
ar
X

iv
:h

ep
-t

h/
00

08
17

7 
v2

   
7 

D
ec

 2
00

0
Charged Brane-World Black Holes

Andrew Chamblin
chamblin@ctpblack.mit.edu

Center for Theoretical Physics, MIT, Bldg. 6-304, 77 Massachusetts Ave., Cambridge, MA 02139

Harvey S. Reall
H.Reall@damtp.cam.ac.uk

DAMTP, Centre for Mathematical Sciences, University of Cambridge,
Wilberforce Road, Cambridge CB3 0WA, United Kingdom

Hisa-aki Shinkai
shinkai@gravity.phys.psu.edu

Centre for Gravitational Physics and Geometry, 104 Davey Lab., Department of Physics,
The Pennsylvania State University, University Park, Pennsylvania 16802-6300

Tetsuya Shiromizu
siromizu@utap.phys.s.u-tokyo.ac.jp

MPI fur Gravitationsphysik, Albert-Einstein Institut, D-14476 Golm, Germany
Department of Physics, The University of Tokyo, Tokyo 113-0033, Japan

and Research Centre for the Early Universe(RESCEU), The University of Tokyo, Tokyo 113-0033, Japan
(November 2, 2000 (revised version) to appear in Phys. Rev. D. hep-th/0008177)

We study charged brane-world black holes in the model of Randall and Sundrum in which our
universe is viewed as a domain wall in asymptotically anti-de Sitter space. Such black holes can
carry two types of “charge”, one arising from the bulk Weyl tensor and one from a gauge field trapped
on the wall. We use a combination of analytical and numerical techniques to study how these black
holes behave in the bulk. It has been shown that a Reissner-Nordstrom geometry is induced on the
wall when only Weyl charge is present. However, we show that such solutions exhibit pathological
features in the bulk. For more general charged black holes, our results suggest that the extent of
the horizon in the fifth dimension is usually less than for an uncharged black hole that has the same
mass or the same horizon radius on the wall.

PACS numbers: 04.50.+h;98.80.Cq;12.10.-g;11.25.Mj

I. INTRODUCTION

In many of the brane-world scenarios, the matter fields
which we observe are trapped on the brane [1–4] (see also
[5] for older proposals). If matter trapped on a brane
undergoes gravitational collapse then a black hole will
form. Such a black hole will have a horizon that extends
into the dimensions transverse to the brane: it will be a
higher dimensional object.

Within the context of the second Randall-Sundrum
(RS) scenario [4], it is important that the induced metric
on the domain wall∗ is, to a good approximation, the so-
lution predicted by standard General Relativity in four
dimensions. Otherwise the usual astrophysical properties
of black holes and stars would not be recovered.

In a recent paper [6], the gravitational collapse of un-

charged, non-rotating matter in the second model of RS

∗In this paper, we use the terms “domain wall” and “brane”
interchangeably.

was investigated. There it was proposed that what would
appear to be a four-dimensional black hole from the point
of view of an observer in the brane-world, is really a five-
dimensional “black cigar”, which extends into the extra
fifth dimension. If this cigar extends all the way down
to the anti-de Sitter (AdS) horizon, then we recover the
metric for a black string in AdS. However, such a black
string is unstable near the AdS horizon. This instability,
known as the “Gregory-Laflamme” instability [7], implies
that the string will fragment in the region near the AdS
horizon. However, the solution is stable far from the AdS
horizon. Thus, one may conclude that the late time solu-
tion describes an object that looks like the black string far
from the AdS horizon (so the metric on the domain wall
is close to Schwarzschild) but has a horizon that closes off
before reaching the AdS horizon. A similar effect occurs
when there is more than one extra dimension transverse
to the brane [8]. These conclusions are supported by an
exact calculation for a three dimensional RS model [9].

In this paper, we consider black holes charged under
gauge fields which are trapped on the brane. The flux lines
of such gauge fields can pierce the horizon only where it
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actually intersects the brane. The bulk theory is the same
as for the uncharged case so one might expect that the
black cigar solution would still describe the bulk metric
of such a charged brane-world black hole. The effect of
the charge might simply be to modify the position of the
brane in the bulk spacetime. If this were the case, then
we might be able to repeat the analysis of [6] by start-
ing with the black string metric and solving the Israel
equations appropriate for the presence of a gauge field
on the brane. However, in the Appendix we prove that
this is not possible. It is still conceivable that the bulk
metric is the same as that of the black cigar, but unfor-
tunately the form of the cigar metric is not known. We
are therefore forced to study charged brane-world black
holes numerically.

A recent paper [10] has claimed to give a solution de-
scribing a non-charged black hole in the RS scenario. By
using the brane-world Einstein equations derived in [11],
it was shown that a Reissner-Nordstrom (RN) geometry
could arise on the domain wall provided that the bulk
Weyl tensor take a particular form at the wall. We re-
gard this solution as unsatisfactory for two reasons. First,
there is no Maxwell field on the domain wall so the black
hole cannot be regarded as charged†. Secondly, only the
induced metric on the domain wall was given – the bulk
metric was not discussed. The solution is simply a solu-
tion to the Hamiltonian constraint of general relativity
and gives appropriate initial data for evolution into the
bulk. Until this evolution is performed and boundary
conditions in the bulk are imposed, it is not clear what
this solution represents. For example, it might give rise
to some pathology such as a naked curvature singularity.
We would then not regard it as a brane-world black hole,
which should have a regular horizon [6,9]. One aim of the
present paper is to evolve the initial data of [10] in order
to understand what this “solution” really describes.

The second aim of this paper is to study brane-world
black holes that are charged with respect to a Maxwell
field on the brane. We start by solving the Hamiltonian
constraint on the brane to give an induced metric that
is close to, but not exactly, Reissner-Nordstrom. The
“charge” of [10] arises as an integration constant in the
metric. We then evolve this “initial” data away from the
domain wall in order to study the resulting bulk space-
time. Our solution to the Hamiltonian constraint is based
on a metric ansatz that is almost certainly not obeyed by
the true solution describing a charged brane-world black
hole. However, we expect our ansatz to be sufficiently
close to the true solution that useful results can be ob-
tained without a knowledge of the exact metric, just as
in [6].

† In the AdS/CFT interpretation [12] of the RS model, this
black hole must be charged with respect to a U(1) subgroup
of the dual CFT.

Our results suggest that it is more natural to take the
“charge squared” parameter of [10] to be negative than
positive since the latter gives an apparent horizon that
grows relative to the black string as one moves away from
the brane. For black holes charged with respect to a
Maxwell field, we find that the horizon shrinks in the fifth
dimension. In both cases (and for black holes carrying
both charges), we obtain a numerical upper bound on
the length of the horizon in the fifth dimension. We find
that increasing either type of charge tends to decrease
this length, even if the horizon radius on the brane is
held fixed.

It is worth emphasizing that this paper is quite distinct
from recent papers which have appeared on the subject
of charged black holes in brane-world scenarios [13–15].
This is because these papers all study the effects of bulk

charges on the brane-world geometry, whereas our anal-
ysis deals with gauge degrees of freedom that are truly
localized on the brane. One consistent interpretation of
the RN solution of [10] would be as the induced metric
on the brane in the (bulk) charged black string solution
of [14,15]. However, in this paper we will study whether
sense can be made of this solution without introducing
bulk gauge fields.

Related numerical work on uncharged brane-world
black holes has recently appeared in [16]. The differ-
ence between that paper and the present work is that we
will prescribe “initial” data on the brane and evolve it in
the spacelike direction transverse to the brane, whereas
in [16], initial data was prescribed on a spacelike hyper-
surface and evolved in a timelike direction.

The outline of this paper is as follows. First, we set up
the basic notation and formalism for a covariant treat-
ment of the second brane-world scenario of Randall and
Sundrum. Next we solve the Hamiltonian constraint for
“initial” data on the brane and obtain a RN solution with
small corrections. We then numerically evolve the solu-
tion into the bulk subject to the constraint that the met-
ric solve the vacuum Einstein equations with a negative
cosmological constant. Finally we discuss the properties
of the resulting bulk spacetime.

II. FORMULATION AND STRATEGY

A. Covariant formulation of brane-world gravity

We shall be discussing a thin domain wall in a five
dimensional bulk spacetime. We shall assume that the
spacetime is symmetric under reflections in the wall. The
5-dimensional Einstein equation is

(5)Rµν − 1

2
(5)gµν

(5)R = κ2
5

(5)Tµν , (2.1)

where κ2
5 = 8πG5 and G5 is the five dimensional Newton

constant. The energy-momentum tensor has the form

(5)T µν = −Λ5
(5)gµν + δ(χ)[−λhµν + Tµν ]. (2.2)
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In the above, the brane is assumed to be located at χ = 0
where χ is a Gaussian normal coordinate to the domain
wall. χ = 0 is the fixed point of the Z2 reflection sym-
metry. Λ and λ denote the bulk cosmological constant
and the domain wall tension respectively. hµν is the in-

duced metric on the wall, given by hµν = (5)gµν − nµnν

where nµ is the unit normal to the wall. The effect of the
singular source at χ = 0 is described by Israel’s junction
condition [17]

Kµν |χ=0 = −1

6
κ2

5λhµν − 1

2
κ2

5

(

Tµν − 1

3
hµνT

)

. (2.3)

Here, Kµν denotes the extrinsic curvature of the domain
wall, defined by Kµν = hρ

µhσ
ν∇ρnσ. In equation (2.3), we

are calculating the extrinsic curvature on the side of the
domain wall that the normal point into. This is because
we want to evolve initial date prescribed on the wall in the
direction of this normal. Using the Gauss equation and
the junction condition, we recover the Einstein equation
on the brane [11]:

(4)Gµν = −Λ4hµν + 8πG4Tµν + κ4
5πµν − Eµν , (2.4)

where

Λ4 =
1

2
κ2

5

(

Λ5 +
1

6
κ2

5λ
2
)

(2.5)

G4 =
κ4

5λ

48π
(2.6)

πµν =
1

12
TTµν − 1

4
TµαT α

ν +
1

8
hµνTαβT αβ − 1

24
hµνT 2 (2.7)

and Eµν is the ‘electric’ part of the 5-dimensional Weyl
tensor:

Eµν = (5)Cµανβnαnβ (2.8)

We shall now specialize to the RS model. This has

Λ5 = − 6

κ2
5ℓ

2
, λ =

6

κ2
5ℓ

, (2.9)

which implies

Λ4 = 0, G4 =
G5

ℓ
. (2.10)

The matter on the domain wall will be assumed to be a
Maxwell field. This implies T = 0, so we can rewrite the
Einstein equation as

(4)Rµν = 8πG4Tµν − κ4
5

4
TµρT

ρ
ν − Eµν . (2.11)

The Israel equation gives the extrinsic curvature of the
wall:

Kµν |χ=0 = −1

ℓ
hµν − κ2

5

2
Tµν . (2.12)

B. Strategy

We adopt the following procedure: We take a certain
charged black hole geometry for the brane. When we
solve for the bulk, we Wick rotate twice. This gives a
Kaluza-Klein bubble spacetime [21,22] from which we ob-
tain boundary conditions at the condition on the bubble
surface. Wick rotating back gives boundary conditions
at the bulk horizon for our problem. The Kaluza-Klein
bubble spacetime is reviewed in Appendix B.

C. Metric and field equations

We assume that the induced metric on the brane takes
the form

ds2 = −U(r)dt2 +
dr2

U(r)
+ r2dΩ2

2, (2.13)

where dΩ2
2 = dθ2 + sin2 θdϕ2. Note that this is a guess.

It is unlikely that the exact metric describing a brane-
world black hole would have precisely this form - in gen-
eral one would expect the coefficients of dt2 and dr2 to
be independent (when the coefficient of dΩ2

2 is fixed as
r2). However, we know that the induced metric describ-
ing a charged black hole should be close to Reissner-
Nordstrom, which can be written in this form, so our
ansatz is probably quite a good guess. We expect that
deviations from the exact metric will give rise to patholo-
gies when this initial data is evolved into the bulk. Even
so, the analysis of [6] shows that it is possible to extract
quite a lot of information from a pathological solution.
The function U(r) will be determined from the Hamil-
tonian constraint equation below. The bulk metric is
assumed to take the form

ds2 = N(χ, r)2dχ2 − e2a(χ,r)U(r)dt2

+
e2b(χ,r)dr2

U(r)
+ e2c(χ,r)r2dΩ2

2, (2.14)

N is the lapse function which describes the embedding
geometry of the hypersurface spanned by (t, r, θ, ϕ) dur-
ing the evolution in the bulk spacetime.

The extrinsic curvature of a hypersurface of constant
χ (with unit normal n = Ndχ) is given by

Kt
t =

ȧ

N
, Kr

r =
ḃ

N
and Kθ

θ = Kϕ
ϕ =

ċ

N
, (2.15)

where a dot denotes ∂χ. The spacetime is described by
the evolution equation,

K̇µ
ν = N

(

(4)Rµ
ν − KKµ

ν +
4

ℓ2
δµ
ν

)

− DµDνN, (2.16)

the Hamiltonian constraint equation,

(4)R − K2 + KµνKµν = −12

ℓ2
, (2.17)
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and the momentum constraint equation,

DµKµ
ν − DνK = 0. (2.18)

Here (4)Rµ
ν and (4)R are the Ricci tensor and Ricci scalar

on hypersurfaces of constant χ.

III. BRANE AND BULK GEOMETRY

A. Brane Geometry : Charged black hole “initial

data”

The action for the Maxwell field on the brane is taken
to be

S = − 1

16πG4

∫

d4x
√
−hFµνFµν , (3.1)

giving energy-momentum tensor

Tµν =
1

4πG4

(

FµρFν
ρ − 1

4
hµνFρσF ρσ

)

. (3.2)

The field strength F is related to a potential A by F =
dA. The equations of motion are satisfied if we take
A = −Φ(r)dt with Φ(r) = Q/r. This gives

Tµν =
1

8πG4

Q2

r4
diag

(

U,−U−1, r2, r2 sin2 θ
)

. (3.3)

This can be substituted into the right hand side of the Is-
rael equation (2.12) to give an expression for the extrinsic
curvature. This can then be substituted into the Hamil-
tonian equation (2.17), along with our metric ansatz to
give an equation for U(r). Solving this equation gives‡

U(r) = 1 − 2G4M

r
+

β + Q2

r2
+

l2Q4

20r6
, (3.4)

where M and β are arbitrary constants of integration.
Substituting into the Einstein equation on the domain
wall gives

‡ It is interesting to compare this form for U(r) with the
behaviour expected from the linear perturbation analysis of
the second RS model [4,18–20]. In linearized theory, U(r) =
1 − φ(r) where φ(r) is the Newtonian potential. For r ≫ ℓ,
the leading order corrections to φ(r) are expected to be pro-
portional to G4Mℓ2/r3 and ℓ2Q2/r4. Such terms are not
present in our expression for U(r). However, we shall be in-
terested in black holes for which G4M ≫ ℓ, so these correction
terms will be small compared with terms like (G4M/r)3 and
(G4MQ/r2)2, which would be neglected in linearized theory.
In other words, the RS correction are dominated by post-
Newtonian corrections [20] so it is not appropriate to compare
U(r) with the linearized results beyond leading order.

− Eµν =

(

β

r4
+

l2Q4

2r8

)

diag
(

U,−U−1, r2, r2 sin2 θ
)

.

(3.5)

It is interesting to compare −Eµν with 8πG4Tµν since
these quantities appear on an equal footing in the effec-
tive Einstein equation (2.4). It is clear that the constant
of integration β is in some sense analogous to Q2, which
is why the authors of [10] obtained a RN solution. How-
ever, since their solution did not have a Maxwell field, it
cannot really be regarded as a charged black hole in the
usual sense. Rather it carries “tidal” charge associated
with the bulk Weyl tensor. β might be regarded as a five

dimensional mass parameter.
We shall only consider initial data that corresponds to

an object with an event horizon (in the four dimensional
sense) on the domain wall. In some cases there may be
more than one horizon. We shall use r+ to denote the po-
sition of the outermost horizon, i.e., the largest solution
of U(r) = 0. This has to be found numerically except
when Q = 0.

Our “initial data” is given by

ȧ

N

∣

∣

∣

∣

χ=0

=
ḃ

N

∣

∣

∣

∣

∣

χ=0

= −1

ℓ
+

ℓ

2

Q2

r4
, (3.6)

ċ

N

∣

∣

∣

∣

χ=0

= −1

ℓ
− ℓ

2

Q2

r4
, (3.7)

a(χ = 0, r) = b(0, r) = c(0, r) = 0. (3.8)

We shall study the following cases:
(i) No electromagnetic charge, i.e., Q = 0. In this
case, the induced metric on the domain wall is exactly
RN [10]. The horizon radius is

r+ = M +
√

M2 − β. (3.9)

The induced metric has a regular horizon if β ≤ M2.
Note that there is nothing to stop us choosing β to be
negative, which emphasizes the difference between the
solution of [10] and a charged black hole. If we take β to
be negative then the induced metric has only one horizon,
instead of the two horizons of a non-extreme RN black
hole.
(ii) No tidal charge, i.e., β = 0. In this case, the
induced metric on the domain wall is Reissner-Nordstrom
with a correction term. Note that −Eµν is non-zero but is
of order 1/r8, which suggests that the total “tidal energy”
on the wall is zero.

We shall also consider the general case (iii) Both
charges non-zero, i.e., β 6= 0, Q 6= 0.

B. Bulk Geometry

The bulk geometry is obtained by integrating (2.15)
and (2.16) in the χ-direction numerically. We use the
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standard ‘free-evolution’ method, that is we do not solve
the constraint equations (2.17) and (2.18) during the evo-
lution, but instead use them to monitor the accuracy of
the simulation.

We obtain the solution numerically in the region r+ <
r < re with re ∼ 5r+. Boundary conditions at r = r+

are specified by first Wick rotating χ = iT , t = iτ ,
which takes the metric to a Kaluza-Klein bubble met-
ric (see Appendix B). Therefore we can apply the nu-
merical techniques that are used in the study of Kaluza-
Klein bubbles [24], although the physics of Kaluza-Klein
bubbles is unrelated to the physics of black holes. It
was shown in the Appendix of [24] that at the inner
boundary r = r+, a and b evolve synchronously, that
is, a(T, r+) = b(T, r+). Analytically continuing back
to our original spacetime yields the boundary condition
a(χ, r+) = b(χ, r+). The evolution equation for the trace
of Kµν and the momentum constraint are also used at
r = r+. At the outer boundary r = re, we assume the
components of the extrinsic curvature [equation (2.15)]
fall off like −1/ℓ + O

(

r−4
)

[cf. (3.7)]. We apply the
geodesic gauge condition (slicing condition), N = 1.

We use the Crank-Nicholson integrating scheme with
two iterations [25]. The numerical code passed conver-
gence tests, and the results shown in this paper are all
obtained to acceptable accuracy.

We were only able to solve numerically in a region near
the domain wall with a maximum value for χ of O(1).
This is because the volume element of surfaces of constant
χ decreases exponentially as one moves away from the
wall, just as in pure AdS. The evolution was stopped
when

√−g became too small to monitor accurately.
We are interested in how charge affects the shape of the

horizon, in particular how far it extends into the fifth
dimension. This will be measured by the ratio of the
physical size of the apparent horizon r+ec(χ,r+), to that
of a black string [6] with the same horizon radius r+ on
the wall§. The size of the black string apparent horizon
in the bulk is r+e−χ/ℓ, so the ratio is

R(χ) = ec(χ,r+)+χ/ℓ. (3.10)

We remark that the only apparent horizon that appears
during the χ-evolution is at r = r+. Here we define
apparent horizon as the outermost region of negative ex-
pansion of the outgoing null geodesic congruences, where
we define the expansion rate, θ+, as

θ+ = (3)∇asa +(3)K − sasb (3)Kab, (3.11)

§ The reason for measuring the size of the horizon relative
to that of the black string is because we want to distinguish
the closing-off of the horizon from the exponential collapse of
hypersurfaces of constant χ arising from the AdS nature of
the geometry.

where sa = (1/
√

grr)∂r is an outwards pointing unit vec-
tor in the 3-dimensional metric. We checked (3.11) dur-
ing the evolution and confirmed its positivity for r > r+.

Our initial conditions give the behaviour of the ratio
R(χ) near the brane:

Ṙ(χ)|χ=0 = − ℓ

2

Q2

r4
+

≤ 0, (3.12)

and

R̈(χ)|χ=0 =
3Q2 + β

r4
+

− ℓ2Q4

2r8
+

. (3.13)

For model (i) (Q = 0), Ṙ(χ)|χ=0 = 0, but R̈(χ)|χ=0 =

β/r4
+. This gives R̈(χ)|χ=0 < 0 for the case with

β < 0, which indicates that the ratio decreases, while
R̈(χ)|χ=0 > 0 for the case with β > 0, which indicates
that the ratio increases. We have plotted the numerical
results for this ratio in Fig.1 (a) and (b) (henceforth we
shall set ℓ = G4 = 1 and assume M ≫ 1, as appropri-
ate for an astrophysical black hole.). Fig.1 (a) and (b)
suggests that a negative value for β is the natural choice
since the apparent horizon grows (relative to the black
string) in the fifth dimension when β is positive.

For model (ii) (β = 0), Ṙ(χ)|χ=0 < 0 and the ra-
tio always decreases [see Fig.1 (c)]. Model (iii) (Q 6= 0
and β 6= 0) is non-trivial. We present numerical re-
sults in Fig.2. The plot is for M = 5, Q = 3 and
β = 0,±5,±10,±15, where β = 15 is close to the ex-
treme∗∗ case for this choice of Q. The qualitative fea-
tures are combinations of the plots in Fig.1. Note that β
seems to have the greatest effect on the bulk evolution.
Again, the case with negative β appears to be the natural
choice since positive β gives a growing horizon.

C. Bulk Geometry: extent of the horizon

In this section, we shall estimate how far the horizon
extends into the fifth dimension by combining analytical
and numerical work. Following the conjugate points the-
orem [26], we shall show that for a charged black hole,
the trace of the extrinsic curvature diverges at a finite
distance from the brane. The trace of the evolutional
equation is given by

K̇ = (4)R − K2 +
16

ℓ2
= −KµνKµν +

4

ℓ2
, (3.14)

where we used the Hamiltonian constraint in the second
line. Now define kµν as

∗∗ By extreme, we mean that U(r) has a double root at
r = r+.
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Kµ
ν =: −1

ℓ
hµ

ν + kµ
ν . (3.15)

The trace part of kµν , k = kµ
µ, is expected to measure

the volume expansion relative to the AdS “background”
geometry. In term of kµν , (3.14) can be written as

k̇ − 2

ℓ
k +

1

4
k2 = −k̃µν k̃µν ≤ 0, (3.16)

where k̃µν is the traceless part of kµν . On the brane the
“initial” condition is

kµν |brane = k̃µν |brane = −4πG5Tµν , (3.17)

which implies

k|brane = 0 (3.18)

For the case with Q 6= 0,

k̃µν k̃µν > 0, (3.19)

so

k̇|brane < 0 (3.20)

This implies that there is a χ = χ0 such that

k = k0 < 0 (3.21)

From (3.16), one obtains

1 +
8

ℓ|k| ≤
(

1 +
8

ℓ|k0|

)

e2(χ0−χ)/ℓ, (3.22)

from which it follows that k diverges before χ = χcrit,
where

χcrit = χ0 +
ℓ

2
log

(

1 +
8

ℓ|k0|
)

. (3.23)

The divergence in k implies that K also diverges. Near
χ = χcrit, |k| behaves like

k ≤ − 4

χcrit − χ
. (3.24)

The case with Q = 0 is more difficult to analyze because
k̇|brane = 0. We can use equation (2.15) (with N = 1) to
give

k|r=r+
= 2∂χ

(

a + c +
2χ

ℓ

)

, (3.25)

where we have used the synchronous evolution boundary
condition a = b at r = r+. In Fig.3, we have plotted
a + c + 2χ/ℓ at r = r+. It is clear from this plot that k
becomes negative in the bulk when β < 0. In fact k also
becomes negative when β > 0. Thus, even in the Q = 0
case, there exists a χ = χ0 such that k = k0 < 0. The
above argument can then be used to show that when

Q = 0 and β 6= 0, K must diverge before χ = χcrit,
where χcrit is given by equation (3.23). We have therefore
proved that if Q 6= 0 or β 6= 0 then K diverges before
χ = χcrit.

It follows from equations (3.24) and (3.25) that

(a + c)|r=r+
≤ 2 log (χcrit − χ) , (3.26)

which implies that
√−g tends to zero at least as fast as

(χcrit − χ)
4

as χ → χcrit.
Conservatively, the divergence of K indicates that the

geodesic slicing has broken down (when N = 1, ∂χ is the
tangent vector of spacelike geodesics), in other words a
caustic has occurred. The numerical study therefore can-
not be extended further using this slicing. This has, how-
ever, a physical meaning because the apparent horizon is
located at constant r = r+ in the bulk. The horizon will
encounter the caustic before reaching the AdS Cauchy
horizon. The caustic can therefore be viewed as the end-
point of the horizon, i.e., the tip of the black cigar. Our
analysis has only shown that the geodesic slicing must
break down at the caustic so, in principle, this point may
be regular, i.e., there may exist a coordinate chart that
covers a neighbourhood of this point††. However, we do
not regard this as very likely. Our guess for the induced
metric on the domain wall is unlikely to be exactly cor-
rect, so in general we would expect some pathology such
as a naked curvature singularity to appear in the bulk.
We cannot check whether curvature invariants diverge at
χ = χcrit since our numerical evolution cannot be ex-
tended as far as χ = χcrit.

Whether the bulk solution is regular or not, equation
(3.23) gives us an upper bound on the extent of the hori-
zon in the direction transverse to the domain wall, i.e.,
the length of the black cigar. We have plotted this up-
per bound in Fig.4 taking the values for χ0 and k0 at
the endpoint of our numerical evolution. The first graph
shows how χcrit depends on Q and β when M is fixed.
Note that when Q = β = 0, the numerical solution is
simply the black string‡‡, which has χcrit = ∞. Increas-
ing Q clearly has the effect of decreasing χcrit, which is
not surprising since increasing Q also shrinks the horizon
radius on the domain wall r+. Perhaps more surprising
is that making β more negative also appears to decrease
χcrit even though this increases the horizon radius on the
wall [see equation (3.9)]. The solid curve on this diagram
has both M and r+ fixed. It is clear that χcrit decreases
along this curve as Q or β increases.

††It is not even clear from our analysis whether the caustic
occurs at a single point or is spread over a region of spacetime.
‡‡The reader may find this surprising since the black string

is unstable [6], and small numerical errors might be expected
to act as perturbations. However, the string is unstable to
long wavelength perturbations, and the numerical errors will
only be relevant at short wavelengths.
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The second graph of Fig.4 plots the same curve (fixed
M and fixed r+) for different values of M . The trend
seems to be the same in each case.

The final graph of Fig.4 is for fixed r+ (rather than
fixed M). Increasing β appears to decrease χcrit when
Q is small but has no significant effect when Q is large.
When β is non-zero, increasing Q has the effect of ini-
tially slightly increasing χcrit, but ultimately decreases
it substantially. The gross trend appears to be that in-
creasing either type of charge leads to a decrease in the
length of the horizon.

In most of these graphs, χcrit < r+, so the extent of the
horizon in the fifth dimension is smaller than the horizon
radius on the domain wall, just as for the uncharged black
cigar.

IV. SUMMARY AND DISCUSSION

In this paper we have studied charged black holes in
the second RS model. We have seen that two types of
charge can arise on the brane, one coming from the bulk
Weyl tensor [10] and one from a Maxwell field trapped

on the brane. Starting from an ansatz for the induced
metric on the brane, we have solved the constraint equa-
tions of 4+1 dimensional gravity to find metrics describ-
ing charged brane-world black holes. In the absence of
Maxwell charge, one can obtain a Reissner-Nordstrom
solution [10]. If Maxwell charge is included then one can
obtain a geometry that is Reissner-Nordstrom with small
corrections.

Using these induced metrics as “initial” data, we have
solved the bulk field equations numerically. We have
found that the RN solution of [10] has an apparent hori-
zon that grows (relative to the black string apparent hori-
zon) in the dimension transverse to the brane unless the
“charge squared” parameter β is taken to be negative§§.
It therefore seems unlikely that this solution really cor-
responds to a charged brane-world black hole. Of course,
if a bulk gauge field is included then the work of [10]
(with β > 0) has a natural interpretation as the induced
metric on the brane arising from the charged black string
solution of [14,15].

If β < 0 and/or Q 6= 0 then the horizon shrinks rela-
tive to the black string horizon. For all cases (including
β > 0), we have found that the trace of the extrinsic
curvature diverges at a finite distance from the brane,
with the volume element of the spacetime tending to

§§ In [24], the evolution of Kaluza-Klein bubbles was studied
numerically and it was found that even though negative mass
bubbles start off with accelerating expansion [23], the accel-
eration ultimately becomes negative. It is conceivable that
something analogous could happen here but we have found
no evidence for such behaviour.

zero. For β ≤ 0, we have interpreted this as the end
point of the horizon of the black hole. Our results sug-
gest that increasing the charges of a brane-world black
hole will decrease the length of its horizon in the fifth
dimension, even when the horizon radius on the brane
is kept fixed. This implies that, by adjusting Q, one
can change the five dimensional horizon area while keep-
ing the four dimensional horizon area fixed. One might
think that this would lead to a difference between the en-
tropies calculated from these horizon areas, which would
be bad news for hopes of recovering General Relativity
as the effective four dimensional theory of gravity on the
brane. However, the exponential decrease in the volume
element as one moves away from the brane implies that
the dominant contribution to the five dimensional area
comes from the region of the horizon that is closest to
the brane [9]. Changes near the other end of the horizon
give only subleading corrections to the five dimensional
area, allowing the four and five dimensional entropies to
agree at leading order.

We suspect that our solutions will generically have a
curvature singularity at the point where the trace of the
extrinsic curvature diverges. This is because it seems
rather improbable that our ansatz for the induced metric
on the brane should turn out to be exactly right. How-
ever, we expect that for each value of Q there will be
some value of β for which a small change in our initial
data would smooth out this singularity, leading to a regu-
lar geometry describing a brane-world black hole carrying
Maxwell charge Q. This smoothing would probably not
significantly affect the position of the “tip” of the hori-
zon, for which we have obtained an upper bound on the
distance from the brane. This is to be contrasted with
the uncharged case in which one takes the induced met-
ric on the brane to be Schwarzschild. Evolving this into
the bulk gives the black string metric, for which the sin-
gularity occurs at the AdS horizon, which is at infinite

proper distance from the brane along spacelike geodesics.
A small perturbation of the metric on the brane takes one
from the black string to the black cigar, which has a reg-
ular AdS horizon and a black hole horizon with a tip at
finite distance from the brane.

For the black string, the stability analysis of [6]
shows that the horizon extends a distance of order d =
ℓ log(G4M/ℓ) into the fifth dimension, so d ≪ r+. Our
results give only an upper bound for d in the charged
case. It would be nice if the stability analysis could be
extended to the charged case. However, the instability
only sets in when the proper radius of the horizon be-
comes smaller than the anti-de Sitter length scale and
we were not able to extend our numerical evolution this
far. Our upper bound seems rather on the large side,
since it appears to give d ∼ r+ for small Q and β. How-
ever, for large Q and/or β, figure 4(c) shows that d ≪ r+,
so our upper bound is probably tighter in this case.

The main outstanding problem remains to find the ex-
act bulk metric that describes a brane-world black hole.
This was solved for uncharged black holes in the 3 di-
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mensional RS model by using the 4 dimensional AdS
C-metric in the bulk [9]. Unfortunately, the higher di-
mensional generalization of this metric is not known. It
would be interesting to see whether charged black holes
in the 3 dimensional RS model could be constructed by
using the same bulk as in [9] but simply slicing along
a different hypersurface. It would also be interesting to
use the methods of [18–20] to find linearized solutions
describing spherical distributions of matter charged with
respect to a brane-world gauge field.
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APPENDIX A: BRANE BENDING AND THE

BLACK STRING

One candidate for a black hole formed by gravitational
collapse of charged brane-world matter on a domain wall
in AdS is the black string solution in AdS, which has the
metric

ds2 =
ℓ2

z2
(−U(r)dt2 + U(r)−1dr2 + r2dΩ2

2 + dz2) (A1)

where U(r) = 1 − 2G4M/r. As discussed in [6], surfaces
of constant z trivially satisfy the Israel matching condi-
tions provided that the tension satisfies λ = ±6/κ5

2ℓ.
Thus, we may slice the spacetime along such a surface
of constant z, and match to a mirror image, in order to
obtain the Schwarzschild solution on the domain wall.

We now want to consider what happens when we allow
the black hole to be electrically charged with respect to
some U(1) gauge field living on the brane. Thus, we must
add in an extra term to the brane-world stress energy
tensor of the form

Tµν =
1

4πG4
(FµρF ρ

ν − 1

4
qµνFρσF ρσ) (A2)

where the electric gauge potential has the form

A = −Φ(r)dt (A3)

so that

F = Φ′(r)dt ∧ dr (A4)

where ′ denotes differentiation with respect to r.
Now, as a first guess we might try to support this

stress-energy on the brane by allowing the brane to bend
in the black string background in such a way that the ex-
trinsic curvatures would still satisfy the Israel equations.

In other words, we allow the position z of the brane
to depend on the radial direction r. Solving the Maxwell
equations yields

Φ′(r) = −Q

r2

(

1 + z′
2
U

)1/2

(A5)

To compute the extrinsic curvature of the timelike hy-
persurface swept out by z = z(r), we introduce an or-
thonormal basis which consists of a unit normal vector

n =
ǫℓ

z
√

1 + Uz′2
(dz − z′dr) , (A6)

where ǫ = ±1, a unit timelike tangent

u =
z

ℓ
U−1/2 ∂

∂t
, (A7)

and the spacelike tangents

t =
z

ℓ

√

U

1 + Uz′2

(

z′
∂

∂z
+

∂

∂r

)

, (A8)

eφ =
z

ℓr sin θ

∂

∂φ
, (A9)

eθ =
z

ℓr

∂

∂θ
(A10)

It follows that the non-vanishing components of the ex-
trinsic curvature in this basis are

Kuu =
ǫ

ℓ
√

1 + Uz′2
(1 +

1

2
U ′zz′), (A11)

Kθθ = Kφφ =
−ǫ

ℓ
√

1 + Uz′2

(

1 +
U

r
zz′

)

, (A12)

Ktt = − ǫU

ℓ
(

1 + Uz′2
)3/2

(

zz′′ + z′
2
+ U−1 +

U ′zz′

2U

)

.

(A13)
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Under the assumption of Z2 symmetry, the Israel equa-
tions reduce to (2.12). The three independent compo-
nents of Kµν give three independent equations:

Ktt =
1

ℓ
− z4Q2

2ℓ3r4

Kuu = −1

ℓ
+

z4Q2

2ℓ3r4
(A14)

Kθθ =
1

ℓ
+

z4Q2

2ℓ3r4
.

It is straightforward to show that it is impossible to solve
these three equations simultaneously unless one takes
Q = 0 and z =constant, which is the uncharged solu-
tion of [6]. It is therefore not possible to support the
stress-energy of a point charge by simply allowing the
brane to bend in the black string background. It follows
that the bulk has to change once the brane-world charge
is introduced. In other words, brane-world charge will in-
duce changes in the bulk Weyl tensor, and this is exactly
what we have found in our numerical analysis.

APPENDIX B: KALUZA-KLEIN BUBBLE

The double Wick rotation(χ → it, t → iτ) of the metric
of Eq. (2.13) gives us the Euclidean induced metric:

ds2 = U(r)dτ2 +
dr2

U(r)
+ r2dΩ2

2. (B1)

The largest r = r+ such that U(r+) = 0 is interpreted as
the position of the bubble surface. Around r = r+, the
metric can be expanded

ds2 ≃ U ′(r+)(r − r+)dτ2 +
dr2

U ′(r+)(r − r+)
+ r2

+dΩ2
2. (B2)

In term of the new coordinate R :=
√

r − r+,

ds2 ≃ 4

U ′(r+)

[

R2d
(U ′(r+)τ

2

)2

+ dR2
]

+ r2
+dΩ2

2. (B3)

We can see easily that the metric will be regular if
we assume that the τ direction is periodic with period
4π/U ′(r+).

In the case of U(r) = 1 − r2
0/r2 with λ = Λ = 0, the

exact five dimensional solution for time-symmetric initial
data (Kµν = 0) is

ds2
5 = −r2dt2 + U(r)dτ2 + U−1(r)dr2 + r2cosh2t dΩ2

2. (B4)

This is the Witten-bubble spacetime [21]. Another ex-
ample of initial data for a Kaluza-Klein bubble spacetime
was given in Ref. [22] and its classical time evolution has
been investigated in Ref. [23,24].

[1] N. Arkani-Hamed, S. Dimopoulos and G. Dvali, Phys.
Lett. B429, 263 (1998).

[2] I. Antoniadis, N. Arkani-Hamed, S. Dimopoulos and G.
Dvali, Phys. Lett. B436, 257 (1998).

[3] L. Randall and R. Sundrum, Phys. Rev. Lett. 83,
3370(1999).

[4] L. Randall and R. Sundrum, Phys. Rev. Lett. 83,
4690(1999).

[5] V. A. Rubakov and M. E. Shaposhinikov, Phys. Lett.
152B, 136(1983);
M. Visser, Phys. Lett. 159B, 22(1985);
M. Gogberashvili, Mod. Phys. Lett. A14, 2025(1999).

[6] A. Chamblin, S. W. Hawking and H. S. Reall, Phys. Rev.
D61, 065007 (2000).

[7] R. Gregory and R. Laflamme, Phys. Rev. Lett. 70,
2837(1993);
R. Gregory, hep-th/0004101.

[8] A. Chamblin, C. Csaki, J. Erlich and T.J. Hollowood,
Phys.Rev. D62, 044012 (2000).

[9] R. Emparan, G. T. Horowitz, and R. C. Myers, JHEP
0001, 007 (2000).

[10] N. Dadhich, R. Maartens, P. Papadopoulos and V. Reza-
nia, hep-th/0003061.

[11] T. Shiromizu, K. Maeda and M. Sasaki, Phys. Rev. D62,
024012 (2000).

[12] S. S. Gubser, hep-th/9912001.
[13] N. Kaloper, E. Silverstein and L. Susskind, hep-

th/0006192.
[14] H. Lu and C.N. Pope, hep-th/0008050.
[15] I. Oda, hep-th/0008055.
[16] T. Shiromizu and M. Shibata, hep-th/0007203.
[17] W. Israel, Nuovo. Cimento. 44B, 1(1966); erratum: 48B,

463 (1967).
[18] J. Garriga and T. Tanaka, Phys. Rev. Lett. 84, 2778

(2000).
[19] M. Sasaki, T. Shiromizu and K. Maeda, Phys. Rev. D62,

024008 (2000).
[20] S. B. Giddings, E. Katz, and L. Randall, JHEP 0003,

023 (2000).
[21] E. Witten, Nucl. Phys. B195, 481 (1982).
[22] D. Brill and G. T. Horowitz, Phys. Lett. 262, 437 (1991).
[23] S. Corley and T. Jacobson, Phys. Rev. D49, 6261(1994).
[24] H. Shinkai and T. Shiromizu, Phys. Rev. D62, 024010

(2000).
[25] e.g., S.A. Teukolsky, Phys. Rev. D61, 087501 (2000).
[26] S. W. Hawking and G. F. R. Ellis, The large scale struc-

ture of space-time, (Cambridge Univ. Press, 1973);
R. M. Wald, General Relativity, (Univ. of Chicago Press,
1984).

9

http://lanl.arXiv.org/abs/hep-th/0004101
http://lanl.arXiv.org/abs/hep-th/0003061
http://lanl.arXiv.org/abs/hep-th/9912001
http://lanl.arXiv.org/abs/hep-th/0006192
http://lanl.arXiv.org/abs/hep-th/0006192
http://lanl.arXiv.org/abs/hep-th/0008050
http://lanl.arXiv.org/abs/hep-th/0008055
http://lanl.arXiv.org/abs/hep-th/0007203


0.980

0.990

1.000

1.010

1.020

1.030

1.040

0.0 0.5 1.0 1.5

( a )

 β = 0.0

 β = − Μ2

 β = + Μ2

R 
(χ

) 

 χ

 + 0.9 M
2

+ 0.5 M
2

+ 0.2 M
2

0.980

0.990

1.000

1.010

1.020

1.030

1.040

0.0 0.5 1.0 1.5

( b )

R 
(χ

) 

M=10

M=10

M = 5

M = 5

M = 2

M = 2

χ

β > 0

β < 0

0.994

0.995

0.996

0.997

0.998

0.999

1.000

1.001

0.0 0.2 0.4 0.6 0.8 1.0

(c)

Q=0.0
Q=2.0
Q=5.0
Q=9.0
Q=9.99

R 
(χ

)

 χ
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