fres (37)

= ULSB ·
√

NENBW

6N
, (38)

where N is the length of the DFT. The dynamic range is hence given by

Umax, rms

Unoise, rms
= 2n−1 ·

√
N ·

√
3

NENBW
. (39)

This function is shown in Figure 13 for a typical value of NENBW = 3 bins and several values of
the A/D resolution n. Since the effective resolution of modern A/D converters reaches 20 bits or
better, we may expect a dynamic range of up to 180 dB under optimal conditions. In practice,

6The effective resolution of an A/D converter is always smaller than its nominal resolution due to imperfections
and noise. On the other hand, the effective resolution can be enhanced to a value that is better than the nominal
resolution by averaging several samples. Indeed one standard method to evaluate the effective resolution of an
A/D converter is to digitize a known sine wave, compute a spectrum with a DFT, determine the noise floor and
evaluate Equation (33).
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other noise sources (such as those originating in the experiment itself, e.g. technical noise, shot
noise etc.) are often likely to have a noise level higher than the digitizing noise. Hence in many
cases the window functions available in the past (e.g. Hanning, Nuttall, or Salvatore’s flat-top
windows) have a sufficient dynamic range such as not to introduce additional noise above the
noise floor that is present anyway. In favourable conditions, however, the dynamic range of those
window functions is worse than the dynamic range of the rest of the signal chain, in particular in
the case of flat-top windows, which had been limited to a sidelobe level of −90 dB so far. Then
the new flat-top window functions introduced in this paper, having a much better dynamic
range, become attractive.
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Figure 13 Maximal dynamic range due to digitizing noise, computed for NENBW=3
bins.

B Computing the response of a window function

The response a(f) of a window for a frequency offset of f bins can be computed as follows:

ar(f) =

N−1∑

j=0

wj cos(2πf j/N) , (real part) (40)

ai(f) =

N−1∑

j=0

wj sin(2πf j/N) , (imaginary part) (41)

a(f) =

√
a2

r + a2
i

S1
. (42)
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Using the symmetry of the window coefficients (Equation (18)) and some trigonometric relations
a(f) can be computed more efficiently as follows:

a0(f) = wN/2 + 2

N/2−1∑

j=1

wj cos

(
π f

[
2j

N
− 1

])
, (43)

ar(f) = w0 + cos(π f) a0(f), (44)

ai(f) = sin(π f) a0(f), (45)

a(f) =

√
a2

r + a2
i

S1
. (46)

For the common case w0 = 0 this can be further simplified:

a(f) = a0(f)/S1. (47)

In the case of windows that are defined as a sum of m cosine terms:

wj = 1 +

m∑

k=1

ck cos k
2π j

N
, (48)

the transfer function can be computed directly, without fixing a finite number N of samples,
and very efficiently as a sum of shifted Dirichlet kernels:

x(f) =
1

f
+

1

2

m∑

k=1

ck

(
1

f + k
+

1

f − k

)
, (49)

ar(f) = sin(2π f)
x(f)

2π
, (50)

ai(f) = (1 − cos(2π f))
x(f)

2π
, (51)

a(f) =
√

a2
r + a2

i , (52)

for frequency offsets f 6= 0, and a(0) = 1. If f falls on an exact integer k, the above expression
reduces to

a(f) = |ck|/2 . (53)

Incidentially, the normalized equivalent noise bandwidth NENBW can also be computed directly
for windows of the form (48):

NENBW = 1 +
1

2

m∑

k=1

c2
k . (54)

C List of window functions

This appendix lists many popular and useful window functions, including several new high-
performance functions recently developed by one of the authors (G.H.). Each window function
is described in a text section below and graphically shown on a seperate page at the end of this
document. Furthermore, Table 2 summarizes the main characteristics of each window.
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Text Graph PSLL SLDR NENBW 3 dB BW flatness ROV

Name Section page [dB] [f−n] [bins] [bins] [dB] [%]

Rectangular C.1 p.30 51 13.3 1 1.0000 0.8845 −3.9224 0.0

Welch C.3 p.31 53 21.3 2 1.2000 1.1535 −2.2248 29.3

Bartlett C.2 p.30 52 26.5 2 1.3333 1.2736 −1.8242 50.0

Hanning C.4 p.31 54 31.5 3 1.5000 1.4382 −1.4236 50.0

Hamming C.5 p.32 55 42.7 1 1.3628 1.3008 −1.7514 50.0

Nuttall3 C.7.1 p.34 57 46.7 5 1.9444 1.8496 −0.8630 64.7

Nuttall4 C.7.4 p.35 60 60.9 7 2.3100 2.1884 −0.6184 70.5

Nuttall3a C.7.2 p.35 58 64.2 3 1.7721 1.6828 −1.0453 61.2

Kaiser3 C.8 p.36 64 69.6 1 1.7952 1.7025 −1.0226 61.9

Nuttall3b C.7.3 p.35 59 71.5 1 1.7037 1.6162 −1.1352 59.8

Nuttall4a C.7.5 p.35 61 82.6 5 2.1253 2.0123 −0.7321 68.0

BH92 C.6 p.32 56 92.0 1 2.0044 1.8962 −0.8256 66.1

Nuttall4b C.7.6 p.36 62 93.3 3 2.0212 1.9122 −0.8118 66.3

Kaiser4 C.8 p.36 65 94.4 1 2.0533 1.9417 −0.7877 67.0

Nuttall4c C.7.7 p.36 63 98.1 1 1.9761 1.8687 −0.8506 65.6

Kaiser5 C.8 p.36 66 119.8 1 2.2830 2.1553 −0.6403 70.5

Flat-top windows:

SFT3F D.1.1 p.40 67 31.7 3 3.1681 3.1502 +0.0082 66.7

SFT3M D.1.4 p.41 70 44.2 1 2.9452 2.9183 −0.0115 65.5

FTNI D.2.1 p.42 73 44.4 1 2.9656 2.9355 +0.0169 65.6

SFT4F D.1.2 p.40 68 44.7 5 3.7970 3.7618 +0.0041 75.0

SFT5F D.1.3 p.40 69 57.3 7 4.3412 4.2910 −0.0025 78.5

SFT4M D.1.5 p.41 71 66.5 1 3.3868 3.3451 −0.0067 72.1

FTHP D.2.2 p.42 74 70.4 1 3.4279 3.3846 +0.0096 72.3

HFT70 D.3.1 p.45 76 70.4 1 3.4129 3.3720 −0.0065 72.2

FTSRS D.2.4 p.43 75 76.6 3 3.7702 3.7274 −0.0156 75.4

SFT5M D.1.6 p.41 72 89.9 1 3.8852 3.8340 +0.0039 76.0

HFT90D D.3.3 p.46 78 90.2 3 3.8832 3.8320 −0.0039 76.0

HFT95 D.3.2 p.46 77 95.0 1 3.8112 3.7590 +0.0044 75.6

HFT116D D.3.4 p.47 79 116.8 3 4.2186 4.1579 −0.0028 78.2

HFT144D D.3.5 p.47 80 144.1 3 4.5386 4.4697 +0.0021 79.9

HFT169D D.3.6 p.47 81 169.5 3 4.8347 4.7588 +0.0017 81.2

HFT196D D.3.7 p.48 82 196.2 3 5.1134 5.0308 +0.0013 82.3

HFT223D D.3.8 p.48 83 223.0 3 5.3888 5.3000 −0.0011 83.3

HFT248D D.3.9 p.49 84 248.4 3 5.6512 5.5567 +0.0009 84.1

Table 2 Summary of important characteristics of each window function dis-
cussed in this report. PSLL=‘peak sidelobe level’, SLDR=‘sidelobe drop rate’,
NENBW=‘normalized equivalent noise bandwidth’, ROV=‘recommended overlap’.
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C.1 Rectangular window

The rectangular window, also sometimes called ‘uniform window’, is given by

wj ≡ 1, (55)

i.e. equivalent to using no window at all. Its transfer function and characteristic bandwidths are
shown in Figure 15 on page 51 and are given by

NENBW = 1.0000 bins , (56)

W3 dB = 0.8845 bins , (57)

emax = −3.9224 dB = −36.3380%. (58)

The first zero is located at f = ±1.00 bins. The highest sidelobe is −13.3 dB, located at
f = ±1.43 bins. The sidelobes drop at a rate of f−1. Overlapping makes no sense for the
Rectangular window.

While W3 dB is the narrowest of all windows, emax and the spectral leakage are the worst of all
windows considered here. Although there are some special applications where the rectangular
window is advantageous, it is probably not useful for any of our applications in GEO 600 and
mentioned here mainly for completeness.

C.2 Bartlett window

The Bartlett window is described, e.g., in Reference [Harris78] and given by

z =
2 · j
N

, j = 0 . . . N − 1, (59)

wj =

{
z; z ≤ 1,

2 − z; z > 1,
(60)

i.e. a triangular function. Its transfer function and characteristics are shown in Figure 16 on
page 52 and are given by

NENBW = 1.3333 bins , (61)

W3 dB = 1.2736 bins , (62)

emax = −1.8242 dB = −18.9430%. (63)

The first zero is located at f = ±2.00 bins. The highest sidelobe is −26.5 dB, located at
f = ±2.86 bins. The sidelobes drop at a rate of f−2. At the optimal overlap of 50.0%, the
amplitude flatness is 1.000, the power flatness is 0.707, and the overlap correlation is 0.250 .

The Bartlett window offers a narrow bandwidth and might be useful in situations where the am-
plitude accuracy is unimportant and the relatively high first sidelobe does not disturb. In most
situations, however, the Bartlett window does not offer any particular advantage compared with
the more sophisticated windows described below and is mentioned here mainly for completeness.
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C.3 Welch window

The Welch window is described, e.g., in Reference [Harris78] and given by

z =
2 · j
N

, j = 0 . . . N − 1, (64)

wj = 1 − (z − 1)2 ; (65)

i.e. a parabolic function. Its transfer function and characteristics are shown in Figure 17 on
page 53 and are given by

NENBW = 1.2000 bins , (66)

W3 dB = 1.1535 bins , (67)

emax = −2.2248 dB = −22.5962%. (68)

The first zero is located at f = ±1.43 bins. The highest sidelobe is −21.3 dB, located at
f = ±1.83 bins. The sidelobes drop at a rate of f−2. At the optimal overlap of 29.3%, the
amplitude flatness is 0.828, the power flatness is 0.707, and the overlap correlation is 0.091 .

The Welch window offers a narrow bandwidth and might be useful in situations where the am-
plitude accuracy is unimportant and the relatively high first sidelobe does not disturb. In most
situations, however, the Welch window does not offer any particular advantage compared with
the more sophisticated windows described below and is mentioned here mainly for completeness.

C.4 Hanning window

The Hanning window (one of a family of ‘raised cosine’ windows) is also known as ‘Hann win-
dow’. According to Reference [Harris78], it is named after the Austrian meteorologist Julius von
Hann. Do not confuse it with the ‘Hamming’ window (see Section C.5). The Hanning window
has already been used as example in Section 8, its properties are summarized here again for
completeness. It is described, e.g., in Reference [Harris78] and given by

z =
2π · j

N
, j = 0 . . . N − 1, (69)

wj =
1 − cos(z)

2
= cos2

(
z − π

2

)
; (70)

i.e. part of a cosine function. Its transfer function and characteristics are shown in Figure 18 on
page 54 and are given by

NENBW = 1.5000 bins , (71)

W3 dB = 1.4382 bins , (72)

emax = −1.4236 dB = −15.1174%. (73)

The first zero is located at f = ±2.00 bins. The highest sidelobe is −31.5 dB, located at
f = ±2.36 bins. The sidelobes drop at a rate of f−3. At the optimal overlap of 50.0%, the
amplitude flatness is 1.000, the power flatness is 0.707, and the overlap correlation is 0.167 .

The Hanning window has reasonably low spectral leakage and bandwidth and is hence used as
standard window function in many commercial spectrum analyzers, if amplitude accuracy for
sinusoidal signals is not important (i.e. in noise measurements).
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C.5 Hamming window

The Hamming window is the simplest example of a family of windows that are constructed as a
weighted sum of a constant term and some cosine terms. Do not confuse it with the ‘Hanning’
window (see Section C.4). The Hamming window is given by

z =
2π · j

N
, j = 0 . . . N − 1, (74)

wj = 0.54 − 0.46 cos(z); (75)

The coefficients are chosen such that the first sidelobe becomes nearly minimal.7 There is
discontinuity of 0.08 at the boundary, leading to a sidelobe-drop rate of only f −1. The transfer
function and characteristics are shown in Figure 19 on page 55 and are given by

NENBW = 1.3628 bins , (76)

W3 dB = 1.3008 bins , (77)

emax = −1.7514 dB = −18.2612%. (78)

The first zero is located at f = ±2.00 bins. The highest sidelobe is −42.7 dB, located at
f = ±4.50 bins. At the optimal overlap of 50.0%, the amplitude flatness is 1.000, the power
flatness is 0.761, and the overlap correlation is 0.234 . The last graph in Figure 19 on page 55
shows some discontinuities in the ‘amplitude flatness (AF)’ curve. These originate from the
discontinuity at the boundary in the time domain. If, for an overlap of 50 %, two instances of
the window are exactly adjacent to each other without any gap, the resulting summed amplitude
becomes perfectly flat (similar to the Hanning window for 50 % overlap), and the amplitude
flatness reaches unity. A gap or overlap of only one sample in the time domain, however, causes
a dip or peak in the summed amplitude, which results in an amplitude flatness of less than unity.

The Hamming window offers a narrow bandwidth and might be useful in situations where the
amplitude accuracy is unimportant and the slow dropping rate of the sidelobes does not disturb.

C.6 Blackman-Harris window

The Blackman-Harris window is one of a family of window functions given by a sum of cosine
terms. By varying the number and coefficients of the terms different characteristics can be
optimized. The window we describe here is called ‘minimum 4-term Blackman-Harris window’
and was designed to have a small sidelobe adjacent to the main peak in the transfer function.
Because the highest sidelobe is 92 dB below the main peak, it is also called ‘92 dB Blackman-
Harris window’ to distinguish it from other members of that family. In this report its name is
also abbreviated as ‘BH92’. It is described in [Harris78] and given by

z =
2π · j

N
, j = 0 . . . N − 1, (79)

wj = 0.35875 − 0.48829 cos(z) + 0.14128 cos(2z) − 0.01168 cos(3z). (80)

Its transfer function and characteristics are shown in Figure 20 on page 56 and are given by

NENBW = 2.0044 bins , (81)

W3 dB = 1.8962 bins , (82)

emax = −0.8256 dB = −9.0670%. (83)

7The minimal sidelobe level that can be reached with this form of function is -43.2 dB for a window given by
0.538379 − 0.461621 cos(z).
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The first zero is located at f = ±4.00 bins. The highest sidelobe is −92.0 dB, located at
f = ±4.52 bins. The sidelobes drop at a rate of f−1. At the optimal overlap of 66.1%, the
amplitude flatness is 0.926, the power flatness is 0.718, and the overlap correlation is 0.235 .

The Blackman-Harris window has very low spectral leakage combined with reasonable bandwidth
and amplitude error. Due to its small sidelobes it is suitable for the detection of small sinusoidal
signals adjacent in frequency to large signals. It can also be used as a general-purpose window
in applications with high dynamic range if amplitude accuracy for sinusoidal signals is not very
important. Note, however, that two of the Nuttall windows (called ‘Nuttall4b’ and ‘Nuttall4c’,
see next Section C.7) have even lower sidelobes with the same number of cosine terms and
otherwise comparable properties.

C.7 Nuttall windows

These windows are defined as a weighted sum of cosine terms (as are the Hanning, Hamming,
Blackman-Harris and flat-top windows):

z =
2π · j

N
, j = 0 . . . N − 1, (84)

wj =

m∑

k=0

ck cos(k · z) = c0 +

m∑

k=1

ck cos(k · z). (85)

Nuttall gives several sets of coefficients {ck} in his paper [Nuttall81], which are optimized for
different aims. The coefficients are summarized in Table 3.

Name c0 c1 c2 c3 SLDR PSLL Graph

f−n [dB] page

Nuttall3 0.375 −0.5 0.125 0 5 −46.7 57

Nuttall3a 0.40897 −0.5 0.09103 0 3 −64.2 58

Nuttall3b 0.4243801 −0.4973406 0.0782793 0 1 −71.5 59

Nuttall4 0.3125 −0.46875 0.1875 −0.03125 7 −60.9 60

Nuttall4a 0.338946 −0.481973 0.161054 −0.018027 5 −82.6 61

Nuttall4b 0.355768 −0.487396 0.144232 −0.012604 3 −93.3 62

Nuttall4c 0.3635819 −0.4891775 0.1365995 −0.0106411 1 −98.1 63

Table 3 Coefficients of Nuttall window functions, to be used with Equation (85).

In designing these window functions, a trade-off has been made between the dropping rate of the
sidelobes (SLDR) and the maximal sidelobe level. After first selecting the number of terms (e.g.
the window functions named Nuttall3 have 3 terms: one constant term and two cosine terms)
one fixes the degree of differentiability of the window function at its boundary.

For functions of the form (85) it turns out that each extra condition on the coefficients is enough
to make the function twice more differentiable, i.e. the condition

m∑

k=0

ck = 0 (86)
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ensures that the function is continuous at the boundary but at the same time implies that
it is also differentiable once and hence has a SLDR of f−3. A function that does not fulfill
Equation (86) is discontinuous at the boundary and has a SLDR of f−1 only.

Similarly, the condition

m∑

k=0

k2 ck = 0 (87)

ensures not only twice, but also three times differentiability and hence results in a SLDR of f−5,
while

m∑

k=0

k4 ck = 0 (88)

yields a SLDR of f−7 etc.

The window functions called ‘Nuttall3’ and ‘Nuttall4’ are chosen such as to have the maximum
possible degree of differentiability for a given number of terms. After fixing an arbitrary common
factor8, there are two or three degrees of freedom available in the ‘Nuttall3’ and ‘Nuttall4’ family
of windows, respectively. The subsequent functions called ‘a’, ‘b’, etc., relax the differentiability
requirement by one level each and use the degrees of freedom thus becoming available to minimize
the peak sidelobe level (PSLL).

The ‘Nuttall2’ window, i.e. one cosine term chosen for maximal differentiability, is just the
Hanning window, while the window that might be called ‘Nuttall2a’ (minimal PSLL) would be
the Hamming window.

The Nuttall windows, especially ‘Nuttall3b’, ‘Nuttall4b’ and ‘Nuttall4c’, have very low spectral
leakage combined with reasonable bandwidth and amplitude error. Due to their small sidelobes
they are suitable for the detection of small sinusoidal signals adjacent in frequency to large
signals. They can also be used as a general-purpose window in applications with high dynamic
range if amplitude accuracy for sinusoidal signals is not very important.

C.7.1 Nuttall3

The window called ‘Nuttall3’ is derived by requiring the maximal possible SLDR of f−5 for a
three-term function. Its coefficients are taken from Ref. [Nuttall81] and listed in Table 3. The
function is identical to cos4(π(j/N − 1/2)). The transfer function and characteristics are shown
in Figure 21 and are given by

NENBW = 1.9444 bins , (89)

W3 dB = 1.8496 bins , (90)

emax = −0.8630 dB = −9.4585%. (91)

The first zero is located at f = ±3.00 bins. The highest sidelobe is −46.7 dB, located at
f = ±3.33 bins. At the optimal overlap of 64.7%, the amplitude flatness is 0.969, the power
flatness is 0.738, and the overlap correlation is 0.228 .

8Nuttall chose the condition
�

(−1)kck = 1 which corresponds to normalizing the value of the window function
in the center to unity: wN/2 = 1.
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C.7.2 Nuttall3a

The window called ‘Nuttall3a’ is derived by requiring a SLDR of f−3 for a three-term function
and using the remaining degree of freedom to minimize the PSLL. Its coefficients are taken from
Ref. [Nuttall81] and listed in Table 3. The transfer function and characteristics are shown in
Figure 22 and are given by

NENBW = 1.7721 bins , (92)

W3 dB = 1.6828 bins , (93)

emax = −1.0453 dB = −11.3387%. (94)

The first zero is located at f = ±3.00 bins. The highest sidelobe is −64.2 dB, located at
f = ±4.49 bins. At the optimal overlap of 61.2%, the amplitude flatness is 0.943, the power
flatness is 0.723, and the overlap correlation is 0.227 .

C.7.3 Nuttall3b

The window called ‘Nuttall3b’ is derived by using the two degrees of freedom in a three-term
function to minimize the PSLL. Its coefficients are taken from Ref. [Nuttall81] and listed in
Table 3. The transfer function and characteristics are shown in Figure 23 and are given by

NENBW = 1.7037 bins , (95)

W3 dB = 1.6162 bins , (96)

emax = −1.1352 dB = −12.2519%. (97)

The first zero is located at f = ±3.00 bins. The highest sidelobe is −71.5 dB, located at
f = ±3.64 bins. At the optimal overlap of 59.8%, the amplitude flatness is 0.939, the power
flatness is 0.721, and the overlap correlation is 0.229 .

C.7.4 Nuttall4

The window called ‘Nuttall4’ is derived by requiring the maximal possible SLDR of f−7 for a
four-term function. Its coefficients are taken from Ref. [Nuttall81] and listed in Table 3. The
function is identical to cos6(π(j/N − 1/2)). The transfer function and characteristics are shown
in Figure 24 and are given by

NENBW = 2.3100 bins , (98)

W3 dB = 2.1884 bins , (99)

emax = −0.6184 dB = −6.8716%. (100)

The first zero is located at f = ±4.00 bins. The highest sidelobe is −60.9 dB, located at
f = ±4.30 bins. At the optimal overlap of 70.5%, the amplitude flatness is 0.937, the power
flatness is 0.723, and the overlap correlation is 0.233 .

C.7.5 Nuttall4a

The window called ‘Nuttall4a’ is derived by requiring a SLDR of f−5 for a four-term function
and using the remaining degree of freedom to minimize the PSLL. Its coefficients are taken from
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Ref. [Nuttall81] and listed in Table 3. The transfer function and characteristics are shown in
Figure 25 and are given by

NENBW = 2.1253 bins , (101)

W3 dB = 2.0123 bins , (102)

emax = −0.7321 dB = −8.0827%. (103)

The first zero is located at f = ±4.00 bins. The highest sidelobe is −82.6 dB, located at
f = ±5.45 bins. At the optimal overlap of 68.0%, the amplitude flatness is 0.931, the power
flatness is 0.721, and the overlap correlation is 0.234 .

C.7.6 Nuttall4b

The window called ‘Nuttall4b’ is derived by requiring a SLDR of f−3 for a four-term function
and using the remaining two degrees of freedom to minimize the PSLL. Its coefficients are taken
from Ref. [Nuttall81] and given in Table 3. The transfer function and characteristics are shown
in Figure 26 and are given by

NENBW = 2.0212 bins , (104)

W3 dB = 1.9122 bins , (105)

emax = −0.8118 dB = −8.9223%. (106)

The first zero is located at f = ±4.00 bins. The highest sidelobe is −93.3 dB, located at
f = ±4.57 bins. At the optimal overlap of 66.3%, the amplitude flatness is 0.924, the power
flatness is 0.715, and the overlap correlation is 0.233 .

C.7.7 Nuttall4c

The window called ‘Nuttall4c’ is derived by using all three degrees of freedom in a four-term
function to minimize the PSLL. Its coefficients are taken from Ref. [Nuttall81] and listed in
Table 3. The transfer function and characteristics are shown in Figure 26 and are given by

NENBW = 1.9761 bins , (107)

W3 dB = 1.8687 bins , (108)

emax = −0.8506 dB = −9.3282%. (109)

The first zero is located at f = ±4.00 bins. The highest sidelobe is −98.1 dB, located at
f = ±6.48 bins. At the optimal overlap of 65.6%, the amplitude flatness is 0.923, the power
flatness is 0.716, and the overlap correlation is 0.235 .

C.8 Kaiser window

The Kaiser window (also called Kaiser-Bessel window) is derived by maximizing, in a certain
sense, the energy that falls in the main peak of the transfer function. It is defined by (see, e.g.,
Reference [Harris78]):

z =
2 · j
N

− 1, j = 0 . . . N − 1, (110)

wj =
I0

(
πα

√
1 − z2

)

I0 (πα)
; (111)
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α PSLL NENBW 3 dB BW zero flatness ROV

[dB] [bins] [bins] [bins] [dB] [%]

2.0 −45.9 1.4963 1.4270 2.24 −1.4527 53.4

2.5 −57.6 1.6519 1.5700 2.69 −1.2010 58.3

3.0 −69.6 1.7952 1.7025 3.16 −1.0226 61.9

3.5 −81.9 1.9284 1.8262 3.64 −0.8900 64.7

4.0 −94.4 2.0533 1.9417 4.12 −0.7877 67.0

4.5 −107.0 2.1712 2.0512 4.61 −0.7064 68.9

5.0 −119.8 2.2830 2.1553 5.10 −0.6403 70.5

5.5 −132.6 2.3898 2.2546 5.59 −0.5854 71.9

6.0 −145.5 2.4920 2.3499 6.08 −0.5392 73.1

6.5 −158.4 2.5902 2.4414 6.58 −0.4998 74.1

7.0 −171.4 2.6848 2.5297 7.07 −0.4657 75.1

Table 4 Summary of important characteristics of the Kaiser window for some values
of the parameter α. PSLL=‘peak sidelobe level’, NENBW=‘normalized equivalent
noise bandwidth’, ‘zero’=‘location of first zero’, ROV=‘recommended overlap’.

where I0 is the zero-order modified Bessel function of the first kind:

I0(x) =

∞∑

k=0

[
(x/2)k

k!

]2

, (112)

and α is a parameter that parameterizes a trade-off between the sidelobe level and the width
of the central peak. Typical values are in the range 2 to 5. The Kaiser window has a small
but finite discontinuity at the boundary and hence its sidelobes drop only as f −1, although the
initial sidelobe level is rather low.

In order to assist in choosing appropriate values of the parameter α, Table 4 lists the important
characteristics of the Kaiser windows for different values of α. We discuss here in detail and
show in the Appendix F the three cases α = 3, α = 4 and α = 5:

Kaiser window with α = 3 : The transfer function and characteristics are shown in Figure 28
and are given by

NENBW = 1.7952 bins , (113)

W3 dB = 1.7025 bins , (114)

emax = −1.0226 dB = −11.1069%. (115)

The first zero is located at f = ±3.16 bins. The highest sidelobe is −69.6 dB, located at
f = ±3.32 bins. At the optimal overlap of 61.9%, the amplitude flatness is 0.938, the
power flatness is 0.722, and the overlap correlation is 0.230 .

Kaiser window with α = 4 : The transfer function and characteristics are shown in Figure 29
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and are given by

NENBW = 2.0533 bins , (116)

W3 dB = 1.9417 bins , (117)

emax = −0.7877 dB = −8.6697%. (118)

The first zero is located at f = ±4.12 bins. The highest sidelobe is −94.4 dB, located at
f = ±4.25 bins. At the optimal overlap of 67.0%, the amplitude flatness is 0.925, the
power flatness is 0.719, and the overlap correlation is 0.237 .

Kaiser window with α = 5 : The transfer function and characteristics are shown in Figure 30
and are given by

NENBW = 2.2830 bins , (119)

W3 dB = 2.1553 bins , (120)

emax = −0.6403 dB = −7.1061%. (121)

The first zero is located at f = ±5.10 bins. The highest sidelobe is −119.8 dB, located
at f = ±5.20 bins. At the optimal overlap of 70.5%, the amplitude flatness is 0.919, the
power flatness is 0.717, and the overlap correlation is 0.241 .

The Kaiser window is comparable in performance and potential applications to the Blackman-
Harris and Nuttall windows discussed in the previous subsections. Due to its ‘tunability’ with
the parameter α it can easily be optimized for a certain application. A small disadvantage might
be the necessity to compute the Bessel function (112).

D Flat-Top windows

If one required result of the data processing is to determine the exact amplitude of a sinusoidal
component in the input signal (as will be necessary for detector calibration purposes in GEO 600),
all the windows discussed so far are rather unsatisfactory. The amplitude of the peak may be
misestimated by 1 dB or more, depending on the precise location of the peak frequency within the
closest frequency bin. The maximum amplitude error (as defined in Section 8.2) has been given
as emax in the descriptions above. For the best window so far in this respect, the ‘Nuttall4’
window, it is 0.62 dB corresponding to an amplitude error of about 7%, too much for many
purposes.

Hence some people, including the manufacturers of commercial spectrum analyzers, have de-
veloped window functions that are as flat as possible in the frequency domain for frequency
offsets −0.5 ≤ f ≤ 0.5 (measured in frequency bins). These are known as ‘flat-top windows’.
The author is aware of only one paper, [Salvatore88], that gives formulae for flat-top windows.
The windows from this paper are discussed in Section D.1.

Three more flat-top window functions that were found in various sources, such as user manuals
from spectrum analyzers etc., are discussed in Section D.2.

Since none of these have a sidelobe rejection sufficient for the purposes of the GEO 600 data
analysis, the author has developed several new flat-top windows, described in Section D.3 below.

All flat-top windows are defined in a manner similar to the Blackman-Harris window, i.e. as sum
of a few cosine terms. All of them are negative in a fraction of their time-series representation.
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Note also that these windows are not at all flat in the time domain (see graphs in Appendix F
below).

All these flat-top windows have bandwidths of about 3. . . 5 bins, roughly twice as wide as non-
flat-top windows with comparable sidelobe suppression. In many situations this is not a severe
disadvantage, because it can be compensated by choosing a smaller frequency resolution fres,
i.e. a larger value of the FFT length N , provided the the input data stream is long enough.

D.1 Published flat-top windows

The only paper known to the author that gives formulae of flat-top windows introduces 6 different
flat-top windows (Reference [Salvatore88]).

These windows are defined as a weighted sum of cosine terms (as are the Hanning, Hamming,
Blackman-Harris and Nuttall windows):

z =
2π · j

N
, j = 0 . . . N − 1, (122)

wj =

m∑

k=0

ck cos(k · z) = c0 +

m∑

k=1

ck cos(k · z). (123)

In a manner similar to Nuttall (see Section C.7) two different window functions are defined
for each (fixed) number of cosine terms by requiring different conditions that translate into
equations for the unknown coefficients of the cosine terms. In addition to the differentiability
conditions (86), (87) and (88), one more condition is imposed on each of the window functions
below:

a(fk) = 0 for a certain fk / 0.5, i.e. fk ≈ 0.45. (124)

This condition demands that the transfer function reaches a zero at a predefined frequency offset
near the end of the −0.5 ≤ f ≤ 0.5 interval, thus making the transfer function nearly flat in
that interval. The two types of window function for each number of terms are:

‘fast decaying’ (abbreviated ‘F’) that enforces the highest possible degree of differentiability
at the boundary and thus the fastest possible sidelobe drop rate by requiring as many of
the conditions (86), (87) and (88) as possible;

‘minimum sidelobe’ (abbreviated ‘M’) that uses the available degrees of freedom to minimize
the level of the highest sidelobe. Actually in [Salvatore88] an analytical condition is used
that enforces a zero of the transfer function at an arbitrarily selected frequency. This is
not exactly equivalent to minimizing the level of the highest sidelobe, see also Section D.3.

The coefficients of the 6 window functions are summarized in Table 5. More information about
each window can be found in Table 2 on page 29 and in the graph for each window, printed
at the end of this report between pages 67 and 72. Note that there are some small discrep-
ancies concerning the numbers given for the peak sidelobe level PSLL between the original
paper[Salvatore88] and this work; the author believes that the numbers printed in this work are
correct.

39



Name c0 c1 c2 c3 c4 SLDR PSLL Graph

f−n [dB] page

SFT3F 0.26526 −0.5 0.23474 0 0 3 −31.7 67

SFT4F 0.21706 −0.42103 0.28294 −0.07897 0 5 −44.7 68

SFT5F 0.1881 −0.36923 0.28702 −0.13077 0.02488 7 −57.3 69

SFT3M 0.28235 −0.52105 0.19659 0 0 1 −44.2 70

SFT4M 0.241906 −0.460841 0.255381 −0.041872 0 1 −66.5 71

SFT5M 0.209671 −0.407331 0.281225 −0.092669 0.0091036 1 −89.9 72

Table 5 Coefficients of Salvatore flat-top window functions, to be used with Equa-
tion (123).

D.1.1 Fast decaying 3-term flat top window

This window, called ‘SFT3F’ in this report, is derived by requiring the flatness condition (124)
and a SLDR of f−3. Its coefficients are taken from Ref. [Salvatore88] and listed in Table 5. The
transfer function and characteristics are shown in Figure 31 on page 67 and are given by

NENBW = 3.1681 bins , (125)

W3 dB = 3.1502 bins , (126)

emax = 0.0082 dB = 0.0946%. (127)

The first zero is located at f = ±3.00 bins. The highest sidelobe is −31.7 dB, located at
f = ±3.37 bins. At the optimal overlap of 66.7%, the amplitude flatness is 0.998, the power
flatness is 0.558, and the overlap correlation is -0.029 .

D.1.2 Fast decaying 4-term flat top window

This window, called ‘SFT4F’ in this report, is derived by requiring the flatness condition (124)
and a SLDR of f−5. Its coefficients are taken from Ref. [Salvatore88] and listed in Table 5. The
transfer function and characteristics are shown in Figure 32 on page 68 and are given by

NENBW = 3.7970 bins , (128)

W3 dB = 3.7618 bins , (129)

emax = 0.0041 dB = 0.0472%. (130)

The first zero is located at f = ±4.00 bins. The highest sidelobe is −44.7 dB, located at
f = ±4.33 bins. At the optimal overlap of 75.0%, the amplitude flatness is 1.000, the power
flatness is 0.647, and the overlap correlation is 0.039 .

D.1.3 Fast decaying 5-term flat top window

This window, called ‘SFT5F’ in this report, is derived by requiring the flatness condition (124)
and a SLDR of f−7. Its coefficients are taken from Ref. [Salvatore88] and listed in Table 5. The
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transfer function and characteristics are shown in Figure 33 on page 69 and are given by

NENBW = 4.3412 bins , (131)

W3 dB = 4.2910 bins , (132)

emax = −0.0025 dB = −0.0282%. (133)

The first zero is located at f = ±5.00 bins. The highest sidelobe is −57.3 dB, located at
f = ±5.31 bins. At the optimal overlap of 78.5%, the amplitude flatness is 0.969, the power
flatness is 0.648, and the overlap correlation is 0.052 .

D.1.4 Minimum sidelobe 3-term flat top window

This window, called ‘SFT3M’ in this report, is derived by requiring the flatness condition (124)
and using the remaining degree of freedom to reduce the peak sidelobe level. Its coefficients are
taken from Ref. [Salvatore88] and listed in Table 5. The transfer function and characteristics
are shown in Figure 34 on page 70 and are given by

NENBW = 2.9452 bins , (134)

W3 dB = 2.9183 bins , (135)

emax = −0.0115 dB = −0.1323%. (136)

The first zero is located at f = ±3.00 bins. The highest sidelobe is −44.2 dB, located at
f = ±5.50 bins. The sidelobes drop at a rate of f−1. At the optimal overlap of 65.5%, the
amplitude flatness is 0.949, the power flatness is 0.584, and the overlap correlation is -0.005 .

D.1.5 Minimum sidelobe 4-term flat top window

This window, called ‘SFT4M’ in this report, is derived by requiring the flatness condition (124)
and using the remaining two degrees of freedom to reduce the peak sidelobe level. Its coefficients
are taken from Ref. [Salvatore88] and listed in Table 5. The transfer function and characteristics
are shown in Figure 35 on page 71 and are given by

NENBW = 3.3868 bins , (137)

W3 dB = 3.3451 bins , (138)

emax = −0.0067 dB = 0.0776%. (139)

The first zero is located at f = ±4.00 bins. The highest sidelobe is −66.5 dB, located at
f = ±10.50 bins. The sidelobes drop at a rate of f−1. At the optimal overlap of 72.1%, the
amplitude flatness is 0.964, the power flatness is 0.641, and the overlap correlation is 0.044 .

The HFT70 window (see Section D.3.1 on page 45) was designed with the same aims and reaches
a better sidelobe suppression due to a better optimization procedure.

D.1.6 Minimum sidelobe 5-term flat top window

This window, called ‘SFT5M’ in this report, is derived by requiring the flatness condition (124)
and using the remaining two degrees of freedom to reduce the peak sidelobe level.9 Its coefficients

9In the original work [Salvatore88] it is claimed that the remaining degree of freedom was used to enforce
condition (86) and thus ensure a SLDR of f−3. The coefficients listed in the paper do not, however, exactly fulfill
this condition and the sidelobes accordingly drop only as f−1 for f > 300, see Figure 36. The window HFT90D
(see Section D.3.3 and Figure 42 on page 78) is very similar to SFT5M and exactly fulfills condition (86).
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are taken from Ref. [Salvatore88] and listed in Table 5. The transfer function and characteristics
are shown in Figure 35 on page 71 and are given by

NENBW = 3.8852 bins , (140)

W3 dB = 3.8340 bins , (141)

emax = 0.0039 dB = 0.0449%. (142)

The first zero is located at f = ±5.00 bins. The highest sidelobe is −89.9 dB, located at
f = ±5.12 bins. The sidelobes drop at a rate of f−1. At the optimal overlap of 76.0%, the
amplitude flatness is 0.953, the power flatness is 0.645, and the overlap correlation is 0.053 .

D.2 Flat-top windows by instrument makers

Because of the practical importance of flat-top windows and the lack (until recently) of published
information, the makers of spectrum analyzers and related software have developed their own
flat-top windows. All those that the author could find in user manuals, web pages, usenet
discussions etc. are discussed in this Section.

D.2.1 National Instruments flat-top window

This window function, abbreviated ‘FTNI’ in this report, is cited by National Instruments on
its web page and is defined by

z =
2π · j

N
, j = 0 . . . N − 1, (143)

wj = 0.2810639 − 0.5208972 cos(z) + 0.1980399 cos(2z). (144)

The transfer function and characteristics are shown in Figure 37 on page 73 and are given by

NENBW = 2.9656 bins , (145)

W3 dB = 2.9355 bins , (146)

emax = 0.0169 dB = 0.1946%. (147)

The first zero is located at f = ±3.00 bins. The highest sidelobe is −44.4 dB, located at
f = ±3.23 bins. The sidelobes drop at a rate of f−1. At the optimal overlap of 65.6%, the
amplitude flatness is 0.950, the power flatness is 0.584, and the overlap correlation is -0.007 .
This window is very similar to SFT3M (see Section D.1.4 and Figure 34 on page 70).

D.2.2 Old HP flat-top window

This window function, abbreviated ‘FTHP’ in this report, had been used in some older HP
spectrum analyzers and is defined by

z =
2π · j

N
, j = 0 . . . N − 1, (148)

wj = 1.0 − 1.912510941 cos(z) + 1.079173272 cos(2z) − 0.1832630879 cos(3z). (149)
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Its transfer function and characteristics are shown in Figure 38 on page 74 and are given by

NENBW = 3.4279 bins , (150)

W3 dB = 3.3846 bins , (151)

emax = 0.0096 dB = 0.1103%. (152)

The first zero is located at f = ±4.00 bins. The highest sidelobe is −70.4 dB, located at
f = ±4.65 bins. The sidelobes drop at a rate of f−1. At the optimal overlap of 72.3%, the
amplitude flatness is 0.966, the power flatness is 0.640, and the overlap correlation is 0.041 .

The HFT70 window (see Section D.3.1) is very similar to the FTHP window, it reaches the same
sidelobe level with a smaller amplitude error emax and a marginally smaller bandwidth.

D.2.3 Undisclosed HP flat-top window

Newer spectrum analyzers from HP/Agilent (such as the 3562 and 35670A) use another flat-
top window. Agilent insists that the precise definition is ‘proprietary’ and cannot be given out
without a non-disclosure agreement, disclosing only that it is ‘a basic cosine function with 4
terms’. It is, however, possible to measure the transfer function of the flat-top window and
compare it with the known flat-top windows. It turns out that the closest match is the ‘HFT95’
window (see Section D.3.2 and Figure 41 on page 77). The comparison is shown in Figure 14.

It can be seen that the 35670A flat-top window is very close to the ‘HFT95’ window, which also
has a similar equivalent noise bandwidth. That value could not be found in the documentation
either, but can be deduced from the conversion factor between measurements in V and V/

√
Hz,

as described in Section 9. The normalized equivalent noise bandwidth of the 35670A flat-top
window, as programmed into its software, is

NENBW = 3.819 bins , (153)

compared with NENBW = 3.811 bins for the ‘HFT95’ window.

D.2.4 Stanford Research flat-top window

This window function, abbreviated ‘FTSRS’ in this report, is used in the Stanford Research
SR785 spectrum analyzer and is defined by (according to the user manual):

z =
2π · j

N
, j = 0 . . . N − 1, (154)

wj = 1.0 − 1.93 cos(z) + 1.29 cos(2z) − 0.388 cos(3z) + 0.028 cos(4z). (155)

Its transfer function and characteristics are shown in Figure 39 on page 75 and are given by

NENBW = 3.7702 bins , (156)

W3 dB = 3.7274 bins , (157)

emax = −0.0156 dB = −0.1796%. (158)

The first zero is located at f = ±4.72 bins. The highest sidelobe is −76.6 dB, located at
f = ±5.37 bins. The sidelobes drop at a rate of f−3. At the optimal overlap of 75.4%, the
amplitude flatness is 0.958, the power flatness is 0.647, and the overlap correlation is 0.055 .
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Figure 14 Measured flat-top window of Agilent 35670A dynamic signal analyzer.
The black asterisks represent the measured data, while the solid curve show the
computed transfer function of the ‘HFT95’ flat-top window discussed in the text.
The analyzer was set to a resolution of 1600 lines. For frequency offsets more than
approximately ±5 bins the measurement was dominated by the analyzer noise floor,
which was approximately −93 dB in this measurement.
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D.3 New flat-top windows

Since the flat-top windows available so far are not sufficient for the the data analysis of GEO 600
in all situations,10 new flat-top windows with improved characteristics have been developed by
the author. Their basic form is again a sum of cosine terms, with the first term c0 arbitrarily
set to unity:11

z =
2π · j

N
, j = 0 . . . N − 1, (159)

wj = 1 +
m∑

k=1

ck cos(k · z). (160)

Most of the functions presented below additionally fulfill the condition

1 +

m∑

k=1

ck = 0 (161)

which ensures that the function is continuous at the boundary but at the same time implies
that is also differentiable once and hence has a sidelobe dropping rate (SLDR) of f−3. These
functions are called ‘HFTxxD’ in this report, where the ‘D’ stands for ‘differentiable’ and xx
is the maximal sidelobe level in dB.12 Those functions that do not fulfill Equation (161) are
discontinuous at the boundary, have a SLDR of f−1 only and are called ‘HFTxx’

The functions were developed by applying nonlinear optimization algorithms to a ‘figure-of-
merit’ function that was formed as a combination of the flatness for −0.5 ≤ f ≤ 0.5, the width
of the main lobe, and the peak sidelobe level. The parameters to be varied by the algorithms were
the coefficients ck of Equation (160). Up to 8 parameters were used in the optimization. The
resulting window functions are presented below, with a short text section giving their formula
and describing their main characteristics, and a detailed graph near the end of this report.

D.3.1 HFT70

This window was optimized for the lowest sidelobe level that is achieveable with 3 cosine terms,
i.e. the same aims as were used for the SFT4M window (see Section D.1.5). Because of the
better optimization procedure, a sidelobe level of −70.4 dB was reached instead of −66.5 dB in
the case of the SFT4M window. The window is defined as (see also Equation (160)):

wj = 1 − 1.90796 cos(z) + 1.07349 cos(2 z) − 0.18199 cos(3 z). (162)

Its transfer function and characteristics are shown in Figure 40 on page 76 and are given by

NENBW = 3.4129 bins , (163)

W3 dB = 3.3720 bins , (164)

emax = −0.0065 dB = 0.0750%. (165)

10The dynamic range of signals digitized with the main data acquisition system, for example, can reach more
than 120 dB, while the best flat-top window known so far has a sidelobe level of 90 dB only.

11The window can be defined with an arbitrary factor due to our use of the ‘window sums’ S1 and S2 in
the normalization of the results (see Equations (23) and (24)). Setting the first term c0 to unity simplified the
optimization procedure that was used to find the coefficients ck. Another possible normalization is the one chosen
by Nuttall (see the footnote in SectionC.7)

12The ‘H’ can stand for ‘high dynamic range’, ‘high sidelobe suppression’ etc.
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The first zero is located at f = ±4.00 bins. The highest sidelobe is −70.4 dB, located at
f = ±4.65 bins. The sidelobes drop at a rate of f−1. At the optimal overlap of 72.2%, the
amplitude flatness is 0.964, the power flatness is 0.637, and the overlap correlation is 0.041 .

D.3.2 HFT95

This window was optimized for the lowest sidelobe level that is achieveable with 4 cosine
terms. Its characteristics are very similar to those of the flat-top window that is used in newer
HP/Agilent spectrum analyzers, see Section D.2.3. The window is defined as (see also Equation
(160)):

wj = 1 − 1.9383379 cos(z) + 1.3045202 cos(2 z)

− 0.4028270 cos(3 z) + 0.0350665 cos(4 z). (166)

Its transfer function and characteristics are shown in Figure 41 on page 77 and are given by

NENBW = 3.8112 bins , (167)

W3 dB = 3.7590 bins , (168)

emax = 0.0044 dB = 0.0507%. (169)

The first zero is located at f = ±5.00 bins. The highest sidelobe is −95.0 dB, located at
f = ±7.49 bins. The sidelobes drop at a rate of f−1. At the optimal overlap of 75.6%, the
amplitude flatness is 0.952, the power flatness is 0.647, and the overlap correlation is 0.056 .

D.3.3 HFT90D

This window was optimized for the lowest sidelobe level that is achieveable with 4 cosine terms
if condition (161) is additionally imposed to ensure a sidelobe-drop rate of f−3. It is very similar
to the SFT5M window (see Section D.1.6), although HFT90D achieves the same sidelobe level
at a marginally smaller bandwidth and with a sidelobe drop rate of f−3 instead of f−1. The
window is defined as (see also Equation (160)):

wj = 1 − 1.942604 cos(z) + 1.340318 cos(2 z)

− 0.440811 cos(3 z) + 0.043097 cos(4 z). (170)

Its transfer function and characteristics are shown in Figure 42 on page 78 and are given by

NENBW = 3.8832 bins , (171)

W3 dB = 3.8320 bins , (172)

emax = −0.0039 dB = 0.0450%. (173)

The first zero is located at f = ±5.00 bins. The highest sidelobe is −90.2 dB, located at
f = ±5.58 bins. The sidelobes drop at a rate of f−3. At the optimal overlap of 76.0%, the
amplitude flatness is 0.953, the power flatness is 0.646, and the overlap correlation is 0.054 .
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D.3.4 HFT116D

This window was optimized for the lowest sidelobe level that is achieveable with 5 cosine terms
if condition (161) is additionally imposed to ensure a sidelobe-drop rate of f−3. The window is
defined as (see also Equation (160)):

wj = 1 − 1.9575375 cos(z) + 1.4780705 cos(2 z) − 0.6367431 cos(3 z)

+ 0.1228389 cos(4 z) − 0.0066288 cos(5 z). (174)

Its transfer function and characteristics are shown in Figure 43 on page 79 and are given by

NENBW = 4.2186 bins , (175)

W3 dB = 4.1579 bins , (176)

emax = −0.0028 dB = 0.0326%. (177)

The first zero is located at f = ±6.00 bins. The highest sidelobe is −116.8 dB, located at
f = ±7.52 bins. At the optimal overlap of 78.2%, the amplitude flatness is 0.947, the power
flatness is 0.651, and the overlap correlation is 0.063 .

D.3.5 HFT144D

This window was optimized for the lowest sidelobe level that is achieveable with 6 cosine terms
if condition (161) is additionally imposed to ensure a sidelobe-drop rate of f−3. The window is
defined as (see also Equation (160)):

wj = 1 − 1.96760033 cos(z) + 1.57983607 cos(2 z) − 0.81123644 cos(3 z)

+ 0.22583558 cos(4 z) − 0.02773848 cos(5 z) + 0.00090360 cos(6 z). (178)

Its transfer function and characteristics are shown in Figure 44 on page 80 and are given by

NENBW = 4.5386 bins , (179)

W3 dB = 4.4697 bins , (180)

emax = 0.0021 dB = 0.0245%. (181)

The first zero is located at f = ±7.00 bins. The highest sidelobe is −144.1 dB, located at
f = ±7.07 bins. At the optimal overlap of 79.9%, the amplitude flatness is 0.942, the power
flatness is 0.655, and the overlap correlation is 0.069 .

D.3.6 HFT169D

This window was optimized for the lowest sidelobe level that is achieveable with 7 cosine terms
if condition (161) is additionally imposed to ensure a sidelobe-drop rate of f−3. The window is
defined as (see also Equation (160)):

wj = 1 − 1.97441842 cos(z) + 1.65409888 cos(2 z) − 0.95788186 cos(3 z)

+ 0.33673420 cos(4 z) − 0.06364621 cos(5 z)

+ 0.00521942 cos(6 z) − 0.00010599 cos(7 z). (182)
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Its transfer function and characteristics are shown in Figure 45 on page 81 and are given by

NENBW = 4.8347 bins , (183)

W3 dB = 4.7588 bins , (184)

emax = 0.0017 dB = 0.0191%. (185)

The first zero is located at f = ±8.00 bins. The highest sidelobe is −169.5 dB, located at
f = ±10.41 bins. At the optimal overlap of 81.2%, the amplitude flatness is 0.938, the power
flatness is 0.654, and the overlap correlation is 0.072 .

D.3.7 HFT196D

This window was optimized for the lowest sidelobe level that is achieveable with 8 cosine terms
if condition (161) is additionally imposed to ensure a sidelobe-drop rate of f−3. The window is
defined as (see also Equation (160)):

wj = 1 − 1.979280420 cos(z) + 1.710288951 cos(2 z) − 1.081629853 cos(3 z)

+ 0.448734314 cos(4 z) − 0.112376628 cos(5 z) + 0.015122992 cos(6 z)

− 0.000871252 cos(7 z) + 0.000011896 cos(8 z). (186)

Its transfer function and characteristics are shown in Figure 46 on page 82 and are given by

NENBW = 5.1134 bins , (187)

W3 dB = 5.0308 bins , (188)

emax = 0.0013 dB = 0.0153%. (189)

The first zero is located at f = ±9.00 bins. The highest sidelobe is −196.2 dB, located at
f = ±9.06 bins. At the optimal overlap of 82.3%, the amplitude flatness is 0.936, the power
flatness is 0.656, and the overlap correlation is 0.075 .

D.3.8 HFT223D

This window was optimized for the lowest sidelobe level that is achieveable with 9 cosine terms
if condition (161) is additionally imposed to ensure a sidelobe-drop rate of f−3. The window is
defined as (see also Equation (160)):

wj = 1 − 1.98298997309 cos(z) + 1.75556083063 cos(2 z)

− 1.19037717712 cos(3 z) + 0.56155440797 cos(4 z)

− 0.17296769663 cos(5 z) + 0.03233247087 cos(6 z)

− 0.00324954578 cos(7 z) + 0.00013801040 cos(8 z)

− 0.00000132725 cos(9 z). (190)

Its transfer function and characteristics are shown in Figure 47 on page 83 and are given by

NENBW = 5.3888 bins , (191)

W3 dB = 5.3000 bins , (192)

emax = −0.0011 dB = −0.0129%. (193)

The first zero is located at f = ±10.00 bins. The highest sidelobe is −223.0 dB, located at
f = ±11.38 bins. At the optimal overlap of 83.3%, the amplitude flatness is 0.936, the power
flatness is 0.659, and the overlap correlation is 0.079 .
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D.3.9 HFT248D

This window was optimized for the lowest sidelobe level that is achieveable with 10 cosine terms
if condition (161) is additionally imposed to ensure a sidelobe-drop rate of f−3. The window is
defined as (see also Equation (160)):

wj = 1 − 1.985844164102 cos(z) + 1.791176438506 cos(2 z)

− 1.282075284005 cos(3 z) + 0.667777530266 cos(4 z)

− 0.240160796576 cos(5 z) + 0.056656381764 cos(6 z)

− 0.008134974479 cos(7 z) + 0.000624544650 cos(8 z)

− 0.000019808998 cos(9 z) + 0.000000132974 cos(10 z). (194)

Its transfer function and characteristics are shown in Figure 48 on page 84 and are given by

NENBW = 5.6512 bins , (195)

W3 dB = 5.5567 bins , (196)

emax = 0.0009 dB = 0.0104%. (197)

The first zero is located at f = ±11.00 bins. The highest sidelobe is −248.4 dB, located at
f = ±13.37 bins. At the optimal overlap of 84.1%, the amplitude flatness is 0.934, the power
flatness is 0.659, and the overlap correlation is 0.080 .
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F Graphs of window functions

This appendix shows one comprehensive graph that includes the most important characteristics
for each window function discussed in the text. The first plot for each window shows the window
function in the time domain. For the plot it is normalized by computing

w′

j = wj
N

S1
. (198)

Such a normalization is not necessary for the real application of the window, since we will use
S1 in the scaling of the results (see Section 9). In fact, we can compute the window values wj

with any convenient constant factor for this reason.

The next four plots show the transfer function of the window function in the frequency domain,
with different x-axes. In the second of these plots the 3 dB bandwidth W3 dB is indicated with
two small red arrows. The last of these plots has a logarithmic x-axis up to 10 000 bins in
order to show the decay of the sidelobes far away from the main peak. For some of the window
functions which have a very steep decay (see e.g. Figure 24 on page 60), the sidelobe level falls
below −300 dB or so within the plot range and cannot be computed numerically any more; in
these cases the last part of the curve shown is dominated by numerical noise. When comparing
window functions, note that the y-axes are different for each window.

The last plot shows the overlap behaviour of the window, as discussed in Section 10. The
vertical arrow is drawn at the position of the recommended overlap (ROV), as defined in that
Section. For those windows that do not drop to zero at their end, again there is some numerical
instability in the computation which shows up as non-smooth steps mainly in the ‘amplitude
flatness’ curve (see also the discussion in Section C.5 on page 32 about the Hamming window,
where this effect is most noticeable). For the flat-top windows, which are negative in a fraction
of their time-domain representation, the amplitude flatness (AF) and overlap correlation (OC)
also become negative for small values of the overlap.

All graphs and bandwidths below have been numerically computed with actual discrete window
functions, using N = 1000, except for the 5th plot (logarithmic x-axis up to 10 000 bins), which
uses N = 30 000.
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Figure 15 Rectangular window. See text Section C.1 on page 30.
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Figure 16 Bartlett window. See text Section C.2 on page 30.
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Figure 17 Welch window. See text Section C.3 on page 31.
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Figure 18 Hanning window. See text Section C.4 on page 31.
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Figure 19 Hamming window. See text Section C.5 on page 32.
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Figure 20 92 dB Blackman-Harris window. See text Section C.6 on page 32.
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Figure 21 Nuttall3 window. See text Section C.7.1 on page 34.
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Figure 22 Nuttall3a window. See text Section C.7.2 on page 35.
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Figure 23 Nuttall3b window. See text Section C.7.3 on page 35.
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Figure 24 Nuttall4 window. See text Section C.7.4 on page 35.
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Figure 25 Nuttall4a window. See text Section C.7.5 on page 35.
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Figure 26 Nuttall4b window. See text Section C.7.6 on page 36.
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Figure 27 Nuttall4c window. See text Section C.7.7 on page 36.
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Figure 28 Kaiser window with α = 3. See text Section C.8 on page 36.
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Figure 29 Kaiser window with α = 4. See text Section C.8 on page 36.
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Figure 30 Kaiser window with α = 5. See text Section C.8 on page 36.
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Figure 31 Fast decaying 3-term flat top window. See text Section D.1 on page 39.
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Figure 32 Fast decaying 4-term flat top window. See text Section D.1 on page 39.
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Figure 33 Fast decaying 5-term flat top window. See text Section D.1 on page 39.
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Figure 34 Minimum sidelobe 3-term flat top window. See text Section D.1 on
page 39.
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Figure 35 Minimum sidelobe 4-term flat top window. See text Section D.1 on
page 39.
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Figure 36 Minimum sidelobe 5-term flat top window. See text Section D.1 on
page 39.
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Figure 37 Flat top window as described by National Instruments. See text Sec-
tion D.2.1 on page 42.
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Figure 38 Flat top window used in older HP spectrum analyzers. See text Sec-
tion D.2.2 on page 42.
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Figure 39 Flat top window used in the Stanford SR785 spectrum analyzer. See
text Section D.2.4 on page 43.
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Figure 40 HFT70 Flat top window. See text Section D.3.1 on page 45.
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Figure 41 HFT95 Flat top window. See text Section D.3.2 on page 46.
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Figure 42 HFT90D Flat top window. See text Section D.3.3 on page 46.
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Figure 43 HFT116D Flat top window. See text Section D.3.4 on page 47.

79



-1

0

1

2

3

4

5

6

0 0.2 0.4 0.6 0.8 1

no
rm

al
iz

ed
 w

in
do

w
 v

al
ue

index j/N

-180
-160
-140
-120
-100
-80
-60
-40
-20

0

-40 -20 0 20 40
am

pl
itu

de
 [d

B
]

frequency offset [bins]

NENBW=4.5386 bins

-160
-140
-120
-100

-80
-60
-40
-20

0

-15 -10 -5 0 5 10 15

am
pl

itu
de

 [d
B

]

frequency offset [bins]

7.000

-144.1dB
at 7.073

3dB width=4.4697 bins

HFT144D

-0.002
-0.0015
-0.001

-0.0005
0

0.0005
0.001

0.0015
0.002

-0.5 0 0.5

am
pl

itu
de

 [d
B

]

frequency offset [bins]

max. error = +0.0021 dB = +0.0245%

-300

-280

-260

-240

-220

-200

-180

-160

-140

101 102 103 104

am
pl

itu
de

 [d
B

]

frequency offset [bins] LOG.

-0.2

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60 70 80 90 100

ov
er

la
p 

fl
at

ne
ss

 / 
co

rr
el

at
io

n

overlap [%]

79.9%

OC

AF

PF

Figure 44 HFT144D Flat top window. See text Section D.3.5 on page 47.
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Figure 45 HFT169D Flat top window. See text Section D.3.6 on page 47.
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Figure 46 HFT196D Flat top window. See text Section D.3.7 on page 48.
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Figure 47 HFT223D Flat top window. See text Section D.3.8 on page 48.
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Figure 48 HFT248D Flat top window. See text Section D.3.9 on page 49.
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